
Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 1]

 INTERNET-DRAFT A. Westerinen
 Expires: April 2004 Cisco Systems
 Editor
 October 2003

Policy Framework
<draft-ggf-policy-framework-00.txt>

Status of this Memo

This document provides information to the community regarding the
functional components of a policy-based management framework for
grid environments. Distribution of this document is unlimited.
This is a DRAFT document and continues to be revised.

Abstract

This document articulates the requirements and basic framework of
a policy-based management system for grid environments. It
focuses on the storage and retrieval of Policy Rules from a
repository, for use in the management and operation of a grid.
This framework document describes functional components and
operational characteristics of a system that is intended to be
device, resource, service and vendor independent, interoperable
and scalable.

There are three basic sections of this draft, addressing:

• the motivation for policy-based management that briefly
describes the requirements for implementing policy in a
grid;

• a reference model that defines a first-level functional
decomposition of such a framework, and captures the key
concepts in defining policy tools, Policy Rules, the use of
a repository and schema, and the mechanisms underlying the
definition, storage and retrieval of policies; and

• a description of each of the functional components, as well
as a narrative about how a policy system can implement
prescribed policies.

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 2]

Full Copyright Notice

Copyright © Global Grid Forum (2002). All Rights Reserved.

This document and translations of it may be copied and furnished
to others, and derivative works that comment on or otherwise
explain it or assist in its implementation may be prepared,
copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative
works. However, this document itself may not be modified in any
way, such as by removing the copyright notice or references to
the GGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the
procedures for copyrights defined in the GGF Document process
must be followed, or as required to translate it into
languages other than English. The limited permissions granted
above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is
provided on an "AS IS" basis and THE GLOBAL GRID FORUM
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described
in this document or the extent to which any license under such
rights might or might not be available; neither does it represent
that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the
use of such proprietary rights by implementers or users of this
specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention
any copyrights, patents or patent applications, or other
proprietary rights which may cover technology that may be
required to practice this recommendation. Please address the
information to the GGF Executive Director (see contact
information at GGF website).

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 3]

Table of Contents

Status of this Memo .. 1
Abstract... 1
Full Copyright Notice ... 2
Intellectual Property Statement... 2
Table of Contents.. 3
Table of Contents.. 3
1. Introduction... 4
2. Terminology.. 7
3. Policy Framework... 8

3.1. The Conceptual Model... 8
3.2. Policy Specification ... 9
3.3. Policy Rules ... 10
3.4. Policy Mechanisms .. 10
3.5. Options for Packaging ... 11

4. Functional Groupings ... 13
4.1. Policy Infrastructure .. 13

4.1.1. Policy Editor ... 13
4.1.2. SLO Translation.. 14
4.1.3. Rule Validation ... 15
4.1.4. Global Conflict Detection... 15

4.2. Rule Storage and Retrieval .. 16
4.3. Policy Consumer Functions ... 16

4.3.1. Changing Policy.. 16
4.3.2. Evaluation of Policy Conditions ... 16
4.3.3. Element Adapter and Execution of Policy Actions .. 18
4.3.4. Transformation.. 18
4.3.5. Local Conflict Detection... 19

4.4. Policy Assessment ... 19
4.4.1. Assessment of the Feasibility of Policy Rules.. 19

4.5 Policy Execution ... 20
4.6. Applying and Deploying Policy Rules via Roles .. 22
4.7. Interfacing with Components Outside the Policy Infrastructure ... 23

4.7.1. Grid Management Products .. 23
5. Policy Conflicts... 24
6. Interoperability.. 24
7. Future: Inter-Network and Inter-Domain Communication... 25
8. Application/Mapping of Grid Policy Use Cases to the Framework ... 26
9. Acknowledgements... 26
10. Security Considerations .. 26
11. References... 26
12. Authors' Information... 26

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 4]

1. Introduction

The purpose of a policy system is to manage and consistently
control a grid environment, so that its operations conform to the
business goals of the organization(s) that operate and utilize it.
Ultimately, achieving such control requires altering the behavior
of the individual entities that comprise the network, systems
and/or grid. One approach is to alter the behavior of these
entities individually by using a centralized management
application. Iterating through a list of entities, a management
application achieves control of the grid by manipulating the
operational parameters of each entity separately.

Taking this approach places a disproportionate burden upon
management applications. To effectively control a grid
environment, management software must have explicit knowledge of
the interfaces of each entity that it endeavors to control, as
well as knowledge of the capabilities of each of these entities.
As a result, management software is often forced to manage only
those features controlled by the interfaces common to the
majority of the entities in the grid. Implementing policy in this
way remains piecemeal and proprietary.

The policy framework described in this document represents an
alternative approach to controlling the operational
characteristics of a grid. Unlike traditional management
approaches, the systems developed within the policy framework
implement policy by managing the storage and deployment of
prescribed rules, instead of implementing policy by centralizing
control functions into a single software application. A policy
system devised under this framework shifts the focus from
configuring individual resources to setting policy for the grid
in aggregate, and controlling element behavior through grid
policy.

At the center of such a policy systems is the Policy Rule. Policy
Rules may be general and abstract, or specific and concrete. In
either case, Policy Rules represent a pairing of conditions and
actions that are intended to be device-, resource-, service- and
vendor-independent.

The Policy Rule serves as the point of interoperability between
entities participating in any policy system developed within this
framework. To make the Policy Rule into the main point of
interoperability, the following must be described:

• Composition and declaration of Policy Rules
• Characteristics of the entities that are being controlled

by Policy Rules
• Relationships and interactions among the objects being

managed

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 5]

The composition of Policy Rules, along with some of the
characteristics of the elements that are being controlled by
Policy Rules, are described by a model or language. This defines
the format and the organization of the storage for Policy Rules,
as well as the data that characterize the elements being
controlled by Policy Rules. Other characteristics of devices,
resources and services, used to capture the semantics and
relationships between different objects being managed, define how
the conditions and actions represented in a Policy Rule are
interpreted and what effect they have on the functions of the
grid. These are described in an information model for the grid.
This document presents a context for the schema and semantic
definitions, and enumerates the functional elements that may be
required to realize a complete policy system.

