
Basic Execution Management
input from Globus Alliance

Karl Czajkowski
Univa Corporation



2

Must Support: Non-trivial Applications

l Real-time or deadline-sensitive jobs
u Wants localized, very good resource

l Large jobs
u Large and/or coupled models
u Wants to coordinate a few good resources

l High-throughput job sets
u Many related jobs from one user/problem
u Many unrelated jobs from many users
u Wants scalable job control everywhere



3

Distributed Execution Management

1. Discovery
u “What is out there? (of relevance) (to me)…”
u Finds BES providers

2. Inspection
u “How do relevant providers compare?”
u Compare policies, status, etc.

3. Agreement
u “Will/did I get what I need executed?”
u The core Execution Management problem

…Process can iterate due to adaptation



4

Job/Execution Duality

l GRAM supports job submission
u A traditional “bare metal” job to run
u With some data staging requirements

l GRAM supports execution management
u User needs a virtual host/container
u With some environment initialization

l Two sides of the same coin
u All job submission IS resource virtualization
u Some jobs more virtualizing than others!

l Run a JVM? X Windows server? User-mode Linux?



5

GRAM GRAM GRAM

Job CPU Disk

Application

Domain-specific goals

Incremental tasks

Information 
Service

Local
resource
managers

Goal
satisfaction

Planner

Concrete plans

Coordinator

Monitor
& Discover

Long-term GRAM Architecture



6

Exec. Mgmt. Mediates Conflict

l Resource Consumers/Applications Goals
u Users: deadlines and availability goals
u Applications: need coordinated resources

l Localized Resource Owner Goals
u Policies distinguish users/communities

l Community Goals Emerge As:
u “Global” optimization goals
u Aggregate user, application and/or resource

l Reconcile demands via Agreement



7

An Open Negotiation Model

l Providers in a Global Context
u Advertisement and negotiation
u Normalized remote client interface
u Provider maintains autonomy

l Users or Agents Bridge Resources
u Drive task submission and provisioning
u Coordinate acts across domains

l Community-based “Virtual” Providers
u Coordination for collective interest



8

Intermediaries And Policy

l Resource virtualization can:
u Abstract details of underlying resource(s)
u Abstract cardinality of aggregates
u Map between different resource description domains

l Policies from different domains influence agreement 
negotiations with intermediaries

Scheduler
CommunityClient

Application
Resource
Manager

Resource

User Policy Resource PolicyCommunity Policy

control
request

respond

request

respond

advertise advertise



9

State of the Art

l Discovery is very hard and immature
u Some viable information gathering systems
u But information models have gaps

l Lots of low-level “buttons and knobs” stuff, e.g. CIM
l Some overly abstract stuff, e.g. GLUE, GRAM today
l Complexity already a barrier to entry

u RM policy: personalized scope/relevance
l Inspection is over-emphasized

u Inherent race-conditions/scalability problems
l Basic allocation and “agreement” today

u Implicit out-of-band intelligence still required



10

WS-Agreement

l Ongoing standardization effort
u In GGF’s GRAAP-WG
u Several issues raised in public comment period

l Need 3-6 months to address and reenter public comment?

l Generalizes GRAM ideas
u Service-oriented architecture
u Resource becomes Service Provider
u Tasks become Negotiated Services
u State presented as Agreement services

l Supports composition w/ domain terms



11

WS-Agreement Entities

Policy

Agreement
Ops:
setTerminationTime(limits)
findServiceData(query)
...
SDEs:

status query

(negotiate)

Consumer

Terms Related

Application Service

Status
Agrmts.

(monitor)

(invoke)

Agreement Provider

Application Service Provider

?Initiator
Agreement



12

Simple Negotiation

l AgreementFactory::createAgreement()
u Coarse-grained
u Conventional fault/response model
u Batch negotiation of complex terms
u Idiom: enables one-shot job submission

l Agreements can be chained
u Establish stateful context of Agreements
u New Agreement depends on/claims context

l Need companion specs for advanced scenarios



13

Agreement-based Jobs

l Agreement represents “queue entry”
u Commitment with job parameters etc.
u Management interface to dynamic Job(s)

l Agreement Provider
u i.e. Job scheduler/Queuing system
u Management interface to service provider

l Service Provider
u i.e. scheduled resource (compute nodes)

l Provided Service is the Job computation



14

Advance Reservation for Jobs

l Schedule-based commitment of service
u Requires schedule based Agreement terms

l Optional Pre-Agreement
u Agreement to facilitate future Job Agreement
u Characterizes virtual resource needed for Job
u May not need full job terms

l Job Agreement almost as usual
u May exploit Pre-Agreement, or

l Reference existing promise of resource schedule

u May get schedule commitment in one shot



15

WS-Agreement is a Protocol

l WS-Agreement is a message model…
u Not a software component

l …applicable to previous examples
u Interface standard between components
u Improve interoperability of other systems
u To enable composition/federation

(Possible WS-Agreement conversion examples:
u GRAM, Condor
u Workflow, economic scheduling
u PBS, LSF, CSF)



16

Specifying Terms: Who and What?

