
GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 1

GridFTP v2 Protocol Description

Bill Allcock (ANL), Igor Mandrichenko (editor, FNAL), Timur Perelmutov (FNAL)

GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 2

Status of this Document

This document is a Global Grid Forum Draft. It presents the result of research and
development work performed by GridFTP WG based on the analysis of GridFTP v1
[gftp] protocol summarized in GridFTP Protocol Improvements document [gftp-impr]
It describes extensions and modifications of GridFTP v1 protocol. GridFTP v1
definition together with this document should be used as definition of GridFTP v2
protocol.

Copyright Notice

Copyright Global Grid Forum (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the copyright
notice or references to the GGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for
copyrights defined in the GGF Document process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the
GGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis
and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Abstract
GridFTP protocol has become popular data movement tool used to build distributed
grid-oriented applications. GridFTP protocol extends FTP protocol defined by RFC959
[rfc959] and other IETF documents by adding certain features designed to improve
performance of data movement over wide area network, to allow the application to
take advantage of “long fat” communication channels, to help build distributed data
handling applications.

Several groups have developed independent implementations of GridFTP v1 [gftp]
protocol for different types of applications. The experience gained by these groups
uncovered several drawbacks of GridFTP v1 protocol. They were summarized in GGF
draft [gftp-impr]. This document proposes modifications of the protocol which are
supposed to address majority of issues found.

GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 3

Contents
Abstract ... 2
Contents .. 3
eXtended Block (X-Block) Mode .. 4

Basic Ideas... 4
Data Streaming... 4
Data Block Format ... 4
Data Channel Protocol.. 5

Opening Data Channel.. 6
Closing Data Channel.. 6

Data Channel Closed by the Sender... 7
Data Channel Closed by the Receiver... 7

Data Retransmission... 7
Host Pairs .. 8
End of File Communication .. 9

Active Receiver... 9
Passive Receiver... 10
Passive Sender... 10
Active Sender... 10

Dynamic Resource Allocation ..10
Active Sender... 10
Active Receiver... 11
Passive Sender... 11
Passive Receiver... 11

Data Channel Command Syntax..11
GET/PUT Commands..12

Command Syntax ...12
Examples of Communication...13

Explicit EOF Communication in Stream mode ...14
Checksum Transmission ...15

CKSM ...15
SCKSM ...15

Checksum Algorithms ..15
Options and Features Negotiation ..16

OPTS..16
Checksum Calculation... 16
EOF Communication in Stream Mode .. 16

FEAT ..16
References...18

GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 4

eXtended Block (X-Block) Mode
eXtended block mode (or simply X mode) is further development of Extended block
mode (E mode) introduced in GridFTP v1.0 standard [gftp]. X-mode is developed to
fix certain drawbacks of E mode and add some useful features such as:

• Remove so called unidirectional data transfers limitation
• Add more flexibility in dynamic management of network connections as

resource
• Add data integrity verification on the network transport level

Standard RFC959 MODE command should be used with “X” argument to switch into
this mode:

 MODE X CRLF

If this mode is supported by the server, it replies with 2xx response.

Basic Ideas
The proposed solution is based on the following ideas:

• Use robust handshake schema to open and close each data channel. This is
achieved by introducing “READY”, “CLOSE” and “BYE” messages sent in the
beginning and at the end of the transfer on the data channel in the direction
opposite to the data flow;

• Do not use EODC to send number of used data channels. Instead, send EOF
message on one or more data channels open between two hosts. The same
bit 64 can be used for EOF message;

• Send checksum value along with each data block so that the receiver can
verify data integrity and immediately request retransmission of the block if an
error is detected. The receiver sends “RESEND” message back to the sender
on the same data channel but in the direction opposite to the data flow.
Sender and receiver will use OPTS/FEAT mechanism to negotiate concrete
type of the checksum prior to the data transfer.

