
GWD-R
Distributed Resource Management
Application API (DRMAA) Working Group

Daniel Templeton, Sun Microsystems (maintainer)
Peter Tröger, Hasso-Plattner Institute

Roger Brobst, Cadence Design Systems
 Andreas Haas*, Sun Microsystems

Hrabri Rajic*, Intel Americas Inc.
John Tollefsrud, Sun Microsystems

*co-chairs January, 2007

Distributed Resource Management Application API JavaTM Language Bindings 1.0

Status of This Memo

This memo is a Global Grid Forum Grid Working Draft - Recommendation (GWD-R) in process,
in general accordance with the provisions of Global Grid Forum Document GFD-C.1, the Global
Grid Forum Documents and Recommendations: Process and Requirements, revised April 2002.

Copyright Notice

Copyright © Open Grid Forum (2003-2007). All Rights Reserved.

Abstract

This document describes the Distributed Resource Management Application API (DRMAA)
JavaTM language bindings. The document is based on the implementation work of the DRMAA
GWD-R document.

GWD-R 12 October 2006

Contents
1. Introduction...6
2. Notational Conventions... ..6
3. Design Decisions..6

3.1 Service Provider Interface...6
4. Relationship to Other DRMAA Specifications...6
5. The Java Language Binding API...7

5.1 The Session Interface..9
5.1.1 SUSPEND..10
5.1.2 RESUME..10
5.1.3 HOLD... ...11
5.1.4 RELEASE...11
5.1.5 TERMINATE..11
5.1.6 JOB_IDS_SESSION_ALL..11
5.1.7 JOB_IDS_SESSION_ANY...11
5.1.8 TIMEOUT_WAIT_FOREVER...11
5.1.9 TIMEOUT_NO_WAIT...11
5.1.10 UNDETERMINED.. ...11
5.1.11 QUEUED_ACTIVE...12
5.1.12 SYSTEM_ON_HOLD..12
5.1.13 USER_ON_HOLD..12
5.1.14 USER_SYSTEM_ON_HOLD..12
5.1.15 RUNNING..12
5.1.16 SYSTEM_SUSPENDED...12
5.1.17 USER_SUSPENDED...12
5.1.18 USER_SYSTEM_SUSPENDED...12
5.1.19 DONE...12
5.1.20 FAILED...12
5.1.21 init...13
5.1.22 exit..13
5.1.23 createJobTemplate..14
5.1.24 deleteJobTemplate...14
5.1.25 runJob.. ...14
5.1.26 runBulkJobs...15
5.1.27 control..16
5.1.28 synchronize...17
5.1.29 wait...18
5.1.30 getJobProgramStatus...19
5.1.31 getContact..20
5.1.32 getVersion...20
5.1.33 getDrmsInfo..20
5.1.34 getDrmaaImplementation...21

5.2 The SessionFactory Class...21
5.2.1 getFactory.. ...21
5.2.2 getSession...22

5.3 The JobTemplate Interface..22
5.3.1 HOLD_STATE..25

drmaa-wg@gridforum.org 2

GWD-R 12 October 2006

5.3.2 ACTIVE_STATE...25
5.3.3 HOME_DIRECTORY... ...25
5.3.4 WORKING_DIRECTORY..25
5.3.5 PARAMETRIC_INDEX...25
5.3.6 getAttributeNames...25
5.3.7 Getters...26
5.3.8 Setters..26
5.3.9 Required Properties... ...26
5.3.9.1 remoteCommand..26
5.3.9.2 args... ...27
5.3.9.3 jobSubmissionState...27
5.3.9.4 jobEnvironment... ...27
5.3.9.5 workingDirectory...27
5.3.9.6 jobCategory...27
5.3.9.7 nativeSpecification.. ...28
5.3.9.8 email..28
5.3.9.9 blockEmail...28
5.3.9.10 startTime... ...28
5.3.9.11 jobName..28
5.3.9.12 inputPath..28
5.3.9.14 errorPath... ...30
5.3.9.15 joinFiles...30
5.3.10 Optional Properties..30
5.3.10.1 transferFiles..30
5.3.10.2 deadlineTime...31
5.3.10.3 hardWallclockTimeLimit.. ...31
5.3.11softWallClockTimeLimit...31
5.3.12hardRunDurationLimit... ...31
5.3.13softRunDurationLimit...31

5.4The SimpleJobTemplate Class...31
5.4.1SimpleJobTemplate..34
5.4.2 toString...34
5.4.3 modified..34
5.4.4 getOptionalAttributeNames...34

5.5 The JobInfo Interface...35
5.5.1 getJobId...35
5.5.2 getResourceUsage..35
5.5.3 hasExited...36
5.5.4 getExitStatus...36
5.5.5 hasSignaled...36
5.5.6 getTerminatingSignal... ...36
5.5.7 hasCoreDump..37
5.5.8 wasAborted.. ...37

5.6 The PartialTimestamp Class...37
5.6.1 CENTURY..38
5.6.2 UNSET...38
5.6.3 getModifier...38
5.6.4 setModifier..39

5.7 The PartialTimestampFormat Class.. ..39
5.7.1 format (Object, StringBuffer, FieldPosition)..40

drmaa-wg@gridforum.org 3

GWD-R 12 October 2006

5.7.2 format (PartialTimestamp, StringBuffer, FieldPosition)..40
5.7.3 format (PartialTimestamp)..41
5.7.4 parse (String)...41
5.7.5 parse (String, ParsePosition)... ...41
5.7.6 parseObject..42

5.8 The FileTransferMode Class...42
5.8.1 FileTransferMode()...42
5.8.2FileTransferMode(boolean, boolean, boolean).. ..42
5.8.3 setTransferInputStream..43
5.8.4 getTransferInputStream... ...43
5.8.5 setTransferOutputStream...43
5.8.6 getTransferOutputStream...43
5.8.7 setTransferErrorStream...43
5.8.8 getTransferErrorStream... ...43

5.9 The Version Class...44
5.9.1Version..44
5.9.2 getMajor... ...44
5.9.3 getMinor... ...44

5.10 Exceptions44
5.10.1The Exception Hierarchy...45
5.10.2 AlreadyActiveSessionException...46
5.10.3 AuthorizationException...46
5.10.4 ConflictingAttributeValuesException.. ...46
5.10.5 DefaultContactStringException.. ...46
5.10.6 DeniedByDrmException..46
5.10.7 DrmCommunicationException..46
5.10.8 DrmsExitException...46
5.10.9 DrmsInitException...46
5.10.10 ExitTimeoutException...46
5.10.11 HoldInconsistentStateException...46
5.10.12 InternalException..46
5.10.13 InvalidAttributeFormatException.. ...46
5.10.14 InvalidAttributeValueException...47
5.10.15InvalidContactStringException.. ...47
5.10.16 InvalidJobException... ...47
5.10.17 InvalidJobTemplateException.. ...47
5.10.18 NoActiveSessionException.. ...47
5.10.19 NoDefaultContactStringSelectedException..47
5.10.20 ReleaseInconsistentStateException...47
5.10.21 ResumeInconsistentStateException...47
5.10.22 SuspendInconsistentStateException..47
5.10.23 TryLaterException...47
5.10.24 UnsupportedAttributeException..48
5.10.25 Correlation to Error Codes... ...48
5.10.26Correlation to IDL Exceptions..49

6. Java Language Binding Example..49
7. Service Provider Interface...51

7.1 Session Interface...52
7.2 SessionFactory Class..52
7.3 SimpleJobTemplate Class...52

drmaa-wg@gridforum.org 4

GWD-R 12 October 2006

7.4 JobInfo Interface..52
8. Security Considerations..52
9. Author Information...52
10. Intellectual Property Statement... ..53
11. Disclaimer...54
12. Full Copyright Notice...54

Tables
Table 1: IDL Mapping for the Java Language... ..7
Table 2: DRMAA Properties and Java Language Types...8
Table 3: Correlating Error Codes to Exceptions..49
Table 4: Correlating IDL Exceptions to Java Language Binding Exceptions.........................50

drmaa-wg@gridforum.org 5

GWD-R 12 October 2006

1. Introduction

This document describes the Java language binding for the DRMAA interface. This Java
language binding was developed with the Java 2 Standard EditionTM 1.4.2 in mind, however it
should be possible to implement with any Java platform version 1.2 or greater. This requirement
stems from the use of the Collections API which was first introduced with Java Development
KitTM 1.2.

2. Notational Conventions

The key words ‘MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,”
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be interpreted as
described in RFC 2119 [BRADNER1]

3. Design Decisions

In order to make the Java language binding as familiar to programmers as possible, whenever
possible, design elements were borrowed from common Java language APIs. The Java
language binding makes use of an API/SPI factory pattern similar to the JAX Pack APIs. The
Java language binding also abstracts exception handing to a single, declared, top-level
exception as is done in the JDBC API. Properties in the Java language binding follow the
standard JavaBeanTM property pattern.

3.1 Service Provider Interface

The DRMAA Java language binding allows vendors to implement the DRM-specific binding
classes required to interface with a given DRM without changing the outward facing API. By
extending classes in the Java language binding and providing implementations of the various
methods, a vendor can tailor his implementation to his needs. The vendor implementation
SHOULD be completely transparent to the DRMAA application, however. The API hides the SPI
and prevents the DRMAA application from needing to know anything about the underlying
implementation.

4. Relationship to Other DRMAA Specifications

The Java language binding specification is related to both the Distributed Resource Management
Application API Specification 1.0 (GFD.022) and the Distributed Resource Management
Application API – IDL Binding 1.0 (DRMAA IDL). The former is the parent specification of all
specifications in the DRMAA family and lays out the behavior and functionality that must be
defined in this and all binding specifications. The later lays the ground work for the next
generation of DRMAA specifications and builds on the former, providing specifics of syntax and
semantics to be declared in this document. As the later specification evolves, this document will
also evolve in order to remain in sync.

The DRMAA IDL specification suggests a mapping of abstract IDL constructs to elements of the
particular language. For the Java Language Binding API, the following mappings apply:

drmaa-wg@gridforum.org 6

GWD-R 12 October 2006

IDL Construct Java Mapping

long int

long long long

string java.lang.String

boolean boolean

const public static final

module Java package

interface Java interface

exception Java class derived from java.lang.Exception

raises throws

valuetype public class

factory Java class constructor

JobControlAction enumeration Session interface constants

JobProgramState enumeration Session interface constants

JobSubmissionState enumeration JobTemplate interface constants

StringList type java.util.Set

OrderedStringList type java.util.List

TimeAmount type long

Dictionary type java.util.Map

(readonly) IDL attribute Java property with associated getter (and setter)

Table 1: IDL Mapping for the Java Language

5. The Java Language Binding API

The GFD.022 DRMAA Interface Specification was written originally with a slant towards a C
binding. As such, several aspects of the DRMAA interface needed to be interpreted with liberty
in order to better fit with an object-oriented language like the Java language. Among the aspects
that changed are variable and method naming and the error structure. Details of this altering are
described in the DRMAA IDL specification.

As suggested in the DRMAA IDL specification, some methods from the GFD.022 specification
fail to appear in object-oriented bindings such as the Java language binding specification. The
drmaa_get_attribute(), drmaa_set_attribute(), drmaa_get_vector_attribute(),
drmaa_set_vector_attribute(), and drmaa_get_vector_attribute_names() methods are not
needed because the Java language binding specification specifies a property getter and setter
for each DRMAA attribute. A getter is a method for getting a property's value, and a setter is a
method for setting a property's value. The advantage of this approach is that the property
getters and setters allow for compile-time type checking of DRMAA attributes, and allow special

drmaa-wg@gridforum.org 7

GWD-R 12 October 2006

treatment of attributes which are better represented as something other than a String. Below is a
table of the DRMAA IDL/Java property names and their corresponding Java language types.

DRMAA IDL/Java Property Java Language Type

remoteCommand java.lang.String

args java.lang.String[]

jobSubmissionState int

jobEnvironment java.util.Map

workingDirectory java.lang.String

jobCategory java.lang.String

nativeSpecification java.lang.String

email java.lang.String[]

blockEmail boolean

startTime org.ggf.drmaa.PartialTimestamp

jobName java.lang.String

inputPath java.lang.String

outputPath java.lang.String

errorPath java.lang.String

joinFiles boolean

transferFiles org.ggf.drmaa.FileTransferMode

deadlineTime org.ggf.drmaa.PartialTimestamp

hardWallclockTimeLimit long

softWallclockTimeLimit long

hardRunDurationLimit long

softRunDurationLimit long

Table 2: DRMAA Properties and Java Language Types

The setters and getters follow the JavaBeanTM pattern for properties. For an attribute named
attribute of type Type, the signature of the getter and setter would be:

public void setAttribute (Type value) throws DrmaaException;
public Type getAttribute ()

All property getters and setters MUST operate in a pass-by-value mode. For data types which
are not natively pass-by-value, such as org.ggf.drmaa.FileTransferMode, the data MUST be
copied so that the data structure stored by the Java language binding is decoupled from the data
structure in the calling application.

drmaa-wg@gridforum.org 8

GWD-R 12 October 2006

Optional attributes are also represented by getters and setters. In conformance to the DRMAA
IDL binding, the Java binding implementation MUST provide implementations in the
SimpleJobTemplate class of getters and setters for all DRMAA attributes, both required and
optional. The getter and setter implementations for optional attributes in the SimpleJobTemplate
class MUST throw org.ggf.drmaa.UnsupportedAttributeException. The service provider
implementation SHOULD then override the getters and setters for supported optional attributes
with methods that operate normally.

The JobTemplate.getAttributeNames() method MUST return the names of all properties
supported by the service provider implementation, including required, optional, and
implementation specific attributes. In order for an application to get the values for all supported
attributes of a JobTemplate instance, such as in a property sheet, the application should use
introspection to call the appropriate getter for each attribute.