A policy system built upon the expression of rules must
demonstrate at least three abilities:

1. The ability to enable a user to define and update Policy
Rules.

2. The ability to store and retrieve Policy Rules.
3. The ability to interpret, implement and enforce Policy

Rules.

To better understand the ramifications of the list above, we can
recast it as a list of the functional elements of a policy system.
A possible breakdown follows:

1. A Policy Management Tool, to enable an entity (e.g.: person,
application) to define and update Policy Rules and
optionally, monitor their deployment. For example: a
graphical or command line/script interface.

2. A Policy Repository, for persistent storage and retrieval
of Policy Rules. (Note: that the repository simply stores
data, it does not in general process or act on it).

3. A Policy Consumer (a convenient grouping of functions) is
responsible for acquiring Policy Rules, deploying Policy
Rules, and optionally translating Policy Rules into a form
useable by Policy Targets.

4. A Policy Target's (a functional element) behavior is
dictated by Policy Rules. The Policy Target carries out
the action indicated by the Policy Rule.

Policy Consumers and Policy Targets are logical entities and
represent interfaces, not necessarily physical entities.
Consequently, Policy Consumers, and Policy Targets can be
realized in a number of combinations. A Policy Consumer can be
realized in software running on a general-purpose computer
separate from the Policy Target. Alternatively, a Policy Consumer
can be coupled with a Policy Target and realized in software
running on a specialized device like a router or a switch, or on
a general-purpose computer.

Regardless of where the Policy Consumer software executes, its
purpose is to acquire, optionally translate and deploy Policy
Rules. Functionally, translating rules is separate from the
implementation of the rule, which is the evaluation of conditions

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 6]

and the execution of actions. Although a single software or
system entity may be responsible for both the acquisition and
deployment of Policy Rules, Policy Consumers can be functionally
distinct from the targets of the Policy Rules.

For example, a Policy Rule may state that a certain group of
users are to be given priority service. A device may be able to
make a decision based on criteria similar to that expressed in
the Policy Rule. A Policy Consumer may be employed to interpret
the Policy Rule and create an analogous but more device-specific
form. For example, the Policy Consumer might translate a
condition expressed in terms of resource names into one
containing network addresses. In such a case, a network device is
the Policy Target.

Policy Rules may also contain references to time in their
conditions. Some Policy Targets may be incapable of evaluating
conditions containing time. In such a case, a Policy Consumer may
decompose the Policy Rule and distribute the decision process
between itself and the Policy Target.

In some situations, a physical device can be involved in
affecting policy in a grid, while not being the Policy Target. In
such a situation, the Policy Consumer and Policy Target functions
are combined and realized in a software application, and the
physical device is simply manipulated by the software in which
the Policy Consumer and Policy Target are realized. Examples
include elements that have no facility to interpret policy, but
can be used to affect policy.

A router capable of enabling and disabling its ports, but
incapable of interpreting standardized policy expressions stored
in a repository, can serve as another example. Suppose an
organization has a set of game servers, and wants to limit access
to these servers to periods of the day outside normal working
hours. A Policy Rule governing access to the servers could be
written in two ways.

• It could specify time conditions, and an action indicating
that access to the servers should be enabled or disabled.

• It could specify the same time conditions, but the action
could contain directives specific to the element where the
policy is to be deployed.

In either case, the aforementioned router can be used to affect
policy. Both rules require the development of software to
interpret the Policy Rule on behalf of the router. The first
option can be standardized, and although the element cannot
evaluate the Policy Rule, an application can be created to
function as the Policy Consumer and Policy Target. The latter
form of the Policy Rule is more element-specific. In both cases,
the Target of the rule is the router.

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 7]

Another motivation for the functional split occurs when policy
condition(s) cannot be evaluated by the same entity that executes
the action(s). So, the information stored in the policy action
must, for certain cases, be element-specific. This framework
accommodates both element-specific as well as element-independent
policies.

The purpose of discerning a difference between Policy Consumers
and Policy Targets is to make it easier to understand Policy Rule
semantics, and develop the building blocks for standard policy
expressions. In an effort to devise examples of Policy Rules,
people often express rules that imply two distinct subjects
within the same rule. The result is either a rule that makes no
sense to others, or one that leads us to the development of
element-specific rules.

It is important to note the steps in "implementing a Policy Rule".
Policy Consumers acquire and optionally translate Policy Rules.
Policy Targets implement Policy Rules in a much more constrained
fashion. Two choices are possible:

• Behaving according to contents of the Policy Rule as a
result of treating the behavioral specification as a set of
direct commands, or

• Operating in a manner consistent with configuration
parameters received from a Policy Consumer that has
interpreted Policy Rules.

Implementers may also choose to add mechanisms to measure the
effectiveness of Policy Rules, to establish feedback loops, and
to ensure synchronization between functional elements. . . .
[Need details]

2. Terminology

See RFC3198, Terminology for Policy-Based Management
[Are there other terms to define?]

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 8]

3. Policy Framework

[Throughout Sections 3 and 4, add grid examples]

3.1. The Conceptual Model

This section introduces a policy framework, provides a first-
level functional decomposition of it, and describes the role of
the functional elements in the framework. This is a conceptual
model, and not intended as a specification of components that
must be present in a policy system. Such issues as communication
between multiple Policy Consumers will be covered later in this
document.

This framework is based on the four functional elements described
in Table 1. The policy framework does not require that all
functional elements be implemented nor does it specify
implementation packaging of functional elements.