Data Streaming
Data streaming allows multiple files to be transferred over the same data channel or
set of parallel channels in the same time. Streaming can be used to reduce the
inefficiency caused by the file transfer initiation overhead. In order to allow data
streaming, X-block mode header has new field called Transaction ID. Client specifies
the transaction ID when it initiates the data transfer (see GET/PUT commands
description). It is responsibility of the client to make sure that the same transaction
ID is not used for two concurrent data transfers. If streaming is not used, transaction
ID field must be 0.

Data Block Format
Data block format is almost the same as for E mode. Two fields are new:

• Transaction ID is used to hold
• The only difference is that if data integrity verification is turned on (using

OPTS mechanism), each data block is followed by checksum value calculated
over the block header and data. Length of the checksum value is determined

GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 5

by previously negotiated checksum type. If checksum calculation is not turned
on, then no checksum value is appended to the end of the block. Data block
format is:

Field Length,

bytes
Contents

Descriptor 1 Block descriptor. Bits in the descriptor are:
64 – End of file (EOF)
8 – End of data (EOD) – request to close this data
channel
4 – Sender will close this data channel instead of
reusing it (?)

Byte count 8 Length of data
Offset 8 Offset of the block in the file
Transaction ID 4 Transaction ID – 32 bit integer
Data <byte

count>,
can be 0

Data

Checksum depends
on the
type, can
be 0

Value of the checksum calculated over header and
data

Data Channel Protocol
Proposed data channel protocol is outlined in Fig. 1 and 2 for active and passive
sender cases respectively

GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 6

Fig. 1

Fig. 2

Opening Data Channel
When passive data receiver accepts new incoming connection on the data socket, it
must acknowledge data channel opening with “READY” message sent on newly
created data channel socket to data source. Active data sender does not send any
data on the data channel until it receives “READY” message. This procedure ensures
that active sender and passive receiver hosts use the same number of data channels
for the transaction and essentially makes it unnecessary to send channel count in
EODC message.

Passive receiver may close new data socket without sending “READY” message or
even stop accepting new connections. No data will be lost in such cases because the
sender will not send any data before receiving “READY” message.

In case of passive sender and active receiver, there is no need for “READY” message.
Sender can immediately begin sending data on newly accepted data channel socket.

In general case of many-to-many striped transfer, active peer must open at least
one data channel to each passive peer host. This is necessary to make sure that ,
even if there is no data to be sent to or received from one of passive hosts, it does
not have to wait forever for the transfer to begin.

Closing Data Channel
There are two cases when a data channel may be closed under normal
circumstances:

GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 7

• There is no more data to send on the channel, i.e. the sender has reached
end of file

• Either sender or receiver closes one or more data channels in the middle of
transfer, e.g. to control bandwidth utilization

Data Channel Closed by the Sender
Before closing a data channel socket (either at the end of the file or in the middle of
the transfer), data sender (active or passive) must send EOD message as defined by
extended block mode protocol on the data channel. Data receiver acknowledges EOD
message with “BYE” message sent back on the data channel. Data sender may
choose to wait for “BYE” message to make sure the receiver successfully received all
data sent over the data channel. Failure to send “BYE” message to the sender should
not be considered an error by the receiver as the sender may choose not to wait for
data channel closure confirmations. After sending “BYE” message the receiver may
close the data channel or keep it open to reuse in future transfers. Likewise, after
receiving “BYE” the sender may choose to close the data channel or keep it open.
Data Channel Closed by the Receiver
If the receiver wishes to close a data channel in the middle of the transfer, it must
send “CLOSE” message on the data channel (see Fig. 3). After sending “CLOSE”
message, the receiver must continue receiving the data on the data channel until it
receives EOD block. After receiving EOD block, the receiver sends “BYE” message on
the channel.

Fig. 3

Data Retransmission
If the receiver detects an error in a block transmission, it can request that the sender
resends the block. To request block retransmission the receiver sends “RESEND”
command on the same data channel where the erroneous block was received:

GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 8

Fig. 4

After detecting a transmission error in one of data blocks and sending “RESEND”
command, the receiver should continue receiving data.

It is possible that the bad block will be retransmitted after EOD is received. The
receiver should not send final “BYE” and close the data channel until it receives all
blocks it requested to be retransmitted.