5.1 The Session Interface

The main class in the Java language binding is the Session interface. It represents the majority
of the functionality defined by the DRMAA Interface Specification. Please consult GFD.022
section 3.1.2 for further details about the DRMAA session concept. The Session interface has
the following structure:

public abstract interface org.ggf.drmaa.Session {
 public static final int SUSPEND = 0;
 public static final int RESUME = 1;
 public static final int HOLD = 2;
 public static final int RELEASE = 3;
 public static final int TERMINATE = 4;
 public static final java.lang.String JOB_IDS_SESSION_ALL =
 “DRMAA_JOB_IDS_SESSION_ALL“;
 public static final java.lang.String JOB_IDS_SESSION_ANY =
 “DRMAA_JOB_IDS_SESSION_ANY“;
 public static final long TIMEOUT_WAIT_FOREVER = -1L;
 public static final long TIMEOUT_NO_WAIT = 0L;
 public static final int UNDETERMINED = 0x00;
 public static final int QUEUED_ACTIVE = 0x10;
 public static final int SYSTEM_ON_HOLD = 0x11;
 public static final int USER_ON_HOLD = 0x12;
 public static final int USER_SYSTEM_ON_HOLD = 0x13;
 public static final int RUNNING = 0x20;
 public static final int SYSTEM_SUSPENDED = 0x21;
 public static final int USER_SUSPENDED = 0x22;
 public static final int USER_SYSTEM_SUSPENDED = 0x23;
 public static final int DONE = 0x30;
 public static final int FAILED = 0x40;
 public void init(java.lang.String contactString)
 throws org.ggf.drmaa.DrmaaException;
 public void exit() throws org.ggf.drmaa.DrmaaException;
 public org.ggf.drmaa.JobTemplate createJobTemplate()
 throws org.ggf.drmaa.DrmaaException;
 public void

drmaa-wg@gridforum.org 9

GWD-R 12 October 2006

 deleteJobTemplate(org.ggf.drmaa.JobTemplate jobTemplate)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String
 runJob(org.ggf.drmaa.JobTemplate jobTemplate)
 throws org.ggf.drmaa.DrmaaException;
 public java.util.List
 runBulkJobs(org.ggf.drmaa.JobTemplate jobTemplate,
 int beginIndex, int endIndex, int step)
 throws org.ggf.drmaa.DrmaaException;
 public void control(java.lang.String jobName, int operation)
 throws org.ggf.drmaa.DrmaaException;
 public void synchronize(java.util.List jobList,
 long timeout, boolean dispose)
 throws org.ggf.drmaa.DrmaaException;
 public org.ggf.drmaa.JobInfo
 wait(java.lang.String jobName, long timeout)
 throws org.ggf.drmaa.DrmaaException;
 public int getJobProgramStatus(java.lang.String jobName)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getContact()
 throws org.ggf.drmaa.DrmaaException;
 public org.ggf.drmaa.Version getVersion()
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getDrmsInfo()
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getDrmaaImplementation()
 throws org.ggf.drmaa.DrmaaException;
}

All methods of the Session interface MAY raise the following exceptions in addition to any
explicitly listed in the method descriptions below:

• java.lang.OutOfMemoryError – as described in the Java Language Specification. This
exception replaces the OutOfMemoryException from the DRMAA IDL specification.

• DrmCommunicationException – The DRMS could not be contacted.

• AuthorizationException – the session owner does not have permission to perform the
chosen operation.

• Java.lang.IllegalArgumentException – as described in the Java Language Specification.
This exception replaces the InvalidArgumentException from the DRMAA IDL specification.
It MAY only be raised by methods with input arguments.

• InternalException – due to an error in the DRMAA implementation, the chosen operation
could not be performed.

5.1.1 SUSPEND

The SUSPEND constant is used by the control() method to indicate that the given job should be
suspended.

drmaa-wg@gridforum.org 10

GWD-R 12 October 2006

5.1.2 RESUME

The RESUME constant is used by the control() method to indicate that the given job should be
resumed.

5.1.3 HOLD

The HOLD constant is used by the control() method to indicate that the given job should be
placed into a hold state.

5.1.4 RELEASE

The RELEASE constant is used by the control() method to indicate that the given job should be
released from its hold state.

5.1.5 TERMINATE

The TERMINATE constant is used by the control() method to indicate that the given job should
be terminated.

5.1.6 JOB_IDS_SESSION_ALL

The JOB_IDS_SESSION_ALL constant is used by the control() and synchronize() methods to
indicate that a method call should operate on all jobs in the session at submission time, minus
any jobs that go out of scope during the run time of the operation. For example: If a job was in
the session at the time of calling synchronize(JOB_IDS_SESSION_ALL), and it gets reaped
during the operation, the synchronize() call will not fail. The usage of control() or synchronize()
with JOB_IDS_SESSION_ALL on an empty session SHALL result in a successful call result
without any further effect. In the case that a call with JOB_IDS_SESSION_ALL fails for a partial
set of the jobs in the session, the implementation SHALL throw an InternalException. The error
text of the exception should explain the problem in detail and may give an idea of the current
status of the session.

5.1.7 JOB_IDS_SESSION_ANY

The JOB_IDS_SESSION_ANY constant is used by the wait() method to indicate that a method
call may operate on any job currently in the RUNNING state in the session.

5.1.8 TIMEOUT_WAIT_FOREVER

The TIMEOUT_WAIT_FOREVER constant is used by the wait() and synchronize() methods to
indicate that a method call should not return until the given job or jobs have entered the DONE or
FAILED state.

5.1.9 TIMEOUT_NO_WAIT

The TIMEOUT_NO_WAIT constant is used by the wait() and synchronize() methods to indicate
that a method call should return immediately if the given job or jobs have not yet entered the
DONE or FAILED state.

drmaa-wg@gridforum.org 11

GWD-R 12 October 2006

5.1.10 UNDETERMINED

The UNDETERMINED constant is used by the getJobProgramStatus() method to indicate that
the job's current state cannot be determined.

5.1.11 QUEUED_ACTIVE

The QUEUED_ACTIVE constant is used by the getJobProgramStatus() method to indicate that
the job is queued and waiting to be scheduled.

5.1.12 SYSTEM_ON_HOLD

The SYSTEM_ON_HOLD constant is used by the getJobProgramStatus() method to indicate
that the job has been placed on hold by the system or administrator.

5.1.13 USER_ON_HOLD

The USER_ON_HOLD constant is used by the getJobProgramStatus() method to indicate that
the job has been placed on hold by a user.

5.1.14 USER_SYSTEM_ON_HOLD

The USER_SYSTEM_ON_HOLD constant is used by the getJobProgramStatus() method to
indicate that the job has been placed on hold by both the system or administrator and a user.

5.1.15 RUNNING

The RUNNING constant is used by the getJobProgramStatus() method to indicate that the job
has been scheduled and is running.

5.1.16 SYSTEM_SUSPENDED

The SYSTEM_SUSPENDED constant is used by the getJobProgramStatus() method to
indicate that the job has been suspended by the system or administrator.

5.1.17 USER_SUSPENDED

The USER_SUSPENDED constant is used by the getJobProgramStatus() method to indicate
that the job has been suspended by a user.

5.1.18 USER_SYSTEM_SUSPENDED

The USER_SYSTEM_SUSPENDED constant is used by the getJobProgramStatus() method to
indicate that the job has been suspended by both the system or administrator and a user.

5.1.19 DONE

The DONE constant is used by the getJobProgramStatus() method to indicate that the job has
finished normally.

drmaa-wg@gridforum.org 12

GWD-R 12 October 2006

5.1.20 FAILED

The FAILED constant is used by the getJobProgramStatus() method to indicate that the job
exited abnormally before finishing.

5.1.21 init

The init() method MUST do whatever work is required to initialize a DRMAA session for use.
The contactString parameter is an implementation-dependent string that may be used to specify
which DRM system to use. This method must be called before any other DRMAA calls, except
for the getDrmsInfo(), getDrmaaImplementation(), and getContact() methods of the Session
interface.

If contact is null or empty, the default DRM system SHOULD be used, provided there is only
one DRMS available. If contact is null or empty, and more than one DRMS is available, init()
SHALL throw a NoDefaultContactStringSelectedException. init() SHOULD be called
only once, by only one of the threads. The main thread is recommended. A call to init() by
another thread or additional calls to init() by the same thread SHOULD throw an
AlreadyActiveSessionException.

In the case that a DRMAA library implementation needs to perform non-thread-safe operations, it
SHOULD perform them in the implementation of the init() operation, in order to ensure thread-
safe operations for all other DRMAA methods.

5.1.21.1 Parameters

contactString - implementation-dependent string that may be used to specify which DRM
system to use. If null or empty, the DRMAA implementation will select the default DRM if there
is only one DRMS available.

5.1.21.2 Throws

DrmaaException - MAY be be one of the following:

• DrmsInitException – failed while initializing the session.

• InvalidContactStringException – the contact parameter is invalid.

• AlreadyActiveSessionException – the session has already been initialized.

• DefaultContactStringException – the contact parameter is null or empty and the
default contact string could not be used to connect to the DRMS.

• NoDefaultContactStringSelectedException – the contact parameter is null or empty
and more than one DRMS is available.

5.1.22 exit

The exit() method MUST do whatever work is required to disengage from the DRM system and
allow the DRMAA implementation to perform any necessary internal cleanup. This routine ends
the current DRMAA session but SHALL NOT affect any jobs (e.g., queued and running jobs

drmaa-wg@gridforum.org 13

GWD-R 12 October 2006

remain queued and running). Any JobTemplate instances which have not yet been deleted
become invalid after exit() is called, even after a subsequent call to init(). exit() SHOULD be
called only once, by only one of the threads. Additional calls to exit() beyond the first SHALL
throw a NoActiveSessionException, until a subsequent call to init().

5.1.22.1 Throws

DrmaaException - MAY be one of the following:

• DrmsExitException – failed while exiting the session.

• NoActiveSessionException – the session has not been initialized or exit() has
already been called

5.1.23 createJobTemplate

The createJobTemplate() method SHALL return a new JobTemplate instance. The job template
is used to set the defining characteristics for jobs to be submitted. Once the job template has
been created, it SHOULD also be deleted (via deleteJobTemplate()) when no longer needed.
Failure to do so may result in a memory leak.

5.1.23.1 Returns

The createJobTemplate() method SHALL return a blank JobTemplate object. In service
provider DRMAA implementations for Java SE 5.0 or later, the concrete service provider Session
implementation SHOULD override the return type of this method to be that of the service
provider job template implementation if one exists.

5.1.23.2 Throws

DrmaaException - MAY be one of the following:

• NoActiveSessionException – the session has not been initialized

5.1.24 deleteJobTemplate

The deleteJobTemplate() method is used to deallocate a job template, and SHALL perform all
necessary steps required to free all memory associated with the given job template instance. If a
DRMAA implementation provides a finalizer method for the JobTemplate implementation, the
implementation of this method MAY be empty.

This method SHALL have no effect on running jobs. This method MUST only work on
JobTemplate instances that were created with the createJobTemplate() method and have not
previously been deleted with the deleteJobTemplate() method and MUST otherwise throw an
InvalidJobTemplateException.

5.1.24.1 Parameters

jt - the JobTemplate to delete.

5.1.24.2 Throws

DrmaaException - MAY be one of the following:

drmaa-wg@gridforum.org 14

GWD-R 12 October 2006

• NoActiveSessionException – the session has not been initialized

• InvalidJobTemplateException – the given job template was not created with
createJobTemplate() or has already been deleted.

5.1.25 runJob

The runJob() method SHALL submit a job with attributes defined in the job template given as a
parameter. The returned job identifier SHOULD be a String identical to that returned from the
underlying DRM system. This method MUST only work on JobTemplate instances that were
created with the createJobTemplate() method and have not previously been deleted with the
deleteJobTemplate() method and MUST otherwise throw an InvalidJobTemplateException.

5.1.25.1 Parameters

jt - the job template to be used to create the job.

5.1.25.2 Returns

The runJob() method SHOULD return a job identifier string identical to that returned from the
underlying DRM system.

5.1.25.3 Throws

DrmaaException - MAY be one of the following:

• TryLaterException – the request could not be processed due to excessive system
load.

• DeniedByDrmException – the DRMS rejected the job. The job will never be
accepted due to job template or DRMS configuration settings.

• InvalidJobTemplateException – the given job template was not created with
createJobTemplate() or has already been deleted.

• NoActiveSessionException – the session has not been initialized or exit() has
already been called.

5.1.26 runBulkJobs

The runBulkJobs() method SHALL submit a set of parametric jobs, dependent on the implied
loop index, each with attributes defined in the given job template. Each job in the set is identical
except for its index. The first parametric job has an index equal to beginIndex. The next job has
an index equal to beginIndex + step, and so on. The last job has an index equal to beginIndex +
n * step, where n is equal to (endIndex – beginIndex) / step. Note that the value of the last job's
index may not be equal to endIndex if the difference between beginIndex and endIndex is not
evenly divisible by step. The smallest valid value for beginIndex is 1. The largest valid value for
endIndex is language dependent. The beginIndex value must be less than or equal to the
endIndex value, and only positive index numbers are allowed. The index number can be
determined by the job in an implementation-specific fashion. The returned job identifiers
SHOULD be Strings identical to those returned from the underlying DRM system.

drmaa-wg@gridforum.org 15

GWD-R 12 October 2006

The JobTemplate interface defines a PARAMETRIC_INDEX placeholder for use in specifying
paths. This placeholder is used to represent the individual identifiers of the tasks submitted
through this method.

This method MUST only work on JobTemplate instances that were created by the
createJobTemplate() method and have not previously been deleted by the
deleteJobTemplate() or exit() method and MUST otherwise throw an
InvalidJobTemplateException.

