
UvA/TU Delft topology exchange and path finding in NSI

environments

Ralph Koning, Miroslav Živković,
Stavros Konstantaras and Paola Grosso (UvA)
Farabi Iqbal and Fernando Kuipers (TU Delft)

February 13, 2015

1 Introduction

The NSI - Network Service Interface - protocol
enables different network domains to negoti-
ate, reserve and provision end-to-end paths on
demand. To function properly, NSI requires
the knowledge of the network topology of the
participating domains; this knowledge in turn
relies on mechanisms to exchange such infor-
mation between the involved parties.

In this document, we propose to address the
following requirements:

1. optimal path finding on the provided
topologies

2. ability to find disjoint paths (for link pro-
tection)

3. security (message exchange, non-
repudiation of origin/delivery)

4. possibility of providing representations of
the same topology based on:

(a) requesting party

(b) peering agreements

(c) other policy information

2 Topology exchange consid-
erations

When designing a topology exchange mecha-
nisms we need to decide whether we want to
rely on a centralized or decentralized system
and to which level we intend to disclose the
internal topology of each domain. Here we
present the general features, pros and cons of
these issues. In the next section we will present
our chosen solution.

2.1 Centralized topology exchange

A centralized topology exchange implies that
the topology information is maintained at a
single location, possibly by a dedicated trusted
entity. All domains would supply the en-
tity with their topology, and in return are
given the topology of other domains when they
need them for routing purposes, provided that
proper authentication exists. The topology
database can also have a dedicated path finder,
such that it could compute paths on behalf of
a domain without disclosing any topology in-
formation of other domains. The advantages
of using a centralized approach are the ease of
information access, while simplifying the com-
munication between domains. The downside of
it is that the topology database entity needs to
always be available and reliable, and frequent

1

updates of all domains are needed to maintain
an accurate view of the network. Since a cen-
tralized database is a single point of failure, a
backup database may be needed to function in
case the centralized database fails.

2.2 Decentralized topology ex-
change

A decentralized topology exchange approach
implies that the topology information of each
domain is maintained in a database available
only to its domain. Disclosure of a domain
topology is only provided to other requesting
domains for path finding purposes. Hence, fre-
quent topology exchanges could be expected
between domain controllers for path finding
purposes. The advantages of using a decen-
tralized approach is that the information sup-
plied to other domains is always accurate up
to that point of time. The benefits of this,
apart from the reduced load, are the confiden-
tiality and the resultant resilience by having no
single point of failure. The downside of a de-
centralized topology exchange is the increased
signaling complexity between domains.

2.3 Disclosure level

When exchanging topology information, the
level of disclosed information could vary de-
pending on each domain and to whom the in-
formation is to be disclosed. In a centralized
topology exchange approach, the same topol-
ogy of each domain could be expected for all
requesting domains, unless several topology
versions can be maintained by the centralized
database. In the decentralized approach, each
domain can provide any level of detail to the
requesting domains. For example, in the low-
est degree of cooperation, the domains may
share no internal domain information and only
communicate to find a suboptimal loose path
across their domains. The loose path only pro-

vide information on the order of domains to be
traversed, and the corresponding ingress and
egress points, without any details on the intra-
domain path segments. Each domain that is a
part of the loose path must further refine the
path segment across their domain, to get an
exact multi-domain path. In the highest de-
gree of cooperation, each of the domains will
trade full internal domain information, result-
ing in an optimal end-to-end path computa-
tion. However, full disclosure of internal do-
main information may pose a threat to the
domain due to possibilities of attack, sabo-
tage, or competitive intelligence between do-
mains. The scalability of topology information
exchanged could also pose a problem. The ad-
vantage of providing a minimized internal do-
main view is that less information needs to be
processed during path finding, and for safety
concerns. However, insufficient topology infor-
mation may lead to suboptimal path or even
failure to compute paths.

