
GWD-I  Vijayshankar Raman, IBM Almaden Research Center 
Category: TYPE Inderpal Narang, IBM Almaden Research Center 

Chris Crone, IBM Silicon Valley Lab 
Laura Haas, IBM Silicon Valley Lab 

Susan Malaika, IBM Silicon Valley Lab 
Tina Mukai, IBM Silicon Valley Lab 

Dan Wolfson, IBM Silicon Valley Lab 
Chaitan Baru, San Diego Supercomputer Center 

 
DAIS Working Group  February 9, 2003 
 

rshankar@almaden.ibm.com   1 

 
Services for Data Access and Data Processing on Grids 
 
Status of This Memo 
 
This memo provides information to the Grid community concerning data management. 
Distribution is unlimited. 
 
Copyright Notice 
 
Copyright © Global Grid Forum (2002).  All Rights Reserved. 
 

Abstract 
 
An increasing number of grid applications manage data at very large scale, of both size and distribution. In 
this paper we discuss data access and data processing services for such applications, in the context of a 
grid. The complexity of data management on a grid arises from the scale, dynamism, autonomy, and 
distribution of data sources. The main argument of this paper is that these complexities should be made 
transparent to grid applications, through a layer of virtualization services. We start by discussing the 
various dimensions of transparent data access and processing, and illustrate their benefits in the context of a 
specific application. We then present a layer of grid data virtualization services that provide such 
transparency and enable ease of data access and processing. These services support federated access to 
distributed data, dynamic discovery of data sources by content, dynamic migration of data for workload 
balancing, parallel data processing, and collaboration. We describe both our long-term vision for these 
services and a concrete proposal for what is achievable in the near term. We also discuss some support that 
grid data sources can provide to enable efficient virtualization. 
 
 



GWD-I  Vijayshankar Raman, IBM Almaden Research Center 
Category: TYPE Inderpal Narang, IBM Almaden Research Center 

Chris Crone, IBM Silicon Valley Lab 
Laura Haas, IBM Silicon Valley Lab 

Susan Malaika, IBM Silicon Valley Lab 
Tina Mukai, IBM Silicon Valley Lab 

Dan Wolfson, IBM Silicon Valley Lab 
Chaitan Baru, San Diego Supercomputer Center 

 
DAIS Working Group  February 9, 2003 
 

rshankar@almaden.ibm.com   2 

Contents 
 
Abstract............................................................................................................................................ 1 
1. Introduction ........................................................................................................................... 3 

1.1 Data Access and Data Processing on Grids..................................................................... 3 
1.2 An Example....................................................................................................................... 4 
1.3 Overview of the Paper....................................................................................................... 5 

2. Current Data Management Technologies and Limitations ................................................... 5 
2.1 File Systems and Single Site DBMSs ............................................................................... 5 
2.2 Federated DBMS .............................................................................................................. 7 
2.3 Security, Accounting, and Billing....................................................................................... 9 
2.4 Maintenance of Distributed Data....................................................................................... 9 

3. Grid Data Virtualization Services........................................................................................ 10 
3.1 Core Virtualization Services............................................................................................ 11 
3.2 Auxiliary Services............................................................................................................ 13 
3.3 Interaction with other OGSA services ............................................................................. 14 
3.4 Usage Scenario Explaining above Services and their Interaction .................................. 15 

4. Proposal for Stage 1 Grid Data Services............................................................................ 17 
4.1 Stage 1 Virtualization Services ....................................................................................... 17 
4.2 Data Source Requirements for Virtualization.................................................................. 20 

5. Related Grid Projects.......................................................................................................... 21 
6. Conclusions ........................................................................................................................ 22 
7. Security Considerations...................................................................................................... 22 
Author Information ......................................................................................................................... 22 
Intellectual Property Statement ..................................................................................................... 23 
Full Copyright Notice ..................................................................................................................... 23 
References .................................................................................................................................... 23 



GWD-I  February 9, 2003 

rshankar@almaden.ibm.com   3  

1. Introduction 
Grid computing began with an emphasis on compute-intensive tasks like prime number finding, key 
cracking, and so on. These applications benefit from massive parallelism for their computation needs, 
but are not data intensive; the data that they operate on does not scale in proportion to the computation 
they perform. In recent years, this focus has shifted to more data-intensive applications, where 
significant processing is done on very large amounts of data. These applications fall into two 
categories, based on how they use the grid: 

For Collaboration: In these applications, data is generated at a large number of sites, and needs to be 
accessed and processed in a unified fashion. For example, the Digital Radiology project at the 
University of Pennsylvania proposes to share mammogram information across 2000 hospitals in the 
U.S.A. [1]. e-Diamond is a similar project in the U.K. In the CERN CMS project scientists all over the 
world will analyze data generated from particle accelerators and share the results of their analysis with 
other scientists [2]. There are many proposals for “World Wide Experiments” in astronomy, earth-
observation, life sciences, etc., where expensive experimental equipment is installed at a few places 
and the experiment is observed and controlled by scientists across the world [3,4]. 

For Scalability: In other applications, a large amount of data needs to be processed, but the data is 
generated from only a few sites. The task is highly data parallel, in that each part of the data can be 
processed largely independent of the other parts, with little communication. So the task can be easily 
parallelized by spreading data across grid nodes. Many data analysis workloads often exhibit such data 
parallelism. Another example is a Web server running an Online Transaction Processing (OLTP) 
workload. Web applications often have bursty loads that can saturate at the underlying database server. 
These peak loads can be dynamically offloaded to “mid-tier” caches at the Web Application Server [5].  

The goal of this paper is to investigate grid services for meeting the data access and data processing 
needs of such applications. We start by discussing these needs. 

 

1.1 Data Access and Data Processing on Grids 
As discussed in [6,7], the fundamental value proposition of a grid is virtualization, or transparent 
access to distributed compute resources. For a data-intensive application to derive value from a grid, 
this virtualization needs to include distributed data sources as well. Two sets of transparencies are 
relevant to data. First is transparencies for data access that present a unified view of grid data sources 
to applications accessing data. Second is transparencies for data processing that present a unified view 
of grid compute resources to applications processing data. 

1.1.1 Transparencies for Data Access 
Heterogeneity Transparency 
An application accessing a data source should be independent of the actual implementation of that 
source, so that both can evolve independent of each other. To achieve this independence, the 
application should program to a logical schema (view) that is separate from the implementation.  In the 
conceptual relational data model, the implementation comprises the physical data organization and the 
layout of data across tables. However, in practice data sources exhibit many other vagaries of 
implementation as well, such as the data model used (e.g. relational DBMS vs. LDAP directory) and 
the specific software product used. 

Name Transparency  
A common principle in distributed systems is that application be transparent to data location. With grid 
sources, applications should not even specify data objects explicitly. Instead, data access should be via 
logical domains, qualified by constraints on attributes of the desired object. For example, in the digital 
radiology project, a doctor may want to find records of all patients in a specific age group, having a 
specific symptom. The doctor does not know which hospitals have such patients, and his query 



GWD-I  February 9, 2003 

rshankar@almaden.ibm.com   4  

mentions only “Patients”, a logical domain spanning 2000 hospitals. We propose that the query 
processor use a separate discovery service to map from logical domains to data sources.  

Name transparency automatically subsumes the traditional notions of location and replication 
transparency. Since the application does not even specify sources explicitly, the sources can migrate or 
be cached or replicated without changing the applications. As part of the data access request, 
applications can specify properties like proximity, staleness, and cost, and suitable replicas should be 
chosen automatically. Note that these properties are simply another kind of constraint on the data 
object, along with the content-based constraints discussed above. 

Ownership & Costing Transparency 
 If grids are successful in the long term, they will evolve to span organizational boundaries, and will 
involve multiple autonomous data sources. As far as possible, applications should be spared from 
separately negotiating for access to individual sources, whether in terms of access authorization, or in 
terms of resource usage costs. 

1.1.2 Transparencies for Data Processing 
Parallelism Transparency 
An application processing data on a grid should automatically get the benefits of parallel execution 
over grid nodes. The application should only have to specify the dependencies among the tasks it needs 
to execute, in a declarative workflow language. A workflow coordination service should automatically 
orchestrate this workflow in a parallel fashion, taking care of data movement, node failures, etc. In 
cases where the processing consists of traditional data management tasks like Online Transaction or 
Analytic Processing (OLTP or OLAP), the parallel DBMS should automatically expand (shrink) by 
adding (removing) nodes in response to workload fluctuations. 

Distribution Transparency 
Applications should be able to maintain distributed data in a unified fashion. This maintenance 
involves several tasks, such as ensuring consistency and data integrity, auditing access, taking backups, 
and so on. 

1.1.3 Performance Tradeoffs in Virtualization 
Virtualization almost always involves loss of performance. Since many applications may use a grid 
primarily for high performance, all these transparencies should be discardable. Virtualized access 
should be the default but not the only behavior. An application that wants high performance should be 
able to directly access the underlying sources, e.g., in order to apply optimizations specific to a 
particular data format. 