Functional Element Functions Performed
Policy Management Tool Policy editing, presentation,

rule translation, rule
validation, global conflict
resolution, other functions

Policy Repository Storage, search and retrieval of
policies

Policy Consumer Rule locator, element adapter,
state resource validation, rule
translation, rule
transformation, other functions

Policy Target Operation as specified by the
actions of the Policy Rule / MAY
perform rule validation,
execution feedback and other
functions

Table 1. Functional Elements of a Policy Framework

The implementation of three different abstractions of policies is
permitted. The three levels supported by this model are:

1. The administrators' view of policy is to abstract general
configuration and operational characteristics of the
resources in a policy domain and the management of service-
level objectives (SLOs) for these resources. SLOs are
frequently derived from contractual service-level
agreements (SLAs) and may be probabilistic in nature. The
Policy Management Tool may provide significant value-add in
the level of abstraction and degree of sophistication of
the GUI presentation of SLAs and SLOs, and in the mapping
between these and the lower-level Policy Rules.

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 9]

2. The Policy Rules, as stored in the Policy Repository
according to a defined information model or text form
(which may also take the form of separate schemata that are
derived from it), provide a deterministic set of policies
for managing the behavior of resources in the policy domain.
These Policy Rules are usually produced by the Policy
Management Tool, stored in the Policy Repository and
consumed by the Policy Consumer. However, note that in some
cases, it is desirable to ship the Policy Rules directly to
the Policy Consumers (without first storing them in the
Policy Repository), to allow for further processing before
they are stored. For example, a Policy Rule could be
specified in the Policy Management Tool, but a feasibility
check, as well as conflict resolution, may first be
performed before storing the Policy Rule in the Policy
Repository.

3. The policy mechanisms are policy discipline-specific and
may include implementation-specific mechanisms and
representations of the Policy Rules. They are the APIs,
methods, protocols and other constructs used to forward and
evaluate policies and perform actions on grid components.
Ultimately, policy mechanisms result in Policy Targets
taking action to deliver the services as prescribed at the
administrative interface of the Policy Management Tool.

[Include additional images, for example, from SNIA policy
discussions]

3.2. Policy Specification

The administrative user of the Policy Management Tool functional
component specifies abstract policies that have meaning to the
administrator and, indirectly, the end user or application for
whom the policy is prescribed. Although specific enough to
implement service level objectives via the Policy Management
Tools' abstraction of the Policy Rules and mechanisms, these
administratively specified Policy Rules may not be specific
enough to allow for direct mapping to grid equipment
configurations for deployment. It would be unusual (but not
impossible) for an administrator or software automating
administrative function to specify policy for a specific network
traffic filter or job queuing parameter.

The Policy Management Tool also provides the mapping of the
prescribed policies to a set of Policy Rules. Policy Management
Tools should implement consistency checking of the Policy Rules
to verify that the Policy Rules are consistent prior to placing
them into the Policy Repository (see section 5).

It is not necessary to employ all functional elements as distinct
physical entities. It is also possible to implement the Policy
Rules and policy mechanism layers without implementing a Policy
Management Tool. In fact, the central purpose of this framework
is to enable interoperable implementations of Policy Consumers
and Targets using common schema in a Policy Repository.

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 10]

3.3. Policy Rules

Administrators manually create and/or manipulate Policy Rules.
Also, a Policy Management Tool can produce the Policy Rules,
which the Policy Consumers then use to appropriately influence
the behavior of the Policy Targets. The Policy Rules specify the
logic used to deliver the prescribed service and service-levels.
Policy Consumers interpret and may further validate the Policy
Rules and then map these rules to the underlying policy
mechanisms of the Policy Targets. The Policy Consumers may also
transform the Policy Rules into forms that Policy Targets can use
directly. Policy rules are of the form: <trigger> if <condition>
then <action>.

[Need more detail] <Trigger> indicates . . . The <condition>
expression may be a compound expression and it may be related to
entities
such as hosts, applications, protocols, users, other system sub-
components, etc. The <action> may be a set of actions that
specify services to grant or deny or other parameters to be input
to the provision of one or more services. The set of actions
associated with a Policy Rule may be ordered or unordered.

The policy information model, as described in [MODEL], is a
platform- and technology-independent object-oriented model that
describes not only the structural characteristics of a set of
managed objects (e.g., users, network devices, and services) but
also describes the relationships between those objects. This
information is then mapped to a form that is suitable for storage
in a particular repository, such as a directory.

Policy Consumers may detect changes in Policy Rules by periodic
polling of the repository, by use of event notification
mechanisms when changes occur, or by some other schedule or
'push' mechanism.

3.4. Policy Mechanisms

Policy Mechanisms are defined as the underlying methods,
protocols, and tools used to perform the actual implementation
(evaluation and action execution) of the Policy Rules. Usually,
the Policy Consumer translates the Policy Rules and generates
appropriate instructions for the Policy Target. Sometimes, the
Policy Consumer simply identifies the appropriate Policy Rules
for a given flow or environment and passes them to the
appropriate Policy Targets. These policies are then evaluated and
enforced by the Policy Targets as appropriate for a given event.
In either case, these policies may be discipline-specific and,
perhaps, element-specific. Typical uses are [grid examples], or a
QoS policy.

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 11]

It is not in the scope of this framework to specify actual
mechanisms, but to provide a common interface through Policy Rule
abstraction for access to the actual mechanisms.

3.5. Options for Packaging

As indicated earlier, Table 1 represents the functional elements
of a policy framework, not actual products. A policy product may
implement exactly one of the functional elements, more than one
functional element, or even a part of one of the functional
elements. Figure 1, below, shows a multi-role policy server that
includes both a Policy Management Tool and a Policy Consumer. The
implementation details of these two elements are hidden inside
the server's boundaries. The only interfaces visible outside the
server are the Policy Management Tool's user interface, the
Policy Consumer's protocol for communicating with the Policy
Targets, and the interfaces via which the Policy Management Tool
and the Policy Consumer communicate with the Policy Repository.

