
REPORTING GRID SERVICES (REGS) SPECIFICATION

draft-ggf-ogsa-regs-0.3.1

Yariv Aridor, Dean Lorenz, Benny Rochwerger
IBM Haifa Research Lab.

Bill Horn
IBM T. J. Watson Research Center

Hany Salem
IBM Software Group

Abstract

The Reporting Grid Services (ReGS) system is designed to be a set of core OGSA services for
logging, tracing and monitoring applications in a distributed, heterogeneous computing environment. It
provides OGSA style logging interfaces for use by other grid services and applications. It is also capable
of virtualizing existing logging systems including zOS logging, NT events and syslog.

Keywords

The key words ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”, ”SHOULD”,
”SHOULD NOT”, ”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in this document are to be interpreted
as described in RFC 2119.



CONTENTS CONTENTS

Contents

1 Introduction 3
1.1 An Architecture for Distributed Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Document Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Filtering Grid Service 11
2.1 Information Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 NotificationSink portType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 RegsReport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 NotificationSource portType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 NotificationSource Notification Message . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 NotificationSource Subscription Expression . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 NotificationSource Subscription Expression Types . . . . . . . . . . . . . . . . . . 15

2.4 Factory portType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Factory Service Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Factory Creation Input Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Registration portType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Basket Sharing (TBD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Non-native Baskets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 Interaction with Producers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8.1 Producer Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8.2 Changing a Producer’s Reporting Granularity . . . . . . . . . . . . . . . . . . . . . 19

3 Basket Grid Service 20
3.1 Basket as a Multi-Consumer Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Lifetime of the Basket Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 ServiceData Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 BasketServiceReports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 queryBySimpleFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.3 BasketProfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.4 BasketCurrentState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.5 subscribeByReports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 subscribeByBasketStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Basket PortType: Operations and Messages . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 Basket::performActionsOnReports . . . . . . . . . . . . . . . . . . . . 25

4 Acknowledgments 26

A Schemas 29
A.1 regs:report Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
A.2 regs:filter Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.3 regs:basketFactory Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.4 regs:BasketServiceReports Schema . . . . . . . . . . . . . . . . . . . . . . . . . 35

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 1 of 44



CONTENTS CONTENTS

A.5 regs:BasketProfile Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.6 regs:BasketCurrentState Schema . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.7 regs:BasketActions Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.8 regs:ReportSet Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.9 regs:SubscribeByReports Schema . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.10 regs:SubscribeByBasketStatus Schema . . . . . . . . . . . . . . . . . . . . . . 41
A.11 regs:RepositoryFullMessage Schema . . . . . . . . . . . . . . . . . . . . . . . . 42
A.12 regs:ReportDiscardedMessage Schema . . . . . . . . . . . . . . . . . . . . . . . 43

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 2 of 44



1 INTRODUCTION

1 Introduction

The Open Grid Services Architecture (OGSA) [7, 6, 24] is an attempt to bring together the worlds of Web
services [9] and grid computing [5]. The Web services architecture for distributed computing is based on
using platform independent, widely adopted open standards such as XML[26] and SOAP[27]. This architec-
ture addresses some of the basic issues of heterogenous distributed computing, including standard interface
definition mechanism, multiple protocol bindings, and local/remote transparency. Grid computing encom-
passes the set of protocols and tools needed for large scale resource sharing in dynamic, multi-institutional
virtual organizations 1 [8]. The grid protocols provide good technical solutions for key problems in dis-
tributed computing (e.g., authentication, delegation, resource discovery, reliable invocation, etc.); however,
the grid tools currently available (in the Globus Toolkit [3, 4]) are not easy to incorporate into other systems
and there is little reuse of components across projects.

OGSA is a service-oriented approach to virtualize and share resources. It starts with the Web services
architecture and adds to the model concepts taken from grid computing such as lifecycle managements,
discovery and the grid security model. A grid service is basically a Web service that supports a minimal set
of required interfaces and well-defined behaviors.

The Reporting Grid Services (ReGS) system is designed to be a set of core OGSA services for logging,
tracing, and monitoring applications in OGSA-based grid environments. It provides OGSA style logging
interfaces for use by other grid services and applications. It is also capable of virtualizing existing logging
systems, including syslog [14, 16], NT events [15], and zOS logging [13].

1.1 An Architecture for Distributed Reporting

The Grid Monitoring Architecture (GMA) specification [22] identifies the three basic components of a dis-
tributed monitoring system: producers, consumers, and a directory where consumers can find information
about producers. In addition, the GMA proposes the use of intermediaries or compound components, which
function both as producers and consumers, for building advanced services. Popular logging packages such
as Apache’s log4j [10] and the proposed Java Logging APIs (JSR-047) [12] clearly identified the need
for a sophisticated filtering mechanism and for a variety of storage methods. The Reporting Grid Services
(ReGS) architecture brings ideas from these packages into a GMA-inspired architecture by defining the
interfaces and behavior of two types of intermediaries: a filtering component and a storage and delivery
component.

In a typical reporting 2 scenario, an application (the message producer) generates data that may or may
not be used at a later time by another application (the message consumer). In most cases, the amount of data
generated is very large, while the amount of data actually consumed could be relatively small. Therefore, it
is desirable to have a mechanism to control the amount of data generated and to filter out data that is actually
kept (the filtering service). Finally, different types of data may have different durability and consumption
characteristics. For example, while some data becomes irrelevant very fast, but is needed as soon as it
is generated (e.g., real-time monitoring data), some other data may be needed even months after it was
generated (e.g., auditing data). Hence, there is a need for a mechanism to create different repositories of
data (baskets), each with its own behavioral characteristics (the storage and delivery service, or basket
service). The components that make up this scenario, as well as the basic interactions between them, are
shown in Figure 1. In the ReGS architecture, standard OGSA-like interfaces are defined for each component;

1Virtual Organizations, or VOs, are defined as a set of resources, possibly spanning across locations and administrative domains,
and cooperating in a common computational task.

2In this document we used the term “reporting” to encompass logging, tracing, and monitoring; although the characteristics of
the data generated may differ, the basic infrastructure is the same.

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 3 of 44



1 INTRODUCTION 1.1 An Architecture for Distributed Reporting

Storage & Delivery (Basket) Service

Filtering Service

Message Producer Message Consumer

Create
Basket

Write
Message

Write
Message

Get
Messages

Publish
Messages

Subscribe to
Basket Events

Subscribe to
Message Events

Find Producers
or Baskets

Change
Granularity

Figure 1: Components of a reporting system and their basic interactions

when appropriate, ReGS maps the different interactions present in the model to the existing operations and
portTypes (see Figure 2).

The idea that the functionality of data baskets can be easily tailored to the meet the needs of consumers
is fundamental to the ReGS architecture. What goes into a basket is determined by a filtering rule; how
and when messages are delivered is determined by a notification policy; and how long messages stay in the
basket is determined by a deletion policy (see Figure 3).

Synchronous message consumption is supported by the standard mechanism for querying service data
from a grid service (the GridService::findServiceData operation in the GridService portType). Asyn-
chronous message consumption is supported by the standard mechanism for notification delivery (the
deliverNotification operation in the NotificationSink portType). Based on these consump-
tion models and the basket policies, all three interaction models defined by the GMA are easily supported:

Publish/subscribe The “subscription creation” procedure is achieved in our model by creating a new bas-
ket. To achieve the publish/subscribe interaction, the notification policy is set to deliver every message
upon arrival to the consumer.

Query/response This is the typical ReGS “polling” interaction, where consumers retrieve from the basket
all the messages that fit a particular query. The matching messages are packed together and sent to
the consumer in a single response.

Notification The notification policy of the basket is set so when “enough” messages have arrived, they are
packed and delivered to the consumer in a single notification.

Although most baskets are created and controlled by consumers, any system should provide at least
some basic reporting capabilities. For this purpose, two basic baskets are defined:

1. The Recycle Basket is the default repository for all messages generated. It serves as a place holder
for all recent messages, allowing consumers to access data that was generated before any customized

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 4 of 44



1 INTRODUCTION 1.1 An Architecture for Distributed Reporting

Storage & Delivery (Basket) Service

Filtering Service

Message Producer Message Consumer

createService

deliverNotification

deliverNotification

NotificationSink

NotificationSink

Factory

findServiceData

GridService

GridService

NotificationSink

NotificationSource

NotificationSource

findServiceData

deliverNotification

subscribe

subscribe

Change
Granularity

Figure 2: OGSA-based reporting: Most interactions between components can be mapped into the operations
defined by the standard OGSI portTypes. New portTypes and operations are limited to those interactions
that do not naturally map into the standard (grayed out in this figure).

basket was created. By properly setting the deletion and notification policies on this basket, the
logrotate [17] functionality 3 can be easily replicated.

2. The System Basket wraps platform specific logging systems and functions as a basket for system-
related events. This serves two purposes: first, it provides a “standard” mechanism to expose event
data generated by legacy producers; second, new producers that follow the ReGS interfaces can put
data in the platform-specific repository for system events (see Figure 4).

In a heterogeneous distributed environment there are many different deployment possibilities for the
different components described above. In the simplest case, all components are co-located in the same
machine, while in the most general case, each component is located on a different machine. By defining
the interactions between components in terms of grid services, these cases, and all the ones in between,
can be easily supported and leave the details of how data is transfered to the binding stage at the Web
services layer. The ReGS architecture is flexible enough to allow all possible combinations; however, the
scenario that we think will be the most common is where each hosting environment, or container, will house
a filtering service that will receive data from local applications and distribute it both to local and possible
remote baskets. Consumers (most likely remote) will use the filtering service to create custom baskets that
capture the data that is of interest to them (see Figure 5). The consumer that creates the basket will decide
the basket’s location; in addition to creating baskets, consumers can register existing basket with remote
filtering services.