1.2 An Example 
To understand the power of such transparent access, consider a worldwide grid of hospital information 
systems, containing patient records such as hospital visits, medication history, doctor reports, x-rays, 
symptoms history, genetic information, etc. Such a grid could enable a variety of useful tasks. We 
outline a few examples below: 

Personal Health Digest: A patient forms an integrated view of his medical records scattered across 
various hospitals. An insurance agency could use such views to estimate policy risks and decide on 
premiums. 

Progress Comparison: A patient compares her progress on particular symptoms with that of other 
similar patients, to evaluate her doctor and her hospital.  

Biohazard Detection: A public health agency periodically mines patient records from various hospitals 
in a geographical area, to detect biohazards, e.g., it could check if all hospitals within 10 kms of a 
certain river have experienced a spike in a particular symptom, to detect river water contamination. 



GWD-I  February 9, 2003 

rshankar@almaden.ibm.com   5  

Computer Aided Diagnostics: A doctor compares a given patient’s symptoms with that of other 
patients around the world, to diagnose diseases. This can be especially helpful for diseases that are 
uncommon in that region and therefore unfamiliar to the doctor. 

Direct Marketing: A pharmaceutical company tries to access names and addresses of patients taking a 
certain medication, so that it can send them a coupon for its alternative drug. An authorization service 
automatically checks if the patients have “opted in” to this service, and denies access to records of 
those who have not. 

Pharmacogenetics: A researcher studies patients with common characteristics to study the efficacy of 
various treatments on classes of people. The analysis is compute-intensive, but the data and 
computation are dynamically distributed among multiple nodes on a grid. 

The challenge in performing these tasks is that hospital information systems are distributed, 
heterogeneous, and autonomously administered. Patient information is independently entered at 
different hospitals, which bear responsibility for the security and privacy of this data. The goal of grid 
data services is to tackle these challenges and present a unified view of this data, so as to enable tasks 
such as the above. We will use this hospital grid as a running example throughout this paper. 

1.3 Overview of the Paper 
The level of transparency described above is far beyond the capabilities of current data management 
technologies. Nevertheless, we think that this is the promise of the grid, and is worth pursuing as an 
end goal. In the rest of the paper we present an evolutionary approach towards this goal.  

We start the paper with a discussion of current data management technologies, the levels of 
transparency they provide, and their limitations when applied to the grid context (Section 2). 

We then present a layer of grid data virtualization services to be developed over the long term (Section 
3). This layer lies between grid applications and grid data sources, and masks the distributed, 
heterogeneous, and autonomous nature of grid data sources to grid applications. The Open Grid 
Services Architecture (OGSA) [6] proposes a layered stack of services for transparent access to 
compute resources. The data virtualization services we propose fit mainly in the data management 
layer, but interact closely with other OGSA services. 

After discussing this long-term goal we make a concrete proposal for virtualization services to be 
implemented in the near term (Section 4). We also discuss support that the grid data sources can 
provide for effective virtualization.  We briefly describe some related grid projects in Section 5 and 
conclude in Section 6. 

 

2. Current Data Management Technologies and Limitations 
Data management technologies such as Database Management Systems (DBMSs) and file systems 
have been studied for several decades, and are well established. Grids introduce new challenges like 
scale, heterogeneity, distribution, and autonomy. However, current data management software already 
address these challenges to some extent, especially heterogeneity and distribution transparency. We 
now discuss this support in detail. 

2.1 File Systems and Single Site DBMSs 
The lowest level data access interface that most applications deal with is the file open/read/write/close 
interface. Distributed file systems enhance this interface with some location transparency, mapping 
logical file names onto file locations. However, all further data processing must be explicitly 
programmed by applications.  

 DBMSs have long provided a higher level interface to manage structured data. This interface 
virtualizes the details of the physical data organization, and provides applications with a high level, 
declarative query language: SQL. Applications only need to specify what task they want to perform, 



GWD-I  February 9, 2003 

rshankar@almaden.ibm.com   6  

and do not have to program how the task is to be performed; the DBMS optimizer automatically 
searches among several possible implementations and chooses the best one. Besides declarative access, 
DBMSs also provide several business-critical features such as transactional updates, data integrity, 
reliability, availability, high performance, concurrency, parallelism, and replication. 

Traditionally, DBMSs have focused on structured data, laid out in tabular form. In recent years, they 
have been extended to provide support for non-tabular data, including large objects, abstract data types, 
user-defined functions, and so on [8,9]. XML [10] has now become popular not only as a markup 
language for data exchange, but also as a data format for semi-structured data. Therefore DBMSs have 
been adapted to store XML data, either shredded into relational rows (without the markup), or stored 
intact in the tables (with the markup). A new query language for XML called XQuery [11] is under 
draft design in the W3C. Prototype implementations for XQuery are gradually becoming available, 
including implementations that query over XML views of relational data [12].  

2.1.1 Integrated Access to External Data 
A recent advance in DBMS technology has been to allow data stored in the database to be linked with 
data stored external to the database [13, 16]. The most common use of this is to integrate file data with 
database metadata. This coupling allows an application to run sophisticated queries against the DBMS 
to determine files of interest, without slowing down the subsequent accesses to the linked files [14] 
(Figure 1). 

DBMS

Client application
SQL
API

File system API
(or http protocol)

File Servers
(4) Direct data delivery

2.
 R

et
ur

n 
U

RL

1. SQ
L Q

uery

(3) Open File

 
Figure 1: Steps involved in integrated file and database access 

Individual columns in a table are declared as DATALINK columns [15] to indicate that they store links 
to externally stored files. The value stored in a DATALINK column is a URL, which is provided along 
with values for other columns when a row is inserted. A DATALINK column can be annotated with 
access rules for read or update operations to the linked files, based either on database authorization or 
on file system ACLs. For the database authorization option, the DBMS may augment the URL with the 
access-token information, which can be validated by a servlet or an intermediary on the fileserver, 
before the file can be accessed. Thereby access policies to both data and metadata can be set and 
controlled at a single point [13]. A DBMS can also coordinate the access to files and database metadata 
in other ways, such as referential integrity enforcement, unified replication, and coordinated 
backup/recovery. Since these deal with virtualization, we expand on them in Section 3. 

The net effect of DATALINKs is a simple federation of structured DBMS data with semi-structured 
and unstructured file data. The DBMS provides name and location transparency for files access, 
because an application can specify predicates on file and other metadata, which the DBMS can 
evaluate and map onto a file handle. 

Another form of integration between files and relational data is the ability of DBMSs to index XML 
data held in files, making it possible to search and locate XML file content speedily through SQL 
interfaces [16]. 

2.1.2 Data Access Interfaces  
There are many programmatic interfaces to access SQL DBMSs, with JDBC (Java Database 
Connectivity) and ODBC being the most widely used [17]. They provide support for a variety of 
database operations, including SQL query specification and execution, transaction processing, etc. The 



GWD-I  February 9, 2003 

rshankar@almaden.ibm.com   7  

popularity of Web Services as a method for programs to communicate with one another has introduced 
another interface to relational DBMS. It is now possible for Web Service clients to issue SQL requests 
and to invoke database “stored procedures” (e.g., [18]). 

ADO.NET is an application level interface to Microsoft's OLE DB data sources [19]. It enables 
applications to query databases using SQL, access information in a file store over the Internet, access 
email systems, save data from a database into an XML file, and perform transactional database 
operations. ADO also supports a disconnected mode of operation, where clients can work on cached 
copies of prior query results without a connection to the data source. 

Recent work has pointed out some limitations of the aforementioned interfaces for long-running tasks, 
especially for result delivery; JDBC and ODBC deliver query results in a synchronous, cursor-based 
fashion, whereas long running applications instead prefer asynchronous result delivery, optionally to 
third party sites [20, 21]. But these interfaces have still further limitations with respect to virtualization. 

JDBC and ODBC provide some heterogeneity transparency, handling SQL DBMSs and a few other 
simple data types (like comma-separated-value files). However, they do not handle many kinds of data 
sources well, especially ones without database-like query and transaction interfaces. We give examples 
of such data sources below in Section 2.2. 

Support for other kinds of transparency (name, ownership and costing) is even more limited in these 
current data access interfaces.  

2.2 Federated DBMS 
Distributed data is the reality in most modern enterprises, even without Grid computing [22, 23]. 
Competition, evolving technology, mergers, acquisitions, geographic distribution, and the inevitable 
decentralization of growth all contribute to create a diversity of sites and data formats in which critical 
data is stored and managed. Yet, it is only by combining the information from these systems that an 
enterprise can realize the full value of the data they contain. Hence, the data management community 
has developed federated database technology, which provides a unified access to diverse and 
distributed data [23, 24, 25, 26]. 

