
 1

Web Services Agreement Specification
(WS-Agreement)

Version 1.1

Draft 18

5/14/2004

Authors (alphabetically):

Alain Andrieux, (Globus Alliance / USC/ISI)
Karl Czajkowski, (Globus Alliance / USC/ISI)
Asit Dan (IBM)
Kate Keahey, (Globus Alliance / ANL)
Heiko Ludwig (IBM)
Jim Pruyne (HP)
John Rofrano (IBM)
Steve Tuecke (Globus Alliance / ANL)
Ming Xu (Platform Computing)

Abstract
This document describes Web Services Agreement Specification (WS-Agreement),
an XML language for specifying an agreement between a resource/service provider
and a consumer, and a protocol for creation of an agreement using agreement
templates.

Status
This document is a draft of the WS-Agreement Specification from the Global Grid
Forum (GGF). This is a public document being developed by the participants of the
GRAAP Working Group (Grid Resource Allocation and Agreement Protocol WG) of the
Scheduling and Resource Management (SRM) Area of the GGF.

 2

GLOBAL GRID FORUM
office@ggf.org
www.ggf.org

Full Copyright Notice
Copyright © Global Grid Forum (2003, 2004). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to the GGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for copyrights
defined in the GGF Document process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property Statement
The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director (see
contact information at GGF website).

 3

Table of Contents
Web Services Agreement Specification (WS-Agreement).......................................1
Full Copyright Notice ..2
Table of Contents...3
1 Introduction...4

1.1 Goals and Requirements..5
1.1.1 Requirements ...5
1.1.2 Non-Goals ..6

1.2 Notational Conventions..6
1.3 Namespace..6

2 Example Scenarios ...7
2.1 Job submission...7
2.2 Service Parameterization ...7

3 Layered Model ...9
4 Agreement Structure .. 11

4.1 Agreement Context... 12
4.2 Agreement Terms ... 14

4.2.1 Term Compositor Structure .. 14
4.2.2 Service Description Terms.. 15

4.2.2.1 Service Description Term Structure... 16
4.2.3 Guarantee Terms .. 16

4.2.3.1 Guarantee Term Structure... 17
4.2.3.2 Variables ... 18
4.2.3.3 Qualifying Condition and Service Level Objective........................ 20
4.2.3.4 Business Value List ... 20

5 Agreement Template and Creation Constraints... 23
5.1 Creation Constraints.. 25

5.1.1 Offer Item.. 25
5.1.2 Free–form Constraints ... 26

6 Compliance of Offers with Templates .. 27
7 Port Types and Operations... 28

7.1 Port Type wsag:AgreementFactory.. 29
7.1.1 Operation wsag:CreateAgreement... 29

7.1.1.1 Input .. 29
7.1.1.2 Result ... 29
7.1.1.3 Faults.. 30

7.1.2 Resource Property wsag:Template... 30
7.1.3 Resource Property wssg:Entry .. 30
7.1.4 Resource Property wssg:MembershipContentRule.............................. 30

7.2 Port Type wsag:Agreement.. 31
7.2.1 Resource Property wsag:Context... 31
7.2.2 Resource Property wsag:Terms... 31
7.2.3 Resource Property wssg:Entry .. 31
7.2.4 Resource Property wssg:MembershipContentRule.............................. 31

7.3 Port Type wsag:AgreementState... 32
7.3.1 Resource Property wsag:AgreementState... 32
7.3.2 Resource Property wsag:GuaranteeTermStateList.............................. 32
7.3.3 Resource Property wsag:ServiceTermStateList.................................. 32

8 Agreement Creation Use Case.. 33
9 Acknowledgements... 33
10 References.. 34

 4

 WSDL.. 35
Appendix 1 - ... 35
Appendix 2 - Example .. 41

1 Introduction
In a distributed service-oriented computing environment, service consumers like to
obtain guarantees related to services they use, often related to quality of a service.
Whether service providers can offer – and meet – guarantees usually depends on
their resource situation at the requested time of service. Hence, quality of service
and other guarantees that depend on actual resource usage cannot simply be
advertised as an invariant property of a service and then bound to by a service
consumer. Instead, the service consumer must request state-dependent guarantees
to the provider, resulting in an agreement on the service and the associated
guarantees. Additionally, the guarantees on service quality must be monitored and
failure to meet these guarantees must to be notified to consumers. The objective of
the WS-Agreement specification is to define a language and a protocol for advertising
the capabilities of providers and creating agreements based on creational offers, and
for monitoring agreement compliance at runtime.

TODO decide on naming for the responding party: “responder” or “agreement
provider”?
signaling roles: “agreement initiator” / “agreement provider” (or “responder”?)
(service provisioning roles: “service consumer” / “service provider”)

An agreement between a service consumer and a service provider specifies one or
more service level objectives both as expressions of requirements of the service
consumer and assurances by the provider on the availability of resources and/or on
service qualities. For example, an agreement may provide assurances on the bounds
on service response time and service availability. Alternatively, it may provide
assurances on the availability of minimum resources such as memory, CPU MIPS,
storage, etc.
To obtain this assurance on service quality, the service consumer or an entity acting
on its behalf must establish a service agreement with the service provider, or
another entity acting on behalf of the service provider. Because the service
objectives relate to the definition of the service, the service definition must be part of
the terms of the agreement or be established prior to agreement creation. This
specification provides a schema for defining overall structure for an agreement
document. An agreement includes information on the agreement parties and
references to prior agreements, referred to as agreement context, one or more
discipline specific service definition terms, and one or more guarantee terms
specifying service level objectives and business values associated with these
objectives.

The agreement creation process typically starts with a pre-defined agreement
template specifying customizable aspects of the documents, and rules that must be
followed in creating an agreement, which we call agreement creation constraints.
This specification defines a schema for an agreement template.
The creation of an agreement can be initiated by the consumer side or by the
provider side, and the protocol provides hooks enabling such symmetry.

 5

We use a coherent example of a hypothetical job submission to illustrate various
aspects of the WS-Agreement specification, particularly relationship of service level
objectives with service description, an agreement template specifying alternative
service description terms and use of logical grouping operators, and agreement
creation constraints in negotiating service level objectives. Details of the example
scenario are described in section 2.
Section 3 introduces the layered model of WS-Agreement. Sections 4, 4.1, 4.2
specify the overall agreement structure, service description as agreement terms and
guarantee terms, respectively. Section 5 specifies the schema for the agreement
template and agreement creation constraints. Section 6 defines the compliance
Section 7 introduces the port types and operations in the specification. Section 8
describes the process leading to the creation of an agreement.

1.1 Goals and Requirements
The goals of WS-Agreement are to standardize the terminology, concepts, overall
agreement structure with types of agreement terms, agreement template with
creation constraints and protocols for creation, negotiation and renegotiation of
agreements, including WSDL needed to express the message exchanges and
resources needed to express the state.

1.1.1 Requirements

In meeting these goals, the specification must address the following specific
requirements:

• Must allow use of any service description term: It must be possible to
create agreements for services defined by any domain specific service
description terms, such as job specification, data service specification,
network topology specification and web service description language (WSDL).
Service objective description will reference the elements defined in service
description.

• Must allow creation of agreements for existing and new services: It
must be possible to create agreements for predefined services and resources
modeling service state. Additionally, service description can be passed as
agreement terms for coordinated creation of agreements and new service
specific resources.

• Must allow use of any condition specification language: It must be
possible to use any domain specific or other standard condition expression
language in defining service level objectives and negotiability constraints.

• Must enable symmetry of protocol: A large number of scenarios are
possible depending on whether a provider or consumer initiates agreement
creation, and also where the agreement state is maintained. The basic
messages defined in this document can be applied for modeling various usage
specific scenarios.

• Must be composable with various negotiation models: it must be
possible to design negotiation protocols based on WS-Agreement.

• Must be usable by itself: simple agreement creation must be supported in
the WS-Agreement specification, independent of any negotiation model.

• Relationship to other WS-* specifications: WS-Agreement must be
composable with other Web services specifications, in particular WS-Security,
WS-Policy, WS-Federation, WS-Addressing, WS-Coordination, WS-

 6

ResourceProperties, WS-ResourceLifetime, WS-Notification, Web Services for
Remote Portals, and WS-ReliableMessaging and the WS-Resource framework
[WS-Resource].

1.1.2 Non-Goals

The following topics are outside the scope of this specification:
• Defining domain-specific expressions for service descriptions.

• Defining specific condition expression language for use in specifying
guarantee terms and certain negotiability constraints. We assume standards
will emerge elsewhere for a common expression definition language.
Alternatively, different expression language may be used in different usage
domain.

• Defining specific service level objective terms for a specific usage domain
such as network, server, applications, etc.

• Defining specification of metrics associated with agreement parameters, i.e.,
how and where these are measured.

• Defining a protocol and conventions for claiming domain-specific services
according to agreements. For example, agreement identification in SOAP
headers might suit a Web service, another mechanism is required for
networking services, etc.

• Defining a general protocol for negotiating agreements.

1.2 Notational Conventions
The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in RFC 2119 [RFC 2119].

When describing abstract data models, this specification uses the notational
convention used by the [XML Infoset]. Specifically, abstract property names always
appear in square brackets (e.g., [some property]). When describing concrete XML
schemas, this specification uses the notational convention of [WS-Security].
Specifically, each member of an element’s [children] or [attributes] property is
described using an XPath-like notation (e.g.,
/x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of

an element wildcard (<xsd:any/>). The use of @{any} indicates the presence of an
attribute wildcard (<xsd:anyAttribute/>).

1.3 Namespace
This is an XML or other code example:

 http://www.ggf.org/namespaces/ws-agreement (Code)

The following namespaces are used in this document:

Prefix Namespace

 7

wsag http://www.ggf.org/namespaces/ws-agreement (temporary)

wsa http://schemas.xmlsoap.org/ws/2004/03/addressing

wsbf http://www.ibm.com/xmlns/stdwip/web-services/WS-BaseFaults

wssg http://www.ibm.com/xmlns/stdwip/web-services/WS-ServiceGroup

wsrp http://www.ibm.com/xmlns/stdwip/web-services/WS-
ResourceProperties

xs/xsd http://www.w3.org/2001/XMLSchema

xsi http://www.w3.org/2001/XMLSchema-instance

wsdl http://schemas.xmlsoap.org/wsdl/

TODO: we need a “Terminology and Concepts” section (just like in WSRF) to define
terms such as: signaling roles: agreement initiator / agreement provider (instead of
"responder"?), application service-related roles: service consumer / service provider,
“template”, “guarantee”, etc…

2 Example Scenarios
WS-Agreement covers a wide scope of application scenarios relating to the
establishment of an agreement between a service provider and a service consumer.
This is achieved by using a single document format and a protocol comprising few
states. Two examples are chosen here to illustrate the range of applications that this
specification covers. These examples are referred to throughout the specification.

2.1 Job submission
A typical application scenario is the request for executing a computing job. A service
provider may post an agreement template available to interested requesters. In this
scenario, the agreement template defines the list applications to be executed, and
the software execution environment typically specified in a job submission. Service
consumers are given a quality of service guarantee in terms of number of nodes
and/or per node memory and storage for a specific time period. Alternatively, the
guarantees can be on the completion time. A service consumer requesting a
submitted job must fill in the name of the application to be executed, input and
output files. In addition, a service consumer chooses the number of nodes (or any
other resource requirements) that the application is guaranteed to execute on.
To submit a job, a service consumer retrieves the template from the provider,
selects the application name, and provides URL of the input and output files as well
as the details of resource guarantees. The filled template is sent as an offer to the
provider. The provider decides whether to accept or reject the requested job. This
may depend on the queue of jobs waiting to be processed and the current allocation
of resources. The service provider answers the offer with a confirmation or a fault. In
due time, the service provider processes the job and writes the output file to the URL
defined in the agreement.