Note that a given product may need multiple repositories to
efficiently store and retrieve data that is used to make policy
decisions. For example, if the main repository is a directory,
and SNMP information needs to be used as part of a decision, then
it would be a bad idea to store the values of (for example) SNMP
counters in a directory. However, the directory could be used to
specify the location and access method (for example, via a URL)
of other data.

The line formed by asterisks in Figure 1 illustrates how the
manufacturer of a multi-role policy server might add additional
communication paths for transfer of policy information within the
server. This is not meant to imply that not having this line of
communication is better or worse than not having it. It simply
describes a manufacturer's packaging option. In such a case, the
line formed by asterisks represents a path by which policy
information input at the user interface can be sent directly to
the embedded Policy Consumer, without first having to be placed
in the Policy Repository. Since this line is within the server,
it has no bearing on interoperability.

In the future, it may be determined that this communication path
should be standardized between separately packaged Policy
Management Tools and Policy Consumers. Currently, the line
represents an internal product interface, for the simplicity of
standardization, and to gain experience to provide the above
interfaces.

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 12]

 Policy Specifications
 + - - - - - | - - - - - - - +
 V
 | +--------------------+ |
 | Policy |
 | | Management Tool | |
 +---------+----------+
 | * | | Repository Access
 * +---------------------------+ Protocol(e.g.: LDAP)
 | * | |
 * <- Alternate Policy +---------+----------+
 | * Communication Path | | Policy Repository | <-- Policies
 * | (Directory Server, |
 | * | | Database, etc.) |
 * +---------+----------+
 | * | |
 * +---------------------------+ Repository Access
 | * | | Protocol(e.g.: LDAP)
 +---------+----------+
 | | Policy Consumer | |
 | |
 | +---------+----------+ |
 |
 | | <-- Protocol for affecting Policy Targets
 |
 + - - - - - - - - - - - - - +
 |
 +---------+----------+
 | Policy Target |
 | |
 +--------------------+

 Figure 1. A Packaging Option for the Functional Components

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 13]

4. Functional Groupings

A policy system implementation can be composed of the four
functional entities, shown in Table 1. Some of these components
have previously appeared in IETF drafts in different shapes and
forms, as a Policy Server [IPSEC] [DIAMETER], as RAP's PDP and
PEP [RAPFRAME], and as bandwidth brokers. It is important to
separate the functional components and describe the relationships
between them. That is the purpose of this section.

Note: This is an enumeration of policy functions and, as such, it
does not describe any implementation details such as distribution,
platform, or language. It merely shows an example of convenient
groups of functions within a policy system.

4.1. Policy Infrastructure

Likely a sub-component of the Policy Management Tool, the Policy
Editor provides the policy editing, policy presentation, rule
translation, and rule validation functions. In this component,
many rules are translated from abstract or human understandable
forms to the syntax of the policy information model of the
repository. Basic syntactic and semantic validation is also
possible.

The Policy Consumer is responsible for Policy Rule interpretation
and initiating deployment. Its responsibilities may include
trigger detection and handling, rule location and applicability
analysis, network-, grid- and resource-specific rule validation,
and element adaptation functions. In certain cases, it transforms
and/or passes the Policy Rule and data into a form and syntax
that the Policy Target can accept, leaving the implementation of
the Policy Rule to the Policy Targets.

Policy Targets are responsible for the evaluation of policy
conditions and Policy Targets handle the execution of actions.
These entities may also perform related element-specific
functions, such as Policy Rule validation and policy conflict
detection.

These functions are reviewed in the following sections.

4.1.1. Policy Editor

The Policy Editor is a mechanism for entering, viewing and
editing Policy Rules in the Policy Repository. Grid and policy
administrators would use the Policy Editor. It could be
implemented as a full-featured graphical user interface, a simple
Web-based form, and/or support a command line or scripting
interface.

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 14]

Policy Rules may be of several forms. Probabilistic rules may be
of the form: "with 99% probability, provide sub-second response-
time for department D using application A." Other general
specifications may be of the form: "I want 100Mb/s of premium
traffic going from point A to point B" or "I want a video
conference between the sales team managers". Alternately, more
specific rules may be defined, such as "For NetworkDevice1 and 3,
configure drop queues as follows ..." or "From source=10.56.43.x
to destination=10.56.66.x, enable Premium Service" for these
types of traffic. There is wide latitude in the level of
abstraction and function of the policy editor UI. However, it is
beyond the scope of this document to specify such functions.

[Discussion of other grid examples, policy forms and languages]

Once a Policy Rule has been entered into the Editor and before it
is stored in the repository, simple validation should be
performed. This is described in 4.1.3. The Policy Editor should
provide feedback to the administrator of the validation results.
At the simplest level, this could result in a "Valid/Invalid
Policy" message. More useful, however, would be for the Editor
to indicate the erroneous rule conditions or actions, or display
the pre-existing Policy Rules with which the new rule conflicts.
Further rule definition or update would then be the
responsibility of the administrator. However, it is beyond the
scope of this document to specify such functions.

4.1.2. SLO Translation

Translation of general policy specifications or SLOs into Policy
Rules that the Policy Consumer can interpret is performed by the
Rule Translation function. This function maps a high level (e.g.,
business-oriented) specification of a Policy Rule, with its
associated parameters, to a more specific Policy Rule format
pertaining to that service.