In a federated architecture, a federated DBMS serves as a middleware providing transparent access to a 
number of heterogeneous, distributed data sources. The federated DBMS provides two kinds of 
virtualizations to users: 

• Heterogeneity transparency, via the masking of the data formats at each source, the hardware and 
software they run on, how data is accessed at each source (via what programming interface or 
language), and even about how the data stored in these sources is modeled and managed.  

• Distribution transparency, via the masking of the distributed nature of the sources and the network 
communication needed to access them.  

Instead, a federated system looks to the application developer like a regular DBMS. A user can run 
queries to access data from multiple sources, joining and restricting, aggregating and analyzing it at 
will, with the full power of a DBMS query language like SQL or XQuery. A user can also update the 
data, if they have the right permissions at the sources. Yet unlike JDBC, ODBC, or ADO, the data 
sources in a federated system need not be DBMSs at all, but in fact could be anything ranging from 
sensors to flat files to application programs to XML, and so on. 

2.2.1 Query Execution 
A typical federated system is shown in Figure 2. Applications can use any supported interface 
(including ODBC, JDBC, or a Web service client) to interact with the federated DBMS. The federated 
DBMS communicates with the data sources by means of software modules called wrappers [26]. When 
an application submits a query to the federated system, the federated DBMS identifies the relevant data 
sources and develops a query execution plan for obtaining the requested data. The plan typically breaks 
the original query into fragments that represent work to be delegated to individual data sources, as well 



GWD-I  February 9, 2003 

rshankar@almaden.ibm.com   8  

as additional processing to be performed by the federated DBMS to further filter, aggregate or merge 
the data [13, 15]. The ability of the federated DBMS to further process data received from sources 
allows applications to take advantage of the full power of the query language, even if some of the 
information they request comes from data sources with little or no native query processing capability, 
such as simple text files.  

Federated
D B M S

O rac le
R elational

D B MS

Data

   SQ L API
(JDBC/O DBC)

Wrappers

00001|P atient 1|...
00002|P atient 2|...

00003|P atient 3|...
00004|P atient 4|...

Client

DBM S

D ocu m en tum
do cum e n t

m a n a g em en t
so ftw a re Data

Simp le  text file  o r
 sp readshee t

App lica tion

DataCatalog
 

 

Figure 2: Federated DBMS Architecture 

The federated DBMS has a local data store to cache query results for further processing and 
refinement, if desired, as well as to provide temporary storage for partial results during query 
processing. 

2.2.2 Data Access Mechanisms 
A wrapper is a piece of code, packaged as a shared library that can be loaded dynamically by the 
federated server when needed. Often, a single wrapper is capable of accessing several data sources, as 
long as they share a common or similar Application Programming Interface (API). The process of 
using a wrapper to access a data source begins with registration in a system catalog. This is the means 
by which a wrapper is defined to the federated server and configured to provide access to selected 
collections of data managed by a particular data source.  

Increasingly, Web services mechanisms are being used to access data sources, and data access APIs are 
being enhanced to operate over Web Services interfaces. Web Service interfaces can make it possible 
to access data diverse data sources without knowing the underlying implementation, which is an ideal 
characteristic for the grid. There is also work on integrating the Web Service access interface into a 
wrapper itself [27]. 

Figure 2 shows a sample federated system architecture in which the federated DBMS accesses diverse 
data sources that are shown on the right, which are a traditional DBMS such as Oracle, a simple text 
file or spreadsheet, and a specialized application, such as the Documentum document management 
software. A single federated query could perform a join between disease data in Oracle, patient data in 
a simple text file, and medical journals on diseases in a Documentum data source. 

To summarize, a federated DBMS today provides good heterogeneity transparency and some 
distribution transparency. A key limitation is that applications have to explicitly specify the data 
sources in a federated query. This means that addition of new data sources involves changing the 
application, typically a very expensive task. Each data source must also be explicitly registered to the 



GWD-I  February 9, 2003 

rshankar@almaden.ibm.com   9  

federated DBMS, along with its wrapper. There is not much ownership transparency or location 
transparency because the application has to be aware of individual sources. 

2.3 Security, Accounting, and Billing 
DBMSs currently handle security, accounting, and billing on a per data source basis. Data security 
breaks down into three distinct tasks: 

• Authentication - Current DBMS systems offer various “sign-on” mechanisms for identifying the 
user. The simplest of these mechanisms rely on trust; the DBMS assumes that the application 
above the DBMS authenticates the user. A slightly more robust authentication mechanism allows 
the application to provide a userid and password (either as clear text, or encrypted). Some DBMSs 
also support more sophisticated schemes like Kerberos, which use encrypted authentication tickets. 

• Authorization: Once a user is authenticated, a DBMS must determine what data they may access, 
and what tasks (query, update, create table, etc.) they may perform. SQL DBMSs can maintain 
such permissions internally, using GRANT and REVOKE statements. Permissions can be 
specified on arbitrary subsets of the database defined by views. Authorization can be granted at the 
level of a single user or a group. Authorization can also be managed by an external security 
service. For example, DB2 for z/OS can use the z/OS SecureWay Security Server (formally known 
as RACF) or other third party security services (e.g. ACF/2 or TOP SECRET). An advantage of 
external security services is that they can easily control access to multiple DBMS systems, thus 
reducing the overhead of managing multiple DBMSs.  

• Auditing: Most DBMS systems support auditing of access to data to verify that authorizations are 
being enforced correctly. Audit records can log who accessed the data, and what they did (e.g. 
User A read 3 rows of data, and updated 5 rows of data in table XYZ), and allow the detection of 
unauthorized access or attempted access. Most systems allow some degree of tailoring of the 
events that are audited.  

The main limitation of security support in current systems lies in security across multiple sources. 
Authentication, authorization, and auditing are typically enforced and managed separately for each data 
source, even for the same user. This results in a loss of ownership transparency because applications 
have to be separately handle security with each data source. 

2.3.1 Accounting and Billing  
It is desirable to have a DBMS provide integrated accounting facilities with tools to perform analysis 
of this data, and help to automate the billing of end users. Usually the actual charge-back and billing 
process is handled by a separate, often third party, piece of software that takes into account, not only 
the DBMS usage, but also things like OS, Network, and Storage resource usage. 

2.4 Maintenance of Distributed Data 
Besides supporting query and update operations, DBMSs also provide various other facilities to 
manage data, such as backup and recovery, replication, data integrity enforcement, etc. Grid 
applications often require such management facilities, across multiple data sources. For example, the 
Encyclopedia of Life project at the San Diego Supercomputer Center [28] has an analysis pipeline that 
reads data from multiple biological databases, in order to produce putative assignments of biological 
function for all recognizable proteins in the currently know genomes. The resulting assignments thus 
have a “referential integrity” relationship with the data in the input databases. Input data could change 
due to subsequent experimentation and scientific developments, and this needs to related back to the 
quality of the assignments. 



GWD-I  February 9, 2003 

rshankar@almaden.ibm.com   10  

Data Sources

Information
Integration

Data
Analysis

Data
ArchivalApplications

Federated
Access

Collaboration

Other OGSA Services
Lifecycle, Billing, Authentication, Workload Management,

Transaction Management

Consistency
Management

Workflow
Coordination

Authorization ReplicationSchema Management

RegistryDiscovery

 
Figure 3: Grid Data Services. Shaded services are not data-specific and are taken from OGSA 

3. Grid Data Virtualization Services 
Figure 3 shows our data service architecture, with a layer of virtualization services between grid 
applications and data sources. These services virtualize various aspects of the grid, and make it appear 
as a single entity to the end-user applications. We believe that most applications will access data 
through this virtualization layer. For improved performance, many virtualization services could support 
“pass-thru” modes whereby an application can bypass much of the overhead of virtualization, at some 
penalty in functionality. Applications could also cache the result of prior virtualization service requests 
and bypass them on subsequent accesses. For example, an application could cache the result of a prior 
call to a discovery service, and directly access the underlying grid data source.  

In the short term, we propose that even if data sources are autonomous and dynamic, these 
virtualization services be statically setup and administered. In the long run, we envisage that these 
virtualization services will evolve into a networked collection of autonomous entities, with dynamic 
federation. They will independently choose the data sources that they virtualize (subject to security and 
access control constraints), and the level of service they provide based on application demand1.  

Our virtualization architecture is made up of core data virtualization services – discovery, federated 
access, workflow coordination, consistency management, and collaboration – that virtualize various 
aspects of the grid. These services in turn make use of some auxiliary services: authorization, schema 
management, and replication. All these services interact closely with a few OGSA services. We have 
also discussed and reconciled these virtualization services with the overall data grid architecture of the 
Globus project [51, 52]. 

Table 1 summarizes the role played by each data service in virtualization. We now discuss each service 
in turn, starting with the core virtualization services (Section 3.1), then the auxiliary services (Section 
3.2), and then their interaction with OGSA services (Section 3.3). 

