
Standardization of an API for Distributed Resource Management
Systems

Peter Tröger
Hasso-Plattner-Institute

14482 Potsdam, Germany
peter@troeger.eu

Hrabri Rajic
Intel Americas Inc.

Champaign, IL 61820
hrabri.rajic@intel.com

Andreas Haas
Sun Microsystems GmbH

93049 Regensburg, Germany
andreas.haas@sun.com

Piotr Domagalski
Poznan Supercomputing and Networking Center

61-704 Poznan, Poland
piotr.domagalski@man.poznan.pl

Abstract

Today’s cluster and grid environments demand the
usage of product-specific APIs and tools for develop-
ing distributed applications. We give an overview of
the Distributed Resource Management Application API
(DRMAA) specification, which defines a common in-
terface for job submission, control, and monitoring.
The DRMAA specification was developed by the authors
at the Open Grid Forum standardization body, and has
meanwhile significant adoption in academic and com-
mercial cluster systems. Within this paper, we describe
the basic concepts of the finalized API, and explain is-
sues and findings with the standardization of such an
unified interface.

1 Introduction

The compelling advantage of integrated job process-
ing has lead enterprises to integrate Distributed Re-
source Management (DRM) solutions into their IT en-
vironments. Traditionally, this integration has been
based on DRM-specific, non-standard interfaces, but
each time a newer, more capable release of the DRM
software becomes available, the use of non-standard in-
terfaces makes updating the integration an expensive,
time-consuming effort for the enterprise.

The Distributed Resource Management Application
API (DRMAA) specification is a software standard de-
veloped in the Open Grid Forum (OGF) (former Global
Grid Forum) standardization body. Starting in 2001,
the specification was developed by numerous contrib-

utors from both academia and industry. As a first
major milestone, the proposed recommendation docu-
ment was published in June 2004. The updated version
of the specification was recently submitted to OGF to
reach the final stage of a full recommendation. Today
DRMAA implementations that adopt the latest speci-
fication version are either already available (Sun’s N1
Grid Engine (N1GE), Condor, Torque, GridWay) or
planned (XGrid).

DRMAA defines a unified interface for job submis-
sion, monitoring, and control in heterogeneous dis-
tributed systems. It provides a programming model
for tight interaction with an underlying Distributed
Resource Management System (DRMS). The specifica-
tion is designed to encourage both application builders
and DRMS vendors to adopt and use the interface in
their products. An application using the standard DR-
MAA interface can be run on any DRM software that
has adopted the DRMAA specification.

Within this paper, we will describe the basic con-
cepts of the finalized DRMAA 1.0 specification, as well
as some of the outcomes regarding the feature seman-
tics, future issues, and the standardization process it-
self. Our article can be seen as experience report about
the standardization work, and explanation of some of
the non-obvious design decisions.

We start with design principles and basic concepts
of the DRMAA API, continue with a collection of stan-
dardization experiences, describe our efforts for a gen-
eralized object-oriented DRMAA API, and conclude
the paper with a list of some related work.



2 Design Principles

The DRMAA specification was designed in order to
define a simple, lightweight, portable, and modular in-
terface for today’s cluster and grid systems. DRMAA
provides a fundamental set of operations allowing pro-
grammatic access to capabilities common to typical
DRM systems. The API follows some basic design
principles, which ensures the applicability of the re-
sults for both DRMAA implementation providers and
API users:

Keep it simple - The standardization of an unified
API is always a balancing act between support-
ing all demanded features, keeping compatibility
to existing heterogeneous systems, and having a
simple and easy to understand API definition. The
DRMAA working group concentrated on the best
possible interoperability to major DRM systems,
while keeping the amount of functions and con-
cepts as low as possible. This restriction leaded to
several features intentionally left out, since their
semantic either differs between different DRM sys-
tems (e.g. job list operation), or because they are
not supported by some of the systems (e.g. work-
flow identifier). This restriction also keeps the en-
trance barrier low for implementers, which in turn
supports the adoption of the specification.

Language independence - DRMAA is intended to
be adoptable to multiple programming languages.
The specification defines the API in an abstract
syntax, as set of procedural functions with input
and output parameters. Existing binding speci-
fications adopt these structural elements to lan-
guages like C, Java, Python, Perl, Ruby and C#.