The sender does not necessarily have to resend requested data in single block or
even on the same data channel. It may split it into several blocks if necessary.

If the sender does not support resend functionality, it should abort the transfer in
any way, for example by closing the data channel without waiting for “BYE”
message. The receiver will treat this condition as a transmission error.

Host Pairs
In most general case of striped transfers, data is sent from N sender hosts to M
receiver hosts. Therefore, there are N*M sender-receiver host pairs. Each host pair
may open zero or more data channels (see Fig. 4).

GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 9

Fig. 4

The protocol allows for dynamic management of such resources as network
bandwidth and socket file descriptors by allowing hosts in each pair to open and
close data channels dynamically during data transfer without any data loss.

End of File Communication
End of file is signaled by sending (possibly empty) block with EOD and EOF flags set
in the block descriptor. The transfer between individual sender and receiver hosts is
considered finished successfully after last data channel between them is closed with
EOD and the receiver host received at least one EOF block on at least one data
channel established between the two hosts. In general case of many-to-many
striping, EOF block must be sent on at least one data channel for every sender-
receiver pair. EOF communication is described in more details for each type of host.

Active Receiver
After receiving EOF block from a sender host, active data receiver host must not try
to open any new data channels to that sender host. It must continue receiving data
on all previously open data channels until it receives EOD block on the channel. The
receiver host may try to open new data channels to other sender hosts, those it has
not received EOF from. In case of striped transfer, the receiver must attempt to open
at least one data channel to each sender host. As long as at least one data channel
to at least one of sender hosts was open successfully, failure to initiate other
channels should not be considered an error by the receiver.

The transfer is considered finished successfully by active receiver after all data
channels are closed and at least one EOF block was received from each sender host.

GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 10

Passive Receiver
Passive receiver host must be receiving data on all open channels until it receives
EOD on all channels with EOF on at least one of them. When EOF is received on one
of data channels, passive receiver is allowed to stop accepting new data channel
connections.

The transfer is considered finished successfully after all open data channels were
closed with EOD and at least one EOF block was received by each receiving host.

Passive Sender
Passive sender sends EOD on all open data channels with EOF bit set on at least one
data channel per receiver host. In case when it is impossible for the sender to
distinguish between connections coming from different receiving hosts, sender may
simply send EOF on all open data channels.

The transfer is considered successfully finished when all data was sent and all data
channels were closed and the receiver acknowledged all channel closures with “BYE”
messages.

Active Sender
Active sender sends EOD on all open data channels and EOF at least on one per
receiving host. Sender must not send EOF on any data channel until it receives
“READY” on all open channels.

In case of striped transfer, the sender must open at least one data channel to each
receiver host and send at least EOD and EOF block to each host even if there is no
data to be sent to the host.

The transfer is considered successfully finished when all data was sent and all data
channels were closed and the receiver acknowledged all channel closures with “BYE”
messages.

Dynamic Resource Allocation
For some applications, it is desired that such resources as network bandwidth, CPU
power and open I/O channels (file descriptors) can be dynamically allocated and
reallocated between concurrent transfers. Proposed protocol allows for new data
channels to be open and closed in the middle of transfer without data loss or
corruption. There are provisions for active or passive sender or receiver to open,
close or refuse to open new data channel at any time during transfer.

Active Sender
Active sender can control number of open data channels by opening and closing
them at any time. The receiver acknowledges new data channel with “READY”
message that allows the sender to start using the new channel. At any time active
sender can close any data channel after sending EOD block and optionally receiving
“BYE” as the acknowledgement.

GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 11

Active Receiver
Active receiver can control number of open data channels by opening and closing
them at any time. The sender may or may not send any data on newly open channel.
Once the channel is open by the active receiver, it may close it at any time, but only
after sending “CLOSE” message and receiving EOD block. The receiver must keep the
channel open and continue receiving data until EOD block is received on the channel.