 

 

 

                                                      
1 For instance, in our hospital grid example, various Health Maintenance Organizations (HMOs) and hospital groups 
could start virtualization services to cater to particular sets of customers whom they charge for access. 



GWD-I  February 9, 2003 

rshankar@almaden.ibm.com   11  

Table 1: Data Virtualization Services and Auxiliary Services 

 Transparencies 

Virtualization 
Services Heterogeneity Distribution Name Ownership 

and Costing Parallelism 

 

  

Maps logical domain + 
predicates onto actual data 
source or service 

Chooses  the best location 
and replica for a query 

Optimizes for 
source-
independent 
metrics like 
time or cost 

 

Allows access 
independent of 
data format and 
implementation 

Provides unified 
access to distributed 
data sources 

Provides some location 
transparency for file 
access  

  

 Maintains consistency 
of distributed data    

 
Maintains consistency 
of data updated in 
multiple places 

   

 

Core Services 

 

Discovery 

 

 

Federated 
Access 

 

Consistency 
Management 

 

Collaboration 

 

Workflow 
Coordination 

    
Automatically 
parallelizes 
request 

 

   Single sign-on  

  Migrates data on demand 
to right place   

Auxiliary Services 

Authorization 

Replication/Caching 
 

Schema 
Management 

Maps between 
data formats     

 

3.1 Core Virtualization Services 
3.1.1 Discovery Service 
A discovery service virtualizes the name and location of data on the grid, and forms the basic data 
virtualization service. Other virtualization services build on top of this name transparency to offer other 
kinds of transparency. As mentioned before, applications specify data sources in terms of logical 
domains qualified by predicates, rather than giving exact locations. When a virtualization service 
receives a request involving such a logical domain, it uses a discovery service to map this domain onto 
actual data source locations (OGSA Grid Service Handles (GSHs) [5]). In our hospital grid example, a 
query to a Federated Access Service can be “Find records for patient with specific symptom and in 
specific age group.” A discovery service is needed to map the logical domain “patient” and the 
predicates on age and symptom, into locations of data sources (hospitals) that could contain relevant 
records. 



GWD-I  February 9, 2003 

rshankar@almaden.ibm.com   12  

In addition to tracking data locations, discovery services also track the locations of other virtualization 
services, such as Federated Access Service, that support a particular logical data domain. When there 
are multiple instances of the same virtualization service, grid applications can use a discovery service 
to choose one instance based on criteria such as speed, cost, etc. 

Of course, there could be multiple instances of discovery services themselves. In the near term, one can 
implement the discovery service as a single centralized service, and let data sources publish their 
content to this service. In future, it needs to be made distributed for greater scalability, availability, and 
autonomy. Each grid application or virtualization services will then access a single discovery service, 
which in turn automatically spreads the request to other discovery services if needed. 

Data can be published and updated at a discovery service through two mechanisms: 

Advertising: A data source could explicitly publish its schema and content to one or more discovery 
services if it believes that the data is of value to many users. It can also publish its capabilities for 
querying the content (Section 4) to the discovery services. Likewise, a virtualization service could 
publish the sources it virtualizes. Such explicit publishing is akin to advertising. 

Crawling/Gathering: Instead of the data sources advertising their content, a discovery service could 
periodically crawl one or more data sources or virtualization services, to find out their content and 
capabilities.  

3.1.2 Federated Access Service (FAS) 
An enhanced version of a Federated DBMS (Section 2.2) is vital to virtualizing the distributed nature 
of grid sources. The main value of such a Federated Access service (FAS) is to provide applications 
with the virtual image of a single database, which can be queried and updated as a unified whole. Since 
the data is not explicitly moved to a “warehouse”, the application always accesses the most current 
version of the data. 

The limitations regarding location transparency (recall Section 2.2) are circumvented when Federated 
Access Service is combined with the Discovery Service. The application specifies its queries in terms 
of logical domains and predicates; the discovery service maps these onto relevant sources. Thus, the 
combination of FAS and Discovery Service provides applications with heterogeneity, distribution, and 
location transparency.  

Negotiation, Ownership and Costing Transparency, and Source Independent Performance Metrics 
As mentioned in Section 2.2, there is little or no ownership and costing transparency with respect to the 
following: 

 data source access costs 
 data source access permissions 
 data source resource usage limits 

The way to avoid this burden on the application is through a process of negotiation by the FAS. As part 
of its optimization process, the FAS validates access permissions, estimates resource usage of the 
query across all sources, and negotiates access costs on behalf of the application [22].  

Transformation: The FAS’s SQL querying functionality can directly be used to transform data 
between multiple source formats, for data integration. Such SQL transformation can be made quite 
efficient since the FAS can optimize the transformations. SQL allows mainly tabular kinds of 
transformations, but there has been work on extending this functionality [12, 29]. 

3.1.3 Workflow Coordination  Service 
As mentioned in the introduction, a large number of data-intensive grid applications use grids for 
scalability of performance, rather that for integrating data sources. These applications typically take the 
form of complex workflows of transformation and data analysis operations, running over large 
numbers of discrete objects. Since these operations are often data parallel grids can be used to scale up 
these applications on demand. However, it would be wasteful for each application to develop a separate 
way of parallelizing its workflow. Instead, we propose that applications only specify their workflow in 



GWD-I  February 9, 2003 

rshankar@almaden.ibm.com   13  

terms of inter-operation dependencies. A Workflow Coordination Services will automatically spread 
these operations across grid nodes, taking responsibility for moving and caching data and functions, 
recovering from node failures, and so on. In addition, the Workflow Coordination Service can also 
keep track of the lineage of operations performed on each data object, for provenance management and 
for avoiding redundant work. 

3.1.4 Consistency Management Service 
Grid applications often distribute their data across multiple sites, so we need a service that keeps the 
different pieces consistent with one another.  

The simplest form of such consistency is referential integrity [30]. For example, if data at one site A 
refers to data at another site B, an application may want to ensure that the data at B is not deleted while 
the reference at A remains. As we have discussed, DBMSs can provide such referential integrity 
between data in files, and database records that refer to these files. In addition, some DBMSs can also 
backup and restore database and file data in a unified manner [14]. A weaker notion of consistency is 
useful in the Replica Location Service, to maintain integrity between various replica directories [50]. 

Some grid datasets may also need more sophisticated integrity constraints. These constraints could also 
vary on an application-specific (user community-specific) basis, if different applications have different 
(even conflicting) views of the integrity constraints and relationship among distributed pieces of data. 
In addition to relationships among data objects, it will be important to maintain relationships among 
data and computational routines as well. For example, if a particular data set is the result of executing a 
particular program with a given set of inputs, the data set may not be very useful without the program 
or the inputs.  

3.1.5 Collaboration Service 
Many data-intensive grid applications involve sharing of data between users at different sites. To 
propagate updates to all users and to resolve conflicts, we need a collaboration service. The prime role 
of this service is to virtualize independent, distributed data updates; when a user asks the collaboration 
service to “checkout” a copy of a data object, she wants the latest version, irrespective of who, where, 
or when it has been updated (of course, the collaboration service can also maintain history and allow 
users to ask for prior versions). Clearly, the collaboration service must rely on the grid data sources to 
maintain version information; we discuss this support in Section 4.2 

3.2 Auxiliary Services 
3.2.1 Authorization Service 
The OGSA is developing a single-sign on mechanism for users and applications to authenticate 
themselves on a grid. However, as discussed earlier, data sources have their own specialized models 
for access authorization. We believe that it will be helpful to have an authorization service that maps 
between the grid authentication and data source specific authorization schemes, much like the third 
party security packages we discussed in Section 2.3. 

3.2.2 Schema Management service  
Many current grid applications store their data in fairly standardized and uniform schemas, even across 
sites. However in the long run there is likely to be schematic heterogeneity, as more and more data 
sources become available via a grid.  

Transforming and integrating data between heterogeneous data formats is a huge problem facing many 
enterprises today [31]. The problem is not in executing the transformation, but rather in formulating it. 
Indeed, there is an entire cottage industry of vendors developing Extract/Transform/Load (ETL) tools 
for data integration [32]. 

Simple heterogeneities can be resolved through the Federated Access Service itself, as we discussed in 
3.1.2. For resolving more complex heterogeneities, we propose that there be a separate Schema 
Management service on the grid. This service will not function automatically. Rather the maintainer of 
this service will have to manually use ETL tools to develop transformations between various popular 



GWD-I  February 9, 2003 

rshankar@almaden.ibm.com   14  

data formats (these are called “mapping metadata” in [33]), and then expose these transformations as a 
service that other applications and virtualization services can invoke2.  

Another use of transformation is for data archival. An emerging approach is to transform a given data 
set into an XML data object with a well-defined schema, and associate appropriate (standardized) 
metadata with every such object (e.g. see the Archival Information Package defined in the Open 
Archival Information System (OAIS) [34]).  