It is expected that further processing for grid environments will
be defined. Using QoS as an example, the Rule Translator would
take general Policy Rules related to the specification of
"normal" or "premium" service, and translate these to the
specific format defined for the grid. This format is element- and
platform-independent and could be performed by the Policy
Management Tool. Note, however, that another level of translation
is usually necessary to enable an element to interpret and
execute the policy. The Policy Consumer does this form of
translation.

As another example, the following Policy Rule could be defined:
"Traffic between Point A and Point B should receive Expedited
Forwarding". This could be translated into the following two
Policy Rules:

• source = 10.24.195.x, destination = 10.101.227.x, any
protocol, provide Expedited Forwarding

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 15]

• source = 10.101.227.x, destination =10.24.195.x, any
protocol, provide Expedited Forwarding

where the action to perform Expedited Forwarding is enabled
through the marking of packets with the Differentiated Service
Code Point (DSCP) of 101110. In this example, the network has
been configured to treat packets with a DSCP 101110 as packets
that receive Expedited Forwarding treatment. Thus these rules
apply to the ingress interface for the network, on either an end
system or a router, where packets will be marked.

4.1.3. Rule Validation

The Rule Validation function performs checking of a policy
prescription and/or rule, and returns the results of this
checking. Two kinds of checking should be performed:

• Validation of the data types of the terms of the specified
Policy Rule. For example, if a policy term calls for the
input of an IP address, then the system should ensure that
a valid IP address and mask are specified (as opposed to,
for example, an integer).

• Validation of the semantics of the Policy Rule. This has to
do with ensuring that the construction of a Policy Rule,
and its conditions and actions, from a set of pre-defined
building blocks, actually makes sense. Policy rules can be
syntactically correct yet make no sense. For example, a
rule may be defined stating that "Traffic at 50 Mb/s should
receive Expedited Forwarding treatment and run only between
10.23.24.56 and 10.23.24.56". This is syntactically valid
but semantically wrong since it specifies the same source
and destination address.

4.1.4. Global Conflict Detection

The Global Conflict Detection function checks to see whether or
not a newly entered policy conflicts with other policies. It is
called "global" in order to connote that this type of conflict
detection is not bound to any specific device, subnet, network or
grid.

The Global Conflict Detection component checks for static
conflicts derived from Policy Rules whose conditions are
simultaneously satisfied, but whose actions conflict with those
of currently existing rules. For example, an administrator may
define two rules stating that "A maximum of 10 video conference
channels are allowed on NetworkA", and that "eight video
conference lines are dedicated to Finance on Tuesdays from 9-
10am". If a third rule provisioning 3 video conference lines for
Legal every day at 9-10am were to be added to the rule set, a
conflict should be detected. The administrator is attempting to
provision for 11 video channels (versus the maximum of 10
channels allowed).

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 16]

Not all policy conflicts can be detected by the Global Conflict
Detection function. Rules may be "time based" (specifying an
effective validity period in the future) or based on dynamic
state information. These rules may indeed conflict with others.
But, these conflicts may only be detected at the time that the
rule becomes valid and enforcement actions are attempted. For
example, one may have Policy Rules that apply in normal,
congested, and business-critical (e.g., financial crisis, take
away all bandwidth from everywhere to support this) conditions.
On the surface, they appear to conflict with each other. However,
in reality, they don't, since they are meant to apply in non-
overlapping time periods and conditions.

The validation performed in this component is also called off-
line validation, meaning that it is not performed at the same
time as the execution of the policy. On-line validation occurs
within the Policy Assessment component, discussed in Section 4.4.

4.2. Rule Storage and Retrieval

Once a Policy Rule has been translated and verified, its storage
in one or more Policy Repositories is required. This may be done
before or after the Policy Consumer starts processing the Policy
Rule. Utilization of Policy Rules to maintain or change
system/device state requires retrieval of these rules from the
Policy Repositories. In addition, the repositories are accessed
during the rule validation process discussed above.

4.3. Policy Consumer Functions

4.3.1. Changing Policy

Data in the Policy Repository will change from time to time and
Policy Consumers need to be informed of these changes as they
happen. This framework does not specify the means for notifying
Policy Consumers of changes. There are a number of possible ways
to make this notification (e.g., polling, LDAP change
notification, using SNMP traps, etc.).

4.3.2. Evaluation of Policy Conditions

Evaluation of policy conditions may involve the Policy Consumer,
the Policy Target, or both the Policy Consumer and the Policy
Target. When evaluation applies to a single element, or when it
applies to detailed conditions that only the Policy Target (as
opposed to a physically separate Policy Consumer) can understand,
then condition evaluation will typically occur only in the Policy
Target. At the other extreme, if only global conditions such as
time of day or the overall state of the grid are being evaluated,

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 17]

then the condition evaluation may take place entirely in the
Policy Consumer. In many cases, though, the evaluation of policy
conditions may be shared between the Policy Consumer and the
Policy Target.

An example will show clearly how a Policy Consumer and a Policy
Target might share policy condition evaluation. The Policy
Consumer in this example is one that translates policy rules into
configuration settings, and then downloads these configuration
settings to its Policy Targets. Such a Policy Consumer might
have retrieved from the Policy Repository the following two rules
for one of its Policy Targets:

• Rule 1: If there is overall congestion in the network, then
drop packets received from subnet-1.

• Rule-2: In there is not overall congestion in the network,
then accept and process packets received from subnet-1.

"Overall network congestion" in these conditions does not
indicate a single interface's or single device's understanding of
the current state of the network. Instead, it refers to an
understanding of the state of the network as a whole, which might
involve a management application (the "congestion application")
that interacts with various probes in the network, and/or
introduces artificial traffic into the network and measures the
progress of this traffic. In this simplified example, this
application would need to provide a binary answer ("Yes, the
network is congested" or "No, the network is not congested") to
the Policy Consumer.

