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Guidelines for IP version independence in GGF specifications  
 
Status of This Memo 
 
This memo provides information to the Grid community regarding IP version independence in 
GGF specifications.   It does not define any standards or technical recommendations. Distribution 
of this memo is unlimited. 
 
Copyright Notice 
 
Copyright © Global Grid Forum (2004).  All Rights Reserved. 
 

Abstract 
 
This document serves two functions.  Its motivation is to aid in the creation of IP-version 
independent specifications and consequently, in the transition of IPv4 applications to support IPv6 
operation.   First, it describes how to avoid IPv4 dependencies in GGF specifications.  Secondly, 
it outlines new, IPv6-specific issues for application designers and implementers.  It should be 
used by all GGF WGs and as a checklist for document approval.    
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1. Introduction 
 
The goal of this document is to help the reader understand the issues in making applications IPv6 
aware, such that new specifications can be written in an IP-independent fashion.   It describes 
how to avoid IPv4 dependency in GGF specifications.  It is intended that it should be used by all 
GGF WGs and as a checklist for document approval. 
 
The document also outlines the design and implementation issues when considering IPv6-
enabled applications.   While certain issues are implementation-specific, the author of the 
specification should be aware if these issues, where there may be differences in operation 
between IPv4 and IPv6. 
 
Some documentation already exists in the general area of application issues for IPv4 and IPv6 
integration, e.g. the LONG project guide [LONG-PORTING] and IETF IPv6 Operations WG 
studies [APP-ASPECTS] (the latter being considered for final publication as an Informational RFC 
at the time of writing). 
 
In this guide we first discuss the requirement for dual or hybrid stack operation for IPv4 and IPv6.  
We then discuss standards or specifications aspects, before looking at implementation oriented 
issues and those that are specific to IPv6 (highlighting differences and similarities to IPv4). 
 
Finally, we list some specific recommendations to the writers of GGF specifications, to ensure 
that specifications are independent of the version of IP and that they guide implementers to avoid 
accidental dependencies. 
 

2. IPv4 and IPv6 Operational Relationships 
 
Internet Protocol Version 6 (IPv6) is the successor to the current version of IP (IPv4).   It has a 
number of benefits including the larger address space, autoconfiguration, better aggregation of 
routing tables, a complete solution for mobile IP, IPsec being available end-to-end globally, and a 
simplified header format. 
 
The larger address space removes the need for Network Address Translation (NAT) [RFC3022], 
making end-to-end application operation simpler to consider for the designer and developer.   
 
The base IPv6 specification is given in [RFC2460] and the addressing architecture in [RFC3513].  
 
IPv6 will not replace IPv4 in the foreseeable future, except in areas of significant IPv4 address 
space drought.   In most circumstances there will be a long period of coexistence. As a result 
many applications will need to be aware of both protocols, and able to run over either. Existing 
applications will need to be ported to support IPv6, while new applications that are aware of 
network details will need to be designed with IPv6 in mind from the outset. 
 
While IPv4-IPv6 interworking can be achieved with translation (such as NAT-PT [RFC2766]) and 
proxy methods (such as dual-stack application layer gateways), it is generally architecturally 
cleaner if a client wishing to interact with an IPv6 service uses IPv6 to communicate directly, 
rather than relying on an intermediary translation.   Applications will need to continue to operate 
between IPv4 endpoints, but also be able to communicate using IPv6 when available and 
selected. 
 
Thus the general case for IPv6 operation would be an IPv4 and IPv6-capable application, running 
over a suitable transport (e.g. TCP, UDP) on top of a dual or hybrid IPv4 and IPv6 stack, with the 
underlying network configured for and running both protocols. 
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3. Standards and Specification Issues 
 
3.1 IP Address Representation 
 
The most obvious difference between IPv4 and IPv6 lies in the address size and format itself.  In 
IPv4, addresses are 32 bits, represented as a dot-delimited decimal quad address, while in IPv6 
they are 128 bits, represented as colon-delimited hexadecimal address. 
 
3.2 Storage and Display of IP Addresses 
 
Thus there are different storage requirements for addresses in each protocol.   From the 
implementation perspective these issues are discussed in Section 4.2, where storage in an IP-
independent format is presented.    
 