3.2.3 Replication  Service 
Replication Services are responsible for maintaining replicas and caches of data on a grid, in order to 
utilize the aggregate compute resources available. Consider an application that initially accesses data at 
a single site. If this site becomes a performance or availability bottleneck, the grid workload manager 
on that site [6] dynamically invokes a replication and caching service to copy subsets of the data to 
other lightly loaded sites. The application can now improve its performance by accessing these subset 
replicas rather than the original. The Federated Access Service can in turn make accesses to these 
distributed replicas transparent to the application. Effectively the distributed compute resources have 
been virtualized to the data-intensive application. 

A replication and caching service is responsible for initially replicating a dataset in whole or as a 
subset, and automatically maintaining these replicas in the face of updates to the original. A key 
requirement is that this operation be completely automatic and independent of the application data 
format. The invoker of the service should only have to specify the subset to replicate, and the latency 
(staleness) that can be tolerated.  

A replication service can also be used to gather data from multiple sources, rather than to distribute 
data to multiple targets. In fact, such gathering is necessary for data warehousing, as we shall see in 
Section 3.4. 

3.3 Interaction with other OGSA services 
The data virtualization services described above interact very closely with the grid services being 
defined by OGSA [5], to facilitate heterogeneity, ownership, and distribution transparency. We give 
some of the main interactions below. 

• Registry: The OGSA defines registries as places to store various kinds of information about grid 
resources. The Discovery Service can use these registries to store two kinds of information. The 
first is mappings from logical domains and predicates to locations of relevant data sources (there 
may be multiple data sources with identical data, due to replication). This information will be used 
to discover sources of interest for federated queries, and to exploit replicas whenever available. 
The second is the query and update capabilities of various data sources. This is quite important for 
federated query processing, because the FAS needs to know capabilities of various data sources in 
order to choose a query plan to access these sources.  

• Authentication Services: Ensuring the security of data will often involve support for multiple 
authentication mechanisms [35], because local and grid-based security will need to interact due to 
issues such as legacy security infrastructure, or local security requirements. A grid security 
infrastructure will need to support many security scenarios [36]. In order to handle the 
complexities of grid data management, additional services such as Credential/Identity propagation, 
Identity Mapping, Single Sign-on, Message level security, Transport level security (e.g. SSL), 
Message integrity, and Key/Certificate Management will be required to interact in a seamless, 
well-architected manner to ensure data security and integrity. 

                                                      
2 On each transformation request, the Schema Management service has to decide whether the data should be shipped to 
the Schema Management service or the transformation should be shipped to the source. This must be made based on the 
size of data involved, network transfer costs, and the extent to which the transformation function is proprietary and not 
exposable to the service invoker. 



GWD-I  February 9, 2003 

rshankar@almaden.ibm.com   15  

• Accounting/Billing Services: As discussed, the FAS must negotiate accounting and billing for a 
query or transaction with all the various data sources involved in the query or transaction. 
Although this need is well understood [37], grid design for accounting and billing are still in the 
early stages.  Some work is being done on establishing service level agreements for billing within 
IBM [38], and the ASP Industry consortium has proposed the Common Billing Interface 
Definition. The grid data access community needs to be involved as these services evolve, and be 
among the first users when they are available.  

• Notification Service: Grid virtualization services can use the grid notification service to know 
about various changes occurring at the data sources, such as: 

 Schema changes: This can be important for federated query processing. For example, schema 
changes of a foreign source may require re-evaluation of a query fragment of a federated query 
plan. Schema change notification is also important for replication if the target is to be kept 
consistent with the source.  

 State changes: Failures at a data source may have an impact on the processing of many 
virtualization services. For example, a Federated Access Service needs to know about failure 
of a query source so that it can adapt gracefully to return partial results involving the 
remaining sources. A Replication service would use such notifications to know if the source or 
target of replication have failed, and take corrective action to restart the replication at the 
failed end. 

3.4 Usage Scenario Explaining above Services and their Interaction 
We now return to the hospital grid example of the introduction, to illustrate how these data 
virtualization services can be used and how they interact with each other. We consider each of the 
processing tasks in turn: 

3.4.1 Federated Access Tasks 
Figure 4 shows the interaction between different grid data services for performing federated queries 
against multiple grid data sources. A query is submitted to a Federated Access Service, without 
specifying the data sources explicitly. The Federated Access Service contacts a Discovery Service to 
find data sources (hospitals) with relevant data, contacts the Authorization Service to get appropriate 
authorization tokens, and then queries them. 

 
H1

Federated
Access

H3H2

Biohazard Query

Patient Info Query

Discovery

Authorization

 
Figure 4: Executing a Federated Query  

(control flow in dashed lines) 

 
TransformationH1

Federated
Access Discovery

H2

Move Patient

 Record

 
Figure 5: Moving a patient's record between 

hospitals (control flow in dashed lines)



GWD-I  2003-02-08 

rshankar@almaden.ibm.com  16 

Two of the tasks in our hospital scenario (Section 1) fall into this category.  

• Personal Health Digest: The query specifies a patient identifier (e.g. SSN or name) and queries 
all data sources to get results of lab tests that were requested by any of the patient's 
dermatologists. The result is a 3-way join of the union of relevant patient records, the union of 
relevant doctor records, and the union of all lab records. 

• Biohazard: The query specifies a river, a distance from the river, and a symptom. The Discovery 
Service finds relevant data sources (in this case, hospitals satisfying the predicate “distance from 
river < X”). The result is a union of records from these hospitals, qualified by the symptom and 
distance predicate  

3.4.2 Data Movement Tasks 
One of the main tasks in our hospital scenario that involves data movement is the Patient Relocation 
task; when a patient relocates, he wants to move his records to the hospital in his new location. The 
patient may move between hospitals that store their records in different formats, involving complex 
transformations3.  

Figure 5 shows the service interaction needed to move data across grid data sources. The movement 
task is submitted to the Federated Access Service that transactionally (a) reads data from the source, 
(b) transforms it according to target’s schema (or may invoke Schema Management service),  (c) 
inserts it into the target, and d) deletes it from the source.  

3.4.3 Federated Data Analysis and Mining Tasks  
We now consider data analysis and mining tasks. Unlike federated queries, these are complex and 
long running, and need not run on the most current data. The Medical Research, Computer Aided 
Diagnostics, and Progress Comparison tasks fall into this category (the biohazard detection task does 
not, because it is run very frequently and needs access to current data for early detection).  

H4

Warehouse

AnalysisQueries

Replication

H1 H2 H3

T ransfor m
ation Tr

a n
sf

o r
m

at
io

n

 
Figure 6: Interaction between virtualization services for warehousing (control flow in 

dashed lines) 

Such analysis tasks are typically not run against the data sources themselves, but instead against 
warehouses. Figure 6 shows how patient records from hospitals can be aggregated at warehouses 
using the replication service. Transformation is crucial during warehousing for two reasons: (a) to 
unify data formats and schemas across multiple hospitals, and (b) to anonymize patient records. 
Transformation is not needed in federated querying (Figure 4), because the Federated Access itself 
transforms data (via query language operations) before integration. Notice that the data never flows to 
the replication service, but instead flows directly from hospital to warehouse. 
                                                      
3 The Health Level 7 [3] standard notation for patient and hospital exchange information is being gradually redefined as 
an XML schema. This XML standard can be adopted as the default data exchange format for such an application; it 
simplifies the transformation task and also allows sophisticated SQL/XML and XQuery queries to be run directly on 
the data being moved.  



GWD-I  2003-02-08 

rshankar@almaden.ibm.com  17 

Figure 7 shows a data analysis query run against the warehouse. Since the query is long running and 
compute intensive, the warehouse gets overloaded. The grid workload manager [6,29] at the 
warehouse node asks the discovery service for lightly loaded (or additional) nodes, and then invokes 
the replication service to dynamically partition warehouse data to these. The choice of the columns to 
partition on can be made by the partition advisor of the warehouse DBMS [39]. The analysis query is 
automatically run against these replicas through the Federated Access Service. 

 

W
ar

eh
ou

se

R
ep

lic
at

io
n

Discovery

Spare
Node 1

Spare
Node 2

Spare
Node 3

Federated
Query

Authorization

Analysis
Query

 
Figure 7: Querying against a warehouse, with dynamic replication (control flow in dashed 

lines) 

4. Proposal for Stage 1 Grid Data Services 
The previous sections introduced a grand vision of data virtualization services for grids. We now lay 
out a plan for virtualization services to be built in the short term (Section 4.1). These Stage 1 Data 
Virtualization Services also need support from the underlying grid data sources, and we discuss these 
requirements in Section 4.2. 