2.4 Announcing reachability

Another way of exchanging topology informa-
tion is by announcing reachability. This dis-
closes even less topology information. In this
case, the topologies are only shared between
neighbouring domains, and a neighbouring do-
main announces that it can provide a connec-
tion to that domain. The routing is done lo-
cally, per domain, based on the information
of itself and its direct neighbours leading to
a locally optimal route. Because the domains
never have a full view of the network there is
a chance of getting suboptimal paths. It is not
possible to provide a different view to the re-
quester domain and malicious domains can eas-
ily provide false reachability information and
break global path finding.

2

3 Topology Exchange Archi-
tecture

Since we believe sharing topology information
provides more flexibility over sharing reacha-
bility information, we propose a hybrid ap-
proach to exchange topologies: the topology
information is stored in a decentralized manner
augmented by a centralized index to quickly
point to where the topology information is
stored. Because topologies are provided by
the domains themselves we leave it up to them
what topology information they disclose.

Our approach distinguishes three compo-
nents that work together to form a topology
exchange; a domain can choose which compo-
nents it will run itself or share them with be-
friended domains:

Topology Index (TI) is a database that
holds pointers to the topology providers
and summary information. We describe
this in detail in section 4;

Topology Provider (TP) hosts the topol-
ogy descriptions. TPs are described in de-
tail in section 5;

Topology Consumers (TCs) are the com-
ponents that use topologies:

• Path finding component

• Monitoring component

• Topology validation component

• Lookup components

TCs are described in section 6

All components take security into account;
by default all communication is signed and en-
crypted. It also provides a basic infrastructure
to share public keys, yet we recommend using
a PKI infrastructure for this.

In the following sections we will elaborate on
the different components. For an overview of

the interaction between them refer to subsec-
tion 7.1

4 Topology index

For practical purposes the Topology Index (TI)
is considered a trusted third party. In this
way it can also be used to share public keys
amongst domains. These keys can be used by
the topology consumer to verify the signed in-
formation it retrieves from topology providers
or to encrypt the data that is being sent from
the provider to the consumer.

All domains will maintain and publish their
own topology files, i.e. all domains participat-
ing act as TPs; a central index holds the time
stamped pointers to the topology description
files in the various domains. Domains are the
only holders of policy information: this is not
propagated to the central index.

4.1 Data format

Table 1 shows the data format of the topology
index. The various fields have the following
meaning:

domain is the domain name of the topology
provider;

version of the topology file or a time stamp;

topology location is a pointer to the loca-
tion of the topology file; the URL of the
file needs to be reachable by the topol-
ogy index before it can be included in the
list; as we outline later it is still possi-
ble that some domains cannot directly re-
trieve each others information but this val-
idation step guarantees that topologies are
always indexed;

public key of the domain originating the in-
formation; the public key plays an essen-
tial role in our infrastructure as it allows

3

Domain Version Public key Topology
location

Neighbours Foreign
domains

Signature

Table 1: Topology index entry

to verify digital signatures and encrypt
messages so they can be only decrypted
by the intended recipient;

neighbours is a list of domains that are di-
rectly connected; the domain has peering
relationships with them;

foreign domains is used to publish external
domains with data plane connections to
a domain listed in the index. This may
allow basic path finding through domains
that are not known to the repository. This
concept will be explained next.

4.2 Foreign Domains

Foreign domains are domains that have direct
data plane connections to domains listed in the
index but do not report to this topology index,
in other words it is a list of domains external
to this system. The list may be augmented
with information describing the connectivity in
more detail.

We can use foreign domains to indicate con-
nectivity to domains that use different systems
for exchanging topologies. In addition to this,
a topology provider can share a link to (partial)
topology information of the foreign domain.

4.3 Populating the Topology Index

Figure 1 shows how the topology index looks
like for an example network. In this exam-
ple we excluded the key and signature fields.
Domains D1, D2 and D3 are topology providers
registered in the TI and therefore they can only
show in the neighbour list.