2.2 Service Parameterization
In the second scenario, the service contracted is an authentication and access
control service. The service exposes an interface to register a new user, set an

 8

access control policy, manage a user’s passwords, authenticate a user and check a
requested user action against the corresponding access control policy. In an access
control environment, quality of service aspects such as response to for access
verification and service availability is critical. Depending on particular needs, service
consumers require different service quality levels and are prepared to pay differently
for their quality of service requirements.
The service is very convenient for event organizers or other temporary projects. For
example, sports events such as an athletics meeting or a soccer tournament require
access control services for a limited amount of time to a large and diverse group of
constituents such as athletes, journalists, jurors, and spectators who access the
event’s Web site or applications.
A service provider offers an agreement template describing the service and its
guarantees, including the options available to the customer. The service description
includes the WSDL of the service interface. Customer can choose among a service
using Kerberos-based authentication or a proprietary authentication system.
Furthermore, customers can choose how many users ID should be managed.
Customers can add availability and response time guarantees to individual operations
of the interface, e.g., to distinguish quality requirements for management and access
control operations. For operation availability, customers choose between 95%, 98%,
99%, and 99.9%, defined as receiving a reply in 15 seconds. For average response
time guarantees, customers choose between 0.5, 1 or 2 seconds, and set the
number of operations per minute for which the response time goal must hold. Also,
customers can set the time when the service will be available.
This template offers many options to service consumers. Service consumers send a
completed offer to the service provider. Based on capacity limitations, the provider
may accept the agreement creation offer or reject it. For example, if a service
consumer asks for 1 sec response time for up to 1000 requests per minute, the
provider might only have capacity for up to 500 requests.
If the agreement offer is accepted by the provider, the provider provisions the
service and exposes status information on guarantee compliance to the user.

 9

3 Layered Model

Consumer Provider

create()

foo()
Application Instance

Factory

Manager

create()
Factory Agreement

Ops:
terminate(limits)
inspect(query)
...
SDEs:

Terms RelatedStatus
Agrmts

inspect()

Agreement
Layer

Service
Layer

Consumer Provider

create()

foo()
Application Instance

Factory

Manager

create()
Factory Agreement

Ops:
terminate(limits)
inspect(query)
...
SDEs:

Terms RelatedStatus
Agrmts

inspect()

Agreement
Layer

Service
Layer

Figure 1: WS-Agreement Conceptual Layered Service Model.
Note: The names of the different operations and “attributes” are not
normative.

The conceptual model for the architecture of WS-Agreement-based system interfaces
has two layers (see figure 1), which are from bottom to top:

1. The service layer represents the application-specific layer of business service
being provided. The class of provided service MAY or MAY NOT be exposed as
a Web service interface. For instance, computational jobs may be virtualized
as Web service instances, but other legacy services may not be referable as
separate instances, let alone be exposed as Web services. Network availability
can be seen as a class of service with no Web service representation, but it
can be useful to manage its controllable Quality of Service (QoS)
characteristics via agreements defined at layers above the service layer.

The interface to this layer is domain-specific. This layer MAY be exposed as
Web services. If it is, it SHOULD expose port types such as:
• An application domain-specific service port type virtualizes the concrete

service(s) being performed by the provider. It exposes domain-specific
operations. For instance the virtualization of a file transfer service into a
FileTransfer port type could expose operations such as “suspend”,
“resume”, etc. In addition is can expose domain-specific state that the
client (which can be a different actor than the initiator) can query or
monitor. For instance a FileTransfer port type could expose a
“bytesTransfered” resource property.

 10

• A service is created by a service factory which creation operation takes a
set of domain-specific parameters as arguments. For instance:
createFileTransferService(sourceURL, destinationURL, ...).

2. The agreement layer provides a Web service-based interface that can be used
to represent and monitor agreements with respect to provisioning of services
implemented in the service layer.
The agreement layer has the following port types, as detailed in the [WS-
Agreement] specification:
• An agreement port type, without any operation other than getters for

state and metadata of the agreement such as the terms, the context,
etc….

• An agreement factory exposes an operation for creating an agreement out
of an input set of terms. It returns an EPR to an Agreement service. The
agreement factory also exposes resource properties such as the templates
of offers acceptable for creation of an agreement.
The creation parameters can be defined independently of the domain-
specific agreement terms defined at the agreement layer. What is merely
needed is an unambiguous mapping between the two. The binding
between the agreement and the domain-specific service(s) it manages
MUST be described in the agreement, and can take alternative forms:
a. Existing services MAY be referenced by the agreement as part of its

terms (thus, these references can be negotiated if it makes sense).
b. Services MAY be created as per agreement, i.e. the agreement

implementation has control over service (instance) creation with the
agreement describing the behavior of the newly created service.

c. Services MAY be created externally but bear domain-specific identifiers
enabling the binding of a particular agreement. For instance an
agreement on the bandwidth of a computer network can refer to
network-specific metadata (such as fields in message headers) as a
way to state QoS guarantees on specific network traffic.

The Agreement port type MAY also virtualize the domain-specific service being
provided, although the decision to design it as such would depend on the desired
strength of the coupling between the agreement and the service.
Because of the multiple possibilities in terms of design of a WS-Agreement system,
domain-specific and application-specific decisions SHOULD be made in terms of
composition of operation and port type design that cannot be mandated by this
specification. This document specifies canonical factories and port types for the
agreement layer. Designers of WS-Agreement services MAY reuse WSDL port types,
operations, messages, and input/output types specified here although they will
always have to define the binding between the agreement and service layer, which is
domain-specific.

 11

4 Agreement Structure
An agreement is conceptually composed of several distinct parts. We summarize the
structure in the following diagram:

Figure 3: Structure of an agreement.

The section after the (optional) name is the context, which contains the meta-data
describing the agreement as a whole. It names the participants in the agreement,
the agreement’s lifetime and links to other agreements related to this agreement.
The next section contains the terms that describe the agreement itself.
The XML representation of an agreement or an agreement creation offer has the
following structure:

<wsag:Agreement>
 <wsag:Name>
 xs:NCName
 </wsag:Name> ?
 <wsag:AgreementContext>
 wsag:AgreementContextType
 </wsag:AgreementContext>
 <wsag:Terms>
 wsag:TermCompositorType
 </wsag:Terms>
</wsag:Agreement>

Agreement

Terms

Service Description Terms

Guarantee Terms

Context

Name

 12

The following describes the attributes and tags listed in the schema outlined above:

/wsag:Agreement
This is the outermost document tag which encapsulates the entire agreement.
An agreement contains and agreement context and a collection of agreement
terms.

/wsag:Agreement/Name
This is an OPTIONAL name that can be given to an agreement

/wsag:Agreement/AgreementContext
This is a REQUIRED element in the agreement and provides information about
the agreement that is not specified in the terms such as who the involved parties
are, what the services is that is being agree to, the length of the agreement, and
references to any related agreements.

/wsag:Terms
The terms of an agreement comprises one or more service definition terms, and
zero or more guarantee terms grouped using logical grouping operators.

 Agreement Context
An agreement is scoped by its associated context that SHOULD include parties to an
agreement, and additionally, SHOULD include reference to the service(s) provided in
support of the agreement. The context MAY also include other prior and/or related
agreements. The new agreement thus augments prior related agreements, between
the service consumer and the service provider.

The wsag:AgreementContext element is used to describe the involved parties and to
identify the service that the agreement is about. It can also optionally contain
references to other related agreements.

<wsag:AgreementContext xsd:anyAttribute>

 <wsag:AgreementInitiator>xs:anyType</wsag:AgreementInitiator> +

 <wsag:AgreementProvider>xs:anyType</wsag:AgreementProvider> +

 <wsag:AgreementInitiatorIsServiceConsumer>
 xsd:boolean
 </wsag:AgreementInitiatorIsServiceConsumer> +

 <wsag:TerminationTime>xs:DateTime</wsag:TerminationTime> +

 <wsag:RelatedAgreements>
 <wsag:RelatedAgreement wsag:RelationshipType=”wsag:dependency”>
 <wsag:RelatedAgreementEPR>
 wsa:EndpointReferenceType
 </wsag:AgreementEPR>
 </wsag:RelatedAgreement> *
 </wsag:RelatedAgreements> +

 13

 <xsd:any/> *
</wsag:AgreementContext>
The following describes the attributes and tags listed in the schema outlined above:

/wsag:AgreementContext
This is the outermost tag which encapsulates the entire agreement context

/wsag:AgreementContext/AgreementInitiator
This optional element identifies the initiator of the agreement creation request.
It MAY be a URI or a wsa:EndpointReference from WS-Addressing or MAY
identify the initiator by a more abstract type of naming, e.g. by security identity
of the owner or operator.

/wsag:AgreementContext/AgreementProvider
This optional element identifies the provider of the agreement, i.e. the entity
that responds to the agreement creation request. It MAY be a URI or a
wsa:EndpointReference from WS-Addressing or MAY instead identify the provider
by a more abstract type of naming, e.g. by security identity of the owner or
operator.

/wsag:AgreementContext/AgreementInitiatorIsServiceConsumer
This element of type xsd:boolean MAY appear. If it is absent or empty, its
default value is “true”.

• If it is “true”, the agreement initiator MUST be viewed as the consumer of
the service and the agreement provider MUST be viewed as the provider
of the service when interpreting the agreement terms.

• If it is “false”, the mapping of the signaling roles to the service
provisioning roles are reversed, i.e. the initiator MUST be viewed as the
service provider and the agreement provider MUST be viewed as the
service consumer.

/wsag:AgreementContext/TerminationTime

This optional element specifies the time at which this agreement is no longer
valid. Agreement initiators MAY use this mechanism to specify an Agreement
service lifetime. Extended negotiation languages MAY define other mechanisms
to negotiate lifetime integrated with other negotiation terms. The resulting
negotiated lifetime MUST be exposed as wsag:TerminationTime and further
negotiation MUST be possible through the basic [WS-
ResourceLifetime]mechanisms.

/wsag:AgreementContext/RelatedAgreements
This element defines a list of any number of related agreements. The related
agreements are represented in the agreement service as related agreement
services (see the port type section of this document). This element MUST
appear; however it MAY be empty.
We need discussion about the kind of meta-information that each related
agreement should be associated

 with. In particular: do we need to define canonical types of relationships in the spec
 like we did before, such as dependency, composition... I am referring to the
different types of related agreements that started to
 be identified in OGSI-Agreement (back in the day...). So we may need to restart
 a discussion that we dropped on those types of related agreements.
We may want to have a placeholder for domain-specific relationship type such as
"advance reservation"...? Which makes me think that such as thing as
"reservationID" could be a term more than a part of the context....

 14

 Also, OGSI-Agreement says relationship can be modified at run-time: that is not in
favor of specifying the related agreements in the context. Or maybe those are only
for relationships which cannot change during the lifecycle of the agreement?

/wsp:AgreementContext/{any}
Additional child elements MAY be specified to make additional agreement
contexts but MUST NOT contradict the semantics of the parent element; if an
element is not recognized, it SHOULD be ignored.

/wsp:AgreementContext/@{anyAttribute}
Additional attributes MAY be specified but MUST NOT contradict the semantics of
the owner element; if an attribute is not recognized, it SHOULD be ignored.

A wsag:Context element of type wsag:AgreementContextType MAY be used in an
agreement to define an agreement context. Alternatively, the agreement context
MAY be specialized, through derivation of the wsag:AgreementContextType Schema
type in order to define other attributes of the parties or services engaged in an
agreement.

4.2 Agreement Terms
The terms of an agreement are wrapped by a wsag:Terms term compositor.
We define two types of terms: service description terms and guarantee terms.

• The service description terms provide information needed to instantiate or
otherwise identify a service to which this agreement pertains.

• The guarantee terms specify the service levels that the parties are agreeing
to. Management systems may use the guarantee terms to monitor the
service and enforce the agreement.

The specification defines schema for service description and agreement terms as
abstract types that must be extended for specific usage domain.