The ReGS architecture differs from existing distributed logging mechanisms in that it focuses on the
definition of the interfaces between the different components. Each of these systems can be easily mapped
into the ReGS model by having their components (or at least some of them) wrapped with the ReGS OGSA-
based interfaces. For example, in a system using distributed syslog, at each node the local syslog
daemon can be wrapped with the filtering service interfaces. This will give OGSA-based consumers the

3Automatic rotation, compression, removal, and mailing of log files. Each log file may be handled daily, weekly, monthly, or
when it grows too large.

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 5 of 44



1 INTRODUCTION 1.1 An Architecture for Distributed Reporting

custom : Basket Service

: Filter Service: Consumer : Producer

deliverNotification()*["msg of ’topic’ and matches ’constraints’" ] 6:

destroy() 9:

findServiceData()*[interesting data] 8:

create( topic, constraints, profile ) 2:
createService( filter, profile ) 1:

subscribe( topic, constraints ) 3:

registerService() 4:

deliverNotification( message )*[ ] 5:

deliverNotification()*[x new messages] 7:

Figure 3: The lifecycle of a custom basket: A consumer requests the creation of a custom basket from the
filtering service by specifying the characteristics of the basket (1). In response, the filtering service creates
a new instance of the basket service (2,3,4). When messages arrive at the filtering service from producers,
they are compared with the filtering rule of the basket. If there is a match, the message is delivered to the
basket service (5,6). The basket service can send digests of messages back to the consumer (7), or wait
for the consumer to retrieve the desired messages (8). When the consumer no longer needs the basket, it
disposes of it (9).

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 6 of 44



1 INTRODUCTION 1.2 Definitions

System Basket

OGSA
Producer

Legacy
Producer

Filtering
Service

OGSA
Consumer

Legacy
Consumer

NT
Events

Basket
Service

Figure 4: The System Basket virtualizes the platform-specific logging mechanism (e.g., NT Events): using
the system basket OGSA-enabled consumers can get data generated by legacy consumers, and OGSA enable
producers can write data into the platform-specific repository of logging information.

ability to control what gets sent to the syslog message collector. The collector itself can be wrapped
with the basket service interfaces, so the OGSA-based consumer can query the data and/or get notifications
(see Figure 6). Note, in this example, the flow of data from the original source to the message collector is
not “OGSified”. The ReGS model can coexist with other systems by wrapping only the parts that need to
be exposed. Similarly, popular grid monitoring systems such as JAMM [23], MDS-2 [2], NWS [29], and
NetLogger [11] can be fully or partially mapped to the ReGS model.

1.2 Definitions

1.2.1 Acronyms

The following is a list of the acronyms used in this document:

GMA Grid Monitoring Architecture

OGSA Open Grid Services Architecture

OGSI Open Grid Services Infrastructure

WSDL Web Services Description Language

SDE Service Data Element

1.2.2 Terms

The following is a list of the acronyms used in this document, along with their definitions:

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 7 of 44



1 INTRODUCTION 1.2 Definitions

� � �
� � �
� � �

Remote
Basket

Visualization

� �
Auditing

� �� �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

Filtering Service

Application 1 Application 2 ... Applicationn

Monitoring
Problem

Determination

Recycle
Basket

System
Basket

Custom
Basket 1

Custom
Basket 2

Figure 5: Putting it all together: Applications running within a single container deliver their data to the
local filtering service, which distributes it to the relevant local and remote baskets (co-located processes
are enclosed by the shaded boxes). In this example, producers running on the same host produce data that
is filtered by the local filtering service; each consumer runs on a different machine and one of them (the
Visualization consumer) has a basket co-located with the consumer application. The arrows point from
service requestors to providers; consumers might pull data (e.g., the Auditing consumer), wait for data to be
pushed to them (e.g., the Monitoring consumer), or do both (e.g., the Problem Determination consumer).

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � �
� � � � �
� � � � �

� � � � � � � � �
� � � � � � � � �

Remote syslog daemon (message collector)

Local syslog daemon

Message Producer Message Consumer

createService

SYSLOG Protocol

syslog()

Factory

findServiceData

GridService

GridService

NotificationSink

NotificationSource

findServiceData

deliverNotification

subscribe

Figure 6: Wrapping syslog: The syslog daemon on each node is wrapped with the filtering service
interfaces so OGSA-based consumers have control over what is delivered to the syslog message collector.
The message collector is wrapped with the basket service interfaces, so the OGSA-based consumers can
query the data and/or get notifications. In this example, the flow of data from the original source to the
message collector is not OGSified

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 8 of 44



1 INTRODUCTION 1.3 Document Organization

portType defines an interface as a set of related operations

serviceType list of portTypes; enables aggregation

serviceImplementation representation of the actual code

service instanceOf extension. Maps description to instance

1.2.3 Namespaces

The following Namespaces are used throughout this document:
Prefix Namespace
regs:regs regs:http://hrl.ibm.com/ogsa/schema/regs
regs:gsdl regs:http://www.gridforum.org/namespaces/2002/07/gridServices
regs:xsd regs:http://www.w3.org/2001/XMLSchema
regs:xsi regs:http://www.w3.org/2001/XMLSchema-instance

1.3 Document Organization

The rest of this document is organized as follows: Section 2 presents details for the filtering service, and
Section 3 presents details for the Basket Service. The definitions of the different service data elements [24]
are given by the XML schemas for the corresponding extensibility elements section. To simplify reading,
the schemas are represented with diagrams following the notation used by the TurboXML schema editor
(see Table 1 for an overview of the notation). The complete schemas are included in Appendix A at the end
of the document. Throughout the document, we use the regs: prefix to indicate XML type and elements
taken from the regs:http://hrl.ibm.com/ogsa/schema/regs namespace, which is the target
namespace for all our schemas.

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 9 of 44



1 INTRODUCTION 1.3 Document Organization

xsd:element

minOccurs="0"

maxOccurs="unbounded"

minOccurs="1" maxOccurs="5"

xsd:sequence

xsd:choice

xsd:all

xsd:attribute

Table 1: TurboXML graphical representation of XML schemas

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 10 of 44



2 FILTERING GRID SERVICE

2 Filtering Grid Service

The main function of the filtering grid service is to filter and distribute report messages. The filtering service
receives messages from report message producers, examines the message content, and “puts” the message
in the appropriate baskets.

The filtering service acts as a single access point by which consumers can discover which producers exist
and which types of messages are produced and are available for consumption. It also allows consumers to
discover existing baskets and to create new baskets when needed.

The filtering grid service does not implement any new portTypes. It implements the GridService, Noti-
ficationSink, NotificationSource, Factory, and Registration portTypes.

2.1 Information Flow

Producers send report messages to the filtering service. The filtering service acts as a notification interme-
diary [24] and republishes the messages. Each basket is subscribed to the filtering service using a filter rule.
Only messages that match the basket’s rule are forwarded to the basket.

Consumers use the filtering service to discover which producers publish report messages and what is
the format of those messages. They use this information to define new (potentially producer-specific) filter
rules.

The filtering service acts as a basket factory that can be used by consumers to create new baskets with
specific filter rules and specific profiles (see Section 3).

The filtering service is a registry for baskets. Consumers can find out information about existing baskets,
and may choose either to use an existing basket or create a new one.

2.2 NotificationSink portType

Producers send report messages to the filtering service. The filtering service MUST be a NotificationSink
and is able to receive report messages through the NotificationSink::deliverNotification operation. Each
message includes a single report record, which MUST be sent as a serviceData element named RegsReport.
The RegsReport SDE is described in the following section.

2.2.1 RegsReport

<gsdl:serviceDataDescription name="RegsReport"
type="regs:report"
minOccurs="1" maxOccurs="Exactly one"

xmlns:regs="http://hrl.ibm.com/ogsa/schema/regs/"
xmlns:gsdl="http://schemas.gridforum.org/gridServices/">
<wsdl:documentation>

An XML regs:report element that contains the report data.

</wsdl:documentation>
</gsdl:serviceDataDescription>

The schema is shown in Figure 7
Producers may include any data in a report message, however, the message must be an XML document

that is a valid instance of the regs:report type (see Appendix A.1 for the complete schema).
Each report is divided into sections. Each section has a set of properties and a body. The attributes of

the section provide meta information for the section as follows.

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 11 of 44



2 FILTERING GRID SERVICE 2.2 NotificationSink portType

Figure 7: Schema for SDE RegsReport

author section creator; it MAY be a GSH.

name unique identifier; each section must be uniquely identifiable via author and name.

creationTime time at which the section created.

Issue 1 Should we have std. lifetime attributes as well? That is, some producers may want to include lifetime
declaration properties for each report they create. Should we add these properties as optional attributes to
each section (as recommended in the GS specification section 4.4.4)? If we do, should we define the meaning
of each attribute in our context (e.g., what does good until mean for a report)?

The properties in each report section provide formatted fields by which a message may be filtered.
Each property is a simple-content XML element with a name, type, and value as defined by the regs:-
propertyType. The name and type attributes of the property element describe its value (the XML
contents). The author of the section may choose any name for the property and MUST provide a type that
matches the property value. The type is a string that should be a name of any simple type, as defined by
XML schema specification [28].

The body of the section may include any well-formed XML data. The filtering service MAY treat this as
opaque data, but it is RECOMMENDED that filtering services support application-specific filtering based
on body content.