In a service provisioning domain 
(e.g. “computational jobs”)
l A standard specifies domain terms/concepts
l A provider specifies its support for

u some or all of the domain standard terms
u a given term, specifically

l Within behavioral constraints
l Within negotiability constraints
l With extra fields/sub-terms
l Arbitrary term properties: e.g. optional or required

l A client discovers compatible providers



17

Possible GRAM Avenues

l Choose a job term language (e.g. JSDL?)
u Don't rush for yet another job dialect
u Define a profile for terms+mark-up?

l Provide an AgreementFactory impl.
l Provide an Agreement impl.
l Tie into existing ManagedJob resource impl.
l Support both WS-GRAM, Job Agreements

u Ease migration



18

WS-GRAM Approach

GridFTP
RFT

Delegation

GridFTP

GRAM
services

local sched.

user job

compute element

compute element and service host(s)

remote storage element(s)

FTP data

FTP control

cl
ie

nt

job submit

delegate

xf
er

 r
eq

ue
st

local job control

delegate
GRAM
adaptersu

do



19

WS-GRAM Software Map

Delegation

ManagedJobFactory

ManagedJob

Delegation

ReliableFileTransfer

Job's Credential

Scheduler Adapter

authz_exec

sudo: user

sudo: schedd

delegate

createJob

terminate

subscribe

createTransfer

system exec

setRP(status)
no

tif
y

notify

subscribe

create

create

start

Implementation Objects

Scripts and Tools

ResourcesServices

Local System

Arrow Legend

Invoke
Cause/Effect
Data Flow

Local Scheduler

Job Event Daemon

Credential Writer

authz_exec

sudo: user

ManagedJob

ManagedJobFactory

Job State Monitor

JobManager

start

User Job



20

W
S

-G
R

A
M

 B
as

e 
P

ro
to

co
l

T
F

T
E

T
B

T
0

T
C

T
E

a

T
Fa

cr
ea

te
Jo

b

ac
kn

ow
le

dg
e

C
lie

nt
G

R
A

M
Sc

he
du

le
r

Jo
b

su
bm

it 
jo

b
no

tif
y:

 p
en

di
ng

no
tif

y:
 a

ct
iv

e

jo
b 

ch
ec

k-
in

: e
xi

tin
g

jo
b 

ch
ec

k-
in

: s
ta

rt
ed

jo
b 

ex
ite

d

C
om

pu
te

no
tif

y:
 c

om
pl

et
e



21

W
S

-G
R

A
M

 F
ul

l P
ro

to
co

l

T
B

T
A

T
0

T
D

T
C

T
E

a

T
Fa

T
F

T
E

T
G

T
I

T
H

T
J

re
qu

es
t t

ra
ns

fe
r

G
R

A
M

R
FT

Sc
he

du
le

r
D

el
eg

at
io

n
C

lie
nt

de
le

ga
te

ac
kn

ow
le

dg
e

cr
ea

te
Jo

b

Jo
b

St
ag

e 
In

Se
tu

p

no
tif

y:
 s

ta
ge

 in
ac

kn
ow

le
dg

e

st
or

e 
cr

ed
en

tia
l

co
m

pl
et

e

tr
an

sf
er

 c
om

pl
et

e

su
bm

it 
jo

b
no

tif
y:

 p
en

di
ng

no
tif

y:
 a

ct
iv

e

jo
b 

ch
ec

k-
in

: e
xi

tin
g

jo
b 

ch
ec

k-
in

: s
ta

rt
ed

jo
b 

ex
ite

d

re
qu

es
t t

ra
ns

fe
r

no
tif

y:
 s

ta
ge

 o
ut

C
om

pu
te

St
ag

e 
O

ut

tr
an

sf
er

 c
om

pl
et

e

no
tif

y:
 c

le
an

up
-h

ol
d

re
qu

es
t d

el
et

io
n

C
le

an
up

T
er

m
in

at
in

g

no
tif

y:
 c

om
pl

et
e

te
rm

in
at

e

ac
kn

ow
le

dg
e

de
le

te
 c

re
d.

co
m

pl
et

e

de
le

tio
n 

co
m

pl
et

e

no
tif

y:
 c

le
an

up

re
m

ov
eH

ol
d(

cl
ea

nu
p)



22

Positioning for Future

l Better modularity of job manager functions
u Track improvements in composed services
u Experimentation w/ other job protocols

l Share sudo/perl callouts for job control
l Provide different “views” of job execution system

u Reuse functions for next job standard
l Higher-level WSRF programming model

u Return of co-allocation for MPICH
u Unconventional job-like services next?
u Advance reservation or co-scheduling next?