4.1 Stage 1 Virtualization Services 
4.1.1 Schema Management and Discovery Service  
Most of the data access and processing scenarios we have discussed so far rely critically on data 
source discovery. For Stage 1 we propose to implement the discovery service as a centralized service 
that maps pairs of logical domain and query predicate to data sources containing data from that 
domain and satisfying that predicate4. Data sources explicitly advertise their content to this discovery 
service, and other virtualization services invoke it to find data sources.  

We believe that, at least in Stage 1, each grid application will have a separate discovery service. For 
example, our hospital grid could have a discovery service containing information about hospital data 
sources alone.  

This discovery service also serves as a natural place for schema management. Different data sources 
may have different ways of describing the same data (schema and content). When sources register 

                                                      
4 Naturally, the number of such predicate mappings will be limited by the storage at the discovery service. Our current 
plan is to only maintain information for broad partitions of the data domain, than for every possible predicate. For 
example, in our hospital grid, a mapping could be that “patients with age < 18” get directed to a set of children’s 
hospitals.  



GWD-I  2003-02-08 

rshankar@almaden.ibm.com  18 

with this service, it can map the source schemas into a unified domain schema, possibly using 
ontologies for domain-specific mappings. Application queries can then be specified against this 
domain schema, and source schemas can evolve independently. 

In the long run, if a large number of data sources access the same discovery service, it could become a 
performance and availability bottleneck. Moreover, it can be a hindrance for autonomous data sources 
to explicitly publish data to the discovery service. We plan to generalize the discovery service to a 
network of peer-to-peer discovery services, extending recent work on indexing in peer-to-peer 
systems.  

4.1.2 Federated Access Service 
Federated and distributed querying has been studied in the database community for a long time now, 
and there have been several research [e.g. 22, 23] and commercial projects [e.g., 40, 41] in this area. 
Therefore, a basic level of federated technology is quite mature, and merits adoption by grid 
applications today. 

As discussed in Section 2 however, this technology’s current focus is primarily on heterogeneity and 
distribution transparency. For Stage 1 we propose that the Federated Access Service use a DBMS, 
with the following extensions. 

Integrated access to file + DB content 
Most grid applications want to manage data stored in files along with structured metadata. In Stage 1, 
the FAS can use employ a DBMS (this need not be a federated DBMS) to store this metadata, running 
queries against the database to get URLs, which are then accessed, through regular file system 
interfaces. This provides location transparency for file access, since the access can be through 
arbitrary SQL queries that involve predicates on the metadata. The main advantage of declaring 
columns as URLs is that the application will get integrated access control and integrated replication of 
database and external data. (see the Appendix for details). The DATALINK [15] data type can also 
provide referential integrity for URL. If a DBMS does not support the DATALINK data type natively, 
it can support URLs without referential integrity enforcement, as user-defined types.  

To provide heterogeneity, distribution, and location transparency, the FAS must be use a federated 
DBMS to query and update data. We believe that a few simple improvements to this technology can 
be made in Stage 1, which will prove of high value to applications. 

Dynamic data source discovery 
Currently federated DBMSs do not provide location transparency because data sources are explicitly 
specified in the query. As a first step, the federated DBMS could accept logical domains (for example, 
these could replace table names in the FROM clause of an SQL query), and invoke the Schema 
Management and Discovery service to map the domain name and query predicate to actual data source 
names. Although the Stage 1 discovery service provides only limited functionality, but still allows 
applications to be independent of data sources. As the discovery service improves, the FAS will 
benefit automatically. 

An important pre-requisite for dynamic source discovery is dynamic loading of the wrappers used to 
access data sources. Currently wrappers are registered with the federated DBMS in a static fashion, in 
its catalog. Loading wrappers on demand, from  the source or the discovery service, will also improve 
source autonomy. 

In the long term, the FAS can be extended in many ways. One is to perform negotiation with the data 
sources, as discussed in Section 3.1.2. Another is to gracefully degrade to provide partial results in the 
event of source failures. 

4.1.3 Data Transport and Replication Service 
The role of this service is to transport and maintain copies of a data source at one or more targets. 
These copies could be of subsets of a data source, and could be out-of-date with the data source; such 
copies are like caches. The copying could be done only once (in which case this is pure 



GWD-I  2003-02-08 

rshankar@almaden.ibm.com  19 

transportation), or at periodic intervals. Many DBMSs have replication products today. However, 
these are designed for specific DBMSs, and have very complex setup procedures. Our plan is to 
develop a generic grid replication service that is independent of the data source. We plan to support 
two kinds of replication: 

• Query replication: Periodically run a query against the replication source and copy results to the 
target 

• Change replication: Continually monitor changes occurring at the source and propagate them to 
the target. 

The former allows the target to be a transformed version of the source, and is easier to implement. 
With a FAS, query replication can join, aggregate or reshape data from several heterogeneous data 
sources and apply the result to the target. The problem is that it can be wasteful to run the same query 
at frequent intervals; change replication needs to only propagate the changes that have happened since 
the last replication. 

The main challenges in grid replication are as follows: 

 Data Source Independence: To replicate arbitrary grid data sources in a generic manner. 

 Consistency: To maintain the replicas in a consistent fashion, in the face of updates to the 
source. 

 Reliability: To restore the replication service to a consistent state after hardware or software 
crashes at the source, target, or communication networks. 

 Flow Control: To provide flow control when the source and the replicas run at varying 
speeds. 

 Quality of Service (QOS): To allow replication to be invoked from application programs, 
specifying only application-level parameters. For instance, an application may state its 
desired QOS, and the frequency at which the data must be replicated. However, it should not 
have to specify the amount of memory or buffer space for replication, or the network 
bandwidth to be used; the system should automatically allocate and manage these resources. 

Our goal for stage 1 is to develop replication as a J2EE container [42] that automatically provides the 
above functionality to arbitrary grid data sources. The replication source needs to provide only a 
notification interface that exposes changes happening at the source, and the replication target needs to 
only provide an interface to accept and apply changes sent from the target. All other functionality is 
handled by the replication service. We intend to support replication of files and metadata in a unified 
manner by storing URLs in the database (see the appendix for details). 

For the long-term, our main goal is to provide quality of service in replication. For example, the 
application may have a maximum tolerance for replica staleness (e.g. no more that five minutes out-
of-date with source).  We also want to develop a cache advisor that dynamically decides which 
subsets of each data source are worth replicating, and where, based on the workload of accesses to 
each source. 

4.1.4 Authorization service 
For stage 1, we think that the most important aspect of security will be mapping the user credential 
derived from GSI into data source specific authorization ids. For example, in a DBMS, the grid GSI 
needs to be mapped to user names and passwords so that database permissions can be accessed. The 
main problem here is lack of ownership transparency, because the database authorization has to be 
explicitly mapped from the GSI credentials for each source. In future we can build an authorization 
service as in Section 3.2.1, to which data sources can publish their access permissions. The FAS can 
then directly access this authorization service to map credentials.  



GWD-I  2003-02-08 

rshankar@almaden.ibm.com  20 

4.2 Data Source Requirements for Virtualization 
Having presented a proposal for virtualization services, we turn our attention to the interface to Grid 
data sources. We discuss various functionalities that the grid data sources could provide to enable 
efficient virtualization.  

4.2.1 Context Management  
Grid data sources are by their very nature stateful services. Their state involves not only the 
underlying data, but also the context of ongoing queries and updates. The context is passed in along 
with every request to the data source, and is used to link these requests together. This context needs to 
be maintained at multiple levels: 

• Session Context: This includes information about all current connections, such as user name, 
authentication tokens, billing information, etc. It is tied closely with OGSA’s context management 
service, because the grid application’s requested level of resources and quality of service are 
determined in an end-to-end fashion, across all data sources involved in the task. 

• Transaction Context: This context maintains properties of the transaction into which the query 
or update falls. These properties include consistency levels, save point information, distributed 
transaction state, etc.  

• Command Context: This contains state that is specific to a single command – query or update. It 
includes not only the properties of the command itself, but also state associated with the command 
execution, such as delivery options and delivery handles for the command result, and command 
checkpoint information (if any). 

Many of these contexts are already supported in existing interfaces like JDBC. For Stage 1, we think 
that the main extensions needed in context handling are: 

• Explicit support for a hierarchy of contexts (session, transaction, command), which is coordinated 
with OGSA’s context management service. 

• Explicit support for result delivery options and result delivery handles. 

4.2.2 Data Access  
Access Cost Estimation and Negotiation: As discussed in Section 3.1.2, the FAS needs to negotiate 
with data sources based on source-independent performance metrics like response time, throughput, or 
cost. As a first step towards such negotiated access, the data sources can provide two kinds of 
information for each access request: 

• Statistical properties of the requested data, such as cardinality and data distribution 

• Access Cost, in terms of response time or throughput 

This would allow the FAS to optimize the overall access plan to minimize the total access cost across 
all the sources in an access request. DBMSs have a long history of cardinality and cost estimation; 
providing this support might be harder for other data sources like file systems. Another aspect of 
negotiation is allocation of resources (at the data sources) for executing the request. Unlike in 
traditional federated DBMSs, the data sources are autonomous and their system properties might have 
changed between optimization time and run time. So it will be beneficial if the data source supports 
negotiation of  resource allocation decisions at run time.  