There is a special producerSection that MUST appear in every message. This section is similar to any
other section, but includes predefined properties, which MUST be set by the producer. All the predefined
properties of this header section have a name with a prefix “REGS ”. This prefix may not appear as the name
of a property in any other section. The author property of the producerSection must be set to a QName for
the producer. There are three properties that MUST be supported:

level a positive integer that defines the severity level of the message. The constants ALL, DEBUG, INFO,
WARN, ERROR, and FATAL may be used to indicate severity levels of 0, 10, 20, 30, 40, and 50,
respectively.

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 12 of 44



2 FILTERING GRID SERVICE 2.3 NotificationSource portType

category this indicates a producer-specific, directory-like named hierarchy for the message (e.g., PACK-
AGE/MODULE/SUBMODULE). The category attribute is similar to a log4j or a JSR47 logger name,
and allows the selection of messages on their location in the hierarchy.

timeStamp this is an optional property that provides a global timeStamp for the message.

The XML elements for these properties are explicitly named level, category, and timeStamp.
However, to simplify message selection, their element type is the same as any other property, namely
regs:propertyType. The name attribute of these properties are the same as their element name with
an additional “REGS ” prefix (i.e., REGS level, REGS category REGS timeStamp).

Issue 2 The new spec implies that NotificationSinks can only receive messages from NotificationSources to
which they are subscribed. Here we have an argument for allowing message reception via NotificationSinks
without subscription. Do we need any modifications to the current spec of NotificationSink portType (add
msg type, sender, etc.)? The alternative is to define our own mechanism (a new portType).

Issue 3 According to the new spec, a single SDE may contain multiple XML elements as values. This means
that the same SDE may be used to send a single report or multiple reports. The basket service stores all
reports in a single SDE, and sends query answers of multiple reports. Should we use just one SDE type for
all (producer reports, basket storage, basket answers)? Should we allow producers to send more than one
report in a message?

2.3 NotificationSource portType

The filtering service acts as a notification intermediary and MUST implement the NotificationSource port-
Type.

The filtering service is an intermediary for all the reports created by the producers. Subscribers may
subscribe to receive notifications on the RegsReport SDE which, at any given moment, stores the most
recent report received by the filtering service. The NotificationSource portType provides a mechanism to
select reports based on their content. The baskets are subscribed to receive notification on all reports that
match their filter rule.

2.3.1 NotificationSource Notification Message

The outgoing XML messages have the same format as the incoming reports. That is, they are a RegsReport
serviceData elements as described above (Section 2.2).

Although the format of the messages is the same, the message content is not. The filtering service
SHOULD add at least one section to the report, which would include properties that are added to every
message. It should identify itself in the author attribute and indicate when the report was processed in
the creationTime attribute. It is RECOMMENDED that the filtering service add ID and ReportSize
attributes.

The filtering is performed on the outgoing message content. That is, subscribers can select messages
based on properties (or any other content) that are added by the filtering service.

Issue 4 Where and how does the filtering service describe the properties it adds?

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 13 of 44



2 FILTERING GRID SERVICE 2.3 NotificationSource portType

Figure 8: XML type regs::filterType is used to define the SubscriptionExpression for the Notifica-
tionSource portType

2.3.2 NotificationSource Subscription Expression

The subscription expression allows content-based report message selection. It defines a filter rule for the
subscriber. All reports that match the specified rule are immediately forwarded to the subscriber.

The filtering service MUST support filtering based on the property fields of the report message. It is
RECOMMENDED that it also support filtering based on application-specific fields that are included in the
body of the report message.

There are two SubscriptionExpressionTypes that MUST be supported by the filtering service. Both are
described using an XML element with type regs:filterType (Figure 8).4 The regs:filterType
(see Appendix A.2 for the full schema) includes either a regs:simpleFilter element or a regs:-
xpathFilter element, and may be extended to support more filters.

regs:simpleFilter this filter supports the selection of messages based on their producer, level, and category.
It MUST be supported by the filtering service. This filter is focused on the producer section and
examines the author attribute, and the level and category properties.

Producer selection is specified using the producersXML element, which contains a list of producer
QNames.

Levels can be selected either by giving a list of levels using the levels element, or by a min–max
range using the minLevel and maxLevel elements.

The category field is treated as a directory hierarchy with the producer’s QName added as the parent
of the branch. For example a report from a producer named “P” with a category A/B will match
the branch P/A/B. This allows for the hierarchical selection of messages from several producers.
Subscribers may select any (sub-)branches of the hierarchy using a restricted XPath-like expression.

4The same filter XML syntax is used to perform queries on the basket service (see Section 3.3.2).

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 14 of 44



2 FILTERING GRID SERVICE 2.3 NotificationSource portType

This works similar to the selector field of the XML schema unique element [28]. The category
element may contain a list of one or more category selectors separated by a vertical bar (“|”). The
category selector can be specified using an asterisk (“*”) to mean any name and “//” to indicate any
descendant.

For example *// matches all categories from every producer; this has the same effect as not including
the category element in the expression. The category P//REPORT/*/LOG matches P/REPORT/C/-
LOG, P/A/REPORT/B/LOG, and P/A/B/REPORT/C/LOG, but does not match OTHER-P/REPORT/A/LOG,
P/REPORT/A/B/LOG, P/REPORT/A/LOG/B, and P/A/B/REPORT/C/LOGGER.

regs:xpathFilter this filter is an extension of the regs:simpleFilter and MUST be supported by the
filtering service. It allows for selection using an XPath expression on the entire report. The XPath
is used as a predicate (qualifier); namely, the message is filtered out if the expression evaluates to
FALSE or is empty. The root of the XPath expression is the regs:report element. The filtering
service MAY limit the XPath expression only to properties and SHOULD have higher performance
for such queries. It is RECOMMENDED to also allow more general XPath expressions that examine
the body elements.

The expression may include all the XML elements of the regs:simpleFilter plus an xpath
element.

Issue 5 An alternative to filtering by using SubscriptionExpression is to create a new SDE for each filter
rule and to subscribe to all updates of this SDE. For example, when a basket is created, the filtering service
can create an SDE that contains the most recent report that matches the basket’s filter rule. The basket
can then be subscribed to using the default subscribeByServiceDataName SubscriptionExpression-
Type.5 The advantage of this approach is that it makes it easy for new subscribers to discover and use
existing filtering rules. The advantage of using a SubscriptionExpression is that it specifies the filter rule in
the “natural” place, per subscription. Also, it provides the mechanisms by which subscribers can discover
how a filter rule should be specified and the semantics for defining it during the subscription. In this case,
the SubscriptionExpression is made available through the subscription instance serviceData.

Issue 6 Should we RECOMMEND a mapping of these selection rules onto existing messaging intermedi-
aries (e.g., JMS)? For instance, we could recommend that the producer+category field become the topic of
the message.

2.3.3 NotificationSource Subscription Expression Types

The filtering service MUST include the following initial serviceData Value elements:
<gsdl:serviceData

name="gsdl:SubscriptionExpressionTypes">
<xsd:anyURI>

http://hrl.ibm.com/ogsa/schema/regs/queryBySimpleFilter
http://hrl.ibm.com/ogsa/schema/regs/queryByXpathFilter

</xsd:anyURI>
</gsdl:serviceData>

These correspond to the regs:simpleFilter and regs:xpathFilter elements described above.

Issue 7 These SubscriptionExpressionTypes are only allowed for the RegsReport SDE. The new spec does
not provide an easy way to define this restriction.

5This is equivalent to creating a topic for each basket and using the old NotificationSourceTopic portType.

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 15 of 44



2 FILTERING GRID SERVICE 2.4 Factory portType

Figure 9: XML type regs:serviceParameters is used to define the ServiceParameters of the Factory
portType

2.4 Factory portType

The filtering service acts as a basket factory. Baskets are created by invoking the Factory::createService
operation at the Factory portType. As described in Section 3, at creation each basket is associated with
a filter rule and a basket profile. Consumers provide this association through the serviceParameters
input argument of the createService operation. The created basket is automatically subscribed to the filtering
service using the NotificationSource portType (see Section 2.3), and its profile is set.

2.4.1 Factory Service Parameters

As described above, the ServiceParameters argument of of the Factory::createService operation defines the
filtering rule and profile of the created basket. The ServiceParameters is an XML document with type
regs:serviceParameters as shown in Figure 8 (see Appendix A.3 for the full schema).

The regs:serviceParameters XML element includes a regs:messageFilter element with
a regs:filterType type, and a regs:basketProfile element with a regs:basketProfile
type. The created basket is automatically subscribed to the filtering service via the NotificationSource
portType (see Section 2.3) with the regs:messageFilter used as SubscriptionExpression. The format
of the filter rule is as described above (Section 2.3.2). The basket is created with the specified profile (see
Section 3 for details) and is automatically registered (i.e., is available through the Registration portType, see
Section 2.5).

The regs:serviceParameters XML element MAY include an optional XSLTpath element,
which provides a URI for an XSLT [25] document to be applied on any report that passes the filter before it
is forwarded to the basket. This allows a consumer to store only relevant information in the basket, instead
of the entire original message. If the filtering service supports this option, it acts as a standard XSLT engine.
There is no restriction on what manipulation may be performed, except that the resulting document must be
a valid XML instance of the regs:report schema. This mechanism may also be used to add consumer-
specific data to the report (e.g., correlation data). The data SHOULD be added in a separate section
element with proper attribute values.

2.4.2 Factory Creation Input Types

The filtering service MUST include the following initial serviceData Value elements:
<gsdl:serviceData

name="gsdl:CreationInputTypes">
<xsd:qname>

http://hrl.ibm.com/ogsa/schema/regs/ServiceParameters
</xsd:qname>

</gsdl:serviceData>

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 16 of 44



2 FILTERING GRID SERVICE 2.5 Registration portType

Issue 8 What type of lifetime management do we have for baskets? Typical basket usage is longterm during
which the creator (consumer) may be disconnected. Does it make sense to require the consumer to periodi-
cally refresh the basket or else risk losing the log data when the basket service expires? This issue is general
and should be dealt within the GS spec.

