
GWD-I (Proposed Informational) Karl Czajkowski, USC Information Sciences Institute
 Stephen Pickles, University of Manchester
 Jim Pruyne, Hewlett-Packard Laboratories
 Volker Sander, Forschungszentrum Jülich

Grid Resource Allocation Agreement Protocol WG January 25, 2006

Usage Scenarios for a Grid Resource Allocation
Agreement Protocol

Status of this Memo

This memo provides information to the Grid community relating to the agreement of
resource allocations on a Grid, and protocols that might be used for achieving this. It does
not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright (C) Global Grid Forum (2006). All Rights Reserved.

Abstract

This document describes a set of usage scenarios of the Grid Resource Allocation
Agreement Protocol (GRAAP). The intention is to derive the required capabilities of
GRAAP from this document. Specifically, we describe and analyze a number of general
usage scenarios; this is followed by the detailed presentation of the specific use case of the
RealityGrid project.

This document is a product of the Grid Resource Allocation Agreement Protocol (GRAAP)
Working Group of the Global Grid Forum. This document is intended to provide input into
the GRAAP-WG’s technical work: the design of standard mechanisms to reserve resources
on the Grid.

GWD-I January 10, 2006

2

Contents

1 Introduction 4

2 Scope and Background 4

2.1 Service Level Agreements (SLAs) 4
2.2 Advance Reservation 5

3 Scenarios 5

3.1 The very long running service or application 5
3.1.1 Example Usage 5
3.1.2 Requirements for the Protocol 5

3.2 The variable demand long running service 6
3.2.1 Example Usage 6
3.2.2 Requirements for the Protocol 6

3.3 The configurable application 6
3.3.1 Example Usage 6
3.3.2 Requirements for the Protocol 7

3.4 The templated application 7
3.4.1 Example Usage 7
3.4.2 Requirements for the Protocol 7

3.5 Monitoring of resource utilization and changing of reservation parameters 8
3.5.1 Example Usage 8
3.5.2 Requirements for the Protocol 8

3.6 File Transfer Scenario 9
3.6.1 Example Usage 9
3.6.2 Requirements for the Protocol 9

3.7 Co-allocation of several resources 9
3.7.1 Example Usage 9
3.7.2 Requirements for the Protocol 10

3.8 The "bottom-feeder" application 11
3.8.1 Example Usage 11
3.8.2 Requirements for the Protocol 11

3.9 Complex Workflows 11
3.9.1 Example Usage 11
3.9.2 Requirements for the Protocol 11

4 A Use Case: “RealityGrid” 12

4.1 Advance Reservation and Co-allocation Requirements 12
4.2 Future Requirements for Advance Reservation 13

5 Security Considerations 14

GWD-I January 10, 2006

3

6 References 14

7 Author Information 14

8 Intellectual Property Statement 15

9 Full Copyright Notice 15

GWD-I January 10, 2006

4

1 Introduction

The Grid Resource Allocation Agreement Protocol (GRAAP) Working Group addresses the
protocol between resource consumers, such as an end-user or a Super-Scheduler (Grid Level
Scheduler), and local Schedulers necessary to reserve and allocate resources in the Grid. This
document clarifies the role of the protocol by describing a set of usage scenarios that must be
supported by the upcoming protocol standard.

2 Scope and Background

A common requirement for service provisioning in a Grid environment is to negotiate access to,
and manage, resources that exist within different administrative domains than the requester. It is
therefore essential to arrange some resource usage agreement between requester and service
provider. Higher-level services such as a Super-Scheduler (Grid Level Scheduler) might act as
intermediaries between an end-user and a local scheduler adding an additional layer as well as
serving to broaden the scope of use requests. Services might thus be composed of different
levels and the acquisition of a service by some end-user requires the transitive access to all
agreements.

2.1 Service Level Agreements (SLAs)

The Service Negotiation and Acquisition Protocol [SNAP] introduces Service Level Agreements
to model this complex environment. An SLA allows clients to understand what to expect from
resources without requiring detailed knowledge of competing workloads or resource owners'
policies. This concept holds whether the managed resources are physical equipment, data, or
logical services. Given that each of the resources in question may be owned and operated by a
different provider, establishing a single SLA across all of the desired resources is not possible.
Management functions are decomposed into different types of SLAs which can be composed
incrementally; an elegant solution to this problem. Three types of SLAs are proposed for this:

• Task service level agreements (TSLAs) in which one negotiates for the performance of
an activity or task. A TSLA is, for example, created by submitting a job description to a
queuing system. The TSLA characterizes a task in terms of its service steps and resource
requirements.