Versioning: As discussed before, collaboration is an important style of data sharing in grid 
applications. Therefore it will be beneficial if grid data sources support a version number as part of 
every query (the default being to get the latest version). 

Result delivery: Many traditional data sources, including virtually all DBMSs, are designed for 
synchronous result delivery. On the grid, queries can be long running, and return large amounts of 
data. It has been pointed out that data sources should support asynchronous result delivery, and result 
delivery to nodes other than the query requestor [20, 21]. Therefore we suggest that access requests 



GWD-I  2003-02-08 

rshankar@almaden.ibm.com  21 

contain both a description of the work to be performed, e.g. a query, and information about how the 
results are to be formulated, and delivered. For instance, if the expected result of a query is large, the 
requestor can ask that results be broken apart into several messages, and delivered asynchronously and 
in a pipelined fashion, possibly to another node.  

If a guaranteed delivery protocol such as MQSeries [43] is employed, then the requestor, service 
provider, and result consumer need not operate concurrently. In a widely distributed environment this 
can have significant benefits. Applications may start, initiate a request, and then shutdown. At a later 
time the application could start up again, and process any waiting results. Similarly, the database 
server need not be immediately reachable by the requestor. An additional advantage of this decoupling 
is that the database service provider may choose to process a request immediately, forward the request 
to another service provider, or to delay the processing of the request until a more convenient time. 

4.2.3 Data Source Notification 
Update notification of a schema is required for FAS and data replication. In addition, replication 
requires notification of data updates, auditing service requires notification of data accesses (as an 
option due to its overheads). There is no standard way of requesting notifications in current data 
source interfaces like JDBC. So we suggest that the grid data source interface contain a function that 
can be invoked to access a variety of events happening at the data source. These events could include: 

• Schema updates (for FAS and replication service) 

• Data updates (for replication service) 

• Data accesses (for auditing service) 

The format of the update delta or audit log record for the notification is entirely up to the data source. 
The only constraint is that in the case of replication, both the source and target must understand the 
delta format (likewise for auditing, the auditing service must understand the audit record format). This 
could be facilitated by using a self-describing format for the delta (say an XML format), though the 
actual schema would still have to be standardized in the application domain. 

5. Related Grid Projects 
Most current grid applications use files to manage data. Directory services that need more 
sophisticated access are typically implemented with LDAP. As applications become more data-
intensive, the grid community has taken greater interest in data management.  

The Relational Grid Information Systems project is investigating the pros and cons of implementing 
grid directory services with relational DBMSs [44]. The SDSC Storage Resource Broker (SRB) is a 
distributed, attribute-based file system [45].The SRB employs a DBMS to store all its metadata and 
user-defined attributes. It supports GSI-based security and the ability to invoke remote data filtering 
operations via a proxy mechanism. It can manage a variety of digital entities including files, 
directories, SQL command strings, tables in databases, and services. These entities are registered into 
a logical name space and all operations are performed relative to the logical name space. The SRB 
manages the mapping from the logical name space to the physical name space that describes where the 
digital entity is actually stored. [34] studies the use of SRB on a grid, and its benefits and limitations.  

There are many efforts to investigate the use of DBMSs from grid applications [34]. The projects 
closest in spirit to this work are the Work Package 2 of the European Data Grid project [46], and the 
OGSA-DAI project [47].  

The Work Package 2 of the European Data Grid project has in its charter some virtualization services 
for the grid, including data discovery, replica management, and workflow optimization. The SpitFire 
project proposes a grid service that will mediate between a DBMS and a grid client, converting HTTP 
requests made by the client into JDBC requests to the DBMS, and mapping tabular results from the 
DBMS into an XML output to the client [48].  



GWD-I  2003-02-08 

rshankar@almaden.ibm.com  22 

The main difference with our design is that we have an explicit suite of virtualization services 
providing a wide range of transparencies. These services virtualize all data sources, including file 
systems, DBMSs, and even application programs, using three key technologies: federated DBMSs, a 
powerful discovery service and a generic data replication service. The federated DBMS allows 
integrated access and management of distributed and heterogeneous data sources. The discovery 
service provides name transparency. The replication service is used to distribute data across the grid to 
aggregate compute resources, and to consolidate data from multiple data sources for warehousing. 

The OGSA-DAI project is drafting a general grid service interface for accessing grid data sources, 
including relational and XML databases through query languages like SQL, XPath, and XQuery [49]. 
We anticipate that the Grid Data Service interface being developed by this project will be able to 
interact well with the virtualization services proposed in this paper. 

6. Conclusions 
Many modern applications involve large data sizes and wide distribution. These applications are well 
suited for running on a grid, but need technologies for efficient information integration and for 
efficient utilization of the compute resources. Data management technologies like DBMSs and file 
systems are quite mature. However, grids introduce new challenges like large scale, wide distribution, 
and source autonomy. 

To allow grid applications to develop without worrying about these complexities, data access and 
processing should be virtualized. In this paper we have identified a set of transparencies that are 
fundamental to data virtualization: heterogeneity transparency, location transparency, distribution 
transparency, ownership & costing transparency, and replication transparency. 

Current data management technologies have some important limitations in providing these 
transparencies, especially location, ownership, costing, and replication. We have proposed a suite of 
data virtualization services to enable these transparencies. These virtualization services lie between 
grid applications and grid data sources, and interact closely with other OGSA services.  

There are a few other aspects of virtualization that we have not considered in this paper, because we 
feel they are complex issues meriting separate treatment. First, grid applications might want end-to-
end guarantees on quality of service. Supporting this involves several changes to data services, 
including quality of service guarantees from the underlying data sources themselves. Second, grids 
need a mechanism to control invocation of autonomous grid services. We think that microeconomic 
mechanisms might be appropriate, though this needs further investigation.   

In this paper we have described both the long term goals of data virtualization services and what is 
achievable in the short term. We would like to have wider discussion of both these goals in GGF and 
the rest of the grid community, especially to prioritize the implementation of these services. We have 
also identified some functionality that grid data sources can provide in order to enable virtualization. 
We hope that these, along with other proposals on grid data source interfaces, will stimulate 
discussion at GGF and form the basis for a standardized grid data source interface.  

 

7. Security Considerations 
See Section 2.3. 

 

Author Information 
Vijayshankar Raman, Inderpal Narang 
IBM Almaden Research Center 
650 Harry Road  
San Jose, CA 95120, USA 



GWD-I  2003-02-08 

rshankar@almaden.ibm.com  23 

Chris Crone, Laura Haas, Susan Malaika,  
Tina Mukai, Dan Wolfson 
IBM Silicon Valley Lab 
555 Bailey Avenue, 
San Jose, CA 95141, USA 

Chaitan Baru 
San Diego Supercomputer Center 
9500 Gilman Drive, 
La Jolla, CA 92093, USA 

 

Intellectual Property Statement 
 
The GGF takes no position regarding the validity or scope of any intellectual property or other rights 
that might be claimed to pertain to the implementation or use of the technology described in this 
document or the extent to which any license under such rights might or might not be available; neither 
does it represent that it has made any effort to identify any such rights.  Copies of claims of rights 
made available for publication and any assurances of licenses to be made available, or the result of an 
attempt made to obtain a general license or permission for the use of such proprietary rights by 
implementers or users of this specification can be obtained from the GGF Secretariat. 
 
The GGF invites any interested party to bring to its attention any copyrights, patents or patent 
applications, or other proprietary rights which may cover technology that may be required to practice 
this recommendation.  Please address the information to the GGF Executive Director. 
 

Full Copyright Notice 
 
Copyright (C) Global Grid Forum (date). All Rights Reserved. 

This document and translations of it may be copied and furnished to others, and derivative works that 
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published 
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright 
notice and this paragraph are included on all such copies and derivative works. However, this 
document itself may not be modified in any way, such as by removing the copyright notice or 
references to the GGF or other organizations, except as needed for the purpose of developing Grid 
Recommendations in which case the procedures for copyrights defined in the GGF Document process 
must be followed, or as required to translate it into languages other than English. 

The limited permissions granted above are perpetual and will not be revoked by the GGF or its 
successors or assigns. 

This document and the information contained herein is provided on an "AS IS" basis and THE 
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE 
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED 
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE." 

 

References 
                                                      
1. National Digital Mammography Archive. http://nscp01.physics.upenn.edu/ndma/ 
2. Koen Holtman. CMS Data Grid System Overview and Requirements. CMS Note 2001/037. Available at 

http://kholtman.home.cern.ch/kholtman/cmsreqsweb/cmsreqs.html 



GWD-I  2003-02-08 

rshankar@almaden.ibm.com  24 

                                                                                                                                                              
3. J. Gray, D. Slutz, A. Szalay, A. Thakar, P. Kuntz, and C.Stoughton.  Data Mining the SDSS SkyServer 

Database. MSR TR 2002-1, Microsoft Research, 2002. Available at 
http://www.research.microsoft.com/~gray/. 