5.1.26.1 Parameters

jobTemplate - the job template to be used to create the job.

beginIndex - the starting value for the loop index.

EndIndex - the terminating value for the loop index.

step - the value by which to increment the loop index each iteration.

5.1.26.2 Returns

The runBulkJobs() method SHOULD return a list of job identifier Strings identical to that
returned by the underlying DRM system.

5.1.26.3 Throws

DrmaaException - MAY be one of the following:

• TryLaterException – the request could not be processed due to excessive system
load.

• DeniedByDrmException – the DRMS rejected the job. The job will never be
accepted due to job template or DRMS configuration settings.

• InvalidJobTemplateException – the given job template was not created with
createJobTemplate() or has already been deleted.

• NoActiveSessionException – the session has not been initialized or exit() has
already been called.

5.1.27 control

The control() method SHALL hold, release, suspend, resume, or kill the job identified by
jobName. If jobName is JOB_IDS_SESSION_ALL, then this method SHALL act on all jobs
submitted during this DRMAA session up to the moment control() is called. See 5.1.6.

To avoid thread races in multi-threaded applications, the DRMAA implementation user should
explicitly synchronize this call with any other job submission calls or control calls that may
change the number of remote jobs.

The legal values for operation and their meanings SHALL be:

• SUSPEND: stop the job,

• RESUME: (re)start the job,

• HOLD: put the job on-hold,

drmaa-wg@gridforum.org 16

GWD-R 12 October 2006

• RELEASE: release the hold on the job, and

• TERMINATE: kill the job.

This method SHALL return once the action has been acknowledged by the DRM system, but
MAY return before the action has been completed.

Some DRMAA implementations MAY allow this method to be used to control jobs submitted
externally to the DRMAA session, such as jobs submitted by other DRMAA session in other
DRMAA implementations or jobs submitted via native utilities.

5.1.27.1 Parameters

jobName - The id of the job to control.

operation - the control action to be taken.

5.1.27.2 Throws

DrmaaException - MAY be one of the following:

• ResumeInconsistentStateException – the job is not in a state from which is can be
resumed.

• SuspendInconsistentStateException – the job is not in a state from which is can be
suspended.

• HoldInconsistentStateException – the job is not in a state from which is can be held.

• ReleaseInconsistentStateException – the job is not in a state from which is can be
released.

• InvalidJobException – the job id does not represent a valid job.

• NoActiveSessionException – the session has not been initialized or exit() has
already been called.

5.1.28 synchronize

This method SHALL wait until all jobs specified by jobList have finished execution. If jobList
contains JOB_IDS_SESSION_ALL, then this method SHALL wait for all jobs submitted during
this DRMAA session up to the moment synchronize() is called. See 5.1.6.

In the case where a call with JOB_IDS_SESSION_ALL fails for a partial set of the jobs in the
session, the implementation SHALL throw an InternalException. The error text of the exception
should explain the problem in detail and may give an idea of the current status of the session.

To avoid thread race conditions in multi-threaded applications, the DRMAA implementation user
should explicitly synchronize this call with any other job submission calls or control calls that may
change the number of remote jobs.

To prevent blocking indefinitely in this call, the caller may use a timeout specifying how many
seconds to block in this call. The value TIMEOUT_WAIT_FOREVER may be specified to wait
indefinitely for a result. The value TIMEOUT_NO_WAIT may be specified to return immediately.
If the call exits before the timeout has elapsed, all the jobs have been waited on or there was an

drmaa-wg@gridforum.org 17

GWD-R 12 October 2006

interrupt. If the invocation exits on timeout, an ExitTimeoutException SHALL be thrown. The
caller should check system time before and after this call in order to be sure of how much time
has passed.

If at any time during the call to synchronize(), no jobs are active in the session, the call to
synchronize() will return immediately.

The dispose parameter specifies how to treat the reaping of the remote job's internal data
record, which includes a record of the job's consumption of system resources during its
execution and other statistical information. If set to true, the DRM SHALL dispose of the job's
data record. If set to false, the data record SHALL be left for future access via the wait()
method. Because a DRMAA implementation is not required to retain information about jobs
which have bean reaped, the routine is not required to, but MAY distinguish between non-
existent and reaped jobs. If the routine successfully validates a jobId for an already reaped job, it
MAY return successfully.

5.1.28.1 Parameters

jobList - the ids of the jobs to synchronize.

timeout - the maximum number of seconds to wait.

dispose - specifies how to treat reaping information.

5.1.28.2 Throws

DrmaaException - MAY be one of the following:

• ExitTimeoutException – the call was interrupted before all given jobs finished.

• InvalidJobException – the job id does not represent a valid job.

• NoActiveSessionException – the session has not been initialized or exit() has
already been called.

5.1.29 wait

This method SHALL wait for a job with jobName to finish execution or fail. If
JOB_IDS_SESSION_ANY is provided as the jobName, this method SHALL wait for any job
submitted during this DRMAA session up to the moment wait() is called. At any time during a
call to wait() with JOB_IDS_SESSION_ANY as the jobName parameter, if no jobs are active in
the session, the call to wait() SHALL fail, throwing an InvalidJobException. This method is
modeled on the wait3 POSIX routine. Only one invocation of the wait() method for a given job id
MAY succeed. The others MUST throw an InvalidJobException.

The timeout value SHALL be used to specify the desired behavior when a result is not
immediately available. The value, TIMEOUT_WAIT_FOREVER, may be specified to wait
indefinitely for a result. The value, TIMEOUT_NO_WAIT, may be specified to return immediately.
Alternatively, a number of seconds may be specified to indicate how long to wait for a result to
become available.

If the call exits before timeout seconds, either the job has been waited on successfully or there
was an interrupt. If the invocation exits on timeout, an ExitTimeoutException SHALL be thrown.

drmaa-wg@gridforum.org 18

GWD-R 12 October 2006

The caller should check system time before and after this call in order to be sure how much time
has passed.

This method SHALL reap job data records on a successful call, so any subsequent calls to wait()
will fail, throwing an InvalidJobException, meaning that the job's data record has already been
reaped. This exception is the same as if the job were unknown. (The only case where wait() can
be successfully called on a single job more than once is when the previous call to wait() timed
out before the job finished.)

In a multi-threaded environment with a wait() call using JOB_IDS_SESSION_ANY, only the
active thread gets the status of the finished or failed job, while the other threads continue waiting.
If there are no more running or completed jobs left in the session, all remaining waiting threads
SHOULD fail with an InvalidJobException. If thread A is waiting for a specific job, and another
thread, thread B, waiting for that same job or with JOB_IDS_SESSION_ANY, receives
notification that the job has finished, thread A SHOULD fail with an InvalidJobException. At any
time during a call to wait() with JOB_IDS_SESSION_ANY as the jobName parameter, if no jobs
are active in the session, the call to wait() SHALL fail, throwing an InvalidJobException.

When successful, the resource usage information for the job SHALL be provided as a
java.util.Map of usage parameter names and their values in the returned JobInfo instance. The
values contain the amount of resources consumed by the job and are implementation defined.

5.1.29.1 Parameters

jobName - the id of the job for which to wait.

timeout - the maximum number of seconds to wait.

5.1.29.2 Returns

This method SHALL return the resource usage and status information as a JobInfo instance.

5.1.29.3 Throws

DrmaaException - MAY be one of the following:

• ExitTimeoutException – the call was interrupted before the given job finished.

• InvalidJobException – the job id does not represent a valid job.

• NoActiveSessionException – the session has not been initialized or exit() has
already been called.

5.1.30 getJobProgramStatus

The getJobProgramStatus() method SHALL return the program status of the job identified by
jobName. The possible values returned from this method are:

• UNDETERMINED: process status cannot be determined,

• QUEUED_ACTIVE: job is queued and waiting to be scheduled,

• SYSTEM_ON_HOLD: has been placed on hold by the system or the administrator,

• USER_ON_HOLD: job has been placed on hold by a user,

drmaa-wg@gridforum.org 19

GWD-R 12 October 2006

• USER_SYSTEM_ON_HOLD: job has been placed on hold by both the system or
administrator and a user,

• RUNNING: job has been scheduled and is running,

• SYSTEM_SUSPENDED: job has been suspended by the system or administrator,

• USER_SUSPENDED: job has been suspended by a user,

• USER_SYSTEM_SUSPENDED: job has been suspended by both the system or
administrator and a user,

• DONE: job finished normally, and

• FAILED: job exited abnormally before finishing.

The DRMAA implementation MUST always get the status of the job from the DRM system
unless the status has already been determined to be FAILED or DONE and the status has been
successfully cached. Terminated jobs return a FAILED status. It is up to the implementation to
determine whether this method is capable of operating on jobs submitted outside of the current
DRMAA session.

A DRMAA implementation is not required to be able to return all of the job state values in the
above list. If a given job state has no representation in the underlying DRMS, the DRMAA
implementation MAY ignore that job state value. All DRMAA implementations MUST, however,
define all listed job state constants, including those for unused job states. An implementation
SHOULD NOT return any job state value other than those listed above.

5.1.30.1 Parameters

jobName - the id of the job whose status is to be retrieved.

5.1.30.2 Returns

The getJobProgramStatus() SHALL return the program status.

5.1.30.3 Throws

DrmaaException - MAY be one of the following:

• InvalidJobException – the job id does not represent a valid job.

• NoActiveSessionException – the session has not been initialized or exit() has
already been called.

5.1.31 getContact

If called before init(), this method SHALL return a comma delimited String containing the default
DRMAA implementation contact Strings, one element per DRM system available. A contact
string represents a specific installation of a specific DRM system, e.g. a Condor central manager
machine at a given IP address or a Sun Grid Engine ‘root’ and ‘cell’.

If called after init(), this method SHALL return the contact String for the DRM system to which
the session is attached.

drmaa-wg@gridforum.org 20

GWD-R 12 October 2006

The returned Strings are always implementation dependent and SHOULD NOT be interpreted by
the application.

5.1.31.1 Returns

This method SHALL return the current contact information for the DRM system or a comma
delimited list of possible contact Strings.

5.1.32 getVersion

This method SHALL return a Version instance containing the major and minor version numbers
of the DRMAA library. For DRMAA 1.0, major is 1 and minor is 0. This method may not be
called before init() has been called.

5.1.32.1 Returns

This method SHALL return the version number as a Version object.

5.1.33 getDrmsInfo

If called before init(), this method SHALL return a comma delimited list of DRM system
identifiers, one element per DRM system implementation provided. A DRM system identifier
denotes a specific type of DRM system, e.g. Sun Grid Engine.

If called after init(), this method SHALL return the selected DRM system identifier. The returned
Strings are implementation dependent and SHOULD NOT be interpreted by the application.

5.1.33.1 Returns

This method SHALL return the DRM system identifier information.

5.1.34 getDrmaaImplementation

If called before init(), this method SHALL return a comma delimited list of DRMAA
implementations, one element for each DRMAA implementation provided. A DRMAA
implementation string denotes a specific version of a DRM system, e.g. Grid Engine 6.0u9.

If called after init(), this method SHALL return the selected DRMAA implementation. The
returned Strings are implementation dependent. They MAY contain the DRM system identifier
as a component and SHOULD NOT be interpreted by the application.

5.1.34.1 Returns

This method SHALL return the DRMAA implementation information.

5.2 The SessionFactory Class

In order to enable a Java language binding implementation to be supported by multiple different
vendors, a factory class is needed to allow a DRMAA application to retrieve a vendor specific
implementation of the Session interface. The SessionFactory class serves this purpose and
additionally allows the vendor the freedom to return different Session implementations
depending on the need. The structure of the SessionFactory class is as follows:

drmaa-wg@gridforum.org 21

GWD-R 12 October 2006

public abstract class org.ggf.drmaa.SessionFactory {
 public static org.ggf.drmaa.SessionFactory getFactory()
 public abstract org.ggf.drmaa.Session getSession()
}

It is likely that with a future version of this specification, the SessionFactory class will include a
method to explicitly request a specific service provider implementation.

5.2.1 getFactory

This method MUST return a SessionFactory instance appropriate for the DRM in use. This
method MUST use the “org.ggf.drmaa.SessionFactory” property to find the appropriate
SessionFactory implemention class. It MUST first look in the system properties. If the property
is not present, the method MUST look in $java.home/lib/drmaa.properties. If the property still
isn't found, the method MUST search the classpath for a META-
INF/services/org.ggf.drmaa.SessionFactory resource. If the property still has not been found,
the method MUST throw an Error.

5.2.1.1 Returns

This method MUST return a SessionFactory instance appropriate for the DRM in use.

5.2.1.2 Throws

Error – No SessionFactory implementation class could be found.

5.2.2 getSession

This method MUST return a Session instance appropriate for the DRM in use.

5.2.2.1 Returns

This method MUST return a Session instance appropriate for the DRM in use. In service
provider DRMAA implementations for Java SE 5.0 or later, the concrete service provider
SessionFactory implementation SHOULD override the return type of this method to be that of the
concrete service provider Session implementation if one exists.