These may affect specifications where text representations of addresses are being handled.  An 
IPv4 address may be up to 15 characters long (12 digits plus three dots), while an IPv6 address 
may be up to 39 characters long (32 hexadecimal digits plus seven colons).    The minimum 
length of a displayed IPv4 address is seven characters (four digits plus three dots), and an IPv6 
address is three characters (two colons and a digit) for a regular address, or two characters (‘::’) 
for the unspecified address. The ‘::’ notation indicates one or more groups of 16 bits of zeros. 
 
3.3 Use of Fully Qualified Domain Names  
 
Some applications may pass IP addresses in the payload of their data.   In the case of IPv6 it will 
be commonplace for hosts to have multiple IPv6 addresses, and potentially for more renumbering 
events to occur.   There are also additional IPv6 host addresses for hosts implementing IPv6 
Privacy Extensions [RFC3041] (see Section 5).     
 
As a result, there is a stronger argument for hosts to exchange fully qualified domain names 
(FQDNs) rather than IP addresses, especially given the FQDN is an IP-independent identifier for 
the host.   It is currently not uncommon practice for applications, including peer-to-peer 
applications, to exchange IP addresses as data for communication endpoints.  The storage of IP 
addresses (either IPv4 or IPv6) in files for non-trivial lengths of time should be discouraged. 
Developers should recognize that peer IP addresses stored in files will generally become stale 
faster than domain names. 
 
3.4 Handling Literal IPv6 Addresses  
 
In IPv4, the common delimiter for address and port representation is a colon.   Since IPv6 
addresses contain colons, a new method for expressing address:port pairs is required where 
literal addresses are used. 
 
The method adopted to handle this problem in application or context-dependent URIs [RFC2396] 
is the format specified in RFC2732, i.e. [address]:port, e.g. http://[2001:0DB8:a0:1::1]:8080. 
 
The ‘[]’ solution of RFC2732 can be used for other situations, e.g. in SIP-based applications. 
 
3.5 Documentation Examples 
 
There is an IETF proposal to use a common documentation prefix in specification documents [V6-
DOC], namely 2001:0DB8::/32.    Specifications should use this prefix where address examples 
are given. 
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4. Implementation Issues 
 
Implementation issues span many areas.   We outline these in this section.   While specifications 
should not be written to be or become implementation-specific, they should be aware of 
implementation constraints. 
 
4.1 APIs 
 
The introduction of IPv6 requires changes to the APIs.    There are currently two main 
programming platforms supporting IPv6, namely C and Java. 
 
The new APIs and data structures for TCP/IP sockets (as used in the C programming language) 
are defined in the Basic Socket Extensions for IPv6 [RFC3493] (which obsoletes RFC2553) and 
the Advanced Socket API for IPv6 [RFC3542] (which obsoletes RFC2292). 
 
It is easier to port applications when network components are modular and well–isolated, and do 
not make assumptions about the IP version (e.g. representing an IP address by four integer 
values); the same principle should apply to new implementations. 
 
These specify the socket address structures, address conversion functions, socket options and 
name resolution functions.   The definitions include IP-independent functions, as well as those for 
IPv6-only applications.   In the current state of IPv6 deployment, IP-independent applications are 
preferred, such that they can operate in the presence of either or both protocols (without 
recompilation). 
 
However, there are still currently some subtleties in behaviour between platforms, e.g. in binding 
to IPv4 and IPv6 simultaneously, due to different bind() call implementations. 
 
The Java Development Kit (JDK) as of version 1.4.0 supports basic IPv6 functionality for Linux 
and Solaris platforms.   MS Windows support is expected in JDK1.5 (at the time of writing support 
for IPv6 exists in the publicly available beta JDK1.5).   The JDK includes network preferences for 
IPv6 (i.e. java.net.preferIPv4Stack, java.net.preferIPv6Addresses) [JDKv6]. 
 
There is as yet no definition within Java for advanced API functions, e.g. writing a Flow Label field 
from a Java application.   There needs to be action within the Java community to investigate and 
specify advanced API functionalities where required, including handling of IPv4-mapped 
addresses. These issues are being highlighted within another draft on Java from the IPv6-WG. 
 