Pluggability - It should be possible to combine dif-
ferent DRMAA implementations for one submis-
sion host, in order to allow the parallel usage of
multiple DRM systems by one portal implemen-
tation or end-user application. This demands a
proper definition of late binding issues for the ap-
plication. It must be possible to identify and
choose one of the available implementations at
runtime with the DRMAA API.

No user handling - DRMAA does not consider any
security aspect of DRM systems, since this would
demand a choice for platform- or middleware-
specific security concept (e.g. Unix UID, X.509,
Kerberos). Such a choice would be in contrast to
the overall goal of platform-independence, porta-
bility and simplicity. For this reason, DRMAA

relies on the security context provided with the
user running the DRMAA application.

Thread safety - DRMAA is explicitly designed for
supporting multi-threaded applications. The API
specification therefore describes the potential im-
pact for multi-threaded usage in all relevant API
functions. Even though this requirement puts
a higher burden on the DRMAA library imple-
menters, it eases up the development of applica-
tions using DRMAA.

Site-specific policies - The DRMAA specification is
intended to abstract from DRMS-specific function-
alities. Anyway, there might be a particular need
for site-specific policies per user. These policies
typically concern site-specific attributes, such as
resources to be used by the job or the job schedul-
ing in relation to other jobs. DRMAA therefore
defines the notion of job categories, which describe
cross-site behaviors not covered by the specifica-
tion.

2.1 API Basics

The DRMAA specification consists of a set of func-
tions, which are grouped into init and exit routines, job
template routines, job submission and monitoring rou-
tines, job control routines, and auxiliary routines. The
API is based on a session concept, where all submitted
jobs are grouped in a library-instance specific session.
This allows the application developer to perform syn-
chronization and monitoring on all jobs submitted by
the particular application instance. The session con-
cept also establishes an explicit cleanup phase, needed
by some of the object-oriented implementations on top
of DRMAA C libraries. IN addition, the application
can expect the DRMAA library to no longer influence
the set of jobs in the DRM.

Based on practical implementation experiences,
multiple open sessions as well as nested sessions are in-
tentionally left out. Both concepts would demand more
fine-grained synchronization and monitoring primi-
tives. The DRMAA job control routines are free to ac-
cept job ids from previous DRMAA sessions. This rule
arose from practical experiences with unstable applica-
tions, which need to continue there job-related opera-
tions after a restart. Another example are long-running
job workflows, which maintain there own list of valid
job handles.



2.2 Job Template Routines

The description of a job to be submitted to the
DRMS is encapsulated in a job template. The job
template is defined as set of key-value pairs, contain-
ing mandatory, optional and implementation-specific
attributes. Examples for mandatory attributes are
the executable name, the working directory or the
output stream file. Examples for optional attributes
are the absolute job termination time or a maximum
wall clock time limit. Most of these parameters arose
from an early comparison of DRM submission param-
eters, and from the initial DRMAA implementation in
Sun N1GE. The working group constantly re-evaluates
mandatory and optional attributes in the specification.
So far, most existing implementations for cluster and
grid systems ignore the set of optional DRMAA at-
tributes and provide full support only for the manda-
tory attributes.

DRMAA supports the identification of all supported
attributes during runtime. Job templates are not
bound to a particular job execution, and therefore can
be reused for multiple submissions. The specification
defines the template to be evaluated at submission
time; therefore all setter functions only consider errors
like incorrect attribute name, invalid value format, or
conflicting setting.

2.3 Job Submission and Monitoring Rou-
tines

A job can be submitted with DRMAA either as
single job (drmaa_run_job()) or set of bulk jobs
(drmaa_run_bulk_jobs()). For bulk jobs, a beginning
index, ending index and loop increment can be spec-
ified. Template attributes can contain a placeholder
string for the current parametric job index during sub-
mission.

The drmaa_job_ps() function allows to query for
the status of a job (see figure 1). A queued job can ei-
ther be ready for execution or in a hold state. A job on
hold can be triggered by an explicit drmaa_control()
call, or by a submission as hold job, which is speci-
fied with one of the mandatory job template attributes.
Both cases are represented with the ’user on hold’ job
state. A held job can also be triggered by the DRM
system itself or by a combination of both. Held jobs
are explicitly released with another drmaa_control()
call.

A job in the status class ’running’ can either
be actively executed or in a suspend state. The
suspend state might be explicitely triggered by
the user through drmaa_control(), which leads to

DRMAA_PS_USER_SUSPENDED, or by the system itself,
which leads to (DRMAA_PS_SYSTEM_SUSPENDED).