• Resource service level agreements (RSLAs) in which one negotiates for the right to
consume a resource. An RSLA can be negotiated without specifying for what activity the
resource will be used. For example, an advance reservation takes the form of an RSLA.
The RSLA characterizes a resource in terms of its abstract service capabilities.

• Binding service level agreements (BSLAs) in which one negotiates for the application
of a resource to a task. For example, an RSLA promising network bandwidth might be
applied to a particular TCP socket, or an RSLA promising parallel computer nodes might
be applied to a particular job task. The BSLA associates a task, defined either by its

GWD-I January 10, 2006

5

TSLA or some other unique identifier, with the RSLA and the resource capabilities that
should be met by exploiting the RSLA.

These SLAs can be used to separate the complex service acquisition process into multiple
phases, each negotiating the appropriate level of agreement. This modelling facilitates a
distributed coordination of resources without any resource-resource trust relationship.

2.2 Advance Reservation

An RSLA delegates specific resource capacities to the requester that are held by the service
provider. An RSLA can thus be viewed on what is often called “Advance Reservation”. The term
“Advance Reservation” will be heavily used within the document. The following definition is
intended to clarify its semantics:

An Advance Reservation is a possibly limited or restricted delegation of a particular
resource capability over a defined time interval, obtained by the requester from the
resource owner through a negotiation process.

3 Scenarios

This section presents a list of scenarios in which the Grid Resource Allocation Agreement
Protocol is intended to interface between resource consumer and provider. The intention of these
scenarios is to clarify the context of GRAAP and to motivate particular requirements the protocol
should fulfill.

3.1 The very long running service or application

This use case captures the notion that not all reservation requests must be for a finite duration. It
will not always be possible to predict when a reservation will complete.

3.1.1 Example Usage

A user has developed a service that they wish to provide for the grid community at large. For
example, it may implement some particular compute intensive algorithm. They do not have the
resources necessary, so they wish to find a resource provider on which they can host their
service. As a service, it must remain running as long as any clients of the service may wish to
contact it. Typically, we cannot predict or even know when clients no longer exist for a service,
so there is no way to specify a run-length or expected completion time.

3.1.2 Requirements for the Protocol

GWD-I January 10, 2006

6

GRAAP is used in two stages here. First, the user who has developed the service must receive
the capability to use a resource offered by some provider. The system here must provide for an
infinite or "do not know" completion time or expected running length. For purposes of
discussion, we consider infinite and “do not know” as equivalent because they each require the
local scheduling system to maintain the reservation for all time. One choice of terminology may
be preferred within the protocol to make it clear to the users how to make use of this
functionality. Additionally, GRAAP is used by end-users to interface with this established
service.

3.2 The variable demand long running service

As in the very long running service example, we assume that completion time for this service is
not known. We do know, however, that the resource level required will change over time. Put
another way, the peak demand for resources is significantly different than the mean demand.
The reservation must be negotiated such that this profile of demand over time can be included in
the agreed reservation.

3.2.1 Example Usage

Consider a service that processes results from a particular sort of experiment. When the
experiment is run, the service will see a great deal of traffic, but at other times will have much
lower demand. If we know the schedule for experiments to be run, we should create a resource
reservation that matches this schedule and therefore prepares the service for these high loads.
Alternatively, the demand could be on a regular, predictable schedule such as every second
Friday when payroll is processed.

3.2.2 Requirements for the Protocol

The protocol must provide a method of specifying a variable and most likely periodic demand
profile. If it is a deterministic demand profile, we have to map this profile on to the calendar. If
it is probabilistic, we must map it with some probability and attempt to optimize the overall use
of resources modulo the probability of over commitment.

3.3 The configurable application

Some reservations may have multiple acceptable resource levels or configurations. We therefore
do not expect that a reservation negotiation can have only one possible outcome. It is possible
that multiple alternative reservations could satisfy an application’s need so the protocol must
permit alternatives to be selected among.