4. Telescience for Advanced Tomography Applications. NPACI Alpha Project. 
http://www.npaci.edu/Alpha/ 

5. Qiong Luo, Sailesh Krishnamurthy, C. Mohan, Hamid Pirahesh, Honguk Woo, Bruce G. Lindsay, and 
Jeffrey F. Naughton: Middle-tier Database Caching for e-Business. In Proceedings of the ACM 
SIGMOD International Conference on Management of Data, 2002. 

6. Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steve Tuecke. The Physiology of the Grid: An Open 
Grid Services Architecture for Distributed Systems Integration. Manuscript, January 2002. Available at 
http://www.globus.org/research/papers.html 

7. Ian Foster, Carl Kesselman, and Steve Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual 
Organizations. In International Journal of . Supercomputer Applications, 15(3), 2001. 

8. Michael J. Carey, Donald D. Chamberlin, Srinivasa Narayanan, Bennet Vance, Doug Doole, Serge 
Rielau, Richard Swagerman, and Nelson Mendonça Mattos. O-O, What Have They Done to DB2? In 
Proceedings of the International Conference on Very Large Data Bases (VLDB), 1999.  

9. Michael Stonebraker and Dorothy Moore. Object-Relational DBMSs: The Next Great Wave. Morgan 
Kaufmann 1996  

10. Extensible Markup Language (XML) 1.0. W3C Recommendation. Available at 
http://www.w3.org/TR/REC-xml. 

11. XQuery 1.0: An XML Query Language. W3C Draft Document. Available at 
http://www.w3.org/TR/xquery/ 

12. Catalina Fan, John Funderburk, Hou-in Lam, Jerry Kiernan, Eugene Shekita, and Jayvel 
Shanmugasundaram. XTABLES: Bridging Relational Technology and XML. IBM DB2 Developer 
Domain http://www.ibm.com/software/data/pubs/ 

13. Information technology -- Database languages -- SQL -- Part 9: Management of External Data 
(SQL/MED). ISO/IEC 9075-9:2000. International Organization for Standardization, 2000. 

14. Rodolphe Michel. Data Links: Managing Files Using DB2. IBM Redbook. 
http://www.redbooks.ibm.com  

15. Jim Melton, Jan-Eike Michels, Vanja Josifovski, Krishna Kulkarni, Peter Schwarz, and Kathy 
Zeidenstein. SQL and Management of External Data. SIGMOD Record, 30(1), 2001. 

16. XML Extender Administration and Programming. SC27-1234-00. 
http://www.ibm.com/software/data/db2/extenders/xmlext/ 

17. JDBC Data Access API 3.0 Specification. Available at http://java.sun.com/products/jdbc/  
18. Web Services Object Runtime Framework. http://www.ibm.com/software/data/webservices/ 
19. Microsoft ActiveX Data Objects. http://www.microsoft.com/data/ado/default.htm 
20. Wolfgang Hoschek and Gavin McCance. Grid Enabled Relational Database Middleware. Technical 

report, Glasgow    University, GLAS-PPE/2001-11. 
21. Dave Pearson, Data Requirements for The Grid: Scoping Study Report. Global Grid Forum (GGF) 4, 

2001. 
22. Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam Sah, Jeff Sidell, Carl Staelin, 

and Andrew Yu. Mariposa: A Wide-Area Distributed Database System. VLDB Journal 5(1): 48-
63(1996)  

23. Michael J. Carey, Laura M. Haas, Peter M. Schwarz, Manish Arya, William F. Cody, Ronald Fagin, 
Myron Flickner, Allen Luniewski, Wayne Niblack, Dragutin Petkovic, Joachim Thomas II, John H. 
Williams, and Edward L. Wimmers. Towards heterogeneous multimedia information systems. In 
Proceedings of the International Workshop on Research Issues in Data Engineering, 1995.   

24. Amit P. Sheth and James A. Larson, Federated database systems for managing distributed, 
heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3), 1990. 

25. Donald Kossman. The state of the art in distributed query processing. ACM Computing Surveys, 32(4), 
2000. 

26. V. Josifovski, P. Schwarz, L. Haas and E. Lin. Garlic: A New Flavor of Federated Query Processing for 
DB2. In Proceedings of the ACM SIGMOD International Conference on Management of Data, 2002. 

27. IBM DB2 Life Sciences Data Connect, Planning, Installation, and Configuration Guide, Version 8, 
GC27-1235-00  



GWD-I  2003-02-08 

rshankar@almaden.ibm.com  25 

                                                                                                                                                              
28. The Encyclopedia of Life project, http://eol.sdsc.edu.  
29. Enterprise Workload Management. http://www.ibm.com/servers/eserver/introducing/eliza/ 
29. Laks V.S. Lakshmanan, Fereidoon Sadri, and Subbu N. Subramanian. SchemaSQL – A Language for 

Interoperability in Relational Multi-Database Systems. In Proceedings of the International Conference 
on Very Large Data Bases (VLDB), 1996.  

30. Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems, McGraw Hill, 1998. 
31. Sunita Sarawagi (editor). Special Issue on Data Cleaning. Bulletin of the IEEE Technical Committee on 

Data Engineering, 23(4), 2000.  
32. Data Extracting, Transforming, and Loading (ETL) Tools. http://www.dwinfocenter.org/clean.html  
33. Paul Watson, Databases and the Grid, 7th December 2001, version 2. 
34. Brian Lovoie. Meeting the challenges of digital preservation: The OAIS reference model. OCLC 

Newsletter, January/February 2000.  
35. R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, and V. Welch. A National-Scale 

Authentication Infrastructure. IEEE Computer, 33(12):60-66, 2000. Available at  
http://www.globus.org/research/papers.html#GSI1 

36. Security in a Web Services World: A Proposed Architecture and Roadmap. Joint IBM and Microsoft 
Whitepaper, 2002. Available at http://www.ibm.com/developerworks/library/ws-secure/     

37. Rajkumar Buyya, David Abramson, Jonathan Giddy, An Economy Driven Resource Management 
Architecture for Global Computational Power Grids , The 2000 International Conference on Parallel 
and Distributed Processing Techniques and Application,  2000. Available at http://www-
unix.globus.org/mail_archive/discuss/2001/Archive/pdf00000.pdf 

38. Juliana Silva da Cunha, Fábio Q. B. da Silva, Gérman Goldszmidt, and Karen Appleby-Hougham, 
“SALMON - an Architecture to Define, Store, Monitoring and Billing ISLAs in a Server Farm,” 
Second Latin American Network Operations and Management Symposium, 2001. 

39. Jun Rao, Chun Zhang, Guy Lohman, Nimrod Megiddo. Automating Physical Database Design in a 
Parallel Database. In Proceedings of the ACM SIGMOD International Conference on Management of 
Data, 2002. 

40. P. Gupta and E. T. Lin. Datajoiner: A practical approach to multi-database access. In Proc. of the Intl. 
IEEE Conf. on Parallel and Distributed Information Systems, 1994 

41. Oracle Transparent Gateways. http://otn.oracle.com/products/gateways/gateways_fov.html  
42. J2EE 1.3 Specification. JSR 58, http://www.jcp.org/jsr/detail/58.jsp  
43. Dan Wolfson. Using MQSeries from DB2 Applications. IBM DB2 Developer Domain 

http://www.ibm.com/software/data/pubs/ 
44. P. Dinda and B. Plale. A Unified Relational Approach to Grid Information Services. Grid Forum 

Informational Draft GWD-GIS-012-1 
45. Arcot Rajasekar, Michael Wan and Reagan Moore. MySRB & SRB - Components of a Data Grid. In 

International Symposium on High Performance Distributed Computing (HPDC), 2002.  
46. Work Package 2 of European Data Grid Project. http://grid-data-management.web.cern.ch/grid-data-

management/Index.html  
47. Norman Paton, Malcolm Atkinson, Vijay Dialani, Dave Pearson, Tony Storey and Paul 

Watson. Database Access and Integration Services on the Grid. UK e-Science Programme Technical 
Report Series Number UKeS-2002-03, National e-Science Centre, UK. 

48. Wolfgang Hoschek and Gavin McCance. Grid Enabled Relational Database Middleware. Technical 
report, Glasgow University, GLAS-PPE/2001-11. 

49. OGSA Database Access and Integration project. 
http://umbriel.dcs.gla.ac.uk/NeSC/general/projects/OGSA_DAI 

50. Carl Kesselman. Personal Communication, 2002. 
51. Ann Chervenak. Personal Communication, 2002. 
52. Ann Chervenak. Data Management: The Globus Perspective. GlobusWorld, 2003.  