The other domains D4, and D5 do not run a
TP that registers to this TI but are connected

Domain Topology Neighb Foreign
D1 https://d1.org/topo/ D2 D4
D2 https://d2.org/topo/ D1 D4, D5
D3 https://d3.org/topo/ D5

Figure 1: Retrieving keys using DNS

to D1, D2 and D3, therefore they are listed in the
foreign domains list of the respective domains.

The foreign domain list is composed as fol-
lows: The Topology provider sends a notifica-
tion to the TI that the topology is updated,
and augments it with all domains it connects
to on the data plane. The TI receives this full
list, and compares it with the domains known
to the system. The domains that are known
will be listed in the neighbour’s field and all
the others end up in the foreign domains field.
If a new domain registers at the TI, the TI
checks all foreign domains fields and will move
them to the neighbours field where necessary.

A foreign domain is represented as a tuple
containing the domain name and the URL
for additional topology information, e.g.,
["d4.net","http://d4.net/topology"].
The additional topology information is
optional.

4.4 Security concerns

We assume that the topology index is trusted
and that the domain participating will have
provided the repository with their public key

4

at the start of the process and that the pub-
lic key of the topology index is known to the
participating domains.

We assume that if a domain hosts a TC and
a TP it will use the same private/public key
for both components; this allows a TP to look
up the key of a TC and we do not have to
maintain a second registry.

Updates or insertion of data in the table
need to be signed by the originating domain
with its own private key. The topology index
will update the table content only when the
digital signature is verified by the public key.
It will also list the signature over the data so
consumers can verify this. This will prevent
malicious domains to tamper with information
of other domains.

To prevent false index information updates
the topology index must verify who pushes the
index updates. This can be done in two ways:

1. The TI maintainer first verifies and ob-
tains the domain name and public key via
an out of band channel and it adds them
to the system. Any updates can now be
verified by checking a signature.

2. The public key can be distributed using
for example the Domain Name System.
Figure.2 illustrates this. The A or AAAA

record of the server can be augmented by
a CERT record containing the public key.
This trust is not ultimate unless the do-
main uses DNSSec to sign their zone files.
The advantage of this method is there’s no
manual intervention needed to add a do-
main to the system and you can verify the
domain keys without using the topology
index as a trusted party. Also the domain
name used here must match the domain
name used in the DNS system.

Figure 2: Retrieving keys using DNS

4.5 Proxy requests

If a domain cannot reach the topology URL
of the domain it can ask the topology index to
retrieve it on its behalf and act as a proxy. This
assumes that all URL/pointers to topologies
are reachable by the repository.

For foreign domains we cannot guarantee
that the topology index can reach that topol-
ogy information since they might not adhere
to the prerequisites defined in this document.

4.6 Synchronization and fail over

If the topology index becomes unreachable
there will be a severe degradation of perfor-
mance. Although the topology information re-
mains available and the topology consumer can
still retrieve them based on cached information
this is an unwanted situation.

Replicating the index would solve this prob-
lem. A topology index can be a topology con-
sumer of another topology index. This would
allow index A to receive updates when index B
changes and merge this information when the
version is newer. When a conflict arises index
A might have to ask the conflicting topology
providers to re-send their summary informa-

5

tion. Then index A sends out update notifi-
cations and topology consumers including in-
dex B can update their information. Topology
consumers of course need to be aware of this
backup server and know its public keys.

5 Topology Provider

The topology provider is the service that pro-
vides a topology for a specific network or do-
main. This service can be relatively simple,
it needs to be able to share a topology file to
topology consumers and send information to
the topology index in case of an update. If
necessary more advanced functionality can be
implemented, like different topologies based on
the consumer or decisions on via what domain
the consumer comes from.

5.0.1 Topology files

A topology file contains the topology informa-
tion for that domain. The format can essen-
tially be anything as long as it can be inter-
preted by the consumer. It’s up to the do-
main what information will be shared. The
most common use will be sharing inter-domain
topologies, this is a summarized version of the
full topology which only contains the service
endpoints and connections between domains
though there is no restriction on sharing the
full topology.