3.3.1 Example Usage

GWD-I January 10, 2006

7

A user has an application that can be configured for multiple resource levels, but it cannot
change once deployed. For example, a parallel computation that requires a power of 2 level of
compute resources, but can be configured to use any power of 2. It must interact with the
scheduling system in such a way that it can determine available resource levels, and allow the
user to choose the most appropriate alternative based on their QoS (such as cost, desired
turnaround time, etc.). With the reservation completed, the application can be configured and
deployed with agreed upon resource level.

3.3.2 Requirements for the Protocol

This scenario requires the introduction of some sort of negotiation with the scheduler. We need
to ask it what is available and what the QoS/SLA/economic/etc. parameters of various
configurations are. Rather than simply making multiple requests, it would preferable if the
scheduler could provide us with the set of options available to us. These options should be
constrained by what we can say about the configurations the application is capable of handling.

3.4 The templated application

We realize that application development and application execution may be performed by
different people. We therefore desired a method of describing an application’s resource demands
in a generic, and parameterizable manner so that those running the application can negotiate a
reservation without knowing the specifics of the application's requirements.

3.4.1 Example Usage

A user has developed an application, and wishes to provide that application for a community.
The community need not be required to understand the details of resource levels and topologies
required by the application. An example would be a grid service that has a needed topology in
terms of the grid service hosting environment (which itself may have resource and topology
requirements) and particular Internet connectivity as well as local connectivity to storage, etc.
Community members only need to understand that the application performs a certain desired
function. The original developer should be able to provide a template describing the
application's resource requirements at a high-level so that others can create reservations for
running the application, perhaps adding some parameters based on the resource levels they wish
to consume for this run of the application.

3.4.2 Requirements for the Protocol

The protocol should support a sort of template for describing the application's requirements, but
one which is written by the developer, not the submitter. The template should include the sort of
things that a normal submission request would, but should include parameterization, and should
be nameable. The name may take the form of a Grid Service such that the template is accessed
in the same manner that other Grid Services are accessed. Ideally, the templates would be
composable so that complex requests may be built out of smaller (sub-)requests. In this way, we

GWD-I January 10, 2006

8

build a library of logical resource requests on the Grid that can be used to build complex
requirements. Note that this covers both: the ability of the resource description language to
compose requests and the ability of the protocol to transport existing agreement information.

3.5 Monitoring of resource utilization and changing of reservation

parameters

Reservation is not a one time thing. A reservation has a life-cycle and we wish to be able to
track it through that life-cycle.

3.5.1 Example Usage

A reservation is created for a service. As it runs, we wish to monitor when it becomes active and
what allocations have been performed. Further, progress of the application may lead us to want
to change the reservation, and therefore the configuration of the application. We term these sorts
of applications “adaptive applications”. This may be particularly important in an area such as
weather forecasting where late results are useless results. Being able to react to changes in either
the received level of service or, to modify the requested level of service based on availability
facilitates an effective problem solving environment.

3.5.2 Requirements for the Protocol

Once submitted to the scheduler, users should be able to monitor the state of their requests.
Monitoring could include receiving events on various state transitions (e.g. start, stop, suspend,
etc.) or on-line monitoring of various parameters (queuing time, total run-time, total resource
consumption, total network bandwidth used, etc.). The scheduler needs to both monitor these
things as well as provide an on-line and likely post mortem report on these things. A user should
be able to disconnect and re-connect later to request an update on the values. Here, the protocol
should support mechanisms which can be used for authentication and authorization of future
reservation or acquisition references.

After submitting a request, the user should be able to modify that request. For example, they may
wish to reduce the requested resource levels to get the application started sooner. The user may
want to modify an existing request rather than stop and re-submit the request so they do not lose
any built up priority in a FIFO or other time-sensitive queue. Reservations must not be
considered rigid objects. They should be malleable while in the waiting state, and, ideally, we
can operate simply on the changes in the request without having to treat things as deletes and re-
inserts. This procedure complies with solution proposed in the Advance Reservation document
[GFD-E.5].

It is understood that changes to a reservation will take place under the same constraints, and
using a similar method to which reservations are initially made. That is, a re-negotiation of the
parameters of the reservation will be performed to make the changes using the same negotiation
protocol used to create the initial reservation. The difference may be that policies MAY be in

GWD-I January 10, 2006

9

place to assure some alterations to the reservation. For example, the initial negotiation may
result in a reservation that is guaranteed to allow cancellation or reduction in resource demands.
This is not a requirement, however, and such guaranteed updates to reservation parameters must
be specified in the policy associated with the reservation when it is agreed upon.