5.3 The JobTemplate Interface

In order to define the attributes associated with a job, a DRMAA application uses the
JobTemplate interface. Instances of such templates are created via the active Session
implementation. A DRMAA application gets a JobTemplate instance from the active Session
instance, specifies in the template any required job parameters, and the passes the template
back to the Session instance when requesting that a job be executed. When finished, the
DRMAA application SHOULD call the Session.deleteJobTemplate() method to allow the
underlying implementation to free any resources bound to the JobTemplate instance. Please
refer also to GFD.022 section 3.1.4 to 3.1.6 for more information regarding precedence rules,
site-specific requirements and job evaluation.

drmaa-wg@gridforum.org 22

GWD-R 12 October 2006

The structure of the JobTemplate interface is as follows:

public abstract interface org.ggf.drmaa.JobTemplate {
 public static final int HOLD_STATE = 0;
 public static final int ACTIVE_STATE = 1;
 public static final java.lang.String HOME_DIRECTORY =
 “$drmaa_hd_ph$“;
 public static final java.lang.String WORKING_DIRECTORY =
 “$drmaa_wd_ph$“;
 public static final java.lang.String PARAMETRIC_INDEX =
 “$drmaa_incr_ph$“;
 public void setRemoteCommand(java.lang.String command)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getRemoteCommand()
 throws org.ggf.drmaa.DrmaaException;
 public void setArgs(java.util.List args)
 throws org.ggf.drmaa.DrmaaException;
 public java.util.List getArgs()
 throws org.ggf.drmaa.DrmaaException;
 public void setJobSubmissionState(int state)
 throws org.ggf.drmaa.DrmaaException;
 public int getJobSubmissionState()
 throws org.ggf.drmaa.DrmaaException;
 public void setJobEnvironment(java.util.Map env)
 throws org.ggf.drmaa.DrmaaException;
 public java.util.Map getJobEnvironment()
 throws org.ggf.drmaa.DrmaaException;
 public void setWorkingDirectory(java.lang.String wd)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getWorkingDirectory()
 throws org.ggf.drmaa.DrmaaException;
 public void setJobCategory(java.lang.String category)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getJobCategory()
 throws org.ggf.drmaa.DrmaaException;
 public void setNativeSpecification(java.lang.String spec)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getNativeSpecification()
 throws org.ggf.drmaa.DrmaaException;
 public void setEmail(java.util.Set email)
 throws org.ggf.drmaa.DrmaaException;
 public java.util.Set getEmail()
 throws org.ggf.drmaa.DrmaaException;
 public void setBlockEmail(boolean blockEmail)
 throws org.ggf.drmaa.DrmaaException;
 public boolean getBlockEmail()
 throws org.ggf.drmaa.DrmaaException;
 public void setStartTime(org.ggf.drmaa.PartialTimestamp startTime)
 throws org.ggf.drmaa.DrmaaException;
 public org.ggf.drmaa.PartialTimestamp getStartTime()

drmaa-wg@gridforum.org 23

GWD-R 12 October 2006

 throws org.ggf.drmaa.DrmaaException;
 public void setJobName(java.lang.String name)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getJobName()
 throws org.ggf.drmaa.DrmaaException;
 public void setInputPath(java.lang.String inputPath)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getInputPath()
 throws org.ggf.drmaa.DrmaaException;
 public void setOutputPath(java.lang.String outputPath)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getOutputPath()
 throws org.ggf.drmaa.DrmaaException;
 public void setErrorPath(java.lang.String errorPath)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getErrorPath()
 throws org.ggf.drmaa.DrmaaException;
 public void setJoinFiles(boolean joinFiles)
 throws org.ggf.drmaa.DrmaaException;
 public boolean getJoinFiles()
 throws org.ggf.drmaa.DrmaaException;
 public void setTransferFiles(org.ggf.drmaa.FileTransferMode mode)
 throws org.ggf.drmaa.DrmaaException;
 public org.ggf.drmaa.FileTransferMode getTransferFiles()
 throws org.ggf.drmaa.DrmaaException;
 public void setDeadlineTime(org.ggf.drmaa.PartialTimestamp
 deadline) throws org.ggf.drmaa.DrmaaException;
 public org.ggf.drmaa.PartialTimestamp getDeadlineTime()
 throws org.ggf.drmaa.DrmaaException;
 public void setHardWallclockTimeLimit(long limit)
 throws org.ggf.drmaa.DrmaaException;
 public long getHardWallclockTimeLimit()
 throws org.ggf.drmaa.DrmaaException;
 public void setSoftWallClockTimeLimit(long limit)
 throws org.ggf.drmaa.DrmaaException;
 public long getSoftWallClockTimeLimit()
 throws org.ggf.drmaa.DrmaaException;
 public void setHardRunDurationLimit(long limit)
 throws org.ggf.drmaa.DrmaaException;
 public long getHardRunDurationLimit()
 throws org.ggf.drmaa.DrmaaException;
 public void setSoftRunDurationLimit(long limit)
 throws org.ggf.drmaa.DrmaaException;
 public long getSoftRunDurationLimit()
 throws org.ggf.drmaa.DrmaaException;
 public java.util.Set getAttributeNames()
 throws org.ggf.drmaa.DrmaaException;
}

drmaa-wg@gridforum.org 24

GWD-R 12 October 2006

All methods of the JobTemplate interface MAY raise the following exceptions in addition to any
explicitly listed in the method descriptions below:

• NoActiveSessionException – the session has not been initialized or exit() has already
been called.

• java.lang.OutOfMemoryError – as described in the Java Language Specification. This
exception replaces the OutOfMemoryException from the DRMAA IDL specification.

• DrmCommunicationException – The DRMS could not be contacted.

• AuthorizationException – the session owner does not have permission to perform the
chosen operation.

• Java.lang.IllegalArgumentException – as described in the Java Language Specification.
This exception replaces the InvalidArgumentException from the DRMAA IDL specification.
It MAY only be raised by methods with input arguments.

• InternalException – due to an error in the DRMAA implementation, the chosen operation
could not be performed.

The JobTemplate implementation MUST support two types of exceptions for the setter
operations:

• InvalidAttributeValueException – The value is invalid for the job template property, e.g. a
start time that is in the past.

• ConflictingAttributeValuesException – the attribute value conflicts with a previously set
attribute value.

In most cases, a DRMAA implementation will require that job templates be created through the
Session.createJobTemplate() method. In those cases, passing a template created other than
via this method to the Session.deleteJobTemplate(), Session.runJob(), or
Session.runBulkJobs() methods MUST result in an InvalidJobTemplateException being thrown.

A JobTemplate instance MUST override the toString() method. The String returned from this
method MUST contain the values of all set properties.

Access to attribute values MUST operate in a pass-by-value mode. Setters for non-primitive,
mutable properties SHOULD therefore store a copy of the new value instead of storing the
original object.

In the DRMAA job template there is a distinction between mandatory and optional attributes. A
Java language binding implementation MUST provide implementations for all DRMAA attributes,
both required and optional. The setter and getter implementations for optional attributes MUST
throw UnsupportedAttributeException. The service provider implementation SHOULD then
override the setters and getters for supported optional attributes with methods that operate
normally.

A service provider DRMAA implementation is allowed to add implementation-specific attributes.
The getAttributeNames() method SHALL return the names of all job template attributes
supported by the service provider implementation, including required, optional, and
implementation-specific attributes. To access implementation-specific job template attributes,
one should cast the JobTemplate to a more specific JobTemplate subtype. In order to get the
values for all supported attributes, such as in a property sheet, one should use introspection to
call the appropriate setter and getter for each attribute.

drmaa-wg@gridforum.org 25

GWD-R 12 October 2006

5.3.1 HOLD_STATE

The HOLD_STATE constant represents a value for the jobSubmissionState property which
means the job may be queued, but it is not eligible to run.

5.3.2 ACTIVE_STATE

The ACTIVE_STATE constant represents a value for the jobSubmissionState property which
means the job is eligible to run.

5.3.3 HOME_DIRECTORY

The HOME_DIRECTORY constant is a place holder used to represent the user's home directory
when building paths for the workingDirectory, inputPath, outputPath, and errorPath properties.

5.3.4 WORKING_DIRECTORY

The WORKING_DIRECTORY constant is a place holder used to represent the current working
directory when building paths for the inputPath, outputPath, and errorPath properties.

5.3.5 PARAMETRIC_INDEX

The PARAMETRIC_INDEX constant is a place holder used to represent the id of the current
parametric job subtask when building paths for the workingDirectory, inputPath, outputPath, and
errorPath properties.

5.3.6 getAttributeNames

This method SHALL return the list of supported property names. This list includes supported
DRMAA reserved property names (both required and optional) and implementation-specific
property names.

5.3.6.1 Returns

This method SHALL return the list of supported property names.

5.3.6.2 Throws

DrmaaException - MAY be one of the following:

• NoActiveSessionException – the session has not been initialized or exit() has
already been called

5.3.7 Getters

drmaa-wg@gridforum.org 26

GWD-R 12 October 2006

For each property listed in Table 2: DRMAA Properties and Java Language Types, the
JobTemplate interface has a corresponding getter. Each getter is of the form “public
<propertyType> get<propertyName>().”

5.3.7.1 Returns

The getter methods each return the current value of the corresponding property in the job
template. All non-primitive, mutable return values MUST be copies of the originals.

5.3.8 Setters

For each property listed in Table 2: DRMAA Properties and Java Language Types, the
JobTemplate class has a corresponding setter. Each setter is of the form “public void
set<propertyName>(<propertyType> value).” Setters for non-primitve, mutable properties MUST
store a copy of the new value rather than storing the original object.

5.3.8.1 Parameters

value – the value to which the property should be set in the job template.

5.3.8.2 Throws

DrmaaException - MAY be one of the following:
• InvalidAttributeValueException – the property value is invalid for the property, e.g. a

startTime that is in the past.
• ConflictingAttributeValuesException – the property value conflicts with a previously

set property value.

5.3.9 Required Properties

5.3.9.1 remoteCommand

The command that should be executed on the remote host. In case this parameter contains path
information, it MUST be seen as relative to the execution host file system and is therefore
evaluated there. The property value SHOULD NOT relate to binary file management or file
staging activities.

5.3.9.2 args

The list of command-line arguments for the job to be executed.

5.3.9.3 jobSubmissionState

Defines the state of the job at submission time. The value may either be HOLD_STATE or
ACTIVE_STATE.

5.3.9.4 jobEnvironment

drmaa-wg@gridforum.org 27

GWD-R 12 October 2006

The environment values that define the remote environment. The values MUST override the
remote environment values if there is a collision. If this is not possible, the behavior is
implementation dependent.

5.3.9.5 workingDirectory

This attribute specifies the directory where the job is executed. If this property is not set, the
behavior is implementation dependent. This property value MUST be evaluated relative to the
execution host's file system. The property value MAY contain the HOME_DIRECTORY or
PARAMETRIC_INDEX constant values as placeholders. A HOME_DIRECTORY placeholder at
the beginning denotes the remaining portion of the attribute value as a relative directory path
resolved relative to the job users home directory at the execution host. The
PARAMETRIC_INDEX placeholder MAY be used at any position within the property value in the
case of parametric job templates and SHALL be substituted by the underlying DRM system with
the parametric jobs' index.

The workingDirectory MUST be specified in a syntax that is common at the host

where the job is executed.

If this property is set and no placeholder is used, an absolute directory specification is expected.

If this property is set and the directory does not exist, the job MUST enter the state,
JobProgramState.FAILED.

5.3.9.6 jobCategory

An implementation-defined string specifying how to resolve site-specific resources and/or
policies. Site administrators MAY create a job category suitable for an application to be
dispatched by the DRMS; the associated category name SHALL be specified as a job
submission property. The DRMAA implementation MAY then use the category name to manage
site-specific resource and functional requirements of jobs in the category. Such requirements
need to be configurable by the site operating a DRMS and deploying an application on top of it.

More information can be found in section 2.4.1 of the DRMAA 1.0 specification document.

5.3.9.7 nativeSpecification

An implementation-defined string that is passed by the end user to DRMAA to specify
site-specific resources and/or policies.

As far as the DRMAA interface specification is concerned, the native specification is an
implementation-defined string and is interpreted by each DRMAA library. One MAY use the job
category and the native specification with the same job submission for policy specification. In this
case, the DRMAA library is assumed to be capable of merging the outcome of the two policy
sources in a reasonable way.

The native specification MAY be used without the requirement to maintain job categories, and
submit options MAY be specified directly.

More information can be found in section 2.4.2 of the DRMAA 1.0 specification document.

5.3.9.8 email

drmaa-wg@gridforum.org 28

GWD-R 12 October 2006

A list of email addresses that is used to report the job completion and status.

5.3.9.9 blockEmail

This boolean property decides whether the sending of email is blocked by default or not,
regardless of the DRMS setting. If this property is true, the sending of email SHALL be blocked
regardless of the DRMS setting. If this property is false, the sending of email SHALL be
determined by the DRMS setting.

5.3.9.10 startTime

This property specifies the earliest time when the job MAY be eligible to be run.

5.3.9.11 jobName

A job name SHALL be comprised of alphanumeric and '_' characters. The DRMAA
implementation MAY truncate any client-provided job name to an implementation-defined length
that is at least 31 characters.

5.3.9.12 inputPath

Specifies the job's standard input as a path to a file. If this property is not explicitly set in the job
template, the job is started with an empty input stream, unless the job category, native
specification, or a DRMS setting causes a source for the input stream to be set. If this property is
set, it specifies the network path for the job's input stream file in the form:

[hostname]:file_path

If the transferFiles job template property is supported and has a value where the
FileTransferMode.getTransferInputStream() method returns true, the input file SHOULD be
fetched by the underlying DRM system from the specified host, or from the submit host if no
hostname was specified.

If the transferFiles job template attribute is not supported or its value's
FileTransferMode.getTransferInputStream() method returns false, then the input file is
always expected at the host where the job is executed, irrespective of whether a hostname was
specified.

The PARAMETRIC_INDEX placeholder can be used at any position for parametric job templates
and SHALL be substituted by the underlying DRM system with the parametric job's index.

A HOME_DIRECTORY placeholder at the beginning of the property value denotes the remaining
portion as a relative file specification resolved relative to the job's user's home directory at the
host where the file is located.

A WORKING_DIRECTORY placeholder at the beginning of the property value denotes the
remaining portion as a relative file specification resolved relative to the job's working directory at
the host where the file is located.