A topology provider has to share a topology
file by default this is what is supplied to any
topology consumer making a request this is the
default topology file.

Based on the requesting topology consumer
the topology provider can choose to supply
other topology files. This gives the ability to
create multiple views of the network, it can
also be used to reflect policy information and
to remove links that cannot be used by the
consumer.

If the topology consumer knows roughly
what path it wants to take or knows the neigh-
bouring domain it wants to traverse through
the consumer can supply this information in
the request. Based on this more filtering of
topology information can be done.

This filtering is not intended to enforce pol-
icy or restriction, yet reflecting the policies in
the topology file will aid the path finder skip-
ping links that cannot be used later on, making
the overall process more efficient.

6 Topology Consumer

The topology consumer, e.g. a pathfinder, is
the component that performs an operation on
the topology information.

Depending on whether the topology index
is open, first the consumer needs to exchange
public keys with the topology index. Only then
the consumer can consult the topology index.
The consumer looks for the domains it is inter-
ested in, processes the summary information
when necessary and then requests the topol-
ogy files from the topology providers.

6.1 Update notifications

A consumer can also subscribe itself to the
index. When a topology provider publishes
a new or updated topology to the index, a
broadcast message is sent to all subscribed
consumers with the information that the new
topology has been added or updated. This
message is signed by the topology index.

The consumers could then determine
whether they want to update potentially
cached information by retrieving new infor-
mation from the topology index. For example
adding a new domain to their list of domains,
or updating existing topology information for
known a domain.

In order to receive update notifications the
consumer should provide a callback address to

6

which those notifications should be sent.
These services can be different implementa-

tions ran by different domains. The only pre-
requisite is that there is a trust relation be-
tween the consumer and the topology index.

6.2 Authentication

It is not necessary for the consumer to have a
private and public key pair to retrieve topology
information. It can verify the topology infor-
mation with the public key of the provider and
use the public key to securely send a symmetric
session key to the provider so secure commu-
nication can take place.

However, if some topology providers want to
customize topologies based on the requesting
domain the consumer should still be able to
authenticate this with the private key of the
requesting domain.

7 Architecture operations

7.1 Interaction between components

The assumption is that each domain has a sin-
gle topology provider, though some domains
might agree to use a path finder from another
domain or share one.

7.2 Bootstrapping

In order to exchange topology information in a
secure way some prerequisites have to be met:

• Topology index needs to be known and ac-
cessible by all consumers and providers

• Topology providers need to be accessible
by at least the index

• Topology index and providers both need a
private/public key pair

• Topology providers always exchange pub-
lic keys with index

• Topology consumers optionally have a pri-
vate/public key pair

This information can be communicated by
email or communicated automatically. Since
there’s no secret information shared (only pub-
lic keys) this can be done via a unsecured con-
nection, of course with the risk of someone else
impersonating the index or provider when no
PKI infrastructure is in place.

7.3 Topology update

Figure 3 shows that when an update is made
to the topology the provider notifies the in-
dex and provides some summary information
(1). The Topology index will in turn notify all
registered consumers that there is an updated
index (2).

Figure 3: Topology update

7.4 Topology retrieval

In Figure 4 the topology consumer contacts the
central index and looks for updates from the
topology providers it is interested in and gets
their public key (1). The topology consumer
contacts all the providers it is interested in and
retrieves the topology files (2).

Figure 5 shows the key distribution during
the bootstrap phase:

1. The topology providers in D2 and D3 send
their domain’s public key to the index and
the index verifies the providers.

7

Figure 4: Topology retrieval

2. The topology index sends its public key to
consumers in D1 and D2, the consumers
may verify the index.

3. The topology consumer optionally sends
its domain key to the index. In case of
D2 this is already done since it also runs a
provider. In this way a consumer doesn’t
have to be known by the index to request
information.