4.2.1 Term Compositor Structure

Within the wsag:Terms compositor, special compositor elements can be used as
logical AND/OR/XOR operators to combine terms. This enables the specification of
alternative branches with potentially complex nesting within the terms of agreement.
TODO: discussion on this. Alternative only for an agreement offer and agreement
itself should bear no alternatives?
The terms consist of one or more service definition terms and zero or more
guarantee terms grouped using the logical grouping compositors.
The recursive structure of a term compositor, of type wag:TermCompositorType, is
as follows:

<wsag:Terms>
 <wsag:All>
 wsag:TermCompositorType
 </wsag:All> |
 <wsag:OneOrMore>
 wsag:TermCompositorType
 </wsag:OneOrMore> |
 <wsag:ExactlyOne>

 15

 wsag:TermCompositorType
 </wsag:ExactlyOne> |
 {
 <wsag:ServiceDescriptionTerm>

 wsag:ServiceDescriptionTermType
 </wsag:ServiceDescriptionTerm> |
 <wsag:GuaranteeTerm>
 wsag:GuaranteeTermType
 </wsag:GuaranteeTerm>

 } *
</wsag:Terms>
The contents of a term compositor are described as follows:

/wsag:Terms/wsag:All (or wsag:OneOrMore, or wsag:ExactlyOne)
This is a logical AND (or OR, or XOR) operator of type
wsag:TermCompositorType which is used to logically group terms and/or other
compositors underneath it. This provides a recursive structure to the logical
composition of terms.

/wsag:Terms/wsag:ServiceDescriptionTerm
These terms are OPTIONAL and MAY specify the parameters used to instantiate
a service which will fulfill this agreement or to describe a service to be used by
the agreement.

/wsag:Terms/wsag:GuaranteeTerm
These terms are OPTIONAL and MAY specify the guarantees (both promises and
penalties) that are associated with the other terms in the agreement.

 Service Description Terms

Service description terms (SDTs) are a fundamental component of an agreement:
the agreement is about the service(s) - existing or not - described by the service
description terms. The provisioning of this service may be conditional to specific run-
time constraints, and additional service level objectives on how the service is
performed may be imposed by the service guarantee; service terms define the
functionality that will be delivered under an agreement. The service description
content itself is dependent on the particular domain. A ServiceDescriptionTerm
consists of three parts,

• The name of the ServiceDescriptionTerm.
• The name of the service being described partially or fully by the domain-

specific part of this service description term. This allows for semantic
grouping of service description terms that may not be structurally grouped
together in the agreement.

• A domain-specific description of the offered or required functionality. This
element MAY completely describe the service it is about, or it MAY do so only
partially.

An Agreement MAY contain any number of SDTs, as an agreement can refer to
multiple components of functionality within one service, and can manage several
services.

 16

4.2.2.1 Service Description Term Structure
The following definition describes the simple generic content of this type:

<wsag:ServiceDescriptionTerm
 wsag:Name=”xs:NCName” wsag:ServiceName=”xs:NCName”>
 <xsd:any> … </xsd:any>
</wsag:ServiceDescriptionTerm>

The following describes the elements of the schema above:
/wsag:ServiceDescriptionTerm

ServiceDescriptionTerm encloses a description of a service or part of a service.
/wsag:ServiceDescriptionTerm/@Name

The name attribute (of type xs:NCName) represents the name given to a term.
Since an Agreement MAY encompass multiple ServiceDescriptionTerms related to
the same service each term SHOULD be given a unique name in order to make
structural referencing of service description terms (for instance via XPATH) more
convenient (see guarantee term section).

/wsag:ServiceDescriptionTerm/@ServiceName
This attribute identifies a service across multiple service description terms. The
service description term is defined as “being about” the service identified by the
wsag:ServiceName attribute. This identifier is scoped within the agreement i.e. it
is not meant to identify the service outside of the agreement. This element is
optional but SHOULD appear if several services are described by this agreement.

/wsag:ServiceDescriptionTerm/{xsd:any}
This element is a placeholder for a partial or full description of, and/or a
reference to, the domain-specific service this service description term is about.

• This element is expressed using a domain-specific language that MAY be
independent of WS-Agreement. Service description languages from
different domains or specifications MAY be embedded inside distinct
service description terms.

• This element MUST be defined as a global element in the XML schema
where it comes from. WS-Agreement does not mandate any restriction on
the name or type (which can be simple or complex) of this element.

• This element MAY refer to one or more aspects of functionality of the
described service, as granularity of that functionality is a domain-specific
concern.

4.2.3 Guarantee Terms

The primary motivation for creating a service agreement between a service provider
and a service consumer is to provide assurance to the service consumer on the
service quality and/or resource availability offered by the service provider. Guarantee
terms define this assurance on service quality, associated with the service described
by the service definition terms. In the job submission example, an agreement may
provide assurance on the bounds (e.g., minimum) on the availability of resources
such as memory, type of central processing unit (CPU), storage and/or job execution

 17

beginning or completion time. These bounds are referred to as the service level
objectives (SLO).
An expression of assurance also includes qualifying conditions on external factors
such as time of the day as well as the conditions that a service consumer must meet.
For example, a bound on the average response time of the authorization service (as
per the second example) is assured only if the request rate is below a specified
threshold during weekdays.
An assurance also includes specification of one more forms of business values
associated with an SLO. For example, a business value may represent the strength of
this commitment by the provider. Another example of business value is the
importance of this assurance to the consumer and/or to the provider.

An agreement MAY contain zero or more Guarantee terms, where each
GuaranteeTerm element consists of the following parts:

• ServiceScope: the list of services this guarantee applies to.
• Variables: aliases to concepts understood in the context of the agreement or

to parts of it, used in qualifying conditions and service level objectives.
• QualifyingCondition: an optional condition that must be met (when specified)

for a guarantee to be enforced.
• ServiceLevelObjective: an assertion expressed over service descriptions.
• BusinessValueList: one or more business values associated with this

objective.
Note that a single ServiceLevelObjective MAY be a complex of objectives expressed
as a complex condition expressing bounds over many service attributes. Meeting the
overall objective MAY imply meeting all the individual objectives. However, if the
business values associated with individual objectives are different, (for example, if
not all objectives are equally important), then each objective SHOULD be expressed
as a separate GuaranteeTerm. Similarly, a QualifyingCondition MAY be a complex
condition if multiple qualifying conditions need to be met for a guarantee to be
honored.

4.2.3.1 Guarantee Term Structure
A GuaranteeTerm has the following form:

<wsag:GuaranteeTerm wsag:ServiceScope=”wsag:ListOfServiceNames”>
 <wsag:Variables>…</wsag:Variables>
 <wsag:QualityingCondition>…</wsag:QualifyingCondition>?
 <wsag:ServiceLevelObjective>…</wsag:ServiceLevelObjective>
 <wsag:BusinessValueList>…</wsag:BusinessValueList>
</wsag:GuaranteeTerm>

/wsag:GuaranteeTerm
This element, of type GuaranteeTermType, represents an individual guarantee
related to the service described in service description terms.

/wsag:GuaranteeTerm/@wsag:ServiceScope

 18

This is a list of service names referring to the respective wsag:ServiceName
attributes of one or more of the service description terms in this agreement. The
guarantee applies to every service in the list.
Question: Should we define a special value ALL to refer to all services in the
agreement or is that implied by an empty value?

/wsag:GuaranteeTerm/wsag:Variables
This element is a list of variables representing domain-specific concepts, for
instance aspects of the service(s) this guarantee refers to. Variables are used in
domain-specific assertions about the provisioning of the service(s), such as
qualifying conditions and/or service level objectives.

/wsag:GuaranteeTerm/wsag:QualifyingCondition

This element MAY appear to express a precondition under which a guarantee
holds.

/wsag:GuaranteeTerm/wsag:ServiceLevelObjective
This element, of type xsd:anyType, expresses the condition that must be met to
satisfy the guarantee.

/wsag:GuaranteeTerm/wsag:BusinessValueList
This is the higher level element that contains a list of business value elements
associated with a service level objective. Two standard business value types are
defined later. Customized business value types can be expressed extending an
abstract business value type, defined here.

The detailed description of the types associated with a GuaranteeTerm follows in the
subsections.

4.2.3.2 Variables
Guarantees contain logical expressions that refer to aspects of the service(s) subject
to the guarantee. For instance, metrics for availability and response time must refer
to named concepts (availability, response time) and must be declared as named
variables that can be used in assertions. The semantics of those variables must be
defined to interpret the condition expression. Each individual variable has the
following form:

<wsag:Variable wsag:Name=”xsd:NCName” wsag:Metric=”xsd:QName”>
 <wsag:Reference>xsd:anyType<wsag:Reference>
</wsag:Variable>

/wsag:Variable/wsag:Location
The value of this element is a structural reference to a field of arbitrary
granularity in the service description terms - including fields within the domain-
specific service descriptions.

• This reference gives scope to the concept represented by the variable,
i.e. the concept applies at the nesting level of the structural item that is
referred.

• This reference MAY be an XPATH expression for instance to use with
domain-specific service description languages that are based on XML. If
this reference is an XPATH, it MAY be relative to the wsag:Terms section
of the agreement document.

 19

/wsag:Variable/@wsag:Name
This element, of type xsd:NCName, is the name of the variable and allows the
concept represented by this variable to be used in assertions. The name of each
variable MUST be unique within the list of variables declared in the containing
guarantee description term.

/wsag:Variable/@wsag:Metric
This element, of type xsd:QName, is an identification of a domain-specific
metric. This element is optional and intended for cases where the structural
reference of the variable does not sufficiently explain the semantics and typing
of a variable. The domain specification where the metric is defined MUST define
a namespace and a local name for the metric, as well as its type in logical
expressions.
Note: If an XML particle definition exists for the metric, and when a fixed value
makes sense for the concept, a wsag:Guarantee is not necessary and the XML
particle MAY instead be used inside a wsag: ServiceDescriptionTerm element in
order to specify a fixed value.

 Issue: should we make wsag:Metric required so that the variable value
always has the same unambiguous Schema type in assertions?

Examples:

<wsag:Variable name=”CPUcount” metric=”job:numberOfCPUs”>
 <wsag:Location>
//wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:ServiceDefinitionTerm/jo
b:executable]
 <wsag:Location/>
</wsag:Variable>

In this example, we assume a computational job is specified in an agreement offer
(or agreement template, or agreement). A variable “CPUcount” refers to the concept
of “number of CPUs to be used for the job at execution time “, represented as a
typed, globally-defined Schema particle “numberOfCPUs” in the namespace assigned
to the prefix “job” (domain of computational jobs). “CPUCount” can be used in
assertions that express limits, ranges or more complex relationships. Its scope of
application is the ‘job:executable’ unique domain-specific term so as to distinguish it
from the overall job specification, which may includes other directives such as file
transfers.

<wsag:Variable wsag:Name=”bandwidth”
wsag:Metric=”job:networkBandwidth”>
 <wsag:Location/>
//wsag:Agreement/wsag:Terms/wsag:All/wsag:ServiceDefinitionTerm[@wsag:N
ame=’fileStageIn1’]
 <wsag:Location/>
</wsag:Variable>
In this example, the variable “bandwidth” could be used in the qualifying condition of
the guarantee term to express a precondition on the file transfer it refers to.

 20

<wsag:Variable wsag:Name="duration" wsag:Metric="time:duration">
 <wsag:Location/>
//wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:ServiceDescriptionTerm[@
wsag:Name='fileStageIn1']
 <wsag:Location/>
</wsag:Variable>
In this example, the variable “transferTime” could be used to express a quality of
service requirement (as a service level objective) on the file transfer it refers to.
Note that the XPath expression enables to distinguish between several domain-
specific terms of the same name (for instance to specify several file stage-in
directives) as long as the wsag:Name given to the wrapping ServiceDescriptionTerm
is unique.

Variables are grouped into a set:

<wsag:Variables>
 <wsag:Variable> … </wsag:Variable> *
</wsag:Variables>

/wsag:Variables
This element, of type VariableSetType, contains one or more variables.

/wsag:VariableSet/wsag:Variable
Variables are specified above.

4.2.3.3 Qualifying Condition and Service Level Objective
QualifyingCondition and ServiceLevelObjective are expressed as assertions over
service attributes and/or external factors such as date and time. The type of both
elements is xsd:anyType as a completely open content that can be extended with
assertion languages which MAY designed independently of the WS-Agreement
specification but which MUST address the requirements of the particular domain of
application of the agreement.
An example of a generic assertion language can be found in [XQUERYX].