Passive Sender
Passive sender, naturally, cannot open new data channels, so it cannot increase
bandwidth utilization by adding new channels. It can only decrease bandwidth
utilization by:

• Closing data socket port thus refusing new data connections
• Closing newly opened data connection before sending any data on the

channel
• Sending EOD and closing the data channel
• Sending EOD, waiting for “BYE” and closing the data channel

Existing data channel can be closed at any time after sending EOD block and
optionally waiting for “BYE”.

Passive Receiver
Passive receiver can decrease bandwidth utilization by:

• Closing data socket port and refusing new data connections
• Closing newly opened data connection before sending “READY”
• Sending “CLOSE” as a request to close the data channel

Once “READY” message was sent to the sender, passive receiver must receive all
data sent on the channel until it receives EOD block or the sender closes the channel.

Data Channel Command Syntax
This section describes the format of commands sent by the data receiver on the data
channel socket. General format is text terminated with carriage return, linefeed
combination or just linefeed:

<DC command> = <keyword> [<parameters>] [CR] LF

Commands and their parameters are:

READY (no parameters)
The receiver sends READY command after the data channel is open to allow the
sender to start sending the data.

CLOSE (no parameters)
Data receiver sends this command when it needs to close the data channel. The
receiver must continue receiving data even after sending CLOSE command until it
receives EOD block.

BYE (no parameters)
This command is sent by the receiver to allow the sender to close the data channel.
It acknowledges that the receiver has successfully received all the data sent on this

GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 12

data channel. The sender must not close the data channel until it receives “BYE”
command. The receiver closes the channel right after it sends “BYE”.

RESEND <offset> <length> [<tid>]
The receiver uses this command to request retransmission of a data block. Offset
and length are ASCII strings representing decimal numbers for block offset within
the file and its length. Optional third argument is used to specify the transaction ID
in case of data streaming.

GET/PUT Commands
GET and PUT commands are introduced as an alternative to RETR and STOR in order
to eliminate the drawback of RFC959 FTP protocol that requires that the server sends
the address of data channel socket in response to PASV command before it even
knows what file is about to be transferred. The idea is to include all necessary
information for the server to be able to initiate the transfer into single command, and
have the server use (multiple) 1xx replies to convey such information as data socket
address before actual transfer begins.

GET and PUT commands combine functionality of PRET, PORT/PASV, and then STOR
and RETR respectively.

Command Syntax

 GET <parameter> [=<value>]; […] CRLF
 PUT <parameter> [=<value>]; […] CRLF

<parameter> is a single keyword wihtout spaces in the middle. <value> is optional,
it can be either one word or multiple words, terminated with semicolon. Single
command can have multiple parameter/value pairs on the same line. The command
is terminated with CRLF sequence. This document introduces the following
parameters:

• mode – Possible values are “S”, “B”, “E” or “X” – for Stream, Block, Extended
and eXtended block transfer modes. Unless MODE command was sent prior to
the GET/PUT, mode argument must be specified.

• port – used by the client to convey data socket address in “active” mode.
Parameter value is data port address specification in standard form:
“a.b.c.d.e.f” where “a.b.c.d” is IP address of the data host and “e.f” are upper
and lower bytes of the port number. If some other port address was
previously sent with separate PORT command, that value gets discarded and
the value of this argument will be used as the port address.

• pasv – specifies that the transfer should be performed in “passive” mode, and
that the server must send “1xx PORT=a.b.c.d.e.f” before actual transfer can
begin. This parameter provides the same functionality as RFC959 PASV
command. If PASV command was used prior to the GET or PUT command,
and the server has already replied to it with some data port address, it still
must send the data port address in 1xx response. In this case, the port
address sent in 1xx response overrides the one sent previously. Unless PORT
or PASV command was sent prior to the GET/PUT command, GET/PUT
command must include either “port” or “pasv” argument. Currently, “1xx

GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 13

PORT=…” is the only 1xx response with documented syntax, which must be
recognized by the client. All other 1xx responses are purely informational, and
can be ignored.