7.5 Key distribution

Figure 5: Key distribution bootstrap phase

Now that the bootstrapping is done and
there is trust with the index, this can be used
for key exchange in the operational phase. This
can be seen in Figure 6.

1. Topology consumer requests the public
keys of the provider domains from the in-

dex. After this step the consumer contacts
the providers directly.

2. Topology providers may request the con-
sumer’s key from the index if they want to
authenticate.

Figure 6: Key distribution operational phase

7.6 Path finder interaction example

First the path finder fetches all the informa-
tion from the central index (i.e. the table en-
tries). This information includes pointers to
topology files and summary information. The
path finder creates a network graph topology,
and it can cross out the domains it is not go-
ing to use. The path finder requests the full
topology for the relevant domains. The path
finder uses the retrieved topologies to create a
more detailed graph. The path finder prunes
out mismatches and unusable links such that
they will not be considered during the routing
process. The path finder tries to find the most
suitable paths and returns the best.

7.7 Validation of topologies

Authenticity of information The topol-
ogy document of a domain is stored by the
domain itself and it can be validated by other
domains in order to identify tampering with
the document.

8

1. All topologies are digitally signed by pri-
vate keys of the providing domain.

2. The domain sending the topology will en-
crypt the topology using a shared secret
that the requester shares with the sending
domain. The shared secret is communi-
cated to the sending domain by encrypt-
ing this with its public key which was re-
trieved from the topology index.

3. Optionally the sending domain can sign
the request. In this way the send-
ing domain can be authenticated by the
provider.

Correctness of format We expect that
both the provider and consumer can validate
the correctness of the topology information. If
the topology information of a domain is un-
readable, the path finder should treat this do-
main as non-existent and cannot use the do-
main as part of a path.

Correctness of information Only the
provider knows whether this information is cor-
rect, and should check this before publishing.
Mistakes can be made and this can become a
problem when there is a mismatch of informa-
tion regarding a connection between domains.
In the majority of cases this needs to be solved
by human intervention of the domains network
engineers.

Path finders should be resilient to these mis-
matches and not provide them as an option to
the user. This means mismatches in topology
information go unnoticed to the user unless you
specifically make a request to use such a link.

A way to mitigate this is to provide a sep-
arate service that contacts the topology index
to request the topologies of a domain and its
neighbours and to perform cross checks to aid
in identifying topology mismatches. The do-
mains network engineers can then act upon

this and update their topologies.

8 Path Finding

8.1 Path Requirements

Certain clients or providers may prefer a more
detailed inter-domain path. Though conven-
tional shortest path algorithms such as the Di-
jkstra’s algorithm [?] may be used by the path
finder to find a simple, shortest inter-domain
path between two distinct domains, a more in-
telligent algorithm is needed to accept more
path requirement details, and provide an inter-
domain path that satisfies the given require-
ments in return.

Examples of path requirements that could
be requested by the clients are:

• notviaN : a set of domains must not be
part of the multi-domain path.

• notviaE : a set of inter-domain links must
not be part of the multi-domain path.

• viaN : a set of domains must be part of the
multi-domain path.

• viaE : a set of inter-domain links must be
part of the multi-domain path.

• orderN : a set of domains must be in a
predefined sequence in the multi-domain
path.

Requirements notviaN and notviaE can be
fulfilled by pruning out all of the forbidden
domains and inter-domain links before creat-
ing the topology graph that would be used
for path computation. The resultant topology
graph G = (N ,L) would be the input to our
problem, where G is the multi-domain network
after the forbidden domains and inter-domain
links have been pruned, N is the set of domains

9

and L is the set of inter-domain links. Require-
ments viaN, viaE and orderN need to be con-
sidered during the path computation process.
The client can also request any combination
of the listed path requirements. The require-
ments also relate to each other, as shown in the
following equations.

orderN ⊆ viaN (1)

viaE ⊆ viaN (2)

Eq. 1 implies that all domains that are in-
cluded in orderN must also be part of viaN.
Eq. 2 implies that all domains with at least
one adjacent inter-domain links in viaE must
also be part of viaN. We define the Selective
Path Finding (SPF) problem:

Selective Path Finding (SPF) problem -
Given a graph G = (N ,L) consisting
of a set N of N domains, a set L of
l inter-domain links, and a set R =
{notviaN, notviaE, viaN, viaE, orderN} of R
requirements. A specific domain from the set
N is denoted by n, and a specific inter-domain
link from the set L between domains u and v is
denoted by (u, v). Find a simple path P from a
source domain s to a destination domain d sat-
isfying R, such that the total path hop count
is minimized.