TBD Describe the container baskets and their lifetime management.

Issue 9 Who creates the container basket?

2.5 Registration portType

The filtering service is also a registry for baskets and MUST implement the Registration portType as de-
fined in the grid service Specification. Each basket that is created by the filtering service is automatically
registered. The registry provides a handle to each basket and the regs:serviceParameters XML el-
ement used for its creation. As for any Registration grid service, it can be searched for baskets with specific
filtering rules or with other desired characteristics.

Issue 10 Do we need to define a WS-Inspection document format for the baskets? Is this the right format to
describe several instances of the same service? What is the minimal WS-Inspection document?

Issue 11 Are all baskets public? Can any consumer discover any basket? If not, should consumers specify
at creation time if a basket is public or private?

2.6 Basket Sharing (TBD)

Different consumers may request baskets with identical filter rules. It is desirable that the filtering service
does not create several identical baskets, but rather that consumers share a basket.

There are several levels of basket sharing:

1. A consumer uses an existing basket in a “passive” mode, with no control over the basket’s content,
and without the basket being aware of this consumer. The creator of the basket defines the filter rule
and the policy for the basket and is the only one allowed to perform actions such as deleting messages.
The passive user may only issue queries to retrieve reports from the basket.

2. A consumer may have no control over the content, but may be allowed to subscribe to basket notifica-
tions. This is the same as the previous mode, but the consumer may subscribe to receive notifications
from the basket. There may be a single notification policy, namely all subscribers of the basket get
exactly the same notifications, or independent subscriptions may be allowed.

3. A basket may share only the filtering rule, but give each consumer full management of the reports.
In this case, the basket service gives each consumer the appearance of a separate basket instance
(and may share data between those instances), while the filtering service forwards reports to a single
instance.

Depending on the implementation, some or none of these different sharing modes may be supported. If
they are supported, several types of interfaces could be used:

1. The consumer may explicitly search (via a findServiceData query) for an existing basket that matches
its requirements. It would then go directly to the basket instance.

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 17 of 44



2 FILTERING GRID SERVICE 2.7 Non-native Baskets

2. The consumer may simply try to create a new basket. The filtering service would identify that the new
basket has similar properties to existing baskets and would return a handle to an existing basket rather
than to a new one.

3. The consumer may provide an existing basket handle when invoking the createService operation. The
filtering service would reestablish the subscription to the existing basket and would create the basket
if it does not already exist.

The set of basket operations that are available to the consumer depends on the sharing mode and the
basket capabilities. These may be controlled by the basket instance itself or by the filtering service. In the
latter case, the consumer invokes operations on the filter service, which makes the necessary adjustments to
the basket.

Issue 12 Who should detect identical baskets? Do we REQUIRE that a filtering service be able to identify
when a createService operation should return a handle to an existing basket rather than a new one? Is this
an implementation issue?

Issue 13 Should the basket service include operations for basket sharing or should everything be done
through the filtering service?

2.7 Non-native Baskets

The filtering service can also interact with non-native (or foreign) baskets that were not created by the
service. This is useful when one basket listens to several filtering services (e.g., for collecting logs in a
cluster). It is also useful for implementing custom baskets, which have capabilities beyond those created by
the filtering service.

In order to receive messages from the filtering service, such baskets must be made known by the filtering
service, namely they must be subscribed to the service. This can be done by directly subscribing to the
filtering service via the NotificationSource::subscribe operation.

Such foreign baskets SHOULD be made available to other consumers by registering them at the fil-
tering service via the Registration::registerService operation. In this case, the baskets MUST also provide
the regs:serviceParameters XML element used for their creation. Custom baskets MUST extend
the regs:serviceParametersType and the regs:BassketProfileType types to expose their
unique capabilities.

Issue 14 Should this be done through the createService operation instead? A non-native basket may give
its handle as an argument to the filtering service. The filtering service would then perform all relevant
operations, such as registration and subscription.

Should we prohibit direct subscription to the filtering service by non-native baskets?

2.8 Interaction with Producers

The main interaction of the filtering service with the producers is reception of the report messages. The
filtering service does not require any information on the producer in order to be able to filter its messages.
However, the filtering service should be able to provide consumers with information on the available pro-
ducers and their messages. The filtering service may also affect the granularity of messages produced by
each producer.

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 18 of 44



2 FILTERING GRID SERVICE 2.8 Interaction with Producers

2.8.1 Producer Discovery

Each producer SHOULD provide metadata with additional information on its report messages. The infor-
mation SHOULD include an XML description of the messages produced.

Categories the structure of the category named hierarchy.

Properties the names and types of all producer-specific properties.

Body schema a schema for the producer-specific body element. This schema allows for selection, based
on the producer-specific body extensibility element.

QName a qualified name for the producer, which can be used for message selection.

ServiceLocator if the producer is a grid service, then it MUST provide a serviceLocator.

Issue 15 How should the producer information be made available to consumers? Should the filtering ser-
vice be a registry for producers? If so, how would it handle producers who are not grid services? Should
we define an SDE for producer metadata?

Issue 16 What is the mechanism by which the filtering service obtains the producer metadata? One option
is that every producer would have an SDE that includes this information and the filtering service would
query this SDE. However, that is applicable only to producers who themselves are grid services. Also, the
filtering service must be able to obtain a list of all available producers (e.g., through the container registry)
before it can query each producer for this information.

Another option is to explicitly register every producer and provide this data during the registration. We
can define a new operation to support this or we can use the optional XML fragment of the Registration:-
:registerService operation. In the latter case the producer must be a grid service. In both cases the producer
must know the filtering service to be able to invoke the operation; however, this is not an issue since it must
be aware of the service in order to send it report messages.

2.8.2 Changing a Producer’s Reporting Granularity

Producing fine-grained reporting messages may consume considerable producer resources. It is desirable to
be able to produce only messages for which there is a demand. Producers may allow the filtering service to
set their reporting granularity based on the existing baskets and their filtering rules. For example, if there is
no basket subscribed for DEBUG messages, the producer’s debug flag may be switched off.

In order to support this kind of optimization, the filtering service must be able to analyze and aggregate
all filtering rules. When new baskets with new filtering rules are created, the filtering service can determine
that a Producer::changeGranularity operation must be invoked on some producers.

Issue 17 How do you invoke this operation on non grid service producers? Do we REQUIRE every filtering
service to be able to do this?

An alternative: An administrator consumer may first directly increase the debug level of relevant pro-
ducers and only then create a new basket.

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 19 of 44



3 BASKET GRID SERVICE

3 Basket Grid Service

The basket grid service stores reports generated by producers. A basket consists of a filtering rule, a report
repository, and a basket profile

The filtering rule determines which reports are stored in the basket. Refer to Section 2.3.2 for the
filtering rules definition.

The basket stores all reports in the report repository. The report repository presents reports through
a service data element, called basketServiceReports (3.3.1). This allows consumers to use the standard
GridService::findServiceData operation in order to access reports.

The basket profile specifies different basket characteristics, such as the maximum size of the report
repository, policy for when the report repository becomes full, etc. (3.3.3).

The basket service implements the Basket and NotificationSource portTypes.
The basket service MUST support the queries defined in the filter service (see Section 2.3.2). The simple-

Filter query is described in Section 3.3.2. In addition, basket services MAY support additional queries.

3.1 Basket as a Multi-Consumer Service

The basket service MAY allow multiple consumers to access its services. The creator of the basket service
specifies the permissions for other consumers to use the basket.

Issue 18 What does it mean that the basket keeps user state:

• If one user deletes a report, is this report deleted for other users? (yes)

• If one user creates a subscription, can another user find this subscription and join it? Does it make
sense for a basket service?

• What is the other user state that the basic Basket service should address?

3.2 Lifetime of the Basket Instance

The basket grid service supports the standard soft state lifetime management described in the Grid Services
Specification Document [24].

3.3 ServiceData Elements

3.3.1 BasketServiceReports

<gsdl:serviceDataDescription name="BasketServiceReports"
type="regs:basketServiceReportsType"
minOccurs="1" maxOccurs="Exactly one"

xmlns:regs="http://hrl.ibm.com/ogsa/schema/regs/"
xmlns:gsdl="http://schemas.gridforum.org/gridServices/">
<wsdl:documentation>

An XML regs:regs:basketServiceReports element that
contains all reports in the basket.

</wsdl:documentation>
</gsdl:serviceDataDescription>

The schema is shown in Figure 10

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 20 of 44



3 BASKET GRID SERVICE 3.3 ServiceData Elements

Figure 10: Schema for SDE BasketServiceReports

The BasketServiceReports service data element contains all reports in the basket. Prior to storing an
incoming report in the repository, the Basket first adds its section element to the report (refer to 2.2.1 for the
report description). The basket section contains the following information:

name attribute set to “ReportMetaData”.

author attribute set to the grid service reference of the basket.

creationTime attribute set to the time when the report was delivered to the basket.

property element contains the size of the report. The name of the property is “reportSize”.

Issue 19 Need to specify the format for the size.

body element does not present.

The rationale for putting all reports in one service data element is to enable an easy, but powerful, query
to find interesting reports. Indeed, since all reports are organized in one XML element with a well-defined
structure, the entire power of XPath may be used to query reports. For example, using XPath, it is easy to
write a query to find all sequences of three WARN reports.

Refer to Appendix A.4 for the BasketServiceReports schema defining the report service data element.