3.6 File Transfer Scenario

Grid applications often process remote data. Pre- and Post-staging are therefore relevant
operations.

3.6.1 Example Usage

Consider a finite element application that is comprised of three phases. The pre-processing
phase might be a result of a computer aided design (CAD) process in which the designer
partitions the geometrical information into sub-domains and creates a finite element mesh for
mathematical analysis. This process is done at some CAD workstation in the user’s office. The
second phase solves the matrix equations on some remote supercomputer. It therefore needs
access to the mesh data. Finally, the post-processing is performed on the CAD workstation again
to check the validity of the computed results.

3.6.2 Requirements for the Protocol

The workflow of the described scenario requires some basic synchronisation. The equation
solver on the remote supercomputer requires the data to be accessible prior its can process.
Similarly, the user must have some notification when the processing has ended and the data has
been transmitted to its destination. These staging operations could either be performed in a best-
effort network environment in which the synchronization mechanisms do not assume a particular
bandwidth service level, or, when the network is capable of providing advanced services on
demand, by additionally asking for a deadline file staging reservation. Here, deadline file staging
assures that the data is available when the computing resource becomes available. When
combined with advance reservations, the deadline file transfer would use a reservation-based
approach to allocate the appropriate level of bandwidth

3.7 Co-allocation of several resources

Grid applications may use a collection of heterogeneous Grid resources located in various
administrative domains. GRAAP must support these scenarios. This subsection specifies an
example for this scenario and derives the issues associated with it.

3.7.1 Example Usage

Advanced computational problem-solving methods often rely on the ability to visualize and steer
the application in real-time. In a Grid environment, these applications might be executed in a
geographically dispersed environment, i.e. some supercomputing resource is serving a remote

GWD-I January 10, 2006

10

VR-device such as a Holobench or an ImmersaDesk. Now consider that the supercomputer
application processes some raw data served by some cache service. We receive a workflow
which requires the coordinated allocation of several resources. Now suppose that this application
is placed in an environment in which a community scheduler provides advanced services for
scheduling these types of applications. The user will submit the workflow to the community-
scheduler with the intention that this will take care about the appropriate---in terms of user
specified constraints---allocation and execution. The super-scheduler must then coordinate the
use of the appropriate cache machines, of the network resources used during the data transport,
the selection and allocation of an appropriate compute server(s), and the tertiary storage system
which might be used to store the result of the workflow. Of course, some of the listed resources
provide their services through local resource management systems. In particular, network
services may be provided by the use of a bandwidth-broker that allows a network path to be
treated as a single resource, comparable to a VLL (Virtual Leased Line), while the compute
resource candidates are operated by what is commonly named Distributed Resource
Management (DRM) system.

3.7.2 Requirements for the Protocol

We can derive a set of requirements from the example listed above. Note that GRAAP is used for
both: the communication between user and community scheduler and the communication
between community scheduler and the service provider. First, and most essential, GRAAP must
be able to interface with various resource management systems. This basically means that either
the management systems itself are implementing GRAAP, or some service is in place which is
adapting the protocol semantics of GRAAP to the provider specific interface. Furthermore, we
recognize one of the major intentions of GRAAP: the standardization of the access to advance
reservation capabilities. Whenever the bandwidth broker or the DRM is offering advance
reservation, GRAAP should interface with these capabilities. There are several reasons why we
claim that advance reservation is of benefit in this example, the major one is the following: The
ability to perform advance reservations including deadline file transfers simplifies the
determination of a combined schedule for the whole workflow, without unnecessarily occupying
resources (such as disk space, because the data is there, but the job cannot be scheduled yet).
However, as the application is steered, the actual resource requirements might vary over the
time. The network demand, for example, might vary over the time and its actual characteristic
might depend on both: the remote control and the processing. It is therefore essential to support
the renegotiation of an existing reservation.

Co-allocation drives a requirement for a two-phase protocol for creating a reservation. In the
first phase, the consumer and the supplier negotiate a reservation. In the second, they commit to
put the reservation in place. To allocate resources across multiple sites, a user must negotiate
with those sites independently. Only when an agreement has been formed with each of the
required sites can the user proceed to commit to those agreements. Any commitments to
individual sites may result in charges or agreements that are un-needed because other sites
cannot be found. As stated above, cancelling of a reservation is not a guaranteed operation, so
the two-phase protocol is the only method a consumer has of ensuring that reservations are not
made, and resource allocated needlessly.