The inputPath property MUST be specified in a syntax that is common at the host where the file
is located.

drmaa-wg@gridforum.org 29

GWD-R 12 October 2006

If this property is set, and the job was successfully submitted, and the file can't be read, the job
enters the state, Session.FAILED.

5.3.9.13 outputPath

Specifies how to direct the job's standard output as a path to a file. If this property is not explicitly
set in the job template, the destination of the job's output stream is not defined, unless the job
category, native specification, or a DRMS setting causes a destination for the output stream to
be set.. If this property is set, it specifies the network path of the job's output stream in the form:

[hostname]:file_path

If the transferFiles job template property is supported and its value's
FileTransferMode.getOutputStream() method returns true, the output file SHALL be
transferred by the underlying DRM system to the specified host or to the submit host if no
hostname is specified.

If the transferFiles job template property is not supported or its value's
FileTransferMode.getOutputStream() method returns false, the output file SHALL be kept at
the host where the job is executed, irrespective of whether a hostname was specified.

All output sent to the job's standard output stream SHALL be appended to the named file. If the
file does not exist at the time the job is executed, the file SHALL first be created.

The PARAMETRIC_INDEX placeholder can be used at any position with parametric job
templates and SHALL be substituted by the underlying DRM system with the parametric job's
index.

A HOME_DIRECTORY placeholder at the beginning denotes the remaining portion as a relative
file specification resolved relative to the job users home directory at the host where the file is
located.

A WORKING_DIRECTORY placeholder at the beginning denotes the remaining portion as a
relative file specification resolved relative to the jobs working directory at the host where the file
is located.

The outputPath MUST be specified in a syntax that is common at the host where the file is
located.

If this property is set, and the job was successfully submitted, and the file can't be written before
execution, the job MUST enter the state, Session.FAILED.

5.3.9.14 errorPath

Specifies how to direct the jobs’ standard error to a file.

If not explicitly set in the job template, the job template, the destination of the job's error stream
is not defined unless the job category, native specification, or a DRMS setting causes a
destination for the error stream to be set. If this property is set, it specifies the network path of
the job's error stream file in the form:

[hostname]:file_path

If the transferFiles job template property is supported and its value's
FileTransferMode.getTransferErrorStream() method returns true, the error file SHALL be

drmaa-wg@gridforum.org 30

GWD-R 12 October 2006

transferred by the underlying DRM system to the specified host or to the submit host if no
hostname is specified.

If the transferFiles job template property is not supported or it’s value's
FileTransferMode.getTransferErrorStream() method returns false, the error file is always kept
at the host where the job is executed irrespective of whether a hostname was specified.

All output sent to the job's standard error stream SHALL be appended to the named file. If the
file does not exist at the time the job is executed, the file SHALL first be created.

The PARAMETRIC_INDEX placeholder can be used at any position for parametric job templates
and SHALL be substituted by the underlying DRM system with the parametric jobs' index.

A HOME_DIRECTORY placeholder at the beginning denotes the remaining portion as a relative
file specification, resolved relative to the job users home directory at the host where the file is
located.

A WORKING_DIRECTORY placeholder at the beginning denotes the remaining portion as a
relative file specification resolved relative to the jobs working directory at the host where the file
is located.

The errorPath MUST be specified in a syntax that is common at the host where the file is
located.

If this property is set, and the job was successfully submitted, and the file can't be written before
execution, the job enters the state, Session.FAILED.

5.3.9.15 joinFiles

Specifies whether the error stream should be intermixed with the output stream. If not explicitly
set in the job template, this property defaults to false. If this property is set to true, the under-
lying DRM system SHALL ignore the value of the errorPath property and intermix the standard
error stream with the standard output stream as specified by the outputPath.

5.3.10 Optional Properties

5.3.10.1 transferFiles

Specifies how to transfer files between hosts. If this property is not explicitly set in the job
template, the effect is the same as setting the property to a FileTransferMode instance with all
properties set to false. This property works in conjunction with the inputPath, outputPath and
errorPath properties.

This property is optional. An Implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

5.3.10.2 deadlineTime

Specifies a deadline after which the DRMS will abort or terminate the job.

This property is optional. An Implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

5.3.10.3 hardWallclockTimeLimit

drmaa-wg@gridforum.org 31

GWD-R 12 October 2006

This property specifies when the job's wall clock time limit has been exceeded. An
implementation SHALL terminate a job that has exceeded its wall clock time limit. Suspended
time SHALL also be counted towards this limit. This property's value MUST be given in seconds.

This property is optional. An Implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

5.3.11 softWallClockTimeLimit

This property specifies an estimate as to how much wall clock time the job will need to complete.
Note that the suspended time is also counted towards this estimate. This attribute is intended to
assist the scheduler. If the time specified is insufficient, the implementation MAY impose a
scheduling penalty. This property's value MUST be given in seconds.

This property is optional. An Implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

5.3.12 hardRunDurationLimit

This property specifies how long the job MAY be in a running state before its limit has been
exceeded, and therefore is terminated by the DRMS. This property's value MUST be given in
seconds.

This property is optional. An Implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

5.3.13 softRunDurationLimit

This property specifies an estimate as to how long the job will need to remain in a running state
to complete. This attribute is intended to assist the scheduler. If the time specified is insufficient,
the implementation MAY impose a scheduling penalty. This property's value MUST be given in
seconds.

This property is optional. An Implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

5.4 The SimpleJobTemplate Class

A Java language binding implementation MUST provide a SimpleJobTemplate class which
implements the JobTemplate interface and provides functional implementations for all methods
defined by the JobTemplate interface. The SimpleJobTemplate class MUST also provide certain
SPI fields and methods. See section 7.3. The format of the SimpleJobTemplate class is as
follows:

public class org.ggf.drmaa.SimpleJobTemplate
 implements JobTemplate {
 protected java.lang.String remoteCommand;
 protected java.util.List args;
 protected int jobSubmissionState;
 protected java.util.Map jobEnvironment;
 protected java.lang.String workingDirectory;
 protected java.lang.String jobCategory;

drmaa-wg@gridforum.org 32

GWD-R 12 October 2006

 protected java.lang.String nativeSpecification;
 protected java.util.List email;
 protected boolean blockEmail;
 protected java.util.Date startTime;
 protected java.lang.String jobName;
 protected java.lang.String inputPath;
 protected java.lang.String outputPath;
 protected java.lang.String errorPath;
 protected boolean joinFiles;
 public JobTemplate();
 public void setRemoteCommand(java.lang.String command)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getRemoteCommand()
 throws org.ggf.drmaa.DrmaaException;
 public void setArgs(java.util.List args)
 throws org.ggf.drmaa.DrmaaException;
 public java.util.List getArgs()
 throws org.ggf.drmaa.DrmaaException;
 public void setJobSubmissionState(int state)
 throws org.ggf.drmaa.DrmaaException;
 public int getJobSubmissionState()
 throws org.ggf.drmaa.DrmaaException;
 public void setJobEnvironment(java.util.Map env)
 throws org.ggf.drmaa.DrmaaException;
 public java.util.Map getJobEnvironment()
 throws org.ggf.drmaa.DrmaaException;
 public void setWorkingDirectory(java.lang.String wd)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getWorkingDirectory()
 throws org.ggf.drmaa.DrmaaException;
 public void setJobCategory(java.lang.String category)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getJobCategory()
 throws org.ggf.drmaa.DrmaaException;
 public void setNativeSpecification(java.lang.String spec)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getNativeSpecification()
 throws org.ggf.drmaa.DrmaaException;
 public void setEmail(java.util.Set email)
 throws org.ggf.drmaa.DrmaaException;
 public java.util.Set getEmail()
 throws org.ggf.drmaa.DrmaaException;
 public void setBlockEmail(boolean blockEmail)
 throws org.ggf.drmaa.DrmaaException;
 public boolean getBlockEmail()
 throws org.ggf.drmaa.DrmaaException;
 public void setStartTime(org.ggf.drmaa.PartialTimestamp startTime)
 throws org.ggf.drmaa.DrmaaException;
 public org.ggf.drmaa.PartialTimestamp getStartTime()
 throws org.ggf.drmaa.DrmaaException;

drmaa-wg@gridforum.org 33

GWD-R 12 October 2006

 public void setJobName(java.lang.String name)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getJobName()
 throws org.ggf.drmaa.DrmaaException;
 public void setInputPath(java.lang.String inputPath)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getInputPath()
 throws org.ggf.drmaa.DrmaaException;
 public void setOutputPath(java.lang.String outputPath)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getOutputPath()
 throws org.ggf.drmaa.DrmaaException;
 public void setErrorPath(java.lang.String errorPath)
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String getErrorPath()
 throws org.ggf.drmaa.DrmaaException;
 public void setJoinFiles(boolean joinFiles)
 throws org.ggf.drmaa.DrmaaException;
 public boolean getJoinFiles()
 throws org.ggf.drmaa.DrmaaException;
 public void setTransferFiles(org.ggf.drmaa.FileTransferMode mode)
 throws org.ggf.drmaa.DrmaaException;
 public org.ggf.drmaa.FileTransferMode getTransferFiles()
 throws org.ggf.drmaa.DrmaaException;
 public void setDeadlineTime(org.ggf.drmaa.PartialTimestamp
 deadline) throws org.ggf.drmaa.DrmaaException;
 public org.ggf.drmaa.PartialTimestamp getDeadlineTime()
 throws org.ggf.drmaa.DrmaaException;
 public void setHardWallclockTimeLimit(long limit)
 throws org.ggf.drmaa.DrmaaException;
 public long getHardWallclockTimeLimit()
 throws org.ggf.drmaa.DrmaaException;
 public void setSoftWallClockTimeLimit(long limit)
 throws org.ggf.drmaa.DrmaaException;
 public long getSoftWallClockTimeLimit()
 throws org.ggf.drmaa.DrmaaException;
 public void setHardRunDurationLimit(long limit)
 throws org.ggf.drmaa.DrmaaException;
 public long getHardRunDurationLimit()
 throws org.ggf.drmaa.DrmaaException;
 public void setSoftRunDurationLimit(long limit)
 throws org.ggf.drmaa.DrmaaException;
 public long getSoftRunDurationLimit()
 throws org.ggf.drmaa.DrmaaException;
 public java.util.Set getAttributeNames()
 throws org.ggf.drmaa.DrmaaException;
 public java.lang.String toString();
 public void modified();
 protected java.util.Set getOptionalAttributeNames();
}

drmaa-wg@gridforum.org 34

GWD-R 12 October 2006

The SimpleJobTemplate MUST provide concrete implementations for all abstract methods
defined in the JobTemplate interface. The setters for all required properties MUST store copies
of the property values in the appropriate member variables, and the getters for all required
properties MUST provide copies of the stored property values. In the case of properties of type,
java.util.Map, the associated getter MUST return a reference to the associated member variable
wrapped in a call to java.util.Collections.unmodifiableMap(). In the case of properties of type,
java.util.List, the associated getter MUST return a reference to the associated member variable
wrapped in a call to java.util.Collections.unmodifiableList(). In the case of properties of type,
java.util.Set, the associated getter MUST return a reference to the associated member variable
wrapped in a call to java.util.Collections.unmodifiableSet(). The setters and getters for all
optional attributes MUST throw an UnsupportedAttributeException. The getAttributeNames()
method MUST return a list that consists of the names of all required properties and the names
returned by calling the getOptionalAttributeNames() method. See section 5.3.

5.4.1 SimpleJobTemplate

The no-args constructor MUST instantiate a new SimpleJobTemplate instance with all property
member variables set to default values. Unless otherwise specified, the default value for a
property member variable is 0, false, or null, depending on its type.

Every call to a SimpleJobTemplate property setter SHALL mark the job template to indicate that
its properties have been modified, causing the next call to the toString() method to recalculate
its return value.

5.4.2 toString

This method SHALL return a string representation of the job template instance which includes
the values for all properties which have been set. Unset property values MAY also be included
in the string representation.

As long as no property value has been changed and no property getters throw an exception, this
method SHALL buffer the resulting string to be returned by future calls to this method. If the job
template has been marked to indicate that its properties have been modified, the return value
SHALL be recalculated during the next call to this method.

5.4.2.1 Returns

This method SHALL return a string representation of the job template instance which includes
the values for all properties which have been set. Unset property values MAY also be included
in the string representation.

5.4.3 modified

This method SHALL mark the job template to indicate that its properties have been modified,
causing the next call to the toString() method to recalculate its return value.

5.4.4 getOptionalAttributeNames

This method SHALL return an empty list.

drmaa-wg@gridforum.org 35

GWD-R 12 October 2006

5.4.4.1 Returns

This method SHALL return an empty list.

5.5 The JobInfo Interface

The information regarding a job's execution history is encapsulated by object instances that
implement the JobInfo interface. Using the JobInfo interface, a DRMAA application can discover
information about the resource usage and exit status of a job. The structure of the JobInfo
interface is as follows:

public abstract interface org.ggf.drmaa.JobInfo {
 public abstract java.lang.String getJobId()
 throws org.ggf.drmaa.DrmaaException;
 public abstract java.util.Map getResourceUsage()
 throws org.ggf.drmaa.DrmaaException;
 public abstract boolean hasExited()
 throws org.ggf.drmaa.DrmaaException;
 public abstract int getExitStatus()
 throws org.ggf.drmaa.DrmaaException;
 public abstract boolean hasSignaled()
 throws org.ggf.drmaa.DrmaaException;
 public abstract java.lang.String getTerminatingSignal()
 throws org.ggf.drmaa.DrmaaException;
 public abstract boolean hasCoreDump()
 throws org.ggf.drmaa.DrmaaException;
 public abstract boolean wasAborted()
 throws org.ggf.drmaa.DrmaaException;
}

All methods of the JobInfo interface MAY raise the following exceptions in addition to any
explicitly listed in the method descriptions below:

• java.lang.OutOfMemoryError – as described in the Java Language Specification. This
exception replaces the OutOfMemoryException from the DRMAA IDL specification.