For finished jobs, drmaa_job_ps() returns
DRMAA_PS_DONE in case of a successful execution,
or DRMAA_PS_FAILED when the job ended unex-
pectedly. A monitoring call might also lead to
DRMAA_PS_UNDETERMINED, which reflects a problem
with the status determination in the underlying
DRMS. In this situation, DRMAA applications are
free to perform additional calls to drmaa_job_ps().
The implementation experiences showed that this is
desperately needed for temporally effects in idle-time
or wide-area grid environments.

Figure 1. DRMAA Job State Transition [2]

2.4 Job Control Routines

The state of a submitted job can be changed through
the drmaa_control() function. Different control com-
mand constants allow suspending, resuming, holding,
releasing and terminating a job. The routine also sup-
ports control actions on all submitted jobs in the cur-
rent DRMAA session (DRMAA_JOB_IDS_SESSION_ALL).

An application can synchronize the finishing of a
set of jobs with drmaa_synchronize(). Input ar-
guments are the list of job identifiers, a timeout
specification, and a dispose flag. This routine also
can act on all jobs in the current session by using
DRMAA_JOB_IDS_SESSION_ALL as job ID parameter.
The timeout parameter restricts the blocking time of
the operation, from zero to indefinite.

The dispose parameter specifies how to treat reaping
of the remote job’s system resources consumption and
other statistics. If dispose is set to false, the job’s infor-
mation remains available and can be retrieved through
drmaa_wait(). If dispose is set to true, the job’s in-
formation is not retained.



drmaa_wait() allows to wait for the finishing of a
particular job, and returns the termination status in-
formation. Input arguments are the job identifier and
the timeout value, output arguments are the job ID of
the finished job, an opaque status code and resource
usage information. The routine reaps jobs and their
status information on a successful call. The resource
usage information is provided as set of key-value-pairs,
which contain implementation-specific resource indica-
tors.

The status code resulting from drmaa_wait() is
used in a series of functions, in order to provide
more detailed information about job termination. The
overall semantic of this approach is modeled after
POSIX wait() and the related preprocessor macros
(e.g. WIFEXITED).

2.5 Auxiliary Routines

drmaa_get_contact() provides the list of sup-
ported contact strings before drmaa_init(), and re-
turns the current contact string for an open ses-
sion. The drmaa_version() routine provides the
version number of the supported DRMAA speci-
fication, and drmaa_get_DRM_system() respectively
drmaa_get_DRMAA_implementation() provide infor-
mation about the specific library implementation. All
functions are independent from the DRMAA ses-
sion handling, and can therefore be used before a
drmaa_init() or after a drmaa_exit() call.

3 Standardization Experiences

The following section describes a list of experiences
and important design decisions, as additional source of
information for DRMAA adopters and for maybe fu-
ture standardization efforts in job management API’s.
The presented issues mostly caused heavy discussions
or increased implementation efforts, and where either
resolved or delayed to a later update of the DRMAA
specification.

3.1 Implementation Complexity

DRMAA was designed with the overall goal of hav-
ing a small and easy to understand API definition,
which fits for most application developer needs. Even
though the set of available implementations shows the
success of the approach, there are still challenging as-
pects, such as multithreading issues.

The specification demands the library to be thread-
safe. The demand for supporting multiple application

threads, together with the goal of satisfactory perfor-
mance leads to significant implementation efforts for
library developers. The specification also needs to
be very precise regarding the functional descriptions,
in order to provide enough information about the in-
tended behavior in these cases.

One example: Since session information can be
changed during a blocking call (e.g. job termination
with drmaa_control() during drmaa_wait() opera-
tion), both functions must define their behavior and
the according error codes for such multithreading cases.
The DRMAA group decided that the session state is
reevaluated after each such parallel operation. An ap-
plication thread waiting for a session job therefore must
return if another activity (e.g. explicit termination of
the job) provokes a relevant session state change. This
must be ensured by the DRMAA library implementa-
tion for all possible cases.

High-level language binding implementations such
as Java DRMAA are currently based on the accord-
ing C libraries, and benefit from the already imple-
mented multithreading support. Mostly, the perfor-
mance advantage of the C implementation outweighs
the additional effort for ’native’ calls in non-native en-
vironments like Java.