GWD-I January 10, 2006

11

3.8 The "bottom-feeder" application

We typically think of a reservation requesting a required set of resources for an interval of time.
In some cases, we may wish to permit applications to request whatever “left over” resources are
not being used by other applications in the system.

3.8.1 Example Usage

A user has an application which can consume all available resources such as running
SETI@home or a distributed.net factoring program. It can be assumed that this is a low priority
task, but would like to consume any resources that are not otherwise allocated. This will by
necessity be an adaptive application that can withstand unpredictable suspension and resource
level changes.

3.8.2 Requirements for the Protocol

This scenario describes a somewhat unusual case of an advance reservation. How does a
bottom-feeder get rolled into the schedule/calendar? How do we arbitrate between multiple
bottom-feeders that could use the same resources? As with any adaptive application, how does
the application become informed of changes in resource levels? To support this scenario,
GRAAP must be able to propagate policy information, i.e. constraints and priorities, and to
notify about changes on resource levels.

3.9 Complex Workflows

Grid applications may consist of several interdependent computational steps. Some steps might
be executed in parallel, while others depend on the results of the former execution and have to be
processed after the required input data has been computed.

3.9.1 Example Usage

Consider some complex simulation process which operates at multiple stages. Now consider that
these stages can be structured as a directed acyclic graph which represents the workflow. We can
thus model the timely order of the execution stages.

3.9.2 Requirements for the Protocol

The main issue here is that the protocol must support efficient synchronisation between each
level of the directed acyclic graph. Furthermore, it should be possible handle this request as a
composition of individual requests, each of it with a potentially associated advance reservation.

GWD-I January 10, 2006

12

4 A Use Case: “RealityGrid”

The RealityGrid project (http://www.realitygrid.org) aims to predict the realistic behaviour of
matter based on the properties of the microscopic components using diverse simulation methods
(Lattice Boltzmann, Molecular Dynamics and Monte Carlo) spanning many time and length
scales and the discovery of new materials through integrated experiments. A central theme of
RealityGrid is the facilitation of distributed and collaborative exploration of parameter space
through computational steering and on-line, high-end visualization.

4.1 Advance Reservation and Co-allocation Requirements

A typical RealityGrid scenario involves a large-scale simulation running on a massively parallel
system at on site coupled to a high-end visualization system at another site with the steering and
display interfaces running at one or more remote sites The simulation component periodically (or
as demanded by the steerer component) emits “samples” for consumption by the visualization
component, while grid middleware is responsible for the transfer of data between components.

The most pressing requirement for advance reservation in RealityGrid arises out of the need to
co-allocate (or co-schedule) processors to run a parallel simulation code and multiple graphics
pipes and processors on the visualization system. Co-allocation may be required now (either by a
RealityGrid developer or by a scientist engaged in routine investigations) or at some more distant
time in the future (for a scheduled collaborative session). We expect advance reservation to
subsume both co-allocation scenarios.

The visualization resources (b) will usually be located on a different system to the computational
resources (a). The two sets of resources ((a) and (b)) will often be located on systems owned and
administered by different organisations, and the administration teams within the two
organisations, if aware of each other’s existence at all, are unlikely to have established
comprehensive Service Level Agreements. It is assumed that the end-user(s) will be able to
access resources on both systems by presenting a single credential, through a single sign-on
mechanism based on digital certificates such as GSI or the UNICORE security model.

It is anticipated that the system (a) running the simulation will typically be a massively parallel
system with a workload characterised by sustained heavy demand and therefore the allocation of
resources is likely to be entrusted to a batch scheduling system. The characteristics of the
visualization system on the other hand are likely to vary, with demand for graphics and CPU
ranging independently from low to high, and there may or may not be a batch scheduling system
in place. The resources (b) required on the visualization system include both graphics pipes and
processor (CPU+memory) resources. In general, whatever system may exist for booking the
graphics pipes is unlikely to be integrated with whatever system may exist for booking the
processors.