3.3.2 queryBySimpleFilter

A queryBySimpleFilter results in all reports that match the filter. The simpleFilter QueryExpressionType
follows:

<gsdl:serviceData
name="gsdl:QueryExpressionTypes">

<xsd:anyURI>
http://hrl.ibm.com/ogsa/schema/regs/queryBySimpleFilter

</xsd:anyURI>
</gsdl:serviceData>

Issue 20 Do we need to define our XPath query when XPath is already defined in OGSA?

The QueryExpression schema for the simple filter is the same as the schema used for the simpleFilter
presented in Section 2.3.2.

The resulting format is an XML document that complies with the XML schema diagram shown in
Figure 11 (see Appendix A.8 for the complete XML schema).

The meaning of the attributes and elements in the result is as follows:

numberOfReports attribute specifies the number of reports in the result.

timeStamp attribute specifies the basket service timestamp when the result was created.

report element is a report matching the query.

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 21 of 44



3 BASKET GRID SERVICE 3.3 ServiceData Elements

Figure 11: Result format of the simpleFilter query

Figure 12: Schema for SDE BasketProfile

3.3.3 BasketProfile

<gsdl:serviceDataDescription name="BasketProfile"
type="regs:basketProfile"
minOccurs="1" maxOccurs="Exactly one"

xmlns:regs="http://hrl.ibm.com/ogsa/schema/regs/"
xmlns:gsdl="http://schemas.gridforum.org/gridServices/">
<wsdl:documentation>

An XML regs:basketProfile element that defines the
behavior of the basket.

</wsdl:documentation>
</gsdl:serviceDataDescription>

The schema is shown in Figure 12
The basket profile defines the behavior of the basket. All basket services MUST support the XML

schema shown above. A basket service MAY extend the profile in order to support a more sophisticated
configuration. The basic basket profile defines the following policies:

• Policy for basket size management.

• Security policy.

Refer to Appendix A.5 for the schema defining the basket profile.
The semantics for the BasketProfile are as follows:

sizePolicy element specifies the policy for basket size management.

maximumBasketSize attribute specifies the maximum basket size. The basket service MUST pro-
vide the default value for the maximumBasketSize.

overfillDeletePolicy attribute specifies which reports are deleted when the repository is full. This is
equal to one of the following strings:

DeleteOldest the oldest reports are deleted from the repository. The age of the reports is de-
termined based on the creationTime attribute of the “ReportMetaData” section (see
Section 3.3.1).

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 22 of 44



3 BASKET GRID SERVICE 3.3 ServiceData Elements

Figure 13: Schema for SDE BasketCurrentState

DeleteIncoming incoming reports are not stored in the repository.

reportDeletePolicy element specifies the policy for deleting reports in the repository.

expirationTime attribute specifies the expiration time for attributes stored in the repository.
reportDeleteImmediately element specifies whether reports are deleted after they are read by

a consumer. This element contains one of the following string contents:
DeleteAfterReadOnPush reports MAY be deleted after they are delivered to ANY con-

sumer through the notification mechanism.
DeleteAfterReadOnPoll reports MAY be deleted after ANY consumer requested the re-

ports through the GridService::findServiceData operation.

securityPolicy element specifies the security policy for the basket.

owner attribute specifies the owner of the basket.

Issue 21 Need to define the format for the owner. Currently it is just a string.

accessControlList attribute specifies the permissions of different consumers to query the reports and
perform operations on the basket.

Issue 22 Need to define the format for the accessControlList. Currently it is just a string.

3.3.4 BasketCurrentState

<gsdl:serviceDataDescription name="BasketCurrentState"
type="regs:basketCurrentState"
minOccurs="1" maxOccurs="Exactly one"

xmlns:regs="http://hrl.ibm.com/ogsa/schema/regs/"
xmlns:gsdl="http://schemas.gridforum.org/gridServices/">
<wsdl:documentation>

An XML regs:basketCurrentState element that reflects the
current state of the basket.

</wsdl:documentation>
</gsdl:serviceDataDescription>

The schema is shown in Figure 13
The BaskteCurrentState service data reflects the current state of the basket. The basketCurrentState

reveals the following information:

• The size used by the basket. It is defined by the SizeUsage complex type in the schema. Based on the
query results of the SizeUsage, a consumer may take steps to avoid the size overflow of the basket.

Refer to Appendix A.6 for the schema that defines the basket’s current state.
The meaning of the attributes in the basketCurrentState follows:

usedBasketSize represents the currently used basket size.

freeBasketSize represents the current free basket size.

numberOfReports represents the number of reports currently stored in the basket.

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 23 of 44



3 BASKET GRID SERVICE 3.4 subscribeByBasketStatus

Figure 14: subscribeByReports SubscriptionExpressionType. This allows subscription to a basket in order
to receive reports

3.3.5 subscribeByReports

A subscribeByReports results in notification messages being sent when one or more reports arrive at the
basket.

The basket service MUST include the following service data value element:
<gsdl:serviceData

name="gsdl:SubscriptionExpressionTypes">
<xsd:anyURI>

http://hrl.ibm.com/ogsa/schema/regs/subscribeByReports
</xsd:anyURI>

</gsdl:serviceData>
The diagram of the subscribeByReports SubscriptionExpressionType is shown in Figure 14 (see Ap-

pendix A.9 for the complete XML schema):
The meaning of the attributes in the subscribeByReports is as follows:

minInterval attribute has exactly the same meaning as in the subscribeByServiceDataName [24].

numberOfReportsToAggregate attribute specifies the minimum number of new reports aggregated prior
to delivering them to the subscriber.

XSLTpath attribute specifies the URI for a XSLT document. The basket service transforms notification
messages according to the specified XSLT document prior to delivering them to subscribers. The
schema diagram for a notification message before the transformation is shown in Figure 11.

3.4 subscribeByBasketStatus

A subscribeByBasketStatus results in notification messages being sent when the basket status changes.
The basket service MUST include the following service data value element:
<gsdl:serviceData

name="gsdl:SubscriptionExpressionTypes">
<xsd:anyURI>

http://hrl.ibm.com/ogsa/schema/regs/subscribeByBasketStatus
</xsd:anyURI>

</gsdl:serviceData>
The diagram of the subscribeByBasketStatus SubscriptionExpressionType is shown in Figure 15 (see

Appendix A.10 for the complete XML schema).
The meaning of the elements in the subscribeByReports is as follows:

fullIndicator element allows specification of the degree of repository fullness at which subscribers are
notified.

percentFull attribute specifies the degree of repository fullness in percentages. When the repository
reaches the specified degree, the basket sends a notification to subscribers. The delivered mes-
sage conforms to the schema diagram shown in Figure 16 (see Appendix A.11 for the complete
XML schema).

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 24 of 44



3 BASKET GRID SERVICE 3.5 Basket PortType: Operations and Messages

Figure 15: subscribeByBasketStatus SubscriptionExpressionType. This allows subscription to a basket in
order to receive its status changes

Figure 16: Schema for a message delivered when repository fullness reaches the specified degree

Issue 23 How does the subscriber know the source (service locator) from which it receives the
message? This is the OGSA question.

XSLTPath attribute specifies the transformation performed on the message before it is delivered
to subscribers. Note, the message, before transformation, conforms to the schema diagram
shown in Figure 16.

notifyIfReportDiscarded element allows notification of subscribers when the repository discards
incoming reports.

notify attribute: If set to true, subscribers are notified when the repository discards incoming
reports. The delivered message conforms to the schema diagram shown in Figure 17 (see
Appendix A.12 for the complete XML schema).

XSLTPath attribute specifies the transformation performed on the message before it is delivered
to subscribers. Note, the message, before transformation, conforms to the schema diagram
shown in Figure 17.

3.5 Basket PortType: Operations and Messages

3.5.1 Basket::performActionsOnReports

Performs actions on reports that match the query condition. First, the basket applies the query on the reports
service data element. Next, the basket applies actions, one after another, on the results of the query.

Input

query Query supported by the basket.

Figure 17: Schema for a message delivered when the repository discards incoming reports

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 25 of 44



4 ACKNOWLEDGMENTS

Figure 18: Schema diagram defining the basketActions

actions The list of actions that conform to the type basketActions. The schema diagram that defines the
basketActions is shown in Figure 18. Refer to Appendix A.7 for the entire schema.

The meaning of the elements in the basketActions is as follows:

delete this action deletes the results. For example, if the results of the query are reports, the selected
reports are deleted. If the results of the query are elements of the report, the elements are
removed from the report.

addTag this action adds “tags” to selected reports. If this action is specified, the result of the query
MUST be reports. The element(s) under the addTag element are added to all selected reports.

Output

Faults

• TBD

4 Acknowledgments

We would like to thank Oleg Frenkel for his contribution to this work; and to Dave Elko and Jim Warnes
from the IBM Server Group - their input has been essential to the consolidation of the ideas presented in this
document. Also special thanks to Chani Sacharen for her careful review of this document.

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 26 of 44



REFERENCES REFERENCES

References

[1] CORBA. Systems Management: Event Management Service, 1997. X/Open Document Number: P437,
http://www.opengroup.org/onlinepubs/008356299.

[2] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information services for distributed
resource sharing. In Proc. 10th IEEE International Symposium on High Performance Distributed
Computing (HPDC-10). IEEE Press, August 2001. http://www.globus.org/research/
papers/MDS-HPDC.pdf.

[3] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Intl. Journal of Super-
computer Applications, 11(2):111–128, 1997.

[4] I. Foster and C. Kesselman. The globus project: A status report. In Proc. IPPS/SPDP Heterogeneous
Computing Workshop, pages 4–18, 1998.

[5] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a Future Computing Infrastructure.
Morgan Kaufmann, 1999.

[6] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid services for distributed system integration.
Computer, 35(6), June 2002.