IPv6 support is also being made available in other languages used by the Grid community, 
including Perl (for example, via the IO::Socket::INET6 made available by the Euro6IX project) and 
Python (as standard). 
 
4.2 Storage of IP addresses 
 
In the sockets API, there are data structures that may be used for IPv4 or IPv6 applications – 
sockaddr_in() and sockaddr_in6() – but also a generic IP independent structure 
sockaddr_storage() that hides the specific structure that the application is using.   The latter 
should be preferred for IP-independent applications. 
 
For IP address storage we have in_addr (IPv4-only), in6_addr (IPv6-only), and addrinfo (IP 
dependent).  Again, the latter is preferred. 
 
As described in Section 3.2, IPv4 and IPv6 have different textual representations. 
 
There are differences in special addresses, e.g. the loopback/localhost address is 127.0.0.1 in 
IPv4 and ::1 in IPv6.   Use of localhost by name abstracts that difference.  



GWD-I  10 March 2004 

tjc@ecs.soton.ac.uk  6 

 
The LONG project guide [LONG-PORTING] contains IP-independent programming examples for 
the sockets API (C language); these principles are reinforced by IETF IPv6 Operations WG 
studies [APP-ASPECTS]. 
 
4.3 Resolution and conversion functions 
 
The new IP-independent functions for name-to-address lookups in C are getnameinfo() and 
getaddrinfo(), which replace gethostbyname() and gethostbyaddr(). 
 
It is important to note that one should not assume IPv6 connectivity by the presence of an IPv6 
DNS record (a AAAA record).    The target host may have no or only some IPv6 services actually 
enabled. 
 
The choice of preferred protocol, and address selection mechanisms, are defined in [RFC3484], 
by which a returned address list can be inspected to select addresses for source and destination 
addresses.    An application may be configured to prefer IPv6 where available, but it should be 
possible for that preference to be overridden. 
 
Regarding reverse DNS lookups, there is an ongoing transition at the time of writing from the 
ip6.int to ip6.arpa namespace [RFC3152].   Some transitional address space (e.g. under the 6to4 
prefix of 2002::/16) has no defined reverse lookup namespace. 
 
There are also new functions for conversion of addresses from binary to text/string format. 
 
4.4 Parsing and Displaying IP address 
 
New code will be required to parse IPv6 address where entered as input or parameters to 
applications.   Such code will need to be aware of IPv6 address formats, including conventions 
such as the ‘::’ shortcut for zero value 16bit sequences. 
 
Support for automatic parsing of literals in various languages is growing, for example 
Java.net.URI will automatically parse and handle them. 
 
IP addresses may be used in configuration files, or perhaps in access control files.   In such 
situations FQDNs could be used. 
 
The different formats and lengths of IPv4 and IPv6 addresses may have a significant impact on 
the layout of such addresses when presented in graphical user interfaces. 
 
4.5 IPv4-mapped Address Handling 
 
An IPv4 client application on an IPv4-only node can talk to an IPv6 application on a dual stack 
node using IPv4 packets between the nodes; however the IPv6 application will see the addresses 
as IPv4-mapped IPv6 addresses, of the form ::ffff:a.b.c.d  where a.b.c.d is the IPv4 address. 
 
This mapping may occur in the API, or the mapped addresses could be seen on the wire.   The 
latter is undesirable for security (spoofing) reasons [V6MAP-HARM]. 
 
There is a view that IPv4-mapped IPv6 addresses add implementation complexity, cause 
degraded portability, and increase access control complexity, and should perhaps be deprecated 
[V4MAPAPI-HARM].   However, they serve a useful purpose, and have a wide installed base, and 
are thus likely to remain in place. An application may want to treat all addresses as IPv6 including 
IPv4 as documented in RFC3493. 
 
Applications should handle IPv4-mapped IPv6 addresses correctly and securely. 
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5. Implications of new features of IPv6 
 
5.1 Network Address Translation (NAT) 
 
Network Address Translation (NAT) [RFC3022] is defined for IPv4.   It was originally intended as 
a method of IPv4 address conservation until IPv6 was defined, although some sites use NAT in 
conjunction with private IP addresses (see below) for reasons of address stability or perceived 
security benefits. 
 