4.2.3.4 Business Value List
Associated with each ServiceLevelObjective is a BusinessValueList that contains
multiple business values, each expressing a different value aspect of the objective.
The values may express relative importance of this objective to a consumer or
penalty to be assessed upon failure to meet this objective. Other customized domain
specific business values can be defined and associated with a service level objective.
Expression of business value in meeting certain assurances and flexible specification
of service consumer requirements may free a provider from fixed allocation of
resources. A provider can dynamically allocate resources based on actual measured
or estimated service consumer requirements, and evaluation of business values. For

 21

example, a new arrival of a high priority job may result in reduction of allocated
resources or suspension of an existing low priority job.

<wsag:BusinessValueList>
<wsag:Importance> xsd:integer </wsag:Importance>?
<wsag:Penalty> </wsag:Penalty>?
<wsag:Reward> </wsag:Reward>?

 <wsag:BusinessValue> … </wsag:BusinessValue>*
</wsag:BusinessValue>

/wsag:BusinessValueList
This element comprises the set of business value expressions.

/wsag:BusinessValueList/wsag:Importance
This element when present expresses relative importance (defined below) of
meeting an objective.

/wsag:BusinessValueList/wsag:Penalty
This element (defined below) when present expresses penalty to be assessed for
not meeting an objective.

/wsag:BusinessValueList/wsag:Reward
This element (defined below) when present expresses reward to be assessed for
meeting an objective.

/wsag:BusinessValueList/wsag:BusinessValue
Zero or more domain specific customized business values can be defined.

4.2.3.4.1 Importance
In many cases, all service level objectives (SLO) will not carry the same level of
importance. It is necessary therefore, to be able to assign a “business value” in
terms of relative importance to an objective so that its importance can be
understood, and so tradeoffs can be made by the provider amongst various
guarantees when sufficient resources are available. Absolute value of a guarantee on
the other hand specifies business impact of meeting or violating an individual SLO,
expressed via Reward and Penalty. Relative importance can be though of as a
measure of importance with a default measurement unit.
Relative terms, such as high, low, medium, etc. can be used to prioritize across
many guarantees. However, to provide stronger semantics and easier comparison of
this value, this is expressed using an integer.

4.2.3.4.2 Penalty and Rewards
In business Service Level Agreements (SLAs), this importance is indirectly expressed
by specifying the consequences of not meeting this assurance. Here, each violation
of a guarantee term during an assessment window will incur a certain penalty. The
penalty assessment is measured in a specified unit and defined by a value
expression.

<wsag:Penalty>
 <wsag:AssesmentInterval>

 22

 <wsag:TimeInterval>xsd:duration</wsag:TimeInterval> |
 <wsag:Count>xsd:positiveInteger</wsag:Count>
 </wsag:AssesmentInterval>
 <wsag:ValueUnit>xsd:string</wsag:ValueUnit>?
 <wsag:ValueExpr>xsd:any</wsag:ValueExpr>
</wsag:Penalty>

/wsag:Penalty
This element defines a business value expression for not meeting an associated
objective.

/wsag:Penalty/wsag:AssesmentInterval
This element defines the interval over which a penalty is assessed.

 /wsag:Penalty/wsag:AssesmentInterval/wsag:TimeInterval
 This element when present defines the assessment interval as a duration.

/wsag:Penalty/wsag:AssesmentInterval/wsag:Count
This element when present defines the assessment interval as a service specific
count, such as number of invocation.

/wsag:Penalty/wsag:ValueUnit
This element defines the unit for assessing penalty, such as USD. This is an
optional element since in some cases a default unit MAY be assumed.

/wsag:Penalty/wsag:ValueExpr
This element defines the assessment amount, which can be an integer, a float or
an arbitrary domain-specific expression.

Alternatively, meeting each objective generates a reward for a provider. The value
expression for reward is similar to that of penalty.

 23

5 Agreement Template and Creation Constraints
In order to create an agreement, a client makes an agreement creation offer to an
agreement factory. An agreement creation offer has the same structure as an
agreement. The agreement factory advertises the types of offers it is willing to
accept by means of agreement templates.

An agreement template is composed of three distinct parts. We summarize the
structure in the following diagram:

Figure 4: Structure of an agreement template.

The structure of an agreement template is the same as that of an agreement, but an
Agreement template MAY also contain a creation constraint section, i.e. a section
with constraints on possible values of terms for creating an agreement. The
constraints make it possible to specify the valid ranges or distinct values that the
terms may take. The constraints refer back to individual terms they apply to using
XPATH.

The contents of an agreement template are of the form:

<wsag:template>
 <wsag:Name>
 xs:NCName

Agreement Template

Terms

Agreement Creation Constraints

Service Description Terms

Guarantee Terms

Context

Name

 24

 </wsag:Name> ?
 <wsag:AgreementContext>
 wsag:AgreementContextType
 </wsag:AgreementContext>
 <wsag:Terms>
 wsag:TermCompositorType
 </wsag:Terms>
 <wsag:CreationConstraints>
 …
 </wsag:CreationConstraints> ?
</wsag:template>
The following describes the contents of the agreement template:

/wsag:template
This is the outermost document tag which encapsulates the entire agreement
template. An agreement template contains and agreement context template and
a collection of possible agreement terms.

/wsag:template/Name
This is an OPTIONAL name that can be given to an agreement matching this
template.
Question: what is the name of an agreement template
in relationship to the name of the created agreement
(matching that template)?

What is the nature of the relationship between the two:
1) none, the template name is just an identifier for the template (versus
others in the factory),
2) template name is given as a name to the created agreement. If so, then
 the template name could and maybe be part of the template context
 (and the resulting agreement name would be part of the agreement
 context). In that case the agreement should not expect to be identified
 by its name (which would just be the name of the origin template).

/wsag:template/AgreementContext
This is a REQUIRED element in the agreement template (does it need to be
required in the template?). This is the template for the context of the
agreements matching the containing agreement template.

/wsag:template/wsag:Terms
This section specifies the possible terms in the agreements matching this
template. The description of this section has been made previously in this
document (see “Agreement Structure”) and is not repeated here.

/wsag:template/wsag:CreationConstraints

These are OPTIONAL elements that MAY provide constraints on the values that
the various terms may take in a concrete agreement.

The specification of a creation constraint section in a template does not state a
promise that an agreement creation offer fulfilling the constraints will be accepted.
Typically, a provider MAY publish an agreement template containing a creation

 25

constraint section, outlining agreements it is generally willing to accept. Whether the
provider accepts a given offer might depend on its current resource situation.

5.1 Creation Constraints
The element CreationConstraints is of type wsag:ConstraintSectionType. It has the
following form inside the template:

<wsag:template>
 …
 <wsag:CreationConstraints> ?
 <wsag:Item>…</wsag:Item> *
 <wsag:Constraint>…</wsag:Constraint> *
 </wsag:CreationConstraints>

</wsag:template>

/wsag:template/wsag:CreationConstraints

This optional element of an Agreement, of type wsag:ConstraintSectionType,
expresses the constraints for creating/negotiating an agreement. It contains any
number of offer items and constraints in any order.

/wsag:template/wsag:CreationConstraints/wsag:Item
This element specifies that a particular field of the agreement must be present
with a value in the agreement offer, and which values are possible.

/wsag:template/wsag:CreationConstraints/wsag:Constraint
A constraint, of type wsag:ConstraintType, defines any constraint involving the
values of one or more terms.

The wsag:ConstraintSectionType MAY be used by other specifications in order to
define constraints that must apply when creating or modifying agreements, for
instance in agreement negotiations.

5.1.1 Offer Item

An offer item specifies the requirement for the presence in the agreement offer
terms of a field and a value for that field. It contains a label, a pointer to the position
of the field in the terms of the offer and a definition of its acceptable values in the
form of a restriction of its value space.

<wsag:Item Name=”xsd:NCName”>
 <wsag:Location>
 xsd:anyType
 <wsag:location/>
 <xsd:restriction>
 xsd:simpleRestrictionModel
 <xsd:restriction> ?
</wsag:Item>

 26

/wsag:Item
A simple restriction represents a simple value constraint on a term of an offer.

/wsag:Item/@Name

The name is a label of the field that uniquely identifies the field in the offer and
can be used to refer to the restriction item in a convenient way.

/wsag:Item/@Location
The location is a structural reference, for instance an XPATH expression, which
points to the location in the terms of the Agreement that can be changed and
filled in. The value currently set at the location referred to is the default value of
the item.

/wsag:Item/restriction
The restriction element, which is a reference to the group
xs:simpleRestrictionModel from the XML Schema namespace, is a constraint that
restricts the domain beyond the type definition of the particular term syntax of
the item, which can be domain-specific. The restriction syntax is taken from the
corresponding XML Schema definition of the group. It is the responsibility of the
author of the template to make sure that the restriction defined in the Item is a
valid restriction of the type of the field that the item location attribute points to.

Should a template specify the valid cardinality of a given domain-specific service
description belonging to the same service?

Shouldn’t it be possible to specify creation constraints on guarantees? I can foresee
ways to do it but a discussion may be needed…

5.1.2 Free–form Constraints

Free-form constraints make it possible to restrict the possible values of the term set
of an offer beyond restrictions of individual terms. For example, an offered response
time may only be valid for a given range of throughput values of a service. This
specification does not define a constraint language but proposes to choose a suitable
existing one. Hence, the Constraint is an empty top-level element that must be
extended by a specific, suitable constraint language:

 <wsag:Constraint/>

A general purpose constraint language has been proposed as part of the XQuery and
XPATH language. The XML rendering of this expression language, XQueryX, contains
a suitable constraint language that can be used to phrase constraints involving
multiple items.

 <wsag:XQueryXConstraint>
 <wsag:Expression> … </wsag:Expression>
 </wsag:XQueryXConstraint>

/wsag:XQueryXContraint

 27

 This element, of type XQueryXConstraintType, substitutes the Constraint
element to contain XQueryX expressions.
/wsag:XQueryXContraint/wsag:Expression
This element, of type operatorExpr, taken from the XQueryX schema, contains an
operator expression according to this syntax. However, the syntax design of
XQueryX is very liberal and, hence, expressions can be phrased that are not
semantically valid.
In XQueryX expressions, Item names are mapped to variable names.

Any other constraint language MAY be equally or better suited for particular
purposes.

6 Compliance of Offers with Templates
In order for an agreement offer to be accepted, it MUST comply with at least one
template advertised by the agreement provider to which the offer is submitted. In
this section we define the concept of agreement template compliance.
Definition: An agreement template offer is compliant with a template advertised by
an agreement provider if and only if each term of service described in the Terms
section of the agreement offer complies with the term constraints expressed in the
CreationConstraints section of the agreement template.
TODO: describe precisely what “term of service” means (currently an abstract
denomination until we check and better our current service/term model)

Issue: Does template name has influence on agreement name (see
comment/question about template name in chapter about template structure)?
Issue: does the context in the offer has obligations of values with respect to the
context in the templates? In the template that the offer is compliant with respect to
constraints?

In addition, certain options of the Context section of the offer can override equivalent
characteristics of an agreement that are understood by default or specified in the
template with which the offer is compliant:

• TerminationTime: (or should that be a term i.e. submitted and potentially
rejected by the factory?)

• Mapping of signaling roles to service provisioning roles:
o By default the initiator of the agreement creation request is also the

consumer of the service that the agreement is bound to, and the
agreement provider is the service provider (see Agreement Context
section in this document). By default every agreement created will
have this role mapping, unless specified otherwise by the template(s)
or the agreement offer itself.

o A template can specify a different mapping in its Context section.
Every agreement based on that template will inherit the mapping
specified in the template.

o An agreement offer can specify a different mapping in its Context
section. Every agreement based on this offer will inherit the mapping
specified in the offer.

 28

If the mapping of an agreement is not the default one it MUST be reflected in
the agreement context (as explained by the chapter of this document about
the Agreement Context)

Issue: what if the offer complies with several templates? Does the current model
create indecision in terms of which template the factory must choose when creating
the agreement? Should the offer be able to specify an identifier i.e. the name of the
template?