[7] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An open grid ser-
vices architecture for distributed systems integration. http://www.globus.org/research/
papers/ogsa.pdf, June 2002.

[8] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual organi-
zations. International Journal Supercomputer Applications, 15(3), 2001. http://www.globus.
org/research/papers/anatomy.pdf.

[9] S. Graham, S. Simeonov, T. Boubez, D. Davis, G. Daniels, Y. Nakamura, and R. Neyama. Building Web
Services with Java: Making Sense of XML, SOAP, WSDL, and UDDI. SAMS, 1st edition, December
2002.

[10] C. Gülcü. Short introduction to log4j. http://jakarta.apache.org/log4j/docs/
manual.html, March 2002.

[11] D. Gunter, B. Tierney, K. Jackson, J. Lee, and M. Stoufer. Dynamic monitoring of high-performance
distributed applications. In Proceedings of the Eleventh IEEE International Symposium on High-
Performance Distributed Computing (HPDC), pages 163–170, July 2002.

[12] G. Hamilton. Java Logging APIs - Draft 0.55. Sun Microsystems, October 2000. http://jcp.
org/aboutJava/communityprocess/review/jsr047.

[13] IBM. MVS Programming: Assembler Services Guide, 3 edition, March 2002. http://publibfi.
boulder.ibm.com/epubs/pdf/iea2a620.pdf.

[14] C. Lonvick. The BSD syslog protocol. RFC 3164, IETF, August 2001. http://www.ietf.org/
rfc/rfc3164.txt.

[15] Microsoft. Platform SDK: Debugging and Error Handling. http://msdn.microsoft.com/
library/en-us/debug/eventlog_2tbb.asp.

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 27 of 44



REFERENCES REFERENCES

[16] D. New and M. Rose. Reliable delivery for syslog. RFC 3195, IETF, November 2001. http:
//www.ietf.org/rfc/rfc3195.txt.

[17] E. Siever, S. Spainhour, J. Hekman, and S. Figgins. Linux in a Nutshell, chapter 3, page 222. O’Reilly,
3rd edition, August 2000.

[18] A. Slominski, M. Govindaraju, D. Gannon, and R. Bramley. SoapRMI events: Design and imple-
mentation. Technical Report TR549, Indiana University, May 2001. http://www.cs.indiana.
edu/Research/techreports/TR549.shtml.

[19] W. Smith and D. Gunter. Simple LDAP schemas for grid monitoring. Technical report, Global Grid
Forum Performance Working Group, June 2001. http://www-didc.lbl.gov/GGF-PERF/
GMA-WG/papers/GWD-GP-13-1.pdf.

[20] W. Smith, D. Gunter, and D. Quesnel. A simple XML producer-consumer protocol. Technical report,
Global Grid Forum Performance Working Group, June 2001. http://www-didc.lbl.gov/
GGF-PERF/GMA-WG/papers/GWD-GP-8-2.pdf.

[21] Sun Microsystems. Jini Technology Core Platform Specification - Distributed Events, 1.2 edition.
http://wwws.sun.com/software/jini/specs/jini1.2html/event-spec.html.

[22] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, and R. Wolski. A grid monitoring
architecture. Technical report, Global Grid Forum Performance Working Group, January 2002. http:
//www-didc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-16-2.pdf.

[23] B. Tierney, B. Crowley, D. Gunter, M. Holding, J. Lee, and M. Thompson. A monitoring sen-
sor management system for grid environments. In Proceedings of the Ninth IEEE International
Symposium on High-Performance Distributed Computing (HPDC), pages 97–104, August 2000.
http://www-didc.lbl.gov/papers/JAMM.HPDC00.pdf.

[24] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, and C. Kesselman. Grid service specifica-
tion. Draft 3, Global Grid Forum, July 2002. http://www.globus.org/research/papers/
gsspec.pdf.

[25] W3C. XSL Transformations (XSLT), November 1999. http://www.w3.org/TR/xslt.

[26] W3C. Extensible Markup Language (XML) 1.0, 2nd edition, August 2000. http://www.w3.org/
TR/2000/WD-xml-2e-20000814.

[27] W3C. SOAP Version 1.2 Part 0: Primer, December 2001. http://www.w3.org/TR/2001/
WD-soap12-part0-20011217.

[28] W3C. XML Schema Part 0: Primer, May 2001. http://www.w3.org/TR/xmlschema-0.

[29] R. Wolski, N. Spring, and J. Hayes. The network weather service: A distributed resource per-
formance forecasting service for metacomputing. Journal of Future Generation Computing Sys-
tems, 15(5-6):757–768, October 1999. http://www.cs.ucsb.edu/˜rich/publications/
nws-arch.ps.gz.

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 28 of 44



A SCHEMAS

A Schemas

A.1 regs:report Schema
<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://hrl.ibm.com/ogsa/schema/regs"
xmlns:regs="http://hrl.ibm.com/ogsa/schema/regs"
xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified"
version="$Revision: 2.1 $">

<simpleType name="authorType">
<annotation>

<documentation>An identifier for the authore (e.g., a GSH)</documentation>
</annotation>
<restriction base="QName"/>

</simpleType>
<attributeGroup name="sectionAttributes">

<annotation>
<documentation>common attributes for every section</documentation>

</annotation>
<attribute name="name" type="NMTOKEN">

<annotation>
<documentation>combination of author and name must be unique</documentation>

</annotation>
</attribute>
<attribute name="author" type="regs:authorType" use="required">

<annotation>
<documentation>the author of the section (e.g., GSH)</documentation>

</annotation>
</attribute>
<attribute name="creationTime" type="dateTime"/>

</attributeGroup>
<simpleType name="propertyTypeType">

<annotation>
<documentation>
Type of property value - should be a name of a type that is
derived from a primitive type.

</documentation>
</annotation>
<restriction base="string">

<pattern value="xsd:.+"/>
<pattern value="regs:.+"/>
<pattern value=".+:.+"/>

</restriction>
</simpleType>
<simpleType name="propertyNameType">

<annotation>
<documentation>Name of property, must not start with "REGS_" </documentation>

</annotation>
<restriction base="NMTOKEN">

<pattern value="[ˆR].*|R[ˆE].*|RE[ˆG].*|REG[ˆS].*"/>
</restriction>

</simpleType>
<simpleType name="producerPropertyTypeType">

<annotation>
<documentation>
Type of property value - should be a name of a type that is
derived from a primitive type

</documentation>
</annotation>
<restriction base="regs:propertyTypeType"/>

</simpleType>
<simpleType name="producerPropertyNameType">

<annotation>
<documentation>Name of property </documentation>

</annotation>
<restriction base="NMTOKEN">

<pattern value="REGS_.*"/>
</restriction>

</simpleType>
<simpleType name="levelStringType">

<annotation>
<documentation>Severity level as string</documentation>

</annotation>
<restriction base="NMTOKEN">

<enumeration value="ALL"/>
<enumeration value="DEBUG"/>
<enumeration value="ERROR"/>
<enumeration value="FATAL"/>
<enumeration value="INFO"/>
<enumeration value="WARN"/>

</restriction>
</simpleType>
<simpleType name="levelValueType">

<annotation>
<documentation>severity level as value</documentation>

</annotation>
<restriction base="unsignedShort"/>

</simpleType>

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 29 of 44



A SCHEMAS A.1 regs:report Schema

<simpleType name="levelType">
<annotation>

<documentation>severity level</documentation>
</annotation>
<union memberTypes="regs:levelValueType regs:levelStringType"/>

</simpleType>
<simpleType name="categoryType">

<annotation>
<documentation>Named hierarchy (eg "package/module/subModule")</documentation>

</annotation>
<restriction base="string">

<pattern value="\w+(/\w+)*"/>
</restriction>

</simpleType>
<complexType name="bodyType">

<annotation>
<documentation>Extensibility place holder</documentation>

</annotation>
<sequence>

<any namespace="##any" processContents="skip" maxOccurs="unbounded"/>
</sequence>

</complexType>
<complexType name="propertyType">

<annotation>
<documentation>User defined property</documentation>

</annotation>
<simpleContent>

<extension base="anySimpleType">
<attribute name="name" type="regs:propertyNameType" use="required"/>
<attribute name="type" type="regs:propertyTypeType" use="required"/>

</extension>
</simpleContent>

</complexType>
<complexType name="producerLevelPropertyType">

<annotation>
<documentation>REGS_level </documentation>

</annotation>
<simpleContent>

<extension base="regs:levelType">
<attribute name="name" use="required">

<simpleType>
<restriction base="regs:producerPropertyNameType">

<enumeration value="REGS_level"/>
</restriction>

</simpleType>
</attribute>
<attribute name="type" use="required">

<simpleType>
<restriction base="regs:producerPropertyTypeType">

<enumeration value="regs:levelType"/>
</restriction>

</simpleType>
</attribute>

</extension>
</simpleContent>

</complexType>
<complexType name="producerCategoryPropertyType">

<annotation>
<documentation>REGS_category</documentation>

</annotation>
<simpleContent>

<extension base="regs:categoryType">
<attribute name="name" use="required">

<simpleType>
<restriction base="regs:producerPropertyNameType">

<enumeration value="REGS_category"/>
</restriction>

</simpleType>
</attribute>
<attribute name="type" use="required">

<simpleType>
<restriction base="regs:producerPropertyTypeType">

<enumeration value="regs:categoryType"/>
</restriction>

</simpleType>
</attribute>

</extension>
</simpleContent>

</complexType>
<complexType name="producerTimeStampPropertyType">

<annotation>
<documentation>REGS_timeStamp (optional)</documentation>

</annotation>
<simpleContent>

<extension base="dateTime">
<attribute name="name" use="required">

<simpleType>
<restriction base="regs:producerPropertyNameType">

<enumeration value="REGS_timeStamp"/>
</restriction>

</simpleType>

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 30 of 44



A SCHEMAS A.1 regs:report Schema

</attribute>
<attribute name="type" use="required">

<simpleType>
<restriction base="regs:producerPropertyTypeType">

<enumeration value="xsd:dateTime"/>
</restriction>

</simpleType>
</attribute>

</extension>
</simpleContent>

</complexType>
<complexType name="producerSectionType">

<annotation>
<documentation>Producer section that is present in every report</documentation>