3.2 Reference Implementation

From the very beginning, the development of DR-
MAA API was assisted by a continuous implementa-
tion in the Sun N1GE 6 product line. Today DRMAA
defines the default API for programming of the N1GE6
system. The product-quality reference implementation
helped to identify real-world issues with the specifica-
tion, and acted as major driver for the API finalization.

In the later phases of the standardization process,
the existence of preliminary implementations provided
a high barrier for major concept changes. While this
can be seen as an advantage in terms of a stable inter-
face definition, it still avoids the fast adoption of new
or improved concepts (e.g. for monitoring support).

The existence of a reference implementation also in-
directly leaded to a DRMAA compliance test suite. In
2005, the N1GE product DRMAA test suite was do-
nated by Sun Microsystems to the DRMAA group as a
base for the official DRMAA test suite. The test suite
was a mandatory precondition for demonstrating the
practical interoperability of the existing implementa-
tions for the OGF. It currently contains of around 4000
lines of C code with 13 complex tests, especially for
the multithreading access rules of the DRMAA spec-
ification. Due to the informal description of opera-
tional semantics in DRMAA, it is not possible to prove



DRMAA-compliance of an implementation with a suc-
cessful test suite run. This problem relates to the well-
known problem domain of automated software testing.
The test suite now mainly provides a valuable source of
information for DRMAA library developers. Multiple
specification improvements arose from issues identified
through test suite errors with different DRMAA imple-
mentations.

3.3 Client-API or Remote-API ?

Due to the increasing orientation of OGF towards
SOAP-based interfaces [4], the group received multi-
ple request regarding a WSDL-mapping of the DR-
MAA interface. An analysis showed that the initial
focus on a client-side API prevents the direct map-
ping of DRMAA concepts to a server-side API. One
example are blocking calls in the drmaa_wait() and
drmaa_control() functions, which can take an un-
known amount of time and therefore are inappropriate
for a client-server scenario.

The session concept of the DRMAA API also pre-
vents an easy migration to remote call scenarios: The
specification demands multiple library calls to perform
a job submission - session initialization, job template
creation, parameter change, and job startup. Service-
oriented grid interfaces rather would try to combine
all information in one document (e.g. as JSDL docu-
ment), followed by a submission of this information in
one round trip.

The group finally decided to declare these issues as
out-of-scope for the current specification. However,
other groups at OGF such as OGSA-BES (Open Grid
Services Architecture - Basic Execution Service) cur-
rently develop appropriate server-side job submission
specifications in collaboration with DRMAA group
members. Future DRMAA versions based on the IDL
specification (see section 4) will consider SOAP-based
RPC scenarios with an according Web Service Re-
source Framework (WSRF) binding specification.

3.4 Re-use of POSIX concepts

During the development of the specification, it was
attempted to apply existing concepts and wording from
POSIX (1003.1 and 1003.2d) to the specification text,
in order to ease up adoption by application develop-
ers. As one example, DRMAA relies on the semantics
of POSIX wait() and the according C macros (e.g.
WIFEXITED) for the further processing of termination
information.

The resulting set of DRMAA status functions must
be called in a specific order, e.g. first asking if the

job was signaled and then querying for the core dump
availability. Multiple language binding authors, as well
as several DRMAA users, expressed there wish to fa-
vor a single status query call over multiple POSIX-
like functions for the same purpose, similar to the
drmaa_control() routine. The upcoming next ver-
sion of the specification therefore will support such a
concept of a job status data structure.

3.5 Time Definitions

DRMAA supports the notion of partial timestamps,
which allow the incomplete specification of time infor-
mation (e.g. ”Start job at 8 o’clock.”). Partial times-
tamps are expressed as string variable in a special syn-
tax, and are evaluated for complete time information
at job submission time. This enables the re-usage of in-
complete time stamp definitions for multiple job runs.

Standard time formats (like ISO 8601) also allow
an incomplete specification of time stamp information,
but define specification-time completion rules in order
to create unambiguous time stamp information. DR-
MAA extends this model by explicitly supporting the
formulation of relative timing information for job sub-
mission attributes.