We limit to simple multi-domain path since
using only simple multi-domain paths, instead
of allowing loops, would lower the signaling
complexity between domains in providing the
lightpaths between them. Requirements not-
viaN and notviaE play a minor role in the
complexity of the SPF problem, since if only
notviaN and notviaE is given, the forbidden
domains and inter-domain links can be pruned
from the graph and a run of a conventional
shortest path algorithm such as Dijkstra’s algo-
rithm [?] is sufficient to find an optimum path.
The SPF problem is NP-hard, when any of the
size of viaN, viaE or orderN is more or equal to

two, and can be proven via a reduction to the
NP-hard Hamiltonian Path problem [?] when
|viaN| = N .

8.2 Routing Algorithm

We focus on solving the SPF problem via an
exact algorithm which we refer to as the SPF
algorithm that is based on the k-shortest paths
approach [?], where k is not predetermined but
incremented adaptively. Before the SPF algo-
rithm is run, we conduct a preprocessing phase
that eliminates domains in requirement not-
viaN and inter-domain links in notviaE from
the network graph G. The pseudocode of the
algorithm is given in Algorithm 1.

During the path finding process, each do-
main n will keep at most k paths, with each
path denoted by Pnk. A set of paths main-
tained by a domain n is denoted by Pn. Each
Pnk is paired with its path length (in hops)
Dnk and last visited domain n whenever it is
inserted into (or extracted from) the priority
queue Q.

The algorithm first initializes a path consist-
ing of just the source domain, Ps1 and adds it
into Ps in line 1. The path length (in hops)
of Ps1 is set to zero. Ps1 is then inserted into
Q in line 2. While Q contains at least a path,
the path with the lowest path length, Puk is
extracted from Q in line 4. If domain u is the
destination domain d and all of the require-
ments inR are satisfied by Puk, Puk is returned
as a solution to the problem in line 7. If do-
main u is not the destination domain d, or the
requirements in R are not satisfied, each adja-
cent domain v of domain u is checked for pos-
sible path extension Pvk in lines 8-10. Line 11
ensures that the extended path Pvk is simple,
i.e. it does not repeat any vertices. Line 12 en-
sures that the sequence of Pvk obeys R. Line
12 implements the Look-Ahead routine, which
will be explained in subsection 8.2.1. Lines 14-
16 implements the Path Comparison routine,

10

Algorithm 1 SPF(G, s, d,R)

1: Ps1 = [s], Ds1 = 0, add Ps1 into Ps

2: INSERT(Q, s, Ps1, Ds1)
3: while Q 6= φ
4: (u, Puk, Duk)← EXTRACT-MIN(Q)
5: if Puk ∈ Pu

6: if u = d and R is fulfilled
7: return Puk

8: if u 6= d
9: for each v adjacent to u

10: Pvk = Puk + v
11: if Pvk is simple
12: if Pvk fulfills orderN
13: if all domains in viaN is still reachable
14: if Pvk is superior to any P ∈ Pv

15: remove all the inferior P
16: if no P ∈ Pv is superior to Pvk

17: add Pvk into Pv

18: Dvk = Duk + 1
19: INSERT(Q, v, Pvk, Dvk)

which will be explained in subsection 8.2.2. If
the extended path Pvk is valid, its correspond-
ing path length Dvk is updated in line 18, and
Pvk is inserted into Q. Though we use hop
count as the path finding metric in this pa-
per, the SPF algorithm is also usable with the
inter-domain length as the path finding metric,
provided that the Path Comparison routine is
omitted.