• DrmCommunicationException – The DRMS could not be contacted.

• AuthorizationException – the session owner does not have permission to perform the
chosen operation.

• InternalException – due to an error in the DRMAA implementation, the chosen operation
could not be performed.

5.5.1 getJobId

This method SHALL return the identifier for the completed job.

5.5.1.1 Returns

This method SHALL return the identifier for the completed job.

drmaa-wg@gridforum.org 36

GWD-R 12 October 2006

5.5.2 getResourceUsage

This method SHALL return the completed job's resource usage data. If the job did not produce
resource usage data, this method SHALL return null. Please refer also to GFD.022 section 3.1.3
for more information about resource usage data semantics.

5.5.2.1 Returns

This method SHALL return the completed job's resource usage data or null if there is no
resource usage data.

5.5.3 hasExited

This method SHALL return true if the job terminated normally. A return value of false MAY
indicate that although the job has terminated normally, an exit status is not available, or that it is
not known whether the job terminated normally. In both cases the getExitStatus() method
SHALL NOT provide exit status information. A return value of true indicates more detailed
diagnosis can be retrieved by means of the getExitStatus() method.

5.5.3.1 Returns

This method SHALL return a boolean indicating whether the job has exited.

5.5.4 getExitStatus

If hasExited() returns true, this function SHALL return the operating system exit code of the
job.

5.5.4.1 Returns

This method SHALL return the exit code of the job.

5.5.4.2 Throws

DrmaaException - MAY be be one of the following:

• java.lang.IllegalStateException – no exit state information is available.

5.5.5 hasSignaled

This method SHALL return true if the job terminated due to the receipt of a signal. A return
value of false MAY also indicate that although the job has terminated due to the receipt of a
signal, the signal is not available, or that it is not known whether the job terminated due to the
receipt of a signal. In both cases the getTerminatingSignal() method SHALL NOT provide
signal information.

5.5.5.1 Returns

This method SHALL return a boolean indicating whether the job terminated due to a signal.

5.5.6 getTerminatingSignal

drmaa-wg@gridforum.org 37

GWD-R 12 October 2006

If the hasSignaled() method returns true, this method SHALL return a representation of the
signal that caused the termination of the job. For signals declared by POSIX, the symbolic
names SHALL be returned (e.g., SIGABRT, SIGALRM). For signals not declared by POSIX, a
DRM-dependent string SHALL be returned.

5.5.6.1 Returns

This method SHALL return the name of the terminating signal.

5.5.6.2 Throws

DrmaaException - MAY be be one of the following:

• java.lang.IllegalStateException – the job did not terminate due to the receipt of a signal.

5.5.7 hasCoreDump

If the hasSignaled() method returns true, this method SHALL return true if a core image of
the terminated job was created.

5.5.7.1 Returns

This method SHALL return a boolean indicating whether a core image of the terminated job was
created.

5.5.7.2 Throws

DrmaaException - MAY be be one of the following:

• java.lang.IllegalStateException – the job did not terminate due to the receipt of a signal.

5.5.8 wasAborted

This method SHALL return true if the job ended before entering the running state.

5.5.8.1 Returns

This method SHALL return a boolean indicating whether the job ended before entering the
running state.

5.6 The PartialTimestamp Class

The PartialTimestamp class is used by JobTemplate interface instances to represent partially
specified time stamps, as required by the Distributed Resource Management Application API
Specification 1.0. The PartialTimestamp class SHALL inherit all of its methods from the
java.util.Calendar class, overriding the abstract methods to implement DRMAA-specific behavior.
Except as noted below, the PartialTimestamp class SHALL behave like the
java.util.GregorianCalendar class. For additional information, see the JavaDoc documentation
for the java.util.Calendar class and the java.util.GregorianCalendar class.

Unlike java.util.Calendar, the PartialTimestamp class MUST not assume any default values for
fields until they have been explicitly set. If the PartialTimestamp class is resolved to a concrete

drmaa-wg@gridforum.org 38

GWD-R 12 October 2006

time (via the the java.util.Calendar.getTime() or java.util.Calendar.getTimeInMillis() method)
before all fields are set, the unset fields SHALL be filled in using the current time in such a way
that the resulting concrete time is the soonest possible time which agrees with the set fields and
is not in the past. A PartialTimestamp object MAY be resolved to a concrete time any number of
times. Each resolution will result in a concrete time that meets the above criteria for the point in
time at which the resolution took place.

The resolving of partial time information MUST be performed according to the following rules:

 If the optional ZONE_OFFSET is not specified, the offset associated with the local
timezone SHALL be used.

 If the SECOND field is not specified, then it SHALL be treated as zero.
 If neither the DAY_OF_MONTH nor the DAY_OF_WEEK nor the DAY_OF_YEAR field

is specified, the current day SHALL be used unless the specified hour, minute and
second has already elapsed, in which case the next day SHALL be used.

 If the MONTH field is not specified, the current month SHALL be used unless the
specified day, hour, minute and second has already elapsed, in which case the next
month SHALL be used.

 If the YEAR field is not specified, the current year SHALL be used unless the specified
month, day, hour, minute and second has already elapsed, in which case the next year
SHALL be used.

 If the CENTURY field is not specified, the current century SHALL be used unless the
specified year, month, day, hour, minute and second has already elapsed, in which case
the next century SHALL be used.

The structure of the PartialTimestamp class is as follows:

public class org.ggf.drmaa.PartialTimestamp
 extends java.util.Calendar {
 public static final int CENTURY;
 public static final int UNSET;
 public int getModifier(int field);
 public void setModifier(int field, int value);
}

5.6.1 CENTURY

The CENTURY constant replaces the java.util.Calendar.ERA constant. In a DRMAA partial time
stamp, the time represented MUST always be after the beginning of the epoch, i.e. Jan 1st, 1970.
Therefore, the ERA constant has no meaning. Instead, the CENTURY constant SHALL be used
to represent all but the last two digits of the year. The last two digits of the year SHALL be
represented by the java.util.Calendar.YEAR constant. This separation of the full year is required
by the Distributed Resource Management Application API Specification 1.0.

5.6.2 UNSET

The UNSET constant is the value which MUST be returned by the java.util.Calendar.get()
method for a field that has not been explicitly assigned a value.

drmaa-wg@gridforum.org 39

GWD-R 12 October 2006

5.6.3 getModifier

The getModifier() method SHALL return any modifiers which have been set for a field.
Modifiers are set either by calling the setModifier() method, or as a side effect of the
java.util.Calendar.add() method. Any time that a field in incremented, causing that field to roll
over (for example, incrementing MONTH from 11 to 0), if the next highest order field is unset, a
+1 modifier SHALL be added to the unset field. Any time that a field is decremented, causing
that field to roll over (for example, decrementing MONTH from 0 to 11), if the next highest order
field is unset, a -1 modifier SHALL be added to the unset field. In both cases, if the next highest
order field is set, that field is incremented of decremented appropriately, as would normally
happen with a java.util.Calendar instance.

5.6.4 setModifier

The setModifier() method allows modifiers to be set for fields. Such modifiers will be added to
those fields' values. If a modifier is set for a field which has already been assigned a value, the
modifier is simply added to that field's value. If a modifier is set for a field which has not been
assigned a value, the modifier is applied to that field's value after the partial time stamp has been
resolved to a concrete time via the java.util.Calendar.getTime() or
java.util.Calendar.getTimeInMillis() method.

5.7 The PartialTimestampFormat Class

In order to translate a PartialTimestamp object to or from a String, the PartialTimestampFormat
class is used. In order for a PartialTimestampFormat object to interpret a String, the String must
be in the format described in the Distributed Resource Management Application API
Specification 1.0. Namely, the value of the String must be of the form: [[[[CC]YY/]MM/]DD]
hh:mm[:ss] [{-|+}UU:uu], where:

• CC is the first two digits of the year [19,]
• YY is the last two digits of the year [0,99]
• MM is the two digits of the month [01,12]
• DD is the two-digit day of the month [01,31]
• hh is the two-digit hour of the day [00,23]
• mm is the two-digit minute of the day [00,59]
• ss is the two-digit second of the minute [00,61]
• UU is the two-digit hours since (before) UTC [-11,12]
• uu is the two-digit minutes since (before) UTC [0,59]

Strings not adhering to this format will cause a java.text.ParseException to be thrown.

The structure of the PartialTimestampFormat class is as follows:

public class org.ggf.drmaa.PartialTimestampFormat
 extends java.text.Format {
 public org.ggf.drmaa.PartialTimestampFormat();
 public java.lang.StringBuffer format(java.lang.Object obj,
 java.lang.StringBuffer stringBuffer,
 java.text.FieldPosition fieldPosition);
 public java.lang.StringBuffer format
 (org.ggf.drmaa.PartialTimestamp obj,

drmaa-wg@gridforum.org 40

GWD-R 12 October 2006

 java.lang.StringBuffer stringBuffer,
 java.text.FieldPosition fieldPosition);
 public java.lang.String format(org.ggf.drmaa.PartialTimestamp obj);
 public org.ggf.drmaa.PartialTimestamp parse
 (java.lang.String string) throws java.text.ParseException;
 public org.ggf.drmaa.PartialTimestamp parse
 (java.lang.String string,
 java.text.ParsePosition parsePosition);
 public java.lang.Object parseObject(java.lang.String string,
 java.text.ParsePosition parsePosition);
}

For additional information, see the JavaDoc documentation for the java.text.Format class.

5.7.1 format (Object, StringBuffer, FieldPosition)

This method MUST translate the PartialTimestamp instance into a DRMAA format time string
and append the string to the given java.util.StringBuffer. Since the PartialTimestampFormat class
doesn't use fields, the fieldPosition parameter SHALL be ignored. This method is equivalent to
java.lang.StringBuffer.append(PartialTimestampFormat.format(Object)).

In order for this parsing operation to be performed, the PartialTimestamp instance must have no
unset field of a lower order than the highest order set field, with the exception of the second and
zone offset fields. For example, if the YEAR is set, the MONTH, a day field, the HOUR, and the
MINUTE must also be set for this operation to be performed. Failure to meet this criterion MUST
result in a java.text.ParseException being thrown. SECONDS and ZONE_OFFSET are always
optional.

5.7.1.1 Parameters

obj - the object to format.
stringBuffer - the StringBuffer to which to append the results.
fieldPosition – ignored.

5.7.1.2 Returns

This method MUST return a reference to the stringBuffer parameter.

5.7.2 format (PartialTimestamp, StringBuffer, FieldPosition)

This method MUST translate the PartialTimestamp instance into a DRMAA format time string
and append the string to the given java.util.StringBuffer. Since the PartialTimestampFormat class
doesn't use fields, the fieldPosition parameter SHALL be ignored. This method is equivalent to
java.lang.StringBuffer.append(PartialTimestampFormat.format(Object)).

In order for this parsing operation to be performed, the PartialTimestamp instance must have no
unset field of a lower order than the highest order set field, with the exception of the second and
zone offset fields. For example, if the YEAR is set, the MONTH, a day field, the HOUR, and the
MINUTE must also be set for this operation to be performed. Failure to meet this criterion MUST
result in a java.text.ParseException being thrown. SECONDS and ZONE_OFFSET are always
optional.

drmaa-wg@gridforum.org 41

GWD-R 12 October 2006

5.7.2.1 Parameters

obj - the object to format.
stringBuffer - the StringBuffer to which to append the results.
fieldPosition – ignored.

5.7.2.2 Returns

This method MUST return a reference to the stringBuffer parameter.

5.7.3 format (PartialTimestamp)

This method MUST translate the PartialTimestamp instance into a DRMAA format time string.
This method is equivalent to PartialTimestampFormat.format(obj, new java.util.StringBuffer(),
new java.text.FieldPosition(0)).toString().

In order for this parsing operation to be performed, the PartialTimestamp instance must have no
unset field of a lower order than the highest order set field, with the exception of the second and
zone offset fields. For example, if the YEAR is set, the MONTH, a day field, the HOUR, and the
MINUTE must also be set for this operation to be performed. Failure to meet this criterion MUST
result in a java.text.ParseException being thrown. SECONDS and ZONE_OFFSET are always
optional.

5.7.3.1 Parameters

obj - the object to format

5.7.3.2 Returns

This method MUST returns the DRMAA format time string.

5.7.4 parse (String)

This method MUST translate a DRMAA format time string into a PartialTimestamp instance. This
method SHALL parse as far into the string as possible. If this method encounters unparsable
text after successfully parsing the HOUR_OF_DAY and MINUTE fields, it will stop and will not
throw a java.text.ParseException.

5.7.4.1 Parameters

str - a DRMAA format time string

5.7.4.2 Returns

This method MUST return an appropriate PartialTimestamp instance.

5.7.4.3 Throws

java.text.ParseException - thrown if the string is not parsable.

drmaa-wg@gridforum.org 42

GWD-R 12 October 2006

5.7.5 parse (String, ParsePosition)

This method translates a DRMAA specified time string into a PartialTimestamp object. This
method SHALL parse as far into the string as possible. Upon completion, the parse position
object SHALL contain the index of the last character parsed.

5.7.5.1 Parameters

str - a DRMAA specified time string.
parsePosition - the parse position object.

5.7.5.2 Returns

This method MUST return an appropriate PartialTimestamp instance.

5.7.6 parseObject

This method MUST translate a DRMAA specified time string into a PartialTimestamp instance.
This method SHALL parse as far into the string as possible. Upon completion, the parse position
object SHALL contain the index of the last character parsed.