Even though the concept of partial timestamps is
helpful for DRMAA users and portal developers, it
turned out to be a difficulty for some language bind-
ings. The C language binding simply adopts the for-
mulation of partial timestamps as string variable. In
contrast, modern object-oriented development in Java
and C# need a mapping of partial time stamp infor-
mation to class library types. Since the mapping is
influenced by the capabilities of the existing type, the
IDL specification defines partial time stamps only as
’native’ data type, together with a detailed description
of intended functionalities. This enables appropriate
custom mappings for the language-binding authors, in-
stead of providing an own representation of date and
time information.

3.6 Monitoring Features

Several DRMAA users criticized the lack of support
for resource-related monitoring parameters, like cluster
load information, hardware status or operating system
type. As one major problem, the provisioning of such
status information in a standardized API would de-
mand a common information model for the monitoring
parameters. For example, the specifications of CPU
type or disk quota parameters need to consider hetero-
geneous DRM products, hardware platforms and oper-
ating systems. Even though some standards (like CIM



[8] and Job Submission Description Language (JSDL))
provide such unified information model, it is still rele-
vant to check the applicability of the model on today’s
cluster and grid environments. Facing this specific
problem, the JSDL group meanwhile provides map-
ping information of their information model to differ-
ent batch systems. Upcoming versions of the DRMAA
specification need to consider this recent work for the
extension of the API.

3.7 Job State Semantics

DRMAA so far does not provide an extensive de-
scription of job state semantics, but uses only keywords
(’suspended’, ’running’, ’queued’) for its definition of
possible job state transitions. With the development
of multiple DRMAA implementations, the group fig-
ured out that some of the states were hard to map for
particular DRM systems.

One example is the suspended job state. The
current DRMAA implementation for the Condor sys-
tem [5] works in the vanilla universe, which does not
support the suspension and resuming of particular
jobs. The Condor DRMAA implementation there-
fore uses the condor_hold() command to implement
the mandatory drmaa_control() suspend operation.
Since this Condor command kills and requeues the job
in vanilla universe, the job might restart on another
machine. According to the specification, this behav-
ior does not break DRMAA compliance, since the job
state ’SUSPENDED’ is not further described. For the
end user, the visible effect is a re-scheduling and not
the expected suspending of the job on the original ma-
chine.

There are two possible solutions for bringing more
clarity to the users and developers. The specification
could either provide explicit descriptions of the job
state semantics, or could leave out semantically inter-
pretations completely. The first choice would lead to
non-implementable features for particular DRM sys-
tems, while the second choice leads to different behav-
iors with different DRM systems. So far, the DRMAA
group favors the second approach. Recent discussions
identified a third approach, which would mark the criti-
cal job states as optional. Implementations then would
be free to not support some of the DRMAA job states.

4 Object-Oriented Bindings

Even though DRMAA started with the idea of a
language-independent specification, it mainly was writ-
ten with a procedural C-language slant. With the on-
going development and adoption effort, several users

demanded a mapping of DRMAA to object-oriented
programming languages. The first mapping was per-
formed with the Java language binding specification,
which was also implemented for the Sun N1GE prod-
uct. In parallel, other working group members de-
veloped a language binding specification for the .NET
environment. Based on two independently developed
object-oriented language bindings, the in-depth com-
parison identified general issues for an object-oriented
API mapping. For this reason, both binding authors
started the alignment of these mapping issues. Simple
examples are variable and method naming, as well as
error information structuring. Complex cases are the
realization of partial time stamps and job templates in
appropriate language constructs.

To keep and maintain the newly derived DRMAA
semantics for OO-environments, the group decided to
rely future versions of the language-independent DR-
MAA specification on the OMG Interface Definition
Language (IDL) [6]. Future language binding docu-
ments should only need to define a mapping between
DRMAA IDL constructs and their specific language
constructs, instead of creating own syntactical rules
for the interface. This approach is also used in other
popular specifications, for example the W3C Document
Object Model. IDL ensures consistent API semantics
in all language bindings, whereby the binding author
only needs to concentrate on language-specific issues.
The general representation of DRMAA is described in
abstract IDL concepts - interfaces, classes, value types,
reference types and properties. The re-use of OMG
IDL language mapping specifications is omitted, since
these mapping rules rely on CORBA runtime environ-
ment mechanisms. Instead, each DRMAA language
binding defines own rules which are most appropriate
to the according environment.

Job templates are represented as interfaces with ac-
cording member attributes. As one interesting aspect,
optional attributes also needed to be reflected in the
OO-API design. They must be represented in the
job template interface layout for a portable API, even
though they might not be usable for a particular im-
plementation. The current IDL specification therefore
introduces a new exception type for the job template
attributes, which is thrown when an unsupported at-
tribute is about to be changed.