Without the Look-Ahead and Path Compar-
ison routines, the algorithm is essentially a
brute-force approach on solving the SPF prob-
lem. Since a brute-force approach would take a
very long time to compute the path when the
network size is large or when the number of
requirements is large, we introduce the Look-
Ahead and Path Comparison routines that sig-
nificantly reduce the computation time of find-
ing the feasible multi-domain path with mini-
mum hop count.

8.2.1 Look-Ahead routine

The Look-Ahead routine checks if all the do-
mains in viaN that have not been visited by
the path extension Pvk are still reachable. We
only consider viaN since all of the domains in-
cluded in the requirements viaE and orderN
are also part of viaN. As an initialization step
to the Look-Ahead routine, we make a copy of
the original graph G as G2, and a copy of viaN,
as viaN2. We then prune all domains that
are part of Pvk (except v) from G2 and viaN2.
Next, we run a breadth-first-search (BFS) al-
gorithm [?] from v to all remaining domains in
G2, to get the shortest path tree T . If viaN2
is a subset of T , then all domains in viaN that
have not been visited by Pvk are still reachable
from domain v. If the Look-Ahead routine de-
cides that any further path extension from Pvk

will never lead to a path that fulfils R, Pvk will
not be considered.

11

8.2.2 Path Comparison Routine

The Path Comparison routine compares the
candidate multi-domain path Pvk with all ex-
isting candidate paths in Pv, and eliminates
paths that are inferior to at least another path.
A path P1 is superior to another path P2, if P1

is a subset of P2, and all the domains in P2

that are not part of P1 are not in viaN, and
without these domains, P1 = P2. For exam-
ple, any two domains u and v that is directly
connected by an inter-domain link (u, v) in P1,
but instead connected through several inter-
mediate domains that does not consist of any
domains from viaN in P2, would imply that P2

is inferior to P1.

If Pvk is superior to any existing path(s)
maintained in the list of Pv, the inferior paths
are removed since they will not lead to a more
optimal path than Pvk. Even though they may
still exist in Q, once they are extracted from Q,
they will not be processed due to line 5. On the
other hand, if Pvk is inferior to at least a path
maintained in Pv, Pvk will not be added into
Pv since a more superior path already exist.

8.2.3 Time Complexity

The initialization phase in lines 1-2 has a time
complexity of O(1). The extraction procedure
in line 4 takes at most O(kmaxN log(kmaxN))
time, since Q contains at most kmaxN paths.
The path validation procedure in lines 6-7
takes at most O(N + R) time. The for loop
in line 9 takes at most O(kmaxE) time, since
it is invoked at most kmax times for each side
of each inter-domain link. Checking if a path
is simple in line 11 takes at most O(N) time.
Checking if orderN is satisfied in line 12 takes
at most O(N +R) time. The Look-Ahead rou-
tine in line 13 takes at most O(N+E+R) time.
The Path Comparison routine in lines 13-16
takes at most O(kmaxNR) time. Summing up
all the contributions, the worst-case complex-

ity of the algorithm is O(kmaxN log(kmaxN)+
kmaxE

2 + k2maxNER. Since kmax can grow
exponentially with the input, the algorithm
has an exponential running time. However, a
polynomial-time tuneable heuristic can easily
be derived by fixing k (e.g., see [?]).

9 Topology exchange as part
of NSI

This topology exchange supports distribution
of NML documents so this can work with the
NSI framework. Instead of domain names we
can use the network identifiers used within the
NSI community.

Although the topology exchange can be run
as a stand alone service, the three components
of the topology exchange can be integrated into
existing NSAs. In this case support needs to
be added to the NSI API. The components can
be announced as extra capabilities of an NSA.

9.1 Key distribution

Key distribution is problematic, since many
developments within NSI did not focus too
much on the security aspects giving no facil-
ity to distribute information with end-to-end
security.