5.7.6.1 Parameters

str - a DRMAA specified time string.
parsePosition - the parse position object.

5.7.6.2 Returns

This method MUST return an appropriate PartialTimestamp instance.

5.8 The FileTransferMode Class

The FileTransferMode class is used by a JobTemplate instance to indicate the value for the
transferFiles property. The class has three properties which determine which streams will be
staged in or out. The structure of the FileTransferMode class is as follows:

public class org.ggf.drmaa.FileTransferMode
 implements java.io.Serializable, java.lang.Cloneable {
 public org.ggf.drmaa.FileTransferMode();
 public org.ggf.drmaa.FileTransferMode(boolean transferInputStream,
 boolean transferOutputStream, boolean transferErrorStream);
 public void setTransferInputStream(boolean transferInputStream);
 public boolean getTransferInputStream();
 public void setTransferOutputStream(boolean transferOutputStream);
 public boolean getTransferOutputStream();
 public void setTransferErrorStream(boolean transferErrorStream);
 public boolean getTransferErrorStream();
}

5.8.1 FileTransferMode()

drmaa-wg@gridforum.org 43

GWD-R 12 October 2006

The no-args constructor SHALL initialize all three properties' values to false.

5.8.2 FileTransferMode(boolean, boolean, boolean)

This constructor SHALL initialize all three properties' values to the values specified in the
parameters.

5.8.2.1 Parameters

transferInputStream - whether to transfer input stream files
transferOutputStream - whether to transfer output stream files
transferErrorStream - whether to transfer error stream files

5.8.3 setTransferInputStream

This method SHALL set whether to transfer input stream files. If this property is set to true, the
transferInputStream property of the corresponding job template SHALL be treated as the source
from which input files should be copied.

5.8.3.1 Parameters

transferInputStream - whether to transfer input stream files

5.8.4 getTransferInputStream

This method SHALL return a boolean representing whether to transfer an input stream file.

5.8.4.1 Returns

This method SHALL return a boolean representing whether to transfer the input stream file.

5.8.5 setTransferOutputStream

This method SHALL set whether to transfer an output stream file. If this property is set to true,
the transferOutputStream property of the corresponding job template SHALL be treated as the
destination to which the output file should be copied.

5.8.5.1 Parameters

transferOutputStream - whether to transfer output stream files

5.8.6 getTransferOutputStream

This method SHALL return a boolean representing whether to transfer output stream files.

5.8.6.1 Returns

This method SHALL return a boolean representing whether to transfer output stream files.

5.8.7 setTransferErrorStream

drmaa-wg@gridforum.org 44

GWD-R 12 October 2006

This method SHALL set whether to transfer an error stream file. If this property is set to true, the
transferErrorStream property of the corresponding job template SHALL be treated as the
destination to which the error file should be copied.

5.8.7.1 Parameters

transferErrorStream - whether to transfer error stream files

5.8.8 getTransferErrorStream

This method SHALL return a boolean representing whether to transfer error stream files.

5.8.8.1 Returns

This method SHALL return a boolean representing whether to transfer error stream files.

5.9 The Version Class

The Version class is a holding class for the major and minor version numbers of the DRMAA
implementation as returned by the Session.getVersion() method. The toString() method of a
Version instance MUST return a String of the form, “<major>.<minor>”. The class structure
follows:

public class org.ggf.drmaa.Version
 implements java.io.Serializable, java.lang.Cloneable,
 java.lang.Comparable {
 public org.ggf.drmaa.Version(int major, int minor);
 public int getMajor();
 public int getMinor();
 public int compareTo(Object obj);
}

5.9.1 Version

This constructor SHALL initialize the major and minor properties to the values specified in the
parameters.

5.9.1.1 Parameters

major – The major version number
minor – The minor version number

5.9.2 getMajor

This method SHALL return the major version number.

5.9.2.1 Returns

This method SHALL return the major version number.

5.9.3 getMinor

drmaa-wg@gridforum.org 45

GWD-R 12 October 2006

This method SHALL return the minor version number.

5.9.3.1 Returns

This method SHALL return the minor version number.

5.10 Exceptions

All exceptions in the Java language binding MUST inherit from the DrmaaException class. The
structure of DrmaaException is as follows:

public class org.ggf.drmaa.DrmaaException
 extends java.lang.Exception{
 public org.ggf.drmaa.DrmaaException();
 public org.ggf.drmaa.DrmaaException(java.lang.String message);
}

All exceptions under the DrmaaException class SHALL have the following structure:

public class org.ggf.drmaa.<NAME>Exception
 extends DrmaaException{
 public org.ggf.drmaa.<NAME>Exception();
 public org.ggf.drmaa.<NAME>Exception(java.lang.String message);
}

where <NAME> is the name of the exception.

5.10.1 The Exception Hierarchy

The DRMAA exception hierarchy is as follows:

• java.lang.Object
• java.lang.Throwable
• java.lang.Exception
• org.ggf.drmaa.DrmaaException
• org.ggf.drmaa.AlreadyActiveSessionException
• org.ggf.drmaa.AuthorizationException
• org.ggf.drmaa.DeniedByDrmException
• org.ggf.drmaa.DrmCommunicationException
• org.ggf.drmaa.DrmsExitException
• org.ggf.drmaa.DrmsInitException
• org.ggf.drmaa.InvalidContactStringException
• org.ggf.drmaa.DefaultContactStringException
• org.ggf.drmaa.NoDefaultContactStringSelectedException

• org.ggf.drmaa.ExitTimeoutException
• org.ggf.drmaa.InconsistentStateException
• org.ggf.drmaa.HoldInconsistentStateException
• org.ggf.drmaa.ReleaseInconsistentStateException
• org.ggf.drmaa.ResumeInconsistentStateException
• org.ggf.drmaa.SuspendInconsistentStateException

• org.ggf.drmaa.InvalidAttributeValueException

drmaa-wg@gridforum.org 46

GWD-R 12 October 2006

• org.ggf.drmaa.ConflictingAttributeValuesException
• org.ggf.drmaa.InvalidAttributeFormatException

• org.ggf.drmaa.InvalidJobException
• org.ggf.drmaa.InvalidJobTemplateException
• org.ggf.drmaa.NoActiveSessionException
• org.ggf.drmaa.TryLaterException
• org.ggf.drmaa.UnsupportedAttributeException

• RuntimeException
• org.ggf.drmaa.InternalException

Exceptions listed in itallics exist only for behavior aggregation and SHALL be declared as
abstract.

5.10.2 AlreadyActiveSessionException

Initialization failed due to existing DRMAA session.

5.10.3 AuthorizationException

The user is not authorized to perform the given operation.

5.10.4 ConflictingAttributeValuesException

The value of this attribute conflicts with one or more previously set properties.

5.10.5 DefaultContactStringException

The DRMAA implementation could not use the default contact string to connect to DRM system.

5.10.6 DeniedByDrmException

The DRM system rejected the job. The job will never be accepted due to DRM configuration or
job template settings.

5.10.7 DrmCommunicationException

Could not contact DRM system.

5.10.8 DrmsExitException

A problem was encountered while trying to exit the session.

5.10.9 DrmsInitException

A problem was encountered while trying to initialize the session.

5.10.10 ExitTimeoutException

drmaa-wg@gridforum.org 47

GWD-R 12 October 2006

The Session.wait() or Session.synchronize() call returned before all selected jobs entered the
DONE or FAILED state.

5.10.11 HoldInconsistentStateException

The job cannot be moved to a HOLD state.

5.10.12 InternalException

Unexpected or internal DRMAA error, like system call failure, etc.

5.10.13 InvalidAttributeFormatException

The format of the job template property value is improperly formatted, such as a badly formatted
time stamp.

5.10.14 InvalidAttributeValueException

The value for the job template property is invalid.

5.10.15 InvalidContactStringException

The given contact string is not valid.

5.10.16 InvalidJobException

The job specified by the given job id does not exist.

5.10.17 InvalidJobTemplateException

The job template is not valid. It was either created incorrectly, i.e. not via
Session.createJobTemplate(), or it has been deleted via the Session.deleteJobTemplate()
method.

5.10.18 NoActiveSessionException

Method call failed because there is no active session.

5.10.19 NoDefaultContactStringSelectedException

No defaults contact string was provided or selected. DRMAA requires that the default contact
string is selected when there is more than one default contact string due to multiple DRMAA
implementations being present and available. (See 5.1.21.)

5.10.20 ReleaseInconsistentStateException

The job is not in a HOLD state, and hence cannot be released.

drmaa-wg@gridforum.org 48

GWD-R 12 October 2006

5.10.21 ResumeInconsistentStateException

The job is not in a suspended state (i.e. *_SUSPENDED), and hence cannot be resumed.

5.10.22 SuspendInconsistentStateException

The job is not in a state from which it can be suspended.

5.10.23 TryLaterException

The DRMS rejected the operation, possibly due to excessive load. A retry attempt may succeed,
however.

5.10.24 UnsupportedAttributeException

The given job template property is not supported by the current DRMAA implementation.

5.10.25 Correlation to Error Codes

The following table shows how the error codes defined in the Distributed Resource Management
Application API Specification 1.0 correlate to exceptions in the Distributed Resource
Management Application API Java Language Binding and core Java language.

drmaa-wg@gridforum.org 49

GWD-R 12 October 2006

Error Code Name (DRMAA_ERRNO_...) Exception Name (org.ggf.drmaa....)

SUCCESS none

INTERNAL_ERROR InternalException

DRM_COMMUNICATION_FAILURE DrmCommunicationException

AUTH_FAILURE AuthorizationException

INVALID_ARGUMENT java.lang.IllegalArgumentException

NO_ACTIVE_SESSION NoActiveSessionException

NO_MEMORY java.lang.OutOfMemoryError

INVALID_CONTACT_STRING InvalidContactStringException

DEFAULT_CONTACT_STRING_ERROR DefaultContactStringException

NO_DEFAULT_CONTACT_STRING_SELECTED NoDefaultContactStringException

DRMS_INIT_FAILED DrmsInitException

ALREADY_ACTIVE_SESSION AlreadyActiveSessionException

DRMS_EXIT_ERROR DrmsExitException

INVALID_ATTRIBUTE_FORMAT InvalidAttributeFormatException

INVALID_ATTRIBUTE_VALUE InvalidAttributeValueException

CONFLICTING_ATTRIBUTE_VALUES ConflictingAttributeValues

TRY_LATER TryLaterException

DENIED_BY_DRM DeniedByDrmException

INVALID_JOB InvalidJobException

RESUME_INCONSISTENT_STATE ResumeInconsistentStateException

SUSPEND_INCONSISTENT_STATE SuspendInconsistentStateException

HOLD_INCONSISTENT_STATE HoldInconsistentStateException

RELEASE_INCONSISTENT_STATE ReleaseInconsistentStateException

EXIT_TIMEOUT ExitTimeoutException

NO_RUSAGE none

Table 3: Correlating Error Codes to Exceptions

The DRMAA_ERRNO_SUCCESS code does not need to be represented as an exception.

5.10.26 Correlation to IDL Exceptions

The following table shows how the error codes defined in the Distributed Resource Management
Application API – IDL Binding 1.0 correlate to exceptions in the Distributed Resource
Management Application API Java Language Binding and core Java language.

drmaa-wg@gridforum.org 50

GWD-R 12 October 2006

IDL Exception Exception Name (org.ggf.drmaa....)

InvalidJobTemplateException InvalidJobTemplateException

UnsupportedAttributeException UnsupportedAttributeException

IllegalStateException java.lang.IllegalStateException

NoMoreElementsException none

Table 4: Correlating IDL Exceptions to Java Language Binding Exceptions

6. Java Language Binding Example

The Java application below is an example of an application that uses the DRMAA Java language
binding interface. It illustrates submission of both single and bulk jobs. After submission the
Session.synchronize() method is used to synchronize with all jobs. Finally the Session.wait()
method is used to retrieve and print out information about the exit status of each job.

The path, which must be passed as argument to the program, is used directly for the job
template JobTemplate remoteCommand property. The Java language binding example passes
“5” as first argument to the job template args property. Assuming the example is run with the
“/bin/sleep” UNIX command as an argument, and that a command “/bin/sleep” exists at the
machine executing the job which behaves like the UNIX sleep(1) command, running this
application with the parameter “/bin/sleep” will result in 32 jobs being run that sleep for 5 seconds
each before finishing.