Based on whether or not the network is currently experiencing
congestion, the Policy Consumer acts. If the network is
congested, then the Policy Consumer downloads to the Policy
Target a set of configuration parameters that will cause it to
drop packets from subnet-1. If the network is not congested,
then the Policy Consumer downloads a different set of
configuration parameters, that cause the Policy Target to process
packets from subnet-1.

This initial configuration download is not the end of the Policy
Consumer's responsibilities in this case. After this, it must
continue to interact with the congestion application, and be
ready to download new configuration parameters to the Policy
Target if, in the opinion of this application, the network
becomes congested, or ceases to be congested.

As an implementation option, a Policy Consumer may elect to cache
the congestion application's opinion about whether the network is
congested, so that it can quickly determine which configuration
settings to download if a new Policy Target contacts it. This
sort of cached data would typically be stored locally by the
Policy Consumer, as opposed to being stored in the Policy
Repository.

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 18]

4.3.3. Element Adapter and Execution of Policy Actions

The Element Adapter function has two distinct purposes. One
purpose is to take the canonical representations of Policy Rules
(as stored in the Policy Repository) and interpret them on behalf
of elements not equipped to interpret them directly. In this case,
the element adapter function can be realized as a Policy Consumer
which is effectively a proxy, enabling legacy objects to
participate in the implementation of policy within a given grid
environment, without having to retrofit the legacy elements.

The second use of the Element Adapter function is to relieve the
Policy Consumer of having to know all of the intimate details of
the Policy Targets that it controls. The problem is that a given
grid may contain many different types of elements, each with
different capabilities. One example is that a single
configuration can not be given to different elements. Instead,
the element configuration will vary as a function of vendor,
element type, protocol used, and other factors.

The problem is that many vendors make so many products, that it
becomes impossible for a single Policy Consumer to be able to
control all of them, due to their differing interfaces and
capabilities. Operating in a multi-vendor grid exacerbates this
problem. The solution is to develop a set of extensions to the
Policy Consumer that are able to individually translate the
policy generated by the Policy Consumer to an equivalent form
that is usable by a specific set of elements.

4.3.4. Transformation

There are in general five models for sending a policy from the
Policy Consumer to a Policy Target. These models support the
different types of grid devices described in section 4.5 below.
They are:

• Pass-Through. Simply pass the policy retrieved from the
Policy Repository to the Policy Target directly, and let
the Policy Target interpret, evaluate and execute it.

• Modify-Transform-Send. The Policy Consumer interprets and
evaluates the policy (possibly adding some data or changing
some parameters in the process) and then ships the modified
form of the policy to the Policy Target, which then
evaluates and executes the modified policy.

• Command-Transform-Send. The Policy Consumer interprets and
evaluates the policy, and then generates a set of commands
that the Policy Target can use to implement the policy.

• Proxy. The Policy Consumer must use a Policy Proxy to be
able to communicate to the Policy Target.

• Co-Location. The Policy Consumer and the Policy Target are
co-located in the same physical platform, and internal,
programmatic interfaces are used.

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 19]

4.3.5. Local Conflict Detection

The Local Conflict Detection (LCD) component is an integral part
of the Policy Consumer. Whereas the Global Conflict Detection
components check for policy conflicts that do not apply to any
specific grid element, the LCD checks for policy conflicts that
apply to all elements that are controlled by a given Policy
Consumer.

The LCD detects local conflicts and checks that the requirements
of the policies can be satisfied and assesses the feasibility of
a policy (new, changed, or deleted) in which this Policy Consumer
has interest. The types of checks performed include:

• Conflict Detection. This entails checking that the new,
modified, or deleted policy does not conflict with any
existing local policy.

• Requirements Checking. This is a set of checks to ensure
that the resources needed by a policy, in isolation from
all other local policies, are available in the elements to
which this policy applies. For example, suppose that a
policy requires that a certain set of paths through the
network provide a specific queuing behavior. Suppose
further that on one of the paths at one of the interfaces,
no advanced queuing mechanisms are available. This would
mean that the needs of the policy are not satisfied. Thus,
the policy itself is not satisfied, implying that this
policy cannot be implemented in these devices.

• Feasibility. This compares the available services of the
grid with respect to the full set of policies that want to
use those services. Feasibility checking will most likely
require post-policy deployment checking that is sensitized
to the particular grid elements involved as well as the
nature and effects of the deployed policies. This is beyond
the scope of this document.

4.4. Policy Assessment

4.4.1. Assessment of the Feasibility of Policy Rules

A set of Policy Rules may be infeasible for reasons other than
being in conflict. Resource availability and the state of the
network may render Policy Rules impracticable.

Such assessment of Policy Rules may involve multiple components
(e.g., the Policy Consumer and the element). When assessment
applies to a single object, or when it applies to detailed state
or operational conditions that only the Policy Target (as opposed
to a potentially, physically separate Policy Consumer) can
understand, then communication is required, or this function must
execute within the Policy Target.

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 20]

The Validation components gather, (optionally) store, and monitor
grid state and resource information. Upon a request to evaluate a
Policy Rule set, the Validation function uses this information
and returns a determination as to the feasibility if the Policy
Rule.

Often, authentication and authorization checking are required of
the Validation components. Examples include checking the current
time of day against the authorized times that a user or
application can access certain resources, or checking against the
level of service that a user or application can request.

State and resource validation is also concerned with the current
availability of grid resources. In other words, the services
and/or resources requested must exist in the quantity required.
If requested resources are available, then the actions of a
Policy Rule may be executed. The notion of current resource
availability is dynamic and depends on how resources are
currently provisioned in the grid, and what resources are
presently in use by, or reserved for, other uses.