• cksum – is mode X is used for this transfer, cksum parameter specifies what
algorithm should be used for block checksum calculation. Parameter value is
the keyword specifying the algorithm. Keyword “NONE” should be used for
none. This argument overrides any arrangement previously negotiated using
OPTS mechanism for single transfer.

• path – path to the file to be transferred. This is required parameter.
• tid – transaction ID. If specified, and X-block mode is used for the transfer,

this transaction ID must appear in every block of file data. If S, B or E mode
is used, this parameter is ignored. If not specified, transaction ID is assumed
to be 0.

Examples of Communication

Active file retrieval in Stream mode:

Client Server
GET path=/tmp/file.dat;port=34,23,45,12,48,14;mode=s;
 1xx Data connection established
 2xx Transfer complete

Passive file retrieval in E mode:

Client Server
GET path=/tmp/file.dat;pasv;mode=e;
 1xx wait
 1xx wait
 1xx PORT=134,23,145,2,48,114
 1xx Data connection established
 2xx Transfer complete

Passive file upload in X mode with MD5 signature calculation:

Client Server
PUT path=/tmp/file.dat;pasv;mode=x;chksum=md5;
 1xx wait
 1xx wait
 1xx PORT=134,23,145,2,48,114
 1xx Data connection established
 2xx Transfer complete

This is equivalent to the following exchange:

Client Server
OPTS CKSUM NONE
 2xx OK, will not do checksums any more
PASV
 2xx PORT=134,23,145,2,48,110
MODE X
 2xx OK, Will use X mode
PUT path=/tmp/file.dat;pasv;mode=x;cksum=md5;
 1xx will use MD5 for this single transfer
 1xx wait for port

GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 14

 1xx PORT=134,23,145,2,48,114
 1xx Data connection established
 2xx Transfer complete

as you can see, the client used OPTS to set default checksum algorithm for the
session to NONE, and then overrode this default for this single transfer using
“cksum” argument. Client sent PASV command and received some data port address,
but then used “pasv” argument with PUR command. Apparently, server discarded
previously assigned data port and created new one and sent it with 1xx PORT=…
reply.

Explicit EOF Communication in Stream mode
In order to allow the server to detect client shutdown in the middle of file upload and
not to treat data socket disconnection as normal end of file, EOF command is
introduced. This command has no parameters, so its syntax is simple:

 EOF CRLF

If the EOF command functionality is switched on by previous OPTS command, then
the client must issue EOF command after successful file upload before closing control
channel:

Client Server
STOR file.dat
 1xx Opening data socket

(client sends data)

(client closes data channel at the end of file)

 2xx data transferred

EOF
 2xx OK, transfer acknowledged
 (server considers the transfer successful)

(client disconnects control channel)

Here is an example of how the server would detect abnormal client disconnection:

Client Server
STOR file.dat
 1xx Opening data socket

(client sends some data)

(client crashes in the middle of transfer)

 (server detects end of data socket)

 2xx data transferred

 (server detects end of control socket.
 because EOF was never received,
 server discards the file as incomplete)

GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 15

In order to maintain backward compatibility with old clients, this functionality is
turned off by default. Client turns it on using OPTS mechanism.

Checksum Transmission
Two commands are introduced for data integrity verification

CKSM
This command is used by the client to request checksum calculation over a portion or
whole file. The syntax is:

 CKSM <algorithm> <offset> <length> <path> CRLF

Server executes this command by calculating specified type of checksum over
portion of the file starting at the offset and of the specified length. If length is –1,
the checksum will be calculated through the end of the file. On success, the server
replies with

 2xx <checksum value>

Actual format of checksum value depends on the algorithm used, but generally,
hexadecimal representation should be used.

SCKSM
This command is sent prior to upload command such as STOR, ESTO, PUT. It is used
to convey to the server that the checksum value for the next uploaded file. At the
end of transfer, server will calculate checksum for the received file, and if it does not
match, will consider the transfer to have failed. Syntax of the command is:

 SCKSM <algorithm> <value> CRLF

Actual format of checksum value depends on the algorithm used, but generally,
hexadecimal representation should be used.