7 Port Types and Operations
In this section we detail the AgreementFactory and Agreement port types.
Per the reuse principles of the WS-Resource Framework [WS-Resource] on which the
Web service expression of this specification is based, interface reuse can be achieved
by copying and pasting operation and resource definitions specified here. Designers
can reuse the messages and resource properties defined in the AgreementFactory
and Agreement port types and compose them in their own specialized, domain-
specific port types. They can also compose agreement state-related resource
properties as defined in the AgreementState placeholder port type into their own
Agreement port type.
Every port type exposes a wsag:GetResourceProperty operation based on the
operation of the same NCName as defined in [WS-ResourceProperties]. This
operation enables the port types to expose read-only resource properties. Its
definition is identical to the one in [WS-ResourceProperties] and has not been
repeated here.
The wsrp:GetMultipleResourceProperties operation from [WS-ResourceProperties]
MAY be composed as well in order to enable retrieval of several resource properties
in one request/response message exchange, for instance in order to obtain a
complete agreement in one round-trip invocation. Similarly, other operations from
[WS-ResourceProperties] (and other specifications) such as
wsrp:QueryResourceProperty MAY be composed into domain-specific agreement and
agreement factory port types.
Full WSDL definition of the port types can be found in Appendix.

Figure 11: WS-Agreement Services. The ‘+’ sign indicates resource
properties that are read-only accessible.

 29

7.1 Port Type wsag:AgreementFactory

7.1.1 Operation wsag:CreateAgreement

The wsag:createAgreement operation is used to generate an Agreement.

7.1.1.1 Input
The form of the wsag:createAgreement input message is:

<wsag:createAgreementInput>
 <initiatorAgreementEPR>
 EPR1
 </initiatorAgreementEPR> ?
 <offer>
 ...
 </AgreementOffer>
</wsag:createAgreementInput>

The contents of the input message are further described as follows:
/wsag:createAgreementInput/initiatorAgreementEPR

This optional element is an endpoint reference (EPR) providing a contact point
EPR1 where the invoked party can send messages pertaining to this Agreement.
The invoked party MUST NOT invoke operations on EPR1 after returning a fault
on this operation.

/wsag:createAgreementInput/AgreementOffer

The agreement offer made by the sending party. It MUST satisfy the agreement
creation constraints expressed in one or more of the templates advertised by the
AgreementFactory.

7.1.1.2 Result
The successful result of wsag:createAgreement is a combination of the optional EPR
of a newly created Agreement and the acceptance of the initiator’s offer:

<wsag:createAgreementResponse>
 <createdAgreementEPR>
 EPR2
 </createdAgreementEPR>
</wsag:createAgreementResponse>

The contents of the response message are further described as follows:
/wsag:createAgreementResponse/createdAgreementEPR

This is the EPR to a newly created Agreement bearing the same terms as the
input agreement offer. This element MUST appear. Could the resulting
agreement be more refined/narrowed than to the offer?

/wsag:createAgreementResponse/agreement

 30

The response offer MUST be textually equivalent to the input offer except that
the offer type MUST follow the rules of the protocol state machine.

7.1.1.3 Faults
A fault response indicates that the offer was rejected and may also indicate domain-
specific reasons.

7.1.2 Resource Property wsag:Template

The templates resource property represents 0 or more templates of offers that can
be accepted by the wsag:AgreementFactory operations in order to create an
Agreement. A template defines a grouping of certain agreement terms along with
negotiability constraints.

7.1.3 Resource Property wssg:Entry

The wsag:AgreementFactory port type can create new resource-qualified endpoint
references to services (with associated resources) of port types wsag:Agreement. It
may be desirable to expose in the interface the created Agreements, for instance for
monitoring clients to use. The wsag:AgreementFactory port type is therefore
modeled as a service group with respect to the [WS-ServiceGroup] specification, and
records information about each service-resource pair it creates in a new wssg:Entry
resource property instance. The entry typically includes the EPR of the new qualified
service and MAY contain optional information (see the WS-ServiceGroup specification
for more information) that this specification does not define.

7.1.4 Resource Property wssg:MembershipContentRule

This resource property is defined so as to assert the specific content of the
wsag:entry resource property and is mandated by [WS-ServiceGroup].
The set of wssg:MembershipContentRule elements specify the intentional constraints
on each member service of the service group (see resource property wsag:entry).
Each wsgg:membershipContentRule specifies at least a port type that every member
service in the service group must implement.
In the context of the wsag:AgreementFactory, there MUST be one
wsgg:MembershipContentRule specifying wsag:Agreement as the member port type.
The form of the set of wssg:MembershipContentRule resource properties is:

 <wsgg:MembershipContentRule
 MemberInterface="port type"
 ContentElements="qnames"/> *
 <wsgg:MembershipContentRule
 MemberInterface="wsag:Agreement
 ContentElements="qnames"/> +
 <wsgg:MembershipContentRule
 MemberInterface="port type"
 ContentElements="qnames"/> *

See the [WS-ServiceGroup] specification for more information on the
wsgg:MembershipContentRuleType.

 31

7.2 Port Type wsag:Agreement
The wsag:Agreement port type does not expose any WS-Agreement-specific
operations.

7.2.1 Resource Property wsag:Context

The wsag:context resource property is of type wsag:AgreementContextType. The
context is static information about the agreement such as the parties involved in the
agreement. See the section in this document about the agreement context.

7.2.2 Resource Property wsag:Terms

This property specifies the terms of the agreement.
Note: In some application cases it might be worthwhile to decorate a specialized
Agreement port types with a QueryResourceProperty operation as defined in [WS-
ResourceProperties], in order to expose the terms of the agreement in a more
granular way.

7.2.3 Resource Property wssg:Entry

A wsag:Agreement can be related to others wsag:Agreement for chaining or
composition. (how much do we want on this topic in the spec?). This one-to-many
relationship is modeled as a service group (see [WS-ServiceGroup]), and records
information about each service-resource pair in a wsag:entry resource property
instance. An entry includes the EPR of a related wsag:Agreement and MAY contain
optional information that this specification does not define.

7.2.4 Resource Property wssg:MembershipContentRule

This resource property is defined so as to assert the specific content of the
wsag:entry resource property (see [WS-ServiceGroup]).
The set of wssg:MembershipContentRule elements specify the intentional constraints
on each member service of the service group (see resource property wsag:entry).
Each wsgg:membershipContentRule specifies at least a port type that every member
service in the service group must implement.
In the context of the wsag:Agreement, there must be one
wsgg:MembershipContentRule specifying wsag:Agreement as the member port type.

The form of the set of wssg:MembershipContentRule resource property is:

 <wsgg:MembershipContentRule
 MemberInterface="port type"
 ContentElements="qnames"/> *
 <wsgg:MembershipContentRule
 MemberInterface="wsag:Agreement
 ContentElements="qnames"/> +
 <wsgg:MembershipContentRule
 MemberInterface="port type"
 ContentElements="qnames"/> *

See the [WS-ServiceGroup] specification for more information on the
wsgg:MembershipContentRuleType.

 32

7.3 Port Type wsag:AgreementState
The purpose of this port type is to define a resource document type for monitoring
the state of the agreement. This port type is not meant to be used as is but instead,
its resource properties MAY be composed into a domain-specific Agreement port
type.

7.3.1 Resource Property wsag:AgreementState

Issue: What is the semantics of the aggregate agreement state? Observed etc.?

7.3.2 Resource Property wsag:GuaranteeTermStateList

This property represents a state of fulfillment for each guarantee term of the
agreement. Each list element is a tuple (term ID, guarantee term state).
The guarantee states follow a simple state model:

The semantics of the states is as follows:

• Fulfilled – Currently the guarantee is fulfilled.
• Violated – Currently the guarantee is violated.
• NotDetermined – No activity regarding this guarantee has happened yet or

is currently happening that allows evaluating whether the guarantee is met.

7.3.3 Resource Property wsag:ServiceTermStateList

The property exposes a service state for each service description term that
abstractly describes the state of a service, independent of its domain. Each list
element is a tuple (term ID, service term state).

The service term state observes the following state model:

The semantics of the states is as follows:

• Not Ready – The service cannot be used yet.
• Ready – The service can start now to be used by a client or to be executed

by the provider.

Not Ready Ready Processing Completed

Not Determined

Fulfilled

Violated

 33

• Processing – The service is currently being processed or in use.
• Completed – The service cannot used any more and any provider activity

performing a job is finished. This state does not express whether an execution
of a job or service was successful.

Based on the service term state, agreement states can be determined. If a service is
not ready or ready, the state of a guarantee relating to this service term is not
determined. If the service description term is processing or completed, the
guarantee term can expose the states fulfilled or violated.

8 Agreement Creation Use Case
Note: since the binding between the agreement layer and the layer of the service
being provided is out of the scope of this specification, we omit the steps and
operations that expose service layer services or application functionality. Suggestions
include using the [WS-ServiceGroup] idiom to have the Agreement service expose
the list of services it binds to.
The agreement Factory MAY be a domain-specific specialization of the
AgreementFactory described in the port types section of this document. In particular
it MAY choose to replicate/reuse the wsag:createAgreement operation.

Process:
1. The initiator is interested in obtaining an agreement for service provisioning

with the party implementing the factory. In order to create an agreement in
one shot, the initiator calls the createAgreement operation on the Factory
service, passing in offer terms that satisfy the creation constraints of one the
templates exposed by the Factory as resource properties. If it is not accepted
by the Factory, the createAgreement operation will throw a fault message.

2. Assuming the factory accepts the terms, it returns an endpoint reference
(EPR) to an observed Agreement service.

9 Acknowledgements
This document is the work of the GRAAP Working Group GRAAP Working Group (Grid
Resource Allocation and Agreement Protocol WG) of the Scheduling and Resource
Management (SRM) Area of the GGF.
Members of the Working Group are (at the time of writing, and by alphabetical
order): Alain Andrieux, (Globus Alliance / USC/ISI), Takuya Araki (ANL), Carl
Czajkowski, (Globus Alliance / USC/ISI), Asit Dan (IBM), Kate Keahey (Globus
Alliance / ANL), Chris Kurowski (PSNC), Heiko Ludwig (IBM), Jon MacLaren
(University of Manchester), Steven Newhouse (London e-Science Centre), Steven
Pickles (University of Manchester), Jim Pruyne (HP), John Rofrano (IBM), Volker
Sander (*Forschungszentrum Jülich *), Chris Smith (Platform Computing), Steve
Tuecke (Globus Alliance / ANL), Alan Weissberger (NEC), Ming XU (Platform
Computing), Wolfgang Ziegler (*Fraunhofer–Institute*).
Contributions of the following people are also acknowledged (alphabetically): Ian
Foster (ANL), Robert Kearney (IBM), David Kaminsky (IBM), Carl Kesselman

 34

(ANL/USC/ISI), Miron Livny (University of Wisconsin), Jeff Nick (IBM), Ellen Stokes
(IBM), John Sweitzer (IBM).