The source code follows:

import java.util.*;

import org.ggf.drmaa.*;

public class DrmaaExample {
 private static int NBULKS = 3;
 private static int JOB_CHUNK = 8;
 private Session session = null;

 public void main (String[] args) throws Exception {
 String jobPath = args[0];
 session = SessionFactory.getFactory().getSession();
 session.init(“”);

 JobTemplate jt = createJobTemplate(jobPath, 5, true);

 List allJobIds = new LinkedList();
 Set jobIds = null;
 boolean retry = true;

 for (int count = 0; count < NBULKS; count++) {
 do {
 try {

drmaa-wg@gridforum.org 51

GWD-R 12 October 2006

 jobIds = session.runBulkJobs(jt, 1, JOB_CHUNK, 1);
 retry = false;
 } catch (DRMCommunicationException e) {
 System.err.println("runBulkJobs() failed - retry: " +
 e.getMessage());

 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {}
 }
 } while (retry);

 allJobIds.add(jobIds);
 System.out.println("submitted bulk job with jobids:");
 Iterator i = jobIds.iterator();

 while (i.hasNext()) {
 System.out.println ("\t \"" + i.next() + "\"");
 }
 }

 session.deleteJobTemplate(jt);

 /* submit some sequential jobs */
 jt = createJobTemplate(jobPath, 5, false);

 String jobId = null;
 retry = true;

 for (int count = 0; count < JOB_CHUNK; count++) {
 do {
 try {
 jobId = session.runJob(jt);
 retry = false;
 }
 catch (DRMCommunicationException e) {
 System.err.println("runJob() failed - retry: " +
 e.getMessage ());

 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {}
 }
 } while (retry);

 System.out.println("\t \"" + jobId + "\"");
 jobIds.add(jobId);
 }

 session.deleteJobTemplate(jt);

drmaa-wg@gridforum.org 52

GWD-R 12 October 2006

 /* synchronize with all jobs */
 session.synchronize(allJobIds,
 Session.TIMEOUT_WAIT_FOREVER,
 false);
 System.out.println("synchronized with all jobs");

 /* wait all those jobs */
 Iterator i = allJobIds.iterator();

 while (i.hasNext()) {
 JobInfo status = null;
 String name = (String)i.next();

 status = session.wait(name, Session.TIMEOUT_WAIT_FOREVER);

 /* report how job finished */
 if (status.wasAborted()) {
 System.out.println("job \"" + name + "\" never ran");
 } else if (status.hasExited ()) {
 System.out.println("job \"" + name +
 "\" finished regularly with exit status " +
 status.getExitStatus());
 } else if (status.hasSignaled ()) {
 System.out.println("job \"" + name +
 "\" finished due to signal " +
 status.getTerminatingSignal ());
 } else {
 System.out.println("job \"" + name +
 "\" finished with unclear conditions");
 }
 }
 }

 private JobTemplate createJobTemplate(String jobPath,
 int seconds,
 boolean isBulkJob)
 throws DrmaaException {
 JobTemplate jt = session.createJobTemplate();

 jt.setWorkingDirectory(JobTemplate.WORKING_DIRECTORY);
 jt.setRemoteCommand(jobPath);
 jt.setArgs(Collections.singletonList(Integer.toString(seconds)));
 jt.setJoinFiles(true);

 if (!isBulkJob) {
 jt.setOutputPath(“:” + JobTemplate.HOME_DIRECTORY +
 “/DRMAA_JOB");
 }
 else {

drmaa-wg@gridforum.org 53

GWD-R 12 October 2006

 jt.setOutputPath(“:” + JobTemplate.HOME_DIRECTORY +
 “/DRMAA_JOB” + JobTemplate.PARAMETRIC_INDEX);
 }

 return jt;
 }
}

7. Service Provider Interface

A Java language binding SHALL written to be extended by service providers to provide
functionality specific to their DRM software. In order to provide a service provider
implementation, a service provider must extend all abstract classes with custom
implementations. Concrete service provider implementations of DRMAA classes MAY
additionally implement the java.lang.Cloneable, java.io.Serializable, and/or
java.lang.Comparable interfaces. Such DRMAA classes SHOULD also override the equals(),
hashCode(), and toString() methods where appropriate. The abstract classes that must be
overridden are as follows:

7.1 Session Interface

All methods of the Session interface must be implemented. For details, see section 5.1.

7.2 SessionFactory Class

The getSession() method of the SessionFactory class must be implemented. The
implementation SHOULD create and return an appropriate Session implementation.

7.3 SimpleJobTemplate Class

An implementation MAY extend the SimpleJobTemplate class if needed, but is not required to do
so. The getOptionalAttributeNames() method of the SimpleJobTemplate is used by the
getAttributeNames() method to determine which optional attributes are supported by the
implementation. This abstract method MUST be override in a service provider implementation
and SHOULD return a List of Strings representing the names of the supported optional and
implementation-specific properties.

Alternatively, a service provider implementation MAY provide a custom concrete implementation
of the JobTemplate interface. In such a case, the Session implementation SHOULD throw an
InvalidJobTemplateException when a method which accepts a JobTemplate type parameter is
called with an instance of the SimpleJobTemplate class.

7.4 JobInfo Interface

A service provider implementation MUST provide a concrete implementation of the JobInfo
interface.

8. Security Considerations

drmaa-wg@gridforum.org 54

GWD-R 12 October 2006

Security issues are not discussed in this document. The scheduling scenario described here
assumes that security is handled at the point of job authorization/execution on a particular
resource. Also, the Java 2 Standard Edition Runtime Environment applies a fine-grained
security model that can be assumed to provide some measure of protection at the point of
execution.

9. Author Information

Roger Brobst
rbrobst@cadence.com
Cadence Design Systems, Inc
555 River Oaks Parkway
San Jose, CA 95134

Andreas Haas
andreas.haas@sun.com
Sun Microsystems GmbH
Dr.-Leo-Ritter-Str. 7
D-93049 Regensburg
Germany

Hrabri L. Rajic
hrabri.rajic@intel.com
Intel Americas Inc.
1906 Fox Drive
Champaign, IL 61820

Daniel Templeton
dan.templeton@sun.com
Sun Microsystems, Inc.
17 Network Circle
Menlo Park, CA 94306

John Tollefsrud
j.t@sun.com
Sun Microsystems
200 Jefferson Drive UMPK29-302
Menlo Park, CA 94025

Peter Tröger
peter.troeger@hpi.uni-potsdam.de
Hasso-Plattner-Institute at University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
D-14482 Potsdam
Germany

10. Intellectual Property Statement

drmaa-wg@gridforum.org 55

GWD-R 12 October 2006

The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use
of such proprietary rights by implementers or users of this specification can be obtained from the
OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

11. Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF
disclaims all warranties, express or implied, including but not limited to any warranty that the use
of the information herein will not infringe any rights or any implied warranties of merchantability
or fitness for a particular purpose.

12. Full Copyright Notice

Copyright (C) Open Grid Forum (applicable years). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to the OGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for copyrights
defined in the OGF Document process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assignees.

drmaa-wg@gridforum.org 56

	1. Introduction
	2. Notational Conventions
	3. Design Decisions
	3.1 Service Provider Interface

	4. Relationship to Other DRMAA Specifications
	5. The Java Language Binding API
	5.1 The Session Interface
	5.1.1 SUSPEND
	5.1.2 RESUME
	5.1.3 HOLD
	5.1.4 RELEASE
	5.1.5 TERMINATE
	5.1.6 JOB_IDS_SESSION_ALL
	5.1.7 JOB_IDS_SESSION_ANY
	5.1.8 TIMEOUT_WAIT_FOREVER
	5.1.9 TIMEOUT_NO_WAIT
	5.1.10 UNDETERMINED
	5.1.11 QUEUED_ACTIVE
	5.1.12 SYSTEM_ON_HOLD
	5.1.13 USER_ON_HOLD
	5.1.14 USER_SYSTEM_ON_HOLD
	5.1.15 RUNNING
	5.1.16 SYSTEM_SUSPENDED
	5.1.17 USER_SUSPENDED
	5.1.18 USER_SYSTEM_SUSPENDED
	5.1.19 DONE
	5.1.20 FAILED
	5.1.21 init
	5.1.21.1 Parameters
	5.1.21.2 Throws

	5.1.22 exit
	5.1.22.1 Throws

	5.1.23 createJobTemplate
	5.1.23.1 Returns
	5.1.23.2 Throws

	5.1.24 deleteJobTemplate
	5.1.24.1 Parameters
	5.1.24.2 Throws

	5.1.25 runJob
	5.1.25.1 Parameters
	5.1.25.2 Returns
	5.1.25.3 Throws

	5.1.26 runBulkJobs
	5.1.26.1 Parameters
	5.1.26.2 Returns
	5.1.26.3 Throws

	5.1.27 control
	5.1.27.1 Parameters
	5.1.27.2 Throws

	5.1.28 synchronize
	5.1.28.1 Parameters
	5.1.28.2 Throws

	5.1.29 wait
	5.1.29.1 Parameters
	5.1.29.2 Returns
	5.1.29.3 Throws

	5.1.30 getJobProgramStatus
	5.1.30.1 Parameters
	5.1.30.2 Returns
	5.1.30.3 Throws

	5.1.31 getContact
	5.1.31.1 Returns

	5.1.32 getVersion
	5.1.32.1 Returns

	5.1.33 getDrmsInfo
	5.1.33.1 Returns

	5.1.34 getDrmaaImplementation
	5.1.34.1 Returns

	5.2 The SessionFactory Class
	5.2.1 getFactory
	5.2.1.1 Returns
	5.2.1.2 Throws

	5.2.2 getSession
	5.2.2.1 Returns

	5.3 The JobTemplate Interface
	5.3.1 HOLD_STATE
	5.3.2 ACTIVE_STATE
	5.3.3 HOME_DIRECTORY
	5.3.4 WORKING_DIRECTORY
	5.3.5 PARAMETRIC_INDEX
	5.3.6 getAttributeNames
	5.3.6.1 Returns
	5.3.6.2 Throws

	5.3.7 Getters
	5.3.7.1 Returns

	5.3.8 Setters
	5.3.8.1 Parameters
	5.3.8.2 Throws

	5.3.9 Required Properties
	5.3.9.1 remoteCommand
	5.3.9.2 args
	5.3.9.3 jobSubmissionState
	5.3.9.4 jobEnvironment
	5.3.9.5 workingDirectory
	5.3.9.6 jobCategory
	5.3.9.7 nativeSpecification
	5.3.9.8 email
	5.3.9.9 blockEmail
	5.3.9.10 startTime
	5.3.9.11 jobName
	5.3.9.12 inputPath
	5.3.9.13 outputPath

	5.3.9.14 errorPath
	5.3.9.15 joinFiles
	5.3.10 Optional Properties
	5.3.10.1 transferFiles
	5.3.10.2 deadlineTime
	5.3.10.3 hardWallclockTimeLimit
	5.3.11softWallClockTimeLimit
	5.3.12hardRunDurationLimit
	5.3.13softRunDurationLimit

	5.4The SimpleJobTemplate Class
	5.4.1SimpleJobTemplate
	5.4.2 toString
	5.4.2.1 Returns

	5.4.3 modified
	5.4.4 getOptionalAttributeNames
	5.4.4.1 Returns

	5.5 The JobInfo Interface
	5.5.1 getJobId
	5.5.1.1 Returns

	5.5.2 getResourceUsage
	5.5.2.1 Returns

	5.5.3 hasExited
	5.5.3.1 Returns

	5.5.4 getExitStatus
	5.5.4.1 Returns
	5.5.4.2Throws

	5.5.5 hasSignaled
	5.5.5.1 Returns

	5.5.6 getTerminatingSignal
	5.5.6.1 Returns
	5.5.6.2Throws

	5.5.7 hasCoreDump
	5.5.7.1 Returns
	5.5.7.2Throws

	5.5.8 wasAborted
	5.5.8.1 Returns

	5.6 The PartialTimestamp Class
	5.6.1 CENTURY
	5.6.2 UNSET
	5.6.3 getModifier
	5.6.4 setModifier

	5.7 The PartialTimestampFormat Class
	5.7.1 format (Object, StringBuffer, FieldPosition)
	5.7.1.1 Parameters
	5.7.1.2 Returns

	5.7.2 format (PartialTimestamp, StringBuffer, FieldPosition)
	5.7.2.1 Parameters
	5.7.2.2 Returns

	5.7.3 format (PartialTimestamp)
	5.7.3.1 Parameters
	5.7.3.2 Returns

	5.7.4 parse (String)
	5.7.4.1 Parameters
	5.7.4.2 Returns
	5.7.4.3 Throws

	5.7.5 parse (String, ParsePosition)
	5.7.5.1 Parameters
	5.7.5.2 Returns

	5.7.6 parseObject
	5.7.6.1 Parameters
	5.7.6.2 Returns

	5.8 The FileTransferMode Class
	5.8.1 FileTransferMode()
	5.8.2FileTransferMode(boolean, boolean, boolean)
	5.8.2.1 Parameters

	5.8.3 setTransferInputStream
	5.8.3.1 Parameters

	5.8.4 getTransferInputStream
	5.8.4.1 Returns

	5.8.5 setTransferOutputStream
	5.8.5.1 Parameters

	5.8.6 getTransferOutputStream
	5.8.6.1 Returns

	5.8.7 setTransferErrorStream
	5.8.7.1 Parameters

	5.8.8 getTransferErrorStream
	5.8.8.1 Returns

	5.9 The Version Class
	5.9.1Version
	5.9.1.1 Parameters

	5.9.2 getMajor
	5.9.2.1 Returns

	5.9.3 getMinor
	5.9.3.1 Returns

	5.10 Exceptions
	5.10.1The Exception Hierarchy
	5.10.2 AlreadyActiveSessionException
	5.10.3 AuthorizationException
	5.10.4 ConflictingAttributeValuesException
	5.10.5 DefaultContactStringException
	5.10.6 DeniedByDrmException
	5.10.7 DrmCommunicationException
	5.10.8 DrmsExitException
	5.10.9 DrmsInitException
	5.10.10 ExitTimeoutException
	5.10.11 HoldInconsistentStateException
	5.10.12 InternalException
	5.10.13 InvalidAttributeFormatException
	5.10.14 InvalidAttributeValueException
	5.10.15InvalidContactStringException
	5.10.16 InvalidJobException
	5.10.17 InvalidJobTemplateException
	5.10.18 NoActiveSessionException
	5.10.19 NoDefaultContactStringSelectedException
	5.10.20 ReleaseInconsistentStateException
	5.10.21 ResumeInconsistentStateException
	5.10.22 SuspendInconsistentStateException
	5.10.23 TryLaterException
	5.10.24 UnsupportedAttributeException
	5.10.25 Correlation to Error Codes
	5.10.26Correlation to IDL Exceptions

	6. Java Language Binding Example
	7. Service Provider Interface
	7.1 Session Interface
	7.2 SessionFactory Class
	7.3 SimpleJobTemplate Class
	7.4 JobInfo Interface

	8. Security Considerations
	9. Author Information
	10. Intellectual Property Statement
	11. Disclaimer
	12. Full Copyright Notice