With IPv6’s address space, there is no technical need for IPv6 networks to use NAT.  A 
fundamental belief of the IPv6 Forum is that end-to-end is re-enabled with IPv6 and thus 
application designers should assume end-to-end transparency when considering IPv6 
applications. 
 
5.2 Private, Local Scope IP Addresses 
 
IPv4 has a set of address ranges reserved for private network usage [RFC1918].   In the initial 
IPv6 Address Architecture, IPv6 included unicast site-local scope addressing.   However, site-
locals as defined are being deprecated (for reasons including address leakage and ambiguity) 
within the IETF.    
 
Application designers should not currently assume the presence of any unicast site-local scoped 
address range in IPv6.   A replacement for the original site-local definition is currently being 
defined within the IETF IPv6 Operations WG [UNIQUE-LOCAL]. 
 
5.3 IPv6 Anycast Address 
 
The IPv6 addressing architecture defines an "anycast" address which is an IPv6 address that is 
assigned to one or more network interfaces (typically belonging to different nodes), with the 
property that a packet sent to an anycast address is routed to the "nearest" interface having that 
address, according to the routing protocols' measure of distance. [RFC2526] 
 
While implementation of anycast addressing requires local router configuration, the availability of 
anycast should be considered by specification authors. 
 
5.4 IPv6 Flow Label 
 
Usage of the IPv6 Flow Label field, which occupies 20 bits of the IPv6 Header, was first defined in 
RFC1809, and then further referenced in RFC2460.    The Flow label was initially designed for 
use in an Integrated Services QoS environment, but it has seen little if any usage to date, and 
there has been some confusion over aspects of the original specification.    
 
The IETF has thus updated the definition of the Flow Label semantics [RFC3697], which 
describes how the Flow Label field should be used, and how nodes may act upon the value of the 
Flow Label field. 
 
Application designers may only exploit the IPv6 Flow Label where both communicating hosts are 
IPv6 capable. 
 
5.5 IPv6 Privacy Extensions 
 
When an IPv6 node uses IPv6 Stateless Address Autoconfiguration it will always generate the 
same 64-bit host part for its 128-bit address.    When a host moves between networks with 
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different prefixes, and it initiates connections from those networks, this raises a privacy (host 
tracking) issue. 
 
IPv6 Privacy Extensions [RFC3041] addresses this issue by effectively using a random 64-bit 
host part for statelessly autoconfiguring hosts.  This standard also allows a static host to 
regenerate a new privacy address regularly, e.g. every 24 hours.   The host may still keep a 
regular global IPv6 address through which it can be contacted.   This reduces privacy concerns, 
but means that existing IP-based authentication and usage assumptions may no longer hold. 
 
Application designers should consider that IPv6 hosts may connect to services while using 
Privacy Extensions.  
 
 
5.6 IPv6 Multicast 
 
IPv6 includes Multicast for basic features such as Neighbour Discovery.    IPv6 link scope 
multicast replaces the function of broadcast on an IPv4 subnet. 
 
The models for Any Source (ASM) or Source Specific (SSM) Multicast are generally similar 
between IPv4 and IPv6.    It is likely that SSM will become more widely deployed in IPv6 due to 
its simpler architecture.   However, this puts extra requirements on the application in comparison 
to PIM-SM (based on the ASM model).     The MSDP method for handling inter-domain ASM is 
not being used in IPv6; instead a method based on embedding the Rendezvous Point address is 
under study. 
 
Application developers should thus consider SSM operation where appropriate. 
 
5.7 Path MTU Discovery 
 
IPv6 requires Path Maximum Transmission Unit (PMTU) Discovery [RFC1981] to be 
implemented.   Fragmentation is designed to occur at endpoints of communication, and not at 
routers on the path. 
 
Section 5 of [RFC2460] requires that every network link support an MTU of at least 1280 octets. 
 
Application developers may wish to consider performance issues of data unit sizing to align with 
the IPv6 PMTU. 
 