10 References
[SOAP 1.2]

http://www.w3.org/TR/soap12-part1/

[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI):
Generic Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August
1998.
http://www.ietf.org/rfc/rfc2396.txt

[WS-Agreement-old]
http://forge.gridforum.org/docman2/ViewProperties.php?group_id=71&document
_content_id=358

[SNAP]
K. Czajkowski, I. Foster, C. Kesselman, V. Sander, S. Tuecke:

“SNAP: A Protocol for Negotiating Service Level Agreements and Coordinating
Resource Management in Distributed Systems”

http://www.isi.edu/~karlcz/papers/snap-lncs-25370153.pdf

[WS-Addressing]
http://www.ibm.com/developerworks/webservices/library/ws-add/

[WS-Resource]
http://www.ibm.com/developerworks/library/ws-resource/ws-
modelingresources.pdf

[WS-ResourceLifetime]

http://www.ibm.com/developerworks/library/ws-resource/ws-
resourcelifetime.pdf

[WS-ResourceProperties]
http://www.ibm.com/developerworks/library/ws-resource/ws-
resourceproperties.pdf

[WS-BaseFaults]
http://www.ibm.com/developerworks/library/ws-resource/ws-basefaults.pdf

[WS-ServiceGroup]

http://www.ibm.com/developerworks/library/ws-resource/ws-servicegroup.pdf

[WS-Notification]
http://www.ibm.com/developerworks/library/ws-resource/ws-notification.pdf

[WS-Security]

http://www.ibm.com/developerworks/webservices/library/ws-secure/

[XML-Infoset]
http://www.w3.org/TR/xml-infoset/

[XML]
http://www.w3.org/TR/REC-xml

[XML-ns]

 35

http://www.w3.org/TR/1999/REC-xml-names-19990114

[XPath]
http://www.w3.org/TR/xpath

[ComputeJobs]

A. Andrieux, K. Czajkowski, J. Lam, C. Smith, M. Xu:

“Standard Terms for Specifying Computational Jobs (Proposal to JSDL-WG)”
http://www.epcc.ed.ac.uk/~ali/WORK/GGF/JSDL-WG/DOCS/WS-
Agreement_job_terms_for_JSDL_print.pdf

Appendix 1 - WSDL

Factory Port Type WSDL

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement" xmlns:wsrp="http://www.ibm.com/xmlns/stdwip/web-
services/WS-ResourceProperties" xmlns:wsbf="http://www.ibm.com/xmlns/stdwip/web-services/WS-BaseFaults"
targetNamespace="http://www.ggf.org/namespaces/ws-agreement">
 <wsdl:import namespace="http://www.ibm.com/xmlns/stdwip/web-services/WS-ResourceProperties"
location="http://www.ibm.com/developerworks/library/ws-resource/WS-ResourceProperties.wsdl"/>
 <wsdl:types>
 <xs:schema targetNamespace="http://www.ggf.org/namespaces/ws-agreement"
xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement" xmlns:wssg="http://www.ibm.com/xmlns/stdwip/web-
services/WS-ServiceGroup" xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"
elementFormDefault="qualified" attributeFormDefault="qualified">
 <xs:import namespace="http://www.ibm.com/xmlns/stdwip/web-services/WS-ServiceGroup"
schemaLocation="http://www-106.ibm.com/developerworks/library/ws-resource/WS-ServiceGroup.xsd"/>
 <xs:import namespace="http://schemas.xmlsoap.org/ws/2003/03/addressing"/>
 <xs:include schemaLocation="agreement_types.xsd"/>
 <!--Resource property element declarations-->
 <!--global elements are defined in the included schema-->
 <!--Resource property document declaration-->
 <xs:element name="AgreementFactoryProperties" type="wsag:AgreementFactoryPropertiesType"/>
 <xs:complexType name="AgreementFactoryPropertiesType">
 <xs:sequence>
 <xs:element ref="wsag:Template" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="wssg:MembershipContentRule" minOccurs="1" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 Contains at least one membershipContentRule1 element such that
 membershipContentRule1/@memberInterface="wsag:Agreement"</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element ref="wssg:Entry" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <!--======================-->
 <!-- Operational input/output type declarations -->
 <xs:element name="createAgreementInput" type="wsag:CreateAgreementInputType"/>
 <xs:element name="createAgreementResponse" type="wsag:CreateAgreementOutputType"/>
 <xs:complexType name="CreateAgreementInputType">
 <xs:sequence>
 <xs:element name="initiatorAgreementEPR" type="wsa:EndpointReferenceType"
minOccurs="0"/>
 <xs:element ref="wsag:AgreementOffer"/>
 </xs:sequence>

 36

 </xs:complexType>
 <xs:complexType name="CreateAgreementOutputType">
 <xs:sequence>
 <xs:element name="createdAgreementEPR" type="wsa:EndpointReferenceType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>
 </wsdl:types>
 <wsdl:message name="createAgreementInputMessage">
 <wsdl:part name="parameters" element="wsag:createAgreementInput"/>
 </wsdl:message>
 <wsdl:message name="createAgreementOuputMessage">
 <wsdl:part name="parameters" element="wsag:createAgreementResponse"/>
 </wsdl:message>
 <wsdl:message name="createAgreementFaultMessage">
 <wsdl:part name="fault" element="wsag:ContinuingFault"/>
 </wsdl:message>
 <wsdl:portType name="AgreementFactory" wsrp:ResourceProperties="wsag:AgreementFactoryProperties">
 <wsdl:operation name="createAgreement">
 <wsdl:input message="wsag:createAgreementInputMessage"/>
 <wsdl:output message="wsag:createAgreementOuputMessage"/>
 <wsdl:fault name="ResourceUnknownFault" message="wsrp:ResourceUnknownFault"/>
 <wsdl:fault name="ContinuingFault" message="wsag:createAgreementFaultMessage"/>
 <!-- or message="wsbf:baseFaultMessage " name="baseFault"
 with terminal = false-->
 </wsdl:operation>
 <!-- pasting resource property accessor definitions from WSRP -->
 <wsdl:operation name="GetResourceProperty">
 <wsdl:input name="GetResourcePropertyRequest" message="wsrp:GetResourcePropertyRequest"/>
 <wsdl:output name="GetResourcePropertyResponse"
message="wsrp:GetResourcePropertyResponse"/>
 <wsdl:fault name="ResourceUnknownFault" message="wsrp:ResourceUnknownFault"/>
 <wsdl:fault name="InvalidResourcePropertyQNameFault"
message="wsrp:InvalidResourcePropertyQNameFault"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

Agreement Port Type WSDL

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement" xmlns:wsrp="http://www.ibm.com/xmlns/stdwip/web-
services/WS-ResourceProperties" xmlns:wsbf="http://www.ibm.com/xmlns/stdwip/web-services/WS-BaseFaults"
targetNamespace="http://www.ggf.org/namespaces/ws-agreement">
 <wsdl:import namespace="http://www.ibm.com/xmlns/stdwip/web-services/WS-ResourceProperties"
location="http://www.ibm.com/developerworks/library/ws-resource/WS-ResourceProperties.wsdl"/>
 <wsdl:types>
 <xs:schema targetNamespace="http://www.ggf.org/namespaces/ws-agreement"
xmlns:wssg="http://www.ibm.com/xmlns/stdwip/web-services/WS-ServiceGroup"
xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing" elementFormDefault="qualified"
attributeFormDefault="qualified">
 <xs:import namespace="http://www.ibm.com/xmlns/stdwip/web-services/WS-ServiceGroup"
schemaLocation="http://www-106.ibm.com/developerworks/library/ws-resource/WS-ServiceGroup.xsd"/>
 <xs:include schemaLocation="agreement_types.xsd"/>
 <!--Resource property element declarations-->
 <!--global elements are defined in the included schema-->
 <!--Resource property document declaration-->
 <xs:element name="agreementProperties" type="wsag:AgreementPropertiesType"/>
 <xs:complexType name="AgreementPropertiesType">
 <xs:sequence>
 <xs:element ref="wsag:Name" minOccurs="0"/>
 <xs:element ref="wsag:Context"/>
 <xs:element ref="wsag:Terms"/>

 37

 <xs:element ref="wssg:MembershipContentRule" minOccurs="1" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 Contains at least one membershipContentRule1 element such that
 membershipContentRule1/@memberInterface="wsag:Agreement"</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element ref="wssg:Entry" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>
 </wsdl:types>
 <wsdl:portType name="Agreement" wsrp:ResourceProperties="wsag:agreementProperties">
 <!-- pasting resource property accessor definitions from WSRP -->
 <wsdl:operation name="GetResourceProperty">
 <wsdl:input name="GetResourcePropertyRequest" message="wsrp:GetResourcePropertyRequest"/>
 <wsdl:output name="GetResourcePropertyResponse"
message="wsrp:GetResourcePropertyResponse"/>
 <wsdl:fault name="ResourceUnknownFault" message="wsrp:ResourceUnknownFault"/>
 <wsdl:fault name="InvalidResourcePropertyQNameFault"
message="wsrp:InvalidResourcePropertyQNameFault"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

Agreement Types Schema

<xs:schema targetNamespace="http://www.ggf.org/namespaces/ws-agreement"
xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement" xmlns:wsbf="http://www.ibm.com/xmlns/stdwip/web-
services/WS-BaseFaults" xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="qualified">
 <xs:import namespace="http://www.w3.org/2001/XMLSchema"
schemaLocation="http://www.w3.org/2001/XMLSchema.xsd"/>
 <xs:import namespace="http://schemas.xmlsoap.org/ws/2003/03/addressing"
schemaLocation="http://schemas.xmlsoap.org/ws/2003/03/addressing"/>
 <xs:import namespace="http://www.ibm.com/xmlns/stdwip/web-services/WS-BaseFaults"
schemaLocation="http://www-106.ibm.com/developerworks/library/ws-resource/WS-BaseFaults.xsd"/>
 <xs:element name="Template" type="wsag:AgreementTemplateType"/>
 <xs:element name="AgreementOffer" type="wsag:AgreementType"/>
 <xs:element name="Name" type="xs:NCName"/>
 <xs:element name="Context" type="wsag:AgreementContextType"/>
 <xs:element name="Terms" type="wsag:TermCompositorType"/>
 <xs:complexType name="AgreementContextType">
 <xs:sequence>
 <xs:element name="AgreementInitiator" type="xs:anyType" minOccurs="0"/>
 <xs:element name="AgreementProvider" type="xs:anyType" minOccurs="0"/>
 <xs:element name="AgreementInitiatorIsServiceConsumer" type="xs:boolean" default="true"
minOccurs="0"/>
 <xs:element name="TerminationTime" type="xs:dateTime" minOccurs="0"/>
 <xs:element name="RelatedAgreements" type="wsag:RelatedAgreementListType" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other"/>
 </xs:complexType>
 <xs:complexType name="TermCompositorType">
 <xs:sequence>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="ExactlyOne" type="wsag:TermCompositorType"/>
 <xs:element name="OneOrMore" type="wsag:TermCompositorType"/>
 <xs:element name="All" type="wsag:TermCompositorType"/>
 <xs:element ref="wsag:ServiceDescriptionTerm" minOccurs="0"/>
 <xs:element ref="wsag:GuaranteeTerm" minOccurs="0"/>
 </xs:choice>

 38

 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="AgreementTemplateType">
 <xs:sequence>
 <xs:element ref="wsag:Name" minOccurs="0"/>
 <xs:element ref="wsag:Context"/>
 <xs:element ref="wsag:Terms"/>
 <xs:element name="CreationConstraints" type="wsag:ConstraintSectionType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="AgreementType">
 <xs:sequence>
 <xs:element ref="wsag:Name" minOccurs="0"/>
 <xs:element ref="wsag:Context"/>
 <xs:element ref="wsag:Terms"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="AgreementInitiatorIdentifierType">
 <xs:sequence>
 <xs:element name="Reference" type="xs:anyType"/>
 </xs:sequence>
 <xs:attribute name="isServiceConsumer" type="xs:boolean" use="optional" default="true"/>
 </xs:complexType>
 <xs:complexType name="AgreementProviderIdentifierType">
 <xs:sequence>
 <xs:element name="Reference" type="xs:anyType"/>
 </xs:sequence>
 <xs:attribute name="isServiceProvider" type="xs:boolean" use="optional" default="true"/>
 </xs:complexType>
 <xs:complexType name="RelatedAgreementListType">
 <xs:sequence>
 <xs:element name="RelatedAgreement" type="wsag:RelatedAgreementType"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="RelatedAgreementType">
 <xs:sequence>
 <xs:element name="AgreementEPR" type="wsa:EndpointReferenceType"/>
 </xs:sequence>
 <xs:attribute name="RelationshipType" type="xs:QName" use="optional"/>
 </xs:complexType>
 <xs:complexType name="TermType" abstract="true">
 <xs:attribute name="Name" type="xs:NCName"/>
 </xs:complexType>
 <xs:complexType name="GuaranteeTermType">
 <xs:complexContent>
 <xs:extension base="wsag:TermType">
 <xs:sequence>
 <xs:element name="Variables" type="wsag:VariableSetType"/>
 <xs:element ref="wsag:QualifyingCondition" minOccurs="0"/>
 <xs:element ref="wsag:ServiceLevelObjective"/>
 <xs:element name="BusinessValueList" type="wsag:BusinessValueListType"/>
 </xs:sequence>
 <xs:attribute name="ServiceScope" type="wsag:ListOfServiceNames" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="GuaranteeTerm" type="wsag:GuaranteeTermType"/>
 <xs:element name="QualifyingCondition" type="xs:anyType"/>
 <xs:element name="ServiceLevelObjective" type="xs:anyType"/>
 <xs:complexType name="BusinessValueListType">
 <xs:sequence>
 <xs:element name="Importance" type="xs:integer" minOccurs="0"/>
 <xs:element name="Penalty" type="wsag:CompensationType" minOccurs="0"/>
 <xs:element name="Reward" type="wsag:CompensationType" minOccurs="0"/>
 <xs:element ref="wsag:BusinessValue" minOccurs="0" maxOccurs="unbounded"/>