4.5 Policy Execution

It is important to understand that the critical point of
interoperability with regard to grid policy resides in a realized
information model, rather than in a transport protocol and its
message semantics. Instances of the classes described in the
IETF's Core Policy Information Model [PCIM] contain data that
describe operational policies. To affect policies in the grid,
entities within the grid must interpret prescribed policies. Not
all entities necessarily possess the ability to interpret
policies directly. Such entities may require translation and
transformation assistance with respect to the Policy Rules.

Grid devices, resources and services be categorized into groups:
policy-aware and policy-unaware. Policy-unaware elements are
unable to interpret any portion of the policy information model
or schema. However, they can still participate in a policy-based
network if an application can translate the policies into a form
that the policy-unaware element can implement. It is irrelevant
that the policy-unaware object doesn't know it is executing
policies; what is relevant is that it is participating in a
policy solution.

Policy-aware elements fall into four groups: policy-interpretive,
policy-compliant, policy-capable, and policy-proxied. Policy-
interpretive elements have the capability to interpret
expressions of policy as represented in a repository, conforming
to the core policy schema. For example, an interpretive device
that possesses the capability of delivering specified quality of
service may also understand a QoS policy schema, and interpret
and enforce those policies without the aid of an external
application.

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 21]

Policy-compliant elements can interpret portions of the policy
schema. In the case of QoS policy schema, a policy-aware device
possesses the capability to interpret the classes WITHIN the
policy schema that describe vendor- and implementation-
independent expressions of QoS. Policy-compliant elements cannot
interpret the QoS rules, but can interpret QoS parameters as
defined by QoS classes within the schema.

Both policy-capable as well as policy-proxied elements are those
that can not directly interpret policy as defined in a policy
schema or information model. An intermediate process must be used
in both cases to transform the policy as stored in the Policy
Repository to a form that can be executed by the Policy Target.
The difference is that a policy-capable element can communicate
directly with the Policy Consumer, whereas the policy-proxied
element requires a proxy to communicate with the Policy Consumer.

Both policy-unaware and policy-aware elements require assistance
in interpreting policies. A Policy Consumer is an example of an
application that can assist both policy-unaware and policy-aware
elements by interpreting policies. In the case of policy-unaware
elements, a Policy Consumer may find it necessary to transfer
policy and other related information to and from an intermediate
process (which then talks directly to the entity), in order to
affect policy. Typically, the Policy Consumer may need to read or
write configuration and read state information associated with a
given entity, as it prepares that entity to implement specific
policies. Recommending a specific protocol or mechanism for the
purpose of establishing communication from Policy Consumers to
policy-unaware elements is beyond the scope of this document. It
is recognized that a number of options exist.

A MIB is an instance of a data structure that describes
configuration and state information of a device or service.
Therefore, a Policy Consumer could use a MIB for configuration
and for discerning state of the policy-unaware devices or
services with which the MIB is associated. Another option may be
to use a command-line interface. In such cases, a Policy Consumer
can use the command-line interface to configure a device as
needed. Note that in both of these cases, control may be effected
through the use of an intermediate process. In this case, the
role of the Policy Consumer changes to communicating its requests
to the intermediate application, which is then responsible for
communicating with and controlling the appropriate elements on
behalf of the Policy Consumer.

In the case of policy-aware elements, a Policy Consumer still
must transfer policy information to and from elements. Since the
element is capable of interpreting certain classes defined within
the policy schema, the Policy Consumer may not need to use a MIB
or command-line interface to configure a device. Instead, a
Policy Consumer could use any protocol to transmit instances of
the policy schema classes that represent the desired operation,
and let the Policy Target perform the actual configuration.
Examples of protocols include COPS, SNMP, and Telnet.

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 22]

It is possible that the Policy Consumer resides with the Policy
Target, such that there is no network connection between the
Policy Consumer and Policy Target. In such a case, the function
of communication between the Policy Consumer and Policy Target is
completely implementation dependent since there is no interface
that must be exposed. In such an implementation where the Policy
Consumer and Policy Target reside within the same system (e.g., a
network element such as a router), the Policy Consumer and Policy
Target may even be simply different objects or functions within a
single process.

As we develop policy systems in grids, we must be careful to
distinguish protocol- and element-specific components from
information model components. At the level of the information
model, the schema reflects abstract, general information. The
core policy information model is designed to enable
interoperability, and a proprietary device-, resource- or
service-specific data structure reduces interoperability. Any
mapping between standardized expressions of policy and the
parameters of proprietary algorithms should take place in the
application responsible for and capable of interpreting policy
(e.g., a Policy Consumer).

Furthermore, more than one Policy Consumer may need to share
information represented in the standard schema. Using an
appropriate policy protocol, policy-aware entities may express
objects of the information model in a variety of agreed-upon
formats (yet to be defined) and transmit them as necessary.
[Need details]

4.6. Applying and Deploying Policy Rules via Roles

The specific policy to apply to an element may depend on many
factors, including the physical and/or logical characteristics of
the element, its status, user configuration parameters, or other
parameters such as time of day, geographical location, and
function in the grid. Rather than specifically tying policies to
an element, policy applicability can be specified indirectly, via
"roles".

Roles provide a powerful means of indirection:

• New or modified policies are associated with a role,
instead of having to associate these policies individually
to each and every element in a grid

• Existing policies are applied to newly-installed elements
by assigning the relevant roles to the element, rather than
copying policies from existing, "similar" objects

• Roles enable administrators to generate grid-wide policies,
rather than having to remember all the individual
components to which policies should be applied

• Neither the permanently-stored policy data, nor the Policy
Consumer, needs to have intimate knowledge of each and
every element in a grid; rather, each element can inform
the Policy Consumer of the roles for which it needs policy

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 23]

Roles are labels that are used to pass policy information between
the Policy Consumer and the Policy Target. Roles abstract element
capabilities, and are useful for aggregating entities to apply a
common set of changes to without having to name specific entities.
For example, this enables "all Frame Relay Edge interfaces" to be
provisioned in one operation, instead of individually.