</annotation>
<sequence>

<element name="level" type="regs:producerLevelPropertyType">
<annotation>

<documentation>E.g., INFO, FATAL, 20</documentation>
</annotation>

</element>
<element name="category" type="regs:producerCategoryPropertyType">

<annotation>
<documentation>E.g., "package/moduleA/report"</documentation>

</annotation>
</element>
<element name="timeStamp" type="regs:producerTimeStampPropertyType" minOccurs="0"/>
<element name="property" type="regs:propertyType" minOccurs="0" maxOccurs="unbounded">

<annotation>
<documentation>E.g., <property name="REGS_index" type="int">17</property>
</documentation>

</annotation>
</element>
<element name="body" type="regs:bodyType"/>

</sequence>
<attributeGroup ref="regs:sectionAttributes"/>

</complexType>
<complexType name="sectionType">

<annotation>
<documentation>Sections must have a uniqe (author+name)</documentation>

</annotation>
<sequence>

<element name="property" type="regs:propertyType" minOccurs="0" maxOccurs="unbounded">
<annotation>

<documentation>E.g., <property name="myID" type="xsd:string">"appA:report"</property>
</documentation>

</annotation>
</element>
<element name="body" type="regs:bodyType" minOccurs="0">

<annotation>
<documentation>E.g.,
<!---<my:appData>DATA<my:MORE_DATA/>

</my:appData> -->
</documentation>

</annotation>
</element>

</sequence>
<attributeGroup ref="regs:sectionAttributes"/>

</complexType>
<element name="report">

<annotation>
<documentation>Report root</documentation>

</annotation>
<complexType>

<sequence>
<element name="producerSection" type="regs:producerSectionType"/>
<element name="section" type="regs:sectionType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</complexType>
<unique name="sectionID">

<selector xpath="./section"/>
<field xpath="@name"/>
<field xpath="@author"/>

</unique>
</element>

</schema>

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 31 of 44



A SCHEMAS A.2 regs:filter Schema

A.2 regs:filter Schema
<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://hrl.ibm.com/ogsa/schema/regs"
xmlns:regs="http://hrl.ibm.com/ogsa/schema/regs"
xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified"
version="$Revision: 2.1 $">

<simpleType name="levelStringType">
<annotation>

<documentation>Severity level as string</documentation>
</annotation>
<restriction base="NMTOKEN">

<enumeration value="ALL"/>
<enumeration value="DEBUG"/>
<enumeration value="ERROR"/>
<enumeration value="FATAL"/>
<enumeration value="INFO"/>
<enumeration value="WARN"/>

</restriction>
</simpleType>
<simpleType name="levelValueType">

<annotation>
<documentation>Severity level as value</documentation>

</annotation>
<restriction base="unsignedShort"/>

</simpleType>
<simpleType name="levelType">

<annotation>
<documentation>severity level</documentation>

</annotation>
<union memberTypes="regs:levelValueType regs:levelStringType"/>

</simpleType>
<simpleType name="categorySelectorType">

<annotation>
<documentation>

Category selection pattern. A simplified XPath-like expression
derived from the selector attribute of the xsd:unique element. "*"
means wildcard, "//" means descendant.

</documentation>
</annotation>
<restriction base="token">

<pattern value="((\c+|\*)|\.)(/((\c+|\*)|\.))*(\|((\c+|\*)|\.)(/((\c+|\*)|\.))*)*"/>
</restriction>

</simpleType>
<complexType name="simpleFilterType">

<annotation>
<documentation>
Selection by level, category or producer.
If left empty includes all.

</documentation>
</annotation>
<sequence>

<element name="producers" minOccurs="0">
<annotation>

<documentation>List of producers to select from.</documentation>
</annotation>
<simpleType>

<list itemType="QName"/>
</simpleType>

</element>
<choice minOccurs="0">

<annotation>
<documentation>

Level selection. A list of levels or a range. Level can
be a positive integer or one off: 0="ALL", 10="DEBUG", 20="INFO",
30="WARN", 40="ERROR", 50="FATAL"

</documentation>
</annotation>
<element name="levels">

<annotation>
<documentation>List of levels.</documentation>

</annotation>
<simpleType>

<list itemType="regs:levelType"/>
</simpleType>

</element>
<sequence>

<element name="minLevel" type="regs:levelType" minOccurs="0"/>
<element name="maxLevel" type="regs:levelType" minOccurs="0"/>

</sequence>
</choice>
<element name="category" type="regs:categorySelectorType" minOccurs="0">

<annotation>
<documentation>Category selection pattern. A simplified

XPath-like expression derived from the selector attribute of the
xsd:unique element.
"*" means wildcard, "//" means descendant.

</documentation>
</annotation>

</element>

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 32 of 44



A SCHEMAS A.2 regs:filter Schema

</sequence>
</complexType>
<complexType name="xpathFilterType">

<annotation>
<documentation>Selection by an XPath predicate on reoprt.</documentation>

</annotation>
<complexContent>

<extension base="regs:simpleFilterType">
<sequence>

<element name="xpath" type="string">
<annotation>

<documentation>An xpath expression with report being the root. </documentation>
</annotation>

</element>
</sequence>

</extension>
</complexContent>

</complexType>
<complexType name="filterType">

<annotation>
<documentation>One of the regs filters</documentation>

</annotation>
<choice>

<element ref="regs:simpleFilter"/>
<element ref="regs:xpathFilter"/>

</choice>
</complexType>
<element name="simpleFilter" type="regs:simpleFilterType">

<annotation>
<documentation>Selection by level, category or producer.

If left empty includes all.</documentation>
</annotation>

</element>
<element name="xpathFilter" type="regs:xpathFilterType">

<annotation>
<documentation>Selection by an XPath predicate report.</documentation>

</annotation>
</element>

</schema>

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 33 of 44



A SCHEMAS A.3 regs:basketFactory Schema

A.3 regs:basketFactory Schema
<?xml version = "1.0" encoding = "UTF-8"?>
<schema xmlns = "http://www.w3.org/2001/XMLSchema"

targetNamespace = "http://hrl.ibm.com/ogsa/schema/regs"
xmlns:regs = "http://hrl.ibm.com/ogsa/schema/regs"
elementFormDefault = "qualified"
attributeFormDefault = "unqualified"
version = "$Revision: 2.1 $">
<include schemaLocation = "regs_filter.xsd"/>
<include schemaLocation = "BasketProfile.xsd"/>
<element name = "ServiceParameters" type = "regs:serviceParametersType"/>
<complexType name = "serviceParametersType">

<sequence>
<element name = "messageFilter" type = "regs:filterType">

<annotation>
<documentation>
filter type defined in regs_filter
</documentation>

</annotation>
</element>
<element name = "XSLTpath" type = "anyURI" minOccurs = "0">

<annotation>
<documentation>

A reference to an XSLT file that should be used to
format message BEFORE sent to basket. Result of
transform must still be a valid regs_report

</documentation>
</annotation>

</element>
<element name = "basketProfile" type = "regs:basketProfileType">

<annotation>
<documentation>

a basket profile element of type regs:basketProfileType
</documentation>

</annotation>
</element>

</sequence>
</complexType>

</schema>

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 34 of 44



A SCHEMAS A.4 regs:BasketServiceReports Schema

A.4 regs:BasketServiceReports Schema
<?xml version = "1.0" encoding = "UTF-8"?>
<!--Generated by Turbo XML 2.3.1.100. Conforms to w3c http://www.w3.org/2001/XMLSchema-->
<schema xmlns = "http://www.w3.org/2001/XMLSchema"

targetNamespace = "http://hrl.ibm.com/ogsa/schema/regs"
xmlns:regs = "http://hrl.ibm.com/ogsa/schema/regs"
xmlns:regs1 = "http://hrl.ibm.com/ogsa/schema/regs"
version = "$Revision: 2.1 $"
elementFormDefault = "qualified"
attributeFormDefault = "unqualified">

<include schemaLocation="regs_report.xsd"/>
<element name = "basketServiceReports" type = "regs:basketServiceReportsType"/>
<complexType name = "basketServiceReportsType">

<sequence>
<element ref = "regs:report" minOccurs = "0" maxOccurs = "unbounded"/>

</sequence>
</complexType>

</schema>

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 35 of 44



A SCHEMAS A.5 regs:BasketProfile Schema

A.5 regs:BasketProfile Schema
<?xml version = "1.0" encoding = "UTF-8"?>
<!--Generated by Turbo XML 2.3.1.100. Conforms to w3c http://www.w3.org/2001/XMLSchema-->
<schema xmlns = "http://www.w3.org/2001/XMLSchema"

targetNamespace = "http://hrl.ibm.com/ogsa/schema/regs"
xmlns:regs = "http://hrl.ibm.com/ogsa/schema/regs"
version = "$Revision: 2.0 $"
elementFormDefault = "qualified"
attributeFormDefault = "unqualified">
<!-- $Revision: 2.0 $ -->

<element name = "basketProfile" type = "regs:basketProfileType"/>
<complexType name = "basketProfileType">