 39

 </xs:sequence>
 </xs:complexType>
 <xs:element name="BusinessValue" type="xs:anyType"/>
 <xs:complexType name="CompensationType">
 <xs:sequence>
 <xs:element name="AssessmentInterval">
 <xs:complexType>
 <xs:sequence>
 <xs:choice>
 <xs:element name="TimeInterval" type="xs:duration"/>
 <xs:element name="Count" type="xs:positiveInteger"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ValueUnit" type="xs:string" minOccurs="0"/>
 <xs:element name="ValueExpression" type="xs:anyType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ServiceDescriptionTermType">
 <xs:complexContent>
 <xs:extension base="wsag:TermType">
 <xs:sequence>
 <xs:any namespace="##other" processContents="strict"/>
 </xs:sequence>
 <xs:attribute name="ServiceName" type="xs:NCName" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="ServiceDescriptionTerm" type="wsag:ServiceDescriptionTermType"/>
 <xs:simpleType name="ListOfServiceNames">
 <xs:list itemType="xs:NCName"/>
 </xs:simpleType>
 <xs:element name="Location" type="xs:anyType"/>
 <xs:complexType name="VariableType">
 <xs:sequence>
 <xs:element ref="wsag:Location"/>
 </xs:sequence>
 <xs:attribute name="Name" type="xs:NCName"/>
 <xs:attribute name="Metric" type="xs:QName"/>
 </xs:complexType>
 <xs:complexType name="VariableSetType">
 <xs:sequence>
 <xs:element name="Variable" type="wsag:VariableType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ConstraintSectionType">
 <xs:sequence>
 <xs:element name="Item" type="wsag:OfferItemType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="wsag:Constraint" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="OfferItemType">
 <xs:sequence>
 <xs:element ref="wsag:Location"/>
 <xs:group ref="xs:simpleRestrictionModel" minOccurs="0"/>
 <!--//AA REMOVE COMMENTS -->
 </xs:sequence>
 <xs:attribute name="name" type="xs:string"/>
 </xs:complexType>
 <xs:element name="Constraint" type="xs:anyType"/>
 <!-- ////// fault section -->
 <xs:complexType name="TerminalFaultType">
 <xs:complexContent>
 <xs:extension base="wsbf:BaseFaultType"/>
 </xs:complexContent>

 40

 </xs:complexType>
 <xs:complexType name="ContinuingFaultType">
 <xs:complexContent>
 <xs:extension base="wsbf:BaseFaultType"/>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="ContinuingFault" type="wsag:ContinuingFaultType"/>
 <xs:element name="TerminalFault" type="wsag:TerminalFaultType"/>
</xs:schema>

AgreementState Port Type WSDL

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement" xmlns:wsrp="http://www.ibm.com/xmlns/stdwip/web-
services/WS-ResourceProperties" xmlns:wsbf="http://www.ibm.com/xmlns/stdwip/web-services/WS-BaseFaults"
targetNamespace="http://www.ggf.org/namespaces/ws-agreement">
 <wsdl:import namespace="http://www.ibm.com/xmlns/stdwip/web-services/WS-ResourceProperties"
location="http://www.ibm.com/developerworks/library/ws-resource/WS-ResourceProperties.wsdl"/>
 <wsdl:types>
 <xs:schema targetNamespace="http://www.ggf.org/namespaces/ws-agreement"
xmlns:wssg="http://www.ibm.com/xmlns/stdwip/web-services/WS-ServiceGroup"
xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing" elementFormDefault="qualified"
attributeFormDefault="qualified">
 <xs:include schemaLocation="agreement_state_types.xsd"/>
 <!--Resource property element declarations-->
 <!--global elements are defined in the included schema-->
 <!--Resource property document declaration-->
 <xs:element name="AgreementStateProperties" type="wsag:AgreementStatePropertiesType"/>
 <xs:complexType name="AgreementStatePropertiesType">
 <xs:sequence>
 <xs:element ref="wsag:AgreementState"/>
 <xs:element ref="wsag:GuaranteeTermStateList"/>
 <xs:element ref="wsag:ServiceTermStateList"/>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>
 </wsdl:types>
 <wsdl:portType name="AgreementState" wsrp:ResourceProperties="wsag:AgreementStateProperties">
 <!-- pasting resource property accessor definitions from WSRP -->
 <wsdl:operation name="GetResourceProperty">
 <wsdl:input name="GetResourcePropertyRequest" message="wsrp:GetResourcePropertyRequest"/>
 <wsdl:output name="GetResourcePropertyResponse"
message="wsrp:GetResourcePropertyResponse"/>
 <wsdl:fault name="ResourceUnknownFault" message="wsrp:ResourceUnknownFault"/>
 <wsdl:fault name="InvalidResourcePropertyQNameFault"
message="wsrp:InvalidResourcePropertyQNameFault"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

Agreement State Types Schema

<xs:schema targetNamespace="http://www.ggf.org/namespaces/ws-agreement"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"
xmlns:wsbf="http://www.ibm.com/xmlns/stdwip/web-services/WS-BaseFaults"
xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement" elementFormDefault="qualified"
attributeFormDefault="qualified">
 <xs:simpleType name="AgreementStateType">
 <xs:restriction base="xs:QName">
 <xs:enumeration value="wsag:beforeObserved"/>
 <xs:enumeration value="wsag:observed"/>
 <xs:enumeration value="wsag:afterObserved"/>

 41

 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="NamedGuaranteeTermStateType">
 <xs:simpleContent>
 <xs:extension base="wsag:GuaranteeTermStateType">
 <xs:attribute name="guaranteeTermName" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:simpleType name="GuaranteeTermStateType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="NotDetermined"/>
 <xs:enumeration value="Fulfilled"/>
 <xs:enumeration value="Violated"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="GuaranteeTermStateListType">
 <xs:sequence>
 <xs:element name="GuaranteeTermState" type="wsag:NamedGuaranteeTermStateType"
minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="NamedServiceTermStateType">
 <xs:simpleContent>
 <xs:extension base="wsag:ServiceTermStateType">
 <xs:attribute name="guaranteeTermName" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:simpleType name="ServiceTermStateType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="NotReady"/>
 <xs:enumeration value="Ready"/>
 <xs:enumeration value="Processing"/>
 <xs:enumeration value="Completed"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="ServiceTermStateListType">
 <xs:sequence>
 <xs:element name="ServiceTermState" type="wsag:NamedServiceTermStateType" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <!--global elements are defined in the imported type library-->
 <xs:element name="AgreementState" type="wsag:AgreementStateType"/>
 <xs:element name="GuaranteeTermStateList" type="wsag:GuaranteeTermStateListType"/>
 <xs:element name="ServiceTermStateList" type="wsag:ServiceTermStateListType"/>
</xs:schema>

Appendix 2 - Example

Domain-specific Service Description Languages Used in these
Examples

The service description elements encountered in the following examples are fictitious
but their semantics are inspired from [ComputeJobs], in which they are referred to
them as “terms” in the domain of computational jobs. The paper use a deprecated
grammar for expressing terms of agreement, therefore the XML expression of
computational jobs it describes should be ignored. Domain-specific service
description languages can now be totally agnostic of WS-Agreement. The schema

 42

below is an example of such a language. The elements it defines are used in the
following examples.

<xsd:schema targetNamespace="http://www.gridforum.org/namespaces/job"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:job="http://www.gridforum.org/namespaces/job"
elementFormDefault="qualified" attributeFormDefault="qualified">
 <xsd:complexType name="JobType">
 <xsd:sequence>
 <xsd:element ref="job:executable"/>
 <xsd:element ref="job:arguments"/>
 <xsd:element ref="job:posixStandardInput" minOccurs="0"/>
 <xsd:element ref="job:posixStandardOutput" minOccurs="0"/>
 <xsd:element ref="job:fileStageIn" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="job:fileStageOut" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="job:numberOfCPUs" minOccurs="0"/>
 <xsd:element ref="job:endTime" minOccurs="0"/>
 <xsd:element ref="job:realMemorySize" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="job" type="job:JobType"/>
 <xsd:complexType name="TermType">
 <xsd:sequence>
 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute processContents="lax"/>
 </xsd:complexType>
 <xsd:element name="executable" type="xsd:anyType"/>
 <xsd:element name="arguments" type="job:ArgumentsType"/>
 <xsd:complexType name="ArgumentsType">
 <xsd:sequence>
 <xsd:element name="argument" type="xsd:string" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="FileStageInTermType">
 <xsd:sequence>
 <xsd:element name="remoteSource" type="xsd:anyURI"/>
 <xsd:element name="localDestination" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="FileStageOutTermType">
 <xsd:sequence>
 <xsd:element name="localSource" type="xsd:string"/>
 <xsd:element name="remoteDestination" type="xsd:anyURI"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="fileStageIn" type="job:FileStageInTermType"/>
 <xsd:element name="fileStageOut" type="job:FileStageOutTermType"/>
 <xsd:element name="beginTime" type="xsd:dateTime"/>
 <xsd:element name="endTime" type="xsd:dateTime"/>
 <xsd:element name="realMemorySize" type="xsd:positiveInteger"/>
 <xsd:element name="numberOfCPUs" type="xsd:positiveInteger"/>
 <xsd:element name="posixStandardInput" type="xsd:string"/>
 <xsd:element name="posixStandardOutput" type="xsd:string"/>
 <xsd:element name="posixStandardError" type="xsd:string"/>
</xsd:schema>

Template

This example template enumerates the domain-specific service description elements
that are allowed by the factory which advertises it. Note that while most service
description elements bear no creational constraints, some of them are restricted in
terms of value space. There is no constraint in this example that spans several
items.