Modern OO-languages use exception hierarchies, in
order to be able to react on a set of exceptional sit-
uations with one catch block. As future DRMAA
specifications need to consider this demand, the IDL-
document already defines groups of error classes. In
case, this grouping can be mapped to according lan-
guage exception hierarchies.



DRMAA originally relies on two special data types:
an unbounded unsorted list of strings (for job or argu-
ment lists), and an unbounded dictionary of key-value
pairs (for resource usage information and environment
variables). Since both constructs have different repre-
sentations in OO-languages, the IDL spec defines two
abstract data types, which must be mapped by the lan-
guage binding specification to a matching construct.

Even with the support for garbage collection mech-
anisms in modern object-oriented languages, the
delete() operation for job templates remains an ex-
plicit function. This design decision reflects the miss-
ing support for guaranteed object finalizer execution in
some of the object-oriented languages, which is needed
for maybe mandatory cleanup operations in the DRMS.

5 DRMAA Usage

DRMAA is meanwhile used as job submission and
monitoring API in several applications, like meta-
schedulers or compute-intensive commercial frame-
works, also for distributed software compilation or as
integrated data grid solution.

As one example, the OpenDSP project1 from the
Poznan Supercomputing and Networking Center de-
veloped a Web Service based interface for multi-user
access to DRMAA-enabled DRM systems. The usabil-
ity and efficiency of OpenDSP has been proved in sev-
eral productive deployments, like the Faculty of Civil
and Geodetic Engineering at University of Ljubljana
(earthquake simulation) or the InteliGrid project (re-
mote access to engineering and construction applica-
tions).

Internet

DRM Administrative Domain Main DRM host, 
local main services

Execution DRM hosts,
 local services

Firewall

DSP 
Web Service 

DRMAA-compliant 
 interface of DRM

Authentication
Authorization
Accounting

External AAA
Infrastructure

User

Administrator

DSP Database Module

SSL/TLS or GSI SAML 2.0
SOAP 

Web Services

DSP External Communication Module 

Figure 2. OpenDSP architecture

There are several other examples for successful

1http://sourceforge.net/projects/opendsp/

DRMAA-based applications and frameworks. The Tar-
get System Interface Framework for UNICORE is now
using is DRMAA as front-end to systems such as Con-
dor, Sun Grid Engine, Globus or Torque [7]. EGEE re-
lies on DRMAA for integration issues, and the MOAB
scheduler can interface DRMS systems with a DRMAA
interface. The latest list of use cases and DRMAA
implementations is maintained on the DRMAA home
page2.

6 Related Work

The OGF JSDL working group provides an abstract
definition of a type system for job submission param-
eters - attributes, their relationship, and value ranges.
The abstract syntax description is mapped to a nor-
mative XML schema definition. In contrast to DR-
MAA, questions of job submission, scheduling, work-
flow management and monitoring are declared as out
of scope. The reusability of one JSDL document is a
major driver in the template layout - job-specific infor-
mation like start time, end time or submission status
are not represented. JSDL supports a broader but dif-
ferent range of attributes as DRMAA, for example for
the definition of resource requirements or data stag-
ing issues. Multiple research projects already adopted
parts of the specification.

The OGF OGSA-BES working group uses JSDL to
define a SOAP-based job submission interface. The
specifications from this group are embedded in the
overall OGF work for the design of the Open Grid
Services Architecture (OGSA). OGSA-BES relies on a
very specific execution-container approach, and is still
work in progress. In contrast to DRMAA, it does not
consider the specific issues of using the API with a local
library implementation.

The GridSAM project provides an extensible imple-
mentation of the JSDL and OGSA-BES interface spec-
ifications. Job submission plug-in?s are available for
Globus and the POSIX fork() interface, as well as for
DRMAA 1.0 implementations.

The Commodity Grid Kit (CoG) [1] is developed by
the Argonne National Laboratory, and provides an end-
user API for job submission, grid security, task graphs
and file transfer. Even though CoG is developed as
independent project, there is a tight inter-connection to
features and protocols from the Globus toolkit [3]. CoG
is used in many specialized grid portal projects, since
it offers the most powerful, but specialized Java-based
API implementation for Globus. Similar to GridSAM,
CoG can use DRMAA for interfacing a DRM system
in a vendor-independent manner.