Checksum Algorithms

The following describes a few of the popular checksum algorithms, assigns the
algorithm names and specifies the format and length of the checksum, to be used in
X-Blocks, and its string representations to be used with the CKSM and SCKSM
commands.

Adler32 Checksum is described in rfc1950 [rfc1950] and is a 32 bit (4 byte) integer.
The reserved name for the Adler32 Checksum is ADLER32. The checksum is
represented as a hexadecimal number (8 hexadecimal digit string).

GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 16

MD5 Checksum is described in rfc1321 [rfc1321] and is a 128 bit (16 byte) integer.
The reserved name for the MD5 Checksum is MD5. The checksum is represented as a
hexadecimal number (32 hexadecimal digit string).

Cyclic Redundancy Checksum (CRC32) is defined by ISO 3309 [iso-3309] and is a
32 bit (4 byte) integer. A sample implementation of the algorithm is given in PNG
Specification [png]. The reserved name for the CRC32 Checksum is CRC32. The
checksum is represented as a hexadecimal number (8 hexadecimal digit string).

Options and Features Negotiation

OPTS
OPTS command should be used by the client and server to negotiate options for
further transfers.

Checksum Calculation
Client negotiates specific checksum calculation algorithm to be used for all
subsequent transfers performed during this session with the following OPTS
subcommand:

 OPTS (RETR|STOR|ERET|ESTO) CKSM <algorithm> CRLF

Where <algorithm> is the keyword specifying actual checksum calculation algorithm
to be used in X-block mode. Suggested keywords are:

• ADLER32 – for Adler32 algorithm
• MD5 – for MD5
• NONE – to specify that no checksum calculation should be performed

If the server supports specified algorithm, it replies with 2xx response. Otherwise –
with 5xx or 4xx, in which case, no checksum will be calculated during subsequent
transfers.

EOF Communication in Stream Mode
Client requests the server to use explicit EOF notification at the end of Stream mode
upload using

 OPTS STOR EOF CRLF

If the server supports this option, it replies with 2xx response, and explicit EOF
confirmation as described above will be turned on for subsequent Stream mode
uploads.

FEAT
As described in [rfc2389], FEAT is used by the client to find out what features are
supported by the server. This document introduces the following FEAT items:

GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 17

 CKSUM <algorithm>[, …]
 EOF
 MODEX
 GETPUT
 STREAMING

CKSUM keyword is used to specify checksum algorithms supported by the
server.

EOF, MODEX, GETPUT and STREAMING are used to indicate that the server
supports explicit end of file communication in Stream mode, X-block
transfer mode, GET/PUT commands and data streaming respectively.

GWD-R (Recommendation) I. Mandrichenko, editor
GridFTP WG Fermi National Accelerator Laboratory
 May 2004

ivm@fnal.gov 18

References
[gftp] Bill Allcock, et all, GridFTP v1.0 Draft

http://www-isd.fnal.gov/gridftp-wg/draft/GridFTPRev3.htm

[gftp-impr] Igor Mandrichenko, GridFTP Protocol Improvements,

http://www.ggf.org/documents/GWD-I-E/GFD-E.021.pdf

[rfc959] IETF RFC959 http://www.ietf.org/rfc/rfc0959.txt?number=959

[rfc2389] IETF RFC2389

http://www.ietf.org/rfc/rfc0959.txt?number=2389

[rfc1950] IETF RFC1950
http://www.ietf.org/rfc/rfc1950.txt

[rfc1321] IETF RFC1321
http://www.ietf.org/rfc/rfc1321.txt

[png] Portable Network Graphics (PNG) Specification (Second
Edition),W3C
http://www.w3.org/TR/2003/REC-PNG-20031110

[iso-3309] ISO/IEC 3309:1993, Information Technology —
Telecommunications and information exchange between
systems — High-level data link control (HDLC) procedures —
Frame structure.

[crc] Timur Perelmutov, GridFTP Data Integrity Verification
Draft proposal

http://home.fnal.gov/~timur/gridftp/index.html