 43

<wsag:Template xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:job="http://www.gridforum.org/namespaces/job"
xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement"
xsi:schemaLocation="http://www.ggf.org/namespaces/ws-agreement
agreement_types.xsd http://www.gridforum.org/namespaces/job job_terms.xsd">
 <wsag:Name>Template1</wsag:Name>
 <wsag:Context/>
 <wsag:Terms/>
 <wsag:CreationConstraints>
 <wsag:Item wsag:name="executableTerm">
 <wsag:Location>//wsag:ServiceDescriptionTerm/job:executable</wsag:Location>
 <!-- for each domain-specific service description <job:executable>,
 constrain the value of that element (i.e. reduce list of possible executables) -->
 <xs:enumeration xs:value="/bin/processData"/>
 <xs:enumeration xs:value="/bin/doStuff"/>
 </wsag:Item>
 <wsag:Item wsag:name="argumentsTerm">
 <wsag:Location>//wsag:ServiceDescriptionTerm/job:arguments</wsag:Location>
 <!--<job:arguments> is allowed; no constraint on its value, whichever the executable may be.-->
 </wsag:Item>
 <wsag:Item wsag:name="stdin">
 <wsag:Location>//wsag:ServiceDescriptionTerm/job:posixStandardInput</wsag:Location>
 <!--<job:posixStandardInput> is allowed; no constraint on its value-->
 </wsag:Item>
 <wsag:Item wsag:name="stdin">
 <wsag:Location>//wsag:ServiceDescriptionTerm/job:fileStageIn</wsag:Location>
 <!--<job:fileStageIn> is allowed; no constraint on its value-->
 </wsag:Item>
 <wsag:Item wsag:name="stdin">
 <wsag:Location>//wsag:ServiceDescriptionTerm/job:numberOfCPUs</wsag:Location>
 <!--<job:numberOfCPUs> is allowed; but must not be greater than 64-->
 <xs:maxInclusive xs:value="64"/>
 </wsag:Item>
 <wsag:Item wsag:name="stdin">
 <wsag:Location>//wsag:ServiceDescriptionTerm/job:realMemorySize</wsag:Location>
 <!--<job:realMemorySize> is allowed; but must be within a range-->
 <xs:minInclusive xs:value="128"/>
 <xs:maxInclusive xs:value="1024"/>
 </wsag:Item>
 <wsag:Item wsag:name="fullJob">
 <wsag:Location>//wsag:ServiceDescriptionTerm/job:job</wsag:Location>
 <!--A complete <job:job> description is also allowed (maybe this is not a good example...)-->
 </wsag:Item>
 </wsag:CreationConstraints>
</wsag:Template>

Offer

This is an example of an agreement offer that is compliant with the template above.
Note the various structural complexities of the different domain-specific service
description elements (job:executable, job:fileStageIn, job:job, etc…).

This example shows alternate branches using logical grouping compositors: the
requested number of CPUs to allocate for the job “ComputeJob1” and the requested
memory size used per CPU for the same service are packaged together in two
flavors. In one of them, the number of CPUs is relatively high while the memory is
relatively low and vice-versa for the other flavor.

 44

Concepts for which it makes sense to specify single fixed values are expressed as
domain-specific service descriptions inside wsag:ServiceDescriptionTerm elements.
For instance, job:executable.

There are guarantees which express the following requests:

• A constraint on the sum of the respective durations of the two file stage-in
transfers described within the context of the service “ComputeJob1”. The
XPATH expressions in the variables point to the respective service description
elements. The total duration must not exceed 50 seconds (the duration
refers to the fictitious metric “time:duration” which in this example is
assumed to be imported from another namespace and is of type
xsd:duration).

• A constraint on the total time by which both services designated as
“ComputeJob1” and “ComputeJob2” must be finished. The metric it refers to
is job:endTime which is of type xsd:dateTime, thus the format of the time
limit in the constraint expression.

The constraint language used within the guarantees is assumed as well. It could
have been XML-based.

<wsag:AgreementOffer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement"
xmlns:job="http://www.gridforum.org/namespaces/job" xsi:schemaLocation="http://www.ggf.org/namespaces/ws-
agreement
agreement_types.xsd http://www.gridforum.org/namespaces/job job_terms.xsd">
 <wsag:Name>Offer1</wsag:Name>
 <wsag:Context/>
 <wsag:Terms>
 <wsag:All>
 <wsag:ServiceDescriptionTerm wsag:Name="executable" wsag:ServiceName="ComputeJob1">
 <job:executable>/bin/processData</job:executable>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="arguments" wsag:ServiceName="ComputeJob1">
 <job:arguments>
 <job:argument>-d</job:argument>
 <job:argument>-c</job:argument>
 <job:argument>myFile</job:argument>
 </job:arguments>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="fileStageIn1" wsag:ServiceName="ComputeJob1">
 <job:fileStageIn>
 <job:remoteSource>protocol://submachine:3456/data/file1</job:remoteSource>
 <job:localDestination>job/input/type1_data</job:localDestination>
 </job:fileStageIn>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="fileStageIn2" wsag:ServiceName="ComputeJob1">
 <job:fileStageIn>
 <job:remoteSource>protocol://submachine:3456/data/file2</job:remoteSource>
 <job:localDestination>job/input/type2_data</job:localDestination>
 </job:fileStageIn>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="FullComputeJob2"
wsag:ServiceName="ComputeJob2">
 <job:job>
 <job:executable>/bin/doStuff</job:executable>
 <job:arguments>
 <job:argument>-u</job:argument>
 </job:arguments>
 <job:posixStandardInput>job/input/type1_data</job:posixStandardInput>
 </job:job>

 45

 </wsag:ServiceDescriptionTerm>
 <wsag:ExactlyOne>
 <wsag:All>
 <wsag:ServiceDescriptionTerm wsag:Name="numberOfCPUs"
wsag:ServiceName="ComputeJob1">
 <job:numberOfCPUs>32</job:numberOfCPUs>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="memoryPerCPU"
wsag:ServiceName="ComputeJob1">
 <job:realMemorySize>200</job:realMemorySize>
 </wsag:ServiceDescriptionTerm>
 </wsag:All>
 <wsag:All>
 <wsag:ServiceDescriptionTerm wsag:Name="numberOfCPUs"
wsag:ServiceName="ComputeJob1">
 <job:numberOfCPUs>8</job:numberOfCPUs>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="memoryPerCPU"
wsag:ServiceName="ComputeJob1">
 <job:realMemorySize>1000</job:realMemorySize>
 </wsag:ServiceDescriptionTerm>
 </wsag:All>
 </wsag:ExactlyOne>
 <wsag:GuaranteeTerm wsag:Name="MaxTransferDurationForJob1"
wsag:ServiceScope="ComputeJob1">
 <wsag:Variables>
 <wsag:Variable wsag:Name="duration1" wsag:Metric="time:duration">

 <wsag:Location>/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:ServiceDescriptionTerm[@wsag:Name='fil
eStageIn1']</wsag:Location>
 </wsag:Variable>
 <wsag:Variable wsag:Name="duration2" wsag:Metric="time:duration">

 <wsag:Location>/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:ServiceDescriptionTerm[@wsag:Name='fil
eStageIn2']</wsag:Location>
 </wsag:Variable>
 </wsag:Variables>
 <wsag:ServiceLevelObjective>(duration1 + duration2) IS_LESS_INCLUSIVE
50S</wsag:ServiceLevelObjective>
 <wsag:BusinessValueList>
 <wsag:Penalty>
 <wsag:AssessmentInterval>
 <wsag:Count>1</wsag:Count>
 </wsag:AssessmentInterval>
 <wsag:ValueExpression>2</wsag:ValueExpression>
 </wsag:Penalty>
 </wsag:BusinessValueList>
 </wsag:GuaranteeTerm>
 <wsag:GuaranteeTerm wsag:Name="MaxEndTime" wsag:ServiceScope="ComputeJob1
ComputeJob2">
 <wsag:Variables>
 <wsag:Variable wsag:Name="endTime" wsag:Metric="job:endTime">
 <wsag:Location>/wsag:AgreementOffer/wsag:Terms/wsag:All</wsag:Location>
 </wsag:Variable>
 </wsag:Variables>
 <wsag:ServiceLevelObjective>endTime IS_BEFORE 2004-05-
16T00:00:00</wsag:ServiceLevelObjective>
 <wsag:BusinessValueList>
 <wsag:Penalty>
 <wsag:AssessmentInterval>
 <wsag:Count>1</wsag:Count>
 </wsag:AssessmentInterval>
 <wsag:ValueExpression>5</wsag:ValueExpression>
 </wsag:Penalty>
 </wsag:BusinessValueList>
 </wsag:GuaranteeTerm>

 46

 </wsag:All>
 </wsag:Terms>
</wsag:AgreementOffer>

Agreement

This is an example of an agreement after acceptance of the offer. Notice that in this
example, the only difference with the offer is that the alternate branches have been
reduced to only one, corresponding to the choice made by the factory (based on
resource availability). The service provider could have inserted qualifying conditions
on certain terms of service, depending on factors such as resource availability.

This agreement document is the response of a GetResourceProperty request with the
QName of the wsag:Terms resource property as the input parameter.

<wsrp:GetResourcePropertyResponse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement" xmlns:wsrp="http://www.ibm.com/xmlns/stdwip/web-
services/WS-ResourceProperties" xmlns:job="http://www.gridforum.org/namespaces/job">
 <wsag:Terms>
 <wsag:All>
 <wsag:ServiceDescriptionTerm wsag:Name="executable" wsag:ServiceName="ComputeJob1">
 <job:executable>/bin/processData</job:executable>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="arguments" wsag:ServiceName="ComputeJob1">
 <job:arguments>
 <job:argument>-d</job:argument>
 <job:argument>-c</job:argument>
 <job:argument>myFile</job:argument>
 </job:arguments>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="fileStageIn1" wsag:ServiceName="ComputeJob1">
 <job:fileStageIn>
 <job:remoteSource>protocol://submachine:3456/data/file1</job:remoteSource>
 <job:localDestination>job/input/type1_data</job:localDestination>
 </job:fileStageIn>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="fileStageIn2" wsag:ServiceName="ComputeJob1">
 <job:fileStageIn>
 <job:remoteSource>protocol://submachine:3456/data/file2</job:remoteSource>
 <job:localDestination>job/input/type2_data</job:localDestination>
 </job:fileStageIn>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="FullComputeJob2"
wsag:ServiceName="ComputeJob2">
 <job:job>
 <job:executable>/bin/doStuff</job:executable>
 <job:arguments>
 <job:argument>-u</job:argument>
 </job:arguments>
 <job:posixStandardInput>job/input/type1_data</job:posixStandardInput>
 </job:job>
 </wsag:ServiceDescriptionTerm>
 <wsag:All>
 <wsag:ServiceDescriptionTerm wsag:Name="numberOfCPUs"
wsag:ServiceName="ComputeJob1">
 <job:numberOfCPUs>32</job:numberOfCPUs>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="memoryPerCPU"
wsag:ServiceName="ComputeJob1">
 <job:realMemorySize>200</job:realMemorySize>
 </wsag:ServiceDescriptionTerm>

 47

 </wsag:All>
 <wsag:GuaranteeTerm wsag:Name="MaxTransferDurationForJob1"
wsag:ServiceScope="ComputeJob1">
 <wsag:Variables>
 <wsag:Variable wsag:Name="duration1" wsag:Metric="time:duration">

 <wsag:Location>/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:ServiceDescriptionTerm[@wsag:Name='fil
eStageIn1']</wsag:Location>
 </wsag:Variable>
 <wsag:Variable wsag:Name="duration2" wsag:Metric="time:duration">

 <wsag:Location>/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:ServiceDescriptionTerm[@wsag:Name='fil
eStageIn2']</wsag:Location>
 </wsag:Variable>
 </wsag:Variables>
 <wsag:ServiceLevelObjective>(duration1 + duration2) IS_LESS_INCLUSIVE
50S</wsag:ServiceLevelObjective>
 <wsag:BusinessValueList>
 <wsag:Penalty>
 <wsag:AssessmentInterval>
 <wsag:Count>1</wsag:Count>
 </wsag:AssessmentInterval>
 <wsag:ValueExpression>2</wsag:ValueExpression>
 </wsag:Penalty>
 </wsag:BusinessValueList>
 </wsag:GuaranteeTerm>
 <wsag:GuaranteeTerm wsag:Name="MaxEndTime" wsag:ServiceScope="ComputeJob1
ComputeJob2">
 <wsag:Variables>
 <wsag:Variable wsag:Name="endTime" wsag:Metric="job:endTime">
 <wsag:Location>/wsag:AgreementOffer/wsag:Terms/wsag:All</wsag:Location>
 </wsag:Variable>
 </wsag:Variables>
 <wsag:ServiceLevelObjective>endTime IS_BEFORE 2004-05-
16T00:00:00</wsag:ServiceLevelObjective>
 <wsag:BusinessValueList>
 <wsag:Penalty>
 <wsag:AssessmentInterval>
 <wsag:Count>1</wsag:Count>
 </wsag:AssessmentInterval>
 <wsag:ValueExpression>5</wsag:ValueExpression>
 </wsag:Penalty>
 </wsag:BusinessValueList>
 </wsag:GuaranteeTerm>
 </wsag:All>
 </wsag:Terms>
</wsrp:GetResourcePropertyResponse>