2http://www.drmaa.org/



The Simple API for Grid Applications (SAGA) pro-
vides a high-level API for grid application program-
ming. SAGA is derived from the Grid Application
Toolkit (GAT) library, and covers logical and physi-
cal file handling, information system management, and
job submission, monitoring and distributed communi-
cation. Even though GAT is a stabilized toolkit with
multiple backend’s for grid- and cluster-systems, the
SAGA standardization is in an early phase. Existing
implementations of GAT are able to interface DRMAA
library implementations for job submission.

7 Conclusion

DRMAA is an approved specification for a small
common DRM system API, which enables easy transi-
tion from cluster-based end user applications to grid-
based end user applications. DRMAA has multiple in-
teroperable implementations for relevant cluster and
grid systems (Sun N1GE, Torque, Condor, GridWay),
and is increasingly supported in various programming
languages. Several industrial customers, especially for
the Sun N1GE system, use DRMAA in their real-world
productive environments.

Regarding the performance characteristics of DR-
MAA, practical measurements in Sun N1GE showed
interactions with the DRMAA library to be compar-
atively faster than interactions via the command line.
Experiments showed that job submission rates can eas-
ily be doubled just by using DRMAA due to lower
job submission overhead. This is mainly reasoned by
the careful re-use of existing network connections to
scheduling and queuing servers in the library imple-
mentation. Other implementations of DRMAA (e.g.
Condor) rely on re-using the command line utilities
of the DRM system, due to non-available wire format
specifications for the particular system. These sys-
tems naturally show a similar performance to tradi-
tional batch submission scripts.

In our standardization work, we experienced several
interesting issues. Independent parallel development
of different language bindings (’n-version standardiza-
tion’) can identify general issues with a root specifica-
tion. Even with an comparatively lightweight API, the
definition of implementation behavior in a concurrent
and non-reliable grid scenario still demands continu-
ous in-depth analysis and practical implementation ex-
perience. The combination of academia and industry
people in one working group ensured both theoretical
completeness and practical applicability. A reference
implementation by an industrial partner clearly acts as
major driver for community acceptance and additional
implementations of a standard.

The future versions of the specification will provide
an improved support for object-oriented programming
languages. The DRMAA working group will also tackle
the extension of the API with respects to most de-
manded features, like job workflow management, im-
proved file staging support or JSDL-based job template
descriptions. Contributions and discussions are wel-
come on the DRMAA mailing list3.

References

[1] Gregor von Laszewski and Ian Foster and Jarek
Gawor and Peter Lane. A Java Commodity Grid
Kit. Concurrency and Computation: Practice and
Experience, 13(8-9):643–662, 2001.

[2] Hrabri Rajic and Roger Brobst and Waiman Chan
and Fritz Ferstl and Jeff Gardiner and Andreas
Haas and Bill Nitzberg and John Tollefsrud. Dis-
tributed Resource Management Application API
Specification 1.0. http://www.drmaa.org/, 2004.

[3] I. Foster and C. Kesselman. Globus: A Metacom-
puting Infrastructure Toolkit. The International
Journal of Supercomputer Applications and High
Performance Computing, 11(2):115–128, Summer
1997.

[4] Karl Czajkowski and Don Ferguson and Ian Fos-
ter and Jeff Frey and Steve Graham and Tom
Maguire and David Snelling and Steve Tuecke.
From Open Grid Services Infrastructure to WS-
Resource Framework: Refactoring & Evolution, 05
2004.

[5] M.J. Litzkow and M. Livny and M.W. Mutka. Con-
dor - A Hunter of Idle Workstations. In Proceed-
ings of the Eighth International Conference on Dis-
tributed Computing Systems, pages 104–111, 1988.

[6] Object Management Group, Inc. Common Ob-
ject Request Broker Architecture: Core Specifica-
tion. Prentice Hall Professional Technical Refer-
ence, march 2004.

[7] Morris Riedel, Roger Menday, Achim Streit, and
Piotr Bala. A drmaa-based target system interface
framework for unicore. In ICPADS ’06: Proceed-
ings of the 12th International Conference on Paral-
lel and Distributed Systems, pages 133–138, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[8] Winston Bumpus and John W. Schweitzer and
Patrick Thompson. Common Information Model.
John Wiley & Sons Inc, 2000.

3drmaa-wg@ogf.org