X.509 certificates are already being ex-
changed between peering NSAs. So all of the
certificates should now also be exchanged with
the NSA that acts as an index. This is manual
labour. After this every NSA can get all cer-
tificates since they can be requested from the
index.

An other option would be to drop key dis-
tribution or make it optional in the initial im-
plementation.

The discovery service is not the place to ex-
change keys because documents can be forged
easily by intermediate NSAs when the docu-
ments are not signed.

12

9.2 Bootstrapping

The X.509 certificates need to be shared with
the index. The most simple way is to let ev-
eryone peer with the NSA running this service.

Another way is to distribute information on
who acts as index is to use the Discovery Ser-
vice.

9.3 Resolving STP’s

Since we should not derive structure from
a STP it’s not easy to see what net-
work/topology a STP belongs to. To do this
one would have to fetch all topology files and
do an exhaustive search on the STP.

Solutions to this problem are to extract the
domain name from the STP by doing string
manipulation, or to create a lookup service
that is keeps a topology database and facili-
tate the searching on the STP.

9.4 Services

The three components of this topology ex-
change need to be implemented in the NSI
framework. Here we describe the minimum set
of functions for our components.

9.4.1 Topology Index (TI)

getIndex() provides the full index to the re-
questing domain

updateIndex(domain, data) updates the
data in the index for the given domain.
This will only be done if verified.

subscribeIndex(domain, callback) allows
a consumer to receive/subscribe to the
index for topology update, when the
index is updated the index will send a
message to the callback url.

9.4.2 Topology Provider (TP)

getTopology() this will return a default
topology.

getTopology(requester) the topology re-
turned will be customized depending on
the requesting consumer; in other words
this call will account for policies between
domains. In most cases we expect that a
default topology will be returned.

getTopology(global route) global route is
a route based on summary information
on how it wants to route; based on this
a TP can see through which peer the in-
formation comes in and apply a peer pol-
icy based on the agreement between peers.
This means that in this call we do apply
potentially two types of policies: domain
policies (as in getTopology) and peer poli-
cies.

9.4.3 Topology consumer (TC)

Optional:

update() will be triggered by the Topology
Index when a new index is available. In or-
der to receive updates the consumer needs
to describe with this function as callback.

Pathfinder
In case of the path finder extra function calls
are exposed:

The path request could be in the form of

getPath (A to B)

getPath (A to B via < C,D >)

getPath (A to B via < (E,F) >)

getPath (A to B notvia < C,D >)

getPath (A to B notvia < (E,F) >)

or any combination of them.

13

10 Future work

Open issue to be solved in the next stages are:

• index replication methods need to be re-
searched more in depth;

• more in-depth discussion needed within
the NSI community to see if we can pass
messages on the control plane instead of
directly peering and discuss how we can
combine topology providers with aggrega-
tors;

• more research is needed on how to use the
foreign domains information, For now it
can be used to hint the requester;

• inclusion of dynamic information, i.e. ac-
tual bandwidth used/available on links at
times of request.

14

	Introduction
	Topology exchange considerations
	Centralized topology exchange
	Decentralized topology exchange
	Disclosure level
	Announcing reachability

	Topology Exchange Architecture
	Topology index
	Data format
	Foreign Domains
	Populating the Topology Index
	Security concerns
	Proxy requests
	Synchronization and fail over

	Topology Provider
	Topology files

	Topology Consumer
	Update notifications
	Authentication

	Architecture operations
	Interaction between components
	Bootstrapping
	Topology update
	Topology retrieval
	Key distribution
	Path finder interaction example
	Validation of topologies

	Path Finding
	Path Requirements
	Routing Algorithm
	Look-Ahead routine
	Path Comparison Routine
	Time Complexity

	Topology exchange as part of NSI
	Key distribution
	Bootstrapping
	Resolving STP’s
	Services
	Topology Index (TI)
	Topology Provider (TP)
	Topology consumer (TC)

	Future work