A given element may have multiple roles associated with it. This
simply means that an element performs many separately
identifiable functions in the grid.
[Need details from current models and thinking, compare and
contrast IETF, DMTF and SNIA]

When the Policy Consumer and the Policy Target first connect, the
Policy Target could report the roles that it supports to the
Policy Consumer. This enables the Policy Consumer to determine
which policies are applicable to the Target. For example, if a
device has five interfaces with roles A and B, and four
interfaces with roles A and C, then it must request policy data
for two roles: A+B and A+C. The Policy Target also reports
changes to its roles to the Policy Consumer.

4.7. Interfacing with Components Outside the Policy Infrastructure

4.7.1. Grid Management Products

Existing management products can play an integral role in
comprehensive policy systems. A management product can be used to
configure grid elements based on the definition of Policy
Rules. In such a case, a management product can become a Policy
Consumer or provide services to one. It can be used by a Policy
Consumer to install element-specific mechanisms that implement
Policy Rules. A monitoring application provided by the management
product could be used for independent policy verification.

A management product would also be useful for accessing the grid
inventory and topology. This information is critical for making
certain types of policy decisions.

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 24]

5. Policy Conflicts

A policy conflict occurs when the conditions of two or more
Policy Rules are concurrently satisfied but the actions that they
mandate produce inconsistent results with each other. For example,
a Policy Rule specifying that "all engineers get bronze service"
is in conflict with another rule defining that "the lead engineer
gets gold service". This is a direct conflict, since there are
directly identifiable terms in each Policy Rule that conflict.
However, there are also indirect conflicts, such as with this
third rule: "all ftp traffic gets best effort". This conflicts
only if an engineer decides to send FTP traffic.

A conflict may be determined before execution of the policy is
attempted. This function is represented in policy systems via two
different mechanisms: (1) "Global Conflict Detection" (section
4.1.4) and (2) "Local Conflict Detection" (section 4.3.5). For
example, the conflict may be detected by the Global Conflict
Detection component when the policy is entered into the Policy
Editor. Alternatively, the conflict may go unnoticed until the
Policy Target tries to validate or implement it. A different type
of conflict may also be determined when the policy is processed
at the Policy Consumer. An example of this type of conflict is
when one Policy Consumer loads a policy into a Policy Target and
a second Policy Consumer attempts to load a conflicting policy.

Conflict detection is an important aspect of a policy
infrastructure. Various mechanisms and degrees of sophistication
exist in implementations.
[Need details]

6. Interoperability

The framework outlined in this memo defines two types of entities
that access the data repository: the administrative tools and the
policy consumers. Both of these entities require interoperability
with the data repository on at least two levels.

The first level of interoperability is on the data model level.
The entities require knowledge of the structure, syntax, and
semantics of the data in order to be interoperable. Failure to
fully comply with any of the data definitions will cause an
entity to produce incorrect results.

The second level of interoperability is on the data access level.
For the specific case of a directory used as the repository, the
policy framework would implement LDAPv3 (or higher) as the
protocol to access the repository. Assuming a compliant LDAPv3
implementation, data access should be interoperable. Other access
protocols are suited for alternative repositories.

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 25]

It should be noted that various repository infrastructures may
not be sufficient to ensure data repository interoperability. The
following features are required for data interoperability:

• Change notification: the ability to notify data access
entities when data changes and how the data changed;

• Transactional integrity: the ability of the repository to
ensure that a set of related operations are completed as a
set; and,

• Referential integrity: the ability of the repository to
ensure that a given operation applied to one object affects
related objects in the appropriate way

Interoperability problems will occur if implementations choose to
use proprietary change notification mechanisms or implement
notification in a non-consistent fashion. Lack of transactional
and referential integrity will result in interoperability
problems since implementations may update objects in different
orders, or fail to apply certain operations to all objects. This
could cause data repository corruption.

7. Future: Inter-Network and Inter-Domain Communication

The inter-domain communication interface of a policy management
system is concerned with communication with other policy systems
in adjacent domains. This communication may be across enterprise-
carrier or carrier-carrier boundaries. The primary purpose of
inter-domain exchanges is to negotiate SLAs with adjacent
networks to establish policy services within the adjacent network.
Ideally, the adjacent grids and networks should have sufficient
SLAs in place with their downstream neighbors to support the
requested service end-to-end.

Adjusting provisioning at domain boundaries entails re-
negotiation of SLAs with adjacent domains. Linking provisioning
with policy management makes it possible to manage how
provisioning is performed.

The area of inter-domain communication for policy service
requests is an ongoing research topic. Protocol requirements,
message contents, etc. are still under study within several IETF
working groups including RAP, DiffServ, Policy, and AAA working
groups.

Policy-RG Policy Framework

Westerinen, Editor Expires: October 2003 + 6 months [Page 26]

8. Application/Mapping of Grid Policy Use Cases to the Framework

[Insert details]

9. Acknowledgements

The original authors of the first draft of this document are
acknowledged both here and in the Author's Section: M. Stevens, W.
Weiss, H. Mahon, B. Moore, John Strassner, and Glenn Waters. The
first version of this document was an Internet-Draft, published
in the Policy Framework Working Group of the IETF. Although that
draft expired, work has resumed in the grid community of GGF.

10. Security Considerations

The implementation of a policy infrastructure must be secure as
far as the following aspects are concerned. First, the mechanisms
proposed under the framework must minimize theft and denial of
service threats. Second, it must be ensured that the entities
(Policy Management Tools, the Policy Repository, Policy Consumers,
and Policy Targets) involved in policy-based management can
verify each other's identity and establish necessary trust before
communicating.

[Need more discussion]

11. References

[Need normative references]

12. Authors' Information

[Insert contact info]