5.8 Extensible IPv6 Header Format 
 
The extensible nature of the IPv6 Next Header construct allows new IPv6 Headers to be defined 
and used by applications (subject to access through the API). 
 
5.9 Differentiated Services Code Point (DSCP) 
 
The semantics and use of the Differentiated Services Code Point (DSCP) for DiffServ-based 
Quality of Service is expected to be the same between IPv4 and IPv6, as described in 
[RFC2474]. 
 
5.10 IPsec 
 
The support of Authentication (AH) and Encapsulating Security Payload (ESP) Headers is 
required in a "full implementation" of IPv6 as defined in [RFC2460], although their use is optional. 
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Section 4 of the IP Security Architecture [RFC2401] suggests that all IPv6 implementations will 
support IPsec, however in the early stages of IPv6 deployment such implementations are still in 
the minority. 
 
Designers should assume that IPsec functionality will be the same between IPv4 and IPv6, but 
that IPv6 will benefit from wider implementation of IPsec in operating system products and that 
the removal of the need for NAT will enable end-to-end use of IPsec in tunnel or transport mode. 
Note that IPsec using only ESP can traverse a NAT, while the AH functionality is impaired by 
NATs.  IKE should not be affected. 
 
5.11 IP Mobility 
 
Mobile IPv6 improves on Mobile IPv4 through various features including Route Optimisation.  
 
Application designers should not need to explicitly consider Mobility, which may be handled by 
the underlying IPv6 network (if the node supports Mobile IPv6 functionality). 
 

6. IP-independent specifications:  recommendations 
 
There are general recommendations that those producing GGF specifications can follow.   
Consideration should also be given where appropriate to practical implementation issues. 
 
6.1 Specification 
 
Within specifications: 
 

1. If an IP address must be included in a protocol element or in stored state required by a 
specification, an address type code must be included, as well as adequate space for 
either an IPv4 or an IPv6 address. The addrinfo structure may be appropriate. 

 
2. Literal IPv6 addresses should use the format of RFC2732 where address:port pairs are 

expressed.  Anywhere in a specification that the URI or URL format occurs, if the 
normative references do not include RFC2732 then there is in fact an IPv4 dependency, 
because RFC2396 (Uniform Resource Identifiers: Generic Syntax) only defines IPv4 
literals. 

 
3. Fully Qualified Domain Names (FQDNs) should be used in preference to IP addresses 

where practical to do so. 
 

4. IPv6 addresses may potentially be shorter or longer than IPv4 addresses when 
represented as a text string.  An IPv6 address may between two and 39 characters, as 
opposed to seven to 15 characters for an IPv4 address. 

 
5. Special addresses, such as loopback/localhost (127.0.0.1 in IPv4, ::1 in IPv6), are 

represented differently in each protocol; use of localhost by name abstracts this 
difference. 

 
6. The agreed IPv6 Documentation prefix should be used in specification documents. 

 
7. New implications of IPv6, as outlined in Section 5, should be considered. 

 
 
6.2 Implementation 
 
When implementing IP-independent applications: 
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1. Code should be developed to be IP-independent, not IPv4-only or IPv6-only. 

 
2. IP-independent API’s and data structures should be used, e.g. in C/C++ the 

getnameinfo() function and addrinfo for storage. 
 

3. Code should be modular such that future changes to the networking mechanics should 
be minimal. 

 
4. Care should be given to how IPv4 or IPv6 protocols are preferred and selected when 

both protocols are available. 
 

5. Applications may need to iterate (or parallelise) connection attempts using multiple 
different source or address combination pairs due to multi-addressing (with multiple IPv6 
addresses, or IPv4 and IPv6 addresses in dual stack nodes). 

 
6. Graphical user interfaces must take into account the different textual lengths and 

separators of IPv4 and IPv6 addresses.  When IP addresses need to be displayed or 
entered in user interfaces, both IPv4 and IPv6 formats must be supported. This may have 
significant impact on the layout of such graphical user interfaces. 

 
7. New implications of IPv6, as outlined in Section 5, should be considered. 

 

7. Security Considerations 
 
This document is informational, providing guidance for IP-independence in GGF specifications.  It 
does not in itself have any security implications. 
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