<sequence>
<element name = "sizePolicy" type = "regs:sizePolicyType" minOccurs = "0"/>
<element name = "securityPolicy" type = "regs:securityPolicyType" minOccurs = "0"/>

</sequence>
</complexType>
<complexType name = "sizePolicyType">

<sequence>
<element name = "reportDeletePolicy" type = "regs:reportDeletePolicyType" minOccurs = "0"/>

</sequence>
<attribute name = "maximumBasketSize" type = "string"/>
<attribute name = "overfillDeletePolicy" type = "regs:overfillDeletePolicyType"/>

</complexType>
<complexType name = "reportDeletePolicyType">

<sequence>
<element name = "reportDeleteImmediately" type = "regs:reportDeleteImmediatelyType" minOccurs = "0" maxOccurs = "2"/>

</sequence>
<attribute name = "expirationTime" type = "duration"/>

</complexType>
<simpleType name = "reportDeleteImmediatelyType">

<restriction base = "string">
<enumeration value = "DeleteAfterReadOnPush"/>
<enumeration value = "DeleteAfterReadOnPoll"/>

</restriction>
</simpleType>
<simpleType name = "overfillDeletePolicyType">

<restriction base = "string">
<enumeration value = "DeleteOldest"/>
<enumeration value = "DeleteIncoming"/>

</restriction>
</simpleType>
<complexType name = "securityPolicyType">

<attribute name = "owner" type = "string"/>
<attribute name = "accessControlList" type = "string"/>

</complexType>
</schema>

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 36 of 44



A SCHEMAS A.6 regs:BasketCurrentState Schema

A.6 regs:BasketCurrentState Schema
<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by DHL (IBM) -->
<!--Generated by Turbo XML 2.3.0.100. Conforms to w3c http://www.w3.org/2001/XMLSchema-->
<schema targetNamespace="http://hrl.ibm.com/ogsa/schema/regs"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:regs="http://hrl.ibm.com/ogsa/schema/regs"
elementFormDefault="unqualified" attributeFormDefault="unqualified"
version="$Revision: 2.0 $">

<element name="basketCurrentState" type="regs:basketCurrentStateType"/>
<element name="sizeUsage" type="regs:sizeUsageType"/>
<complexType name="basketCurrentStateType">

<sequence>
<element ref="regs:sizeUsage"/>

</sequence>
</complexType>
<complexType name="sizeUsageType">

<attribute name="usedBasketSize" use = "required" type="string"/>
<attribute name="freeBasketSize" use = "required" type="string"/>
<attribute name="numberOfReports" use = "required" type="string"/>

</complexType>
</schema>

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 37 of 44



A SCHEMAS A.7 regs:BasketActions Schema

A.7 regs:BasketActions Schema
<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by DHL (IBM) -->
<!--Generated by Turbo XML 2.3.0.100. Conforms to w3c http://www.w3.org/2001/XMLSchema-->
<schema targetNamespace="http://hrl.ibm.com/ogsa/schema/regs"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:regs="http://hrl.ibm.com/ogsa/schema/regs"
elementFormDefault="unqualified" attributeFormDefault="unqualified"
version="$Revision: 2.0 $">

<!-- $Revision: 2.0 $ -->
<element name="basketActions" type="regs:basketActionsType"/>
<complexType name="basketActionsType">

<sequence>
<element name="action" type="regs:actionType" maxOccurs="unbounded"/>

</sequence>
</complexType>
<complexType name="actionType">

<choice>
<element name="delete"/>
<element name="addTag"/>

</choice>
</complexType>

</schema>

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 38 of 44



A SCHEMAS A.8 regs:ReportSet Schema

A.8 regs:ReportSet Schema
<?xml version = "1.0" encoding = "UTF-8"?>
<!--Generated by Turbo XML 2.3.1.100. Conforms to w3c http://www.w3.org/2001/XMLSchema-->
<schema xmlns = "http://www.w3.org/2001/XMLSchema"

targetNamespace = "http://hrl.ibm.com/ogsa/schema/regs"
xmlns:regs = "http://hrl.ibm.com/ogsa/schema/regs"
xmlns:regs1 = "http://hrl.ibm.com/ogsa/schema/regs"
version = "$Revision: 2.0 $"
elementFormDefault = "unqualified"
attributeFormDefault = "unqualified">
<include schemaLocation = "regs_report.xsd"/>
<!-- $Revision: 2.0 $ -->

<element name = "reportSet" type = "regs:reportSetType"/>
<complexType name = "reportSetType">

<sequence>
<element ref = "regs:report" minOccurs = "0" maxOccurs = "unbounded"/>

</sequence>
<attribute name = "numberOfReports" use = "required" type = "nonNegativeInteger"/>
<attribute name = "timeStamp" use = "required" type = "dateTime"/>

</complexType>
</schema>

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 39 of 44



A SCHEMAS A.9 regs:SubscribeByReports Schema

A.9 regs:SubscribeByReports Schema
<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://hrl.ibm.com/ogsa/schema/regs"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:regs="http://hrl.ibm.com/ogsa/schema/regs"
elementFormDefault="unqualified" attributeFormDefault="unqualified"
version="$Revision: 2.0 $">

<!-- $Revision: 2.0 $ -->
<element name="subscribeByReports" type="regs:subscribeByReportsType"/>
<complexType name="subscribeByReportsType">

<attribute name="minInterval" type="duration"/>
<attribute name="numberOfReportsToAggregate" type="positiveInteger"/>
<attribute name="XSLTpath" type="anyURI"/>

</complexType>
</schema>

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 40 of 44



A SCHEMAS A.10 regs:SubscribeByBasketStatus Schema

A.10 regs:SubscribeByBasketStatus Schema
<?xml version = "1.0" encoding = "UTF-8"?>
<!--Generated by Turbo XML 2.3.1.100. Conforms to w3c http://www.w3.org/2001/XMLSchema-->
<schema xmlns = "http://www.w3.org/2001/XMLSchema"

targetNamespace = "http://hrl.ibm.com/ogsa/schema/regs"
xmlns:regs = "http://hrl.ibm.com/ogsa/schema/regs"
version = "$Revision: 2.0 $"
elementFormDefault = "unqualified"
attributeFormDefault = "unqualified">
<!-- $Revision: 2.0 $ -->

<element name = "subscribeByBasketStatus" type = "regs:subscribeByBasketStatusType"/>

<complexType name = "subscribeByBasketStatusType">
<sequence>

<element name = "fullIndicator" type = "regs:fullIndicatorType" minOccurs = "0"/>
<element name = "notifyIfReportDiscarded" type = "regs:notifyIfReportDiscardedType" minOccurs = "0"/>

</sequence>
</complexType>

<complexType name = "fullIndicatorType">
<attribute name = "percentFull" use = "required" type = "regs:percentType"/>
<attribute name = "XSLTpath" type = "anyURI"/>

</complexType>

<complexType name = "notifyIfReportDiscardedType">
<attribute name = "notify" use = "required" type = "boolean"/>
<attribute name = "XSLTpath" type = "anyURI"/>

</complexType>

<simpleType name = "percentType">
<restriction base = "float">

<maxInclusive value = "0"/>
<minInclusive value = "100"/>

</restriction>
</simpleType>

</schema>

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 41 of 44



A SCHEMAS A.11 regs:RepositoryFullMessage Schema

A.11 regs:RepositoryFullMessage Schema
<?xml version = "1.0" encoding = "UTF-8"?>
<!--Generated by Turbo XML 2.3.1.100. Conforms to w3c http://www.w3.org/2001/XMLSchema-->
<schema xmlns = "http://www.w3.org/2001/XMLSchema"

targetNamespace = "http://hrl.ibm.com/ogsa/schema/regs"
xmlns:regs = "http://hrl.ibm.com/ogsa/schema/regs"
version = "$Revision: 2.0 $"
elementFormDefault = "unqualified"
attributeFormDefault = "unqualified">
<include schemaLocation = "BasketCurrentState.xsd"/>
<!-- $Revision: 2.0 $ -->

<element name = "repositoryFullMessage" type = "regs:repositoryFullMessageType"/>
<complexType name = "repositoryFullMessageType">

<sequence>
<element ref = "regs:sizeUsage"/>

</sequence>
<attribute name = "timeStamp" use = "required" type = "dateTime"/>

</complexType>
</schema>

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 42 of 44



A SCHEMAS A.12 regs:ReportDiscardedMessage Schema

A.12 regs:ReportDiscardedMessage Schema
<?xml version = "1.0" encoding = "UTF-8"?>
<!--Generated by Turbo XML 2.3.1.100. Conforms to w3c http://www.w3.org/2001/XMLSchema-->
<schema xmlns = "http://www.w3.org/2001/XMLSchema"

targetNamespace = "http://hrl.ibm.com/ogsa/schema/regs"
xmlns:regs = "http://hrl.ibm.com/ogsa/schema/regs"
xmlns:regs1 = "http://hrl.ibm.com/ogsa/schema/regs"
version = "$Revision: 2.0 $"
elementFormDefault = "unqualified"
attributeFormDefault = "unqualified">
<!-- $Revision: 2.0 $ -->
<include schemaLocation="regs_report.xsd"/>

<element name = "reportDiscardedMessage" type = "regs:reportDiscardedMessageType"/>
<complexType name = "reportDiscardedMessageType">

<sequence>
<element ref = "regs1:report"/>

</sequence>
<attribute name = "timeStamp" use = "required" type = "dateTime"/>

</complexType>
</schema>

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 43 of 44



A SCHEMAS A.12 regs:ReportDiscardedMessage Schema

END OF DOCUMENT

draft-ggf-ogsa-regs-0.3.1 Date : 2003/02/0611 : 28 : 11 44 of 44