We may therefore distinguish two cases:

GWD-I January 10, 2006

13

• co-allocation of processors on the simulation system, and graphics pipes on the
visualization system;

• processors on the visualisation system; where the visualization system does not run a
batch scheduling system, co-allocation of processors on the simulation system and
graphics pipes on the visualization system, relying on chance (or external arrangement) to
acquire a sufficient share of CPU resource for visualization purposes.

The ability for a RealityGrid user to reserve processors and graphics pipes manually without
involving system administrators would be useful now, and would remove a significant barrier to
the routine use of computational steering. The ability for an agent to do the same will be
important for the resource broker that will be developed in the later stages of the RealityGrid
project.

4.2 Future Requirements for Advance Reservation

Based on current projections, the largest computationally-steered simulations that RealityGrid is
likely to undertake will require bandwidth between the simulation and visualization systems of
order 1 Gbps in order to achieve satisfactory interactivity. The bandwidth requirements between
visualization systems are less demanding – 100 Mbps will be adequate for most purposes – but
reasonably good latency and jitter characteristics are desirable. Thus the ability to make advance
reservations of network bandwidth with certain quality of service characteristics and using the
same protocols as for the reservation of processors are seen as desirable by RealityGrid.

RealityGrid’s design philosophy is component based. In the computational steering scenario
described above, there are two coarse-grained components, simulation and visualization,
deployed on two different systems. However, RealityGrid is investigating finer-grained
componentisation in which the simulation is composed out of a number of smaller
communicating components, each of which must be deployed onto (possibly remote)
computational resources at run-time. Thus RealityGrid will need robust mechanisms for co-
allocating much more complex sets of resources, involving many advance reservation requests
many .

RealityGrid has a significant work package devoted to performance control. The goal of this
work package is to optimise the collective performance of the components comprising the
RealityGrid application based on performance information collected at run time. Initially, the set
of resources will be assumed to be fixed during execution, and it is by redistributing components
across this set of resources that the performance control system hopes to achieve performance
improvement. Ultimately, however, the ambition is to adapt the application to utilize new
resources that become available during execution; this is likely to require rather specialist
functionality of the advance reservation system such as the ability to renegotiate an existing
reservation.

GWD-I January 10, 2006

14

5 Security Considerations

This document is informational, and contains a set of use cases. As such, it does not address
security considerations directly. However, the scenarios described in this document rely on the
abilities of a convenient authentication and authorization environment. The negotiation process
performed by GRAAP of course requires a mutual authentication between resource provider and
consumer. However, requests might be composed of existing agreements. It is therefore
important to reflect this composition in the related security framework. Co-allocation brings up
other concerns as a user may have different identities in different domains, but wish to make
allocations that span those domains. Policies about who has authority to see and alter reservation
state will also be important. Policies describing the “ownership” of a reservation and listing rules
for who is allowed to perform what operation on the existing agreement have to be considered.

6 References

[GFD-E.5] V. Sander and A. Roy, “Advanced Reservation API”, Grid Forum Document

(GFD), Experimental 5 (E-5)

[SNAP] K. Czajkowski, I. T. Foster, C. Kesselman, V. Sander, and S. Tuecke. “SNAP: A

Protocol for Negotiating Service Level Agreements and Coordinating Resource
Management in Distributed Systems. In 8th International Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP 2002), Revised Papers, LNCS
Vol. 2537, pages 153–183. Springer Verlag, 2002.

7 Author Information

Karl Czajkowski
Univa

karlcz@univa.com

Stephen Pickles
Manchester Computing
The University of Manchester
Oxford Road
Manchester M13 9PL
United Kingdom

stephen.pickles@manchester.ac.uk

Jim Pruyne
Hewlett-Packard
Laboratories
1501 Page Mill Rd.
Palo Alto, CA
United States of America

jim_pruyne@hp.com

Volker Sander
Zentralinstitut für Angewandte Mathematik,
Forschungszentrum Jülich GmbH,
52428 Jülich
Germany

v.sander@fz-juelich.de

Jon MacLaren (Final Editor)
302 Johnston Hall
Louisiana State University
Baton Rouge, LA 70803
United States of America

maclaren@cct.lsu.edu

GWD-I January 10, 2006

15

Please contact Jon MacLaren if you have any comments regarding this document.

8 Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

9 Full Copyright Notice

Copyright (C) Global Grid Forum (2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to the GGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for copyrights
defined in the GGF Document process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

