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Must Support: Non-trivial Applications

l Real-time or deadline-sensitive jobs
u Wants localized, very good resource

l Large jobs
u Large and/or coupled models
u Wants to coordinate a few good resources

l High-throughput job sets
u Many related jobs from one user/problem
u Many unrelated jobs from many users
u Wants scalable job control everywhere
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Distributed Execution Management

1. Discovery
u “What is out there? (of relevance) (to me)…”
u Finds BES providers

2. Inspection
u “How do relevant providers compare?”
u Compare policies, status, etc.

3. Agreement
u “Will/did I get what I need executed?”
u The core Execution Management problem

…Process can iterate due to adaptation
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Job/Execution Duality

l GRAM supports job submission
u A traditional “bare metal” job to run
u With some data staging requirements

l GRAM supports execution management
u User needs a virtual host/container
u With some environment initialization

l Two sides of the same coin
u All job submission IS resource virtualization
u Some jobs more virtualizing than others!

l Run a JVM? X Windows server? User-mode Linux?
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Exec. Mgmt. Mediates Conflict

l Resource Consumers/Applications Goals
u Users: deadlines and availability goals
u Applications: need coordinated resources

l Localized Resource Owner Goals
u Policies distinguish users/communities

l Community Goals Emerge As:
u “Global” optimization goals
u Aggregate user, application and/or resource

l Reconcile demands via Agreement
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An Open Negotiation Model

l Providers in a Global Context
u Advertisement and negotiation
u Normalized remote client interface
u Provider maintains autonomy

l Users or Agents Bridge Resources
u Drive task submission and provisioning
u Coordinate acts across domains

l Community-based “Virtual” Providers
u Coordination for collective interest
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Intermediaries And Policy

l Resource virtualization can:
u Abstract details of underlying resource(s)
u Abstract cardinality of aggregates
u Map between different resource description domains

l Policies from different domains influence agreement 
negotiations with intermediaries
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State of the Art

l Discovery is very hard and immature
u Some viable information gathering systems
u But information models have gaps

l Lots of low-level “buttons and knobs” stuff, e.g. CIM
l Some overly abstract stuff, e.g. GLUE, GRAM today
l Complexity already a barrier to entry

u RM policy: personalized scope/relevance
l Inspection is over-emphasized

u Inherent race-conditions/scalability problems
l Basic allocation and “agreement” today

u Implicit out-of-band intelligence still required
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WS-Agreement

l Ongoing standardization effort
u In GGF’s GRAAP-WG
u Several issues raised in public comment period

l Need 3-6 months to address and reenter public comment?

l Generalizes GRAM ideas
u Service-oriented architecture
u Resource becomes Service Provider
u Tasks become Negotiated Services
u State presented as Agreement services

l Supports composition w/ domain terms
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WS-Agreement Entities
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Simple Negotiation

l AgreementFactory::createAgreement()
u Coarse-grained
u Conventional fault/response model
u Batch negotiation of complex terms
u Idiom: enables one-shot job submission

l Agreements can be chained
u Establish stateful context of Agreements
u New Agreement depends on/claims context

l Need companion specs for advanced scenarios
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Agreement-based Jobs

l Agreement represents “queue entry”
u Commitment with job parameters etc.
u Management interface to dynamic Job(s)

l Agreement Provider
u i.e. Job scheduler/Queuing system
u Management interface to service provider

l Service Provider
u i.e. scheduled resource (compute nodes)

l Provided Service is the Job computation
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Advance Reservation for Jobs

l Schedule-based commitment of service
u Requires schedule based Agreement terms

l Optional Pre-Agreement
u Agreement to facilitate future Job Agreement
u Characterizes virtual resource needed for Job
u May not need full job terms

l Job Agreement almost as usual
u May exploit Pre-Agreement, or

l Reference existing promise of resource schedule

u May get schedule commitment in one shot
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WS-Agreement is a Protocol

l WS-Agreement is a message model…
u Not a software component

l …applicable to previous examples
u Interface standard between components
u Improve interoperability of other systems
u To enable composition/federation

(Possible WS-Agreement conversion examples:
u GRAM, Condor
u Workflow, economic scheduling
u PBS, LSF, CSF)
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Specifying Terms: Who and What?

In a service provisioning domain 
(e.g. “computational jobs”)
l A standard specifies domain terms/concepts
l A provider specifies its support for

u some or all of the domain standard terms
u a given term, specifically

l Within behavioral constraints
l Within negotiability constraints
l With extra fields/sub-terms
l Arbitrary term properties: e.g. optional or required

l A client discovers compatible providers
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Possible GRAM Avenues

l Choose a job term language (e.g. JSDL?)
u Don't rush for yet another job dialect
u Define a profile for terms+mark-up?

l Provide an AgreementFactory impl.
l Provide an Agreement impl.
l Tie into existing ManagedJob resource impl.
l Support both WS-GRAM, Job Agreements

u Ease migration
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WS-GRAM Approach
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WS-GRAM Software Map
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Positioning for Future

l Better modularity of job manager functions
u Track improvements in composed services
u Experimentation w/ other job protocols

l Share sudo/perl callouts for job control
l Provide different “views” of job execution system

u Reuse functions for next job standard
l Higher-level WSRF programming model

u Return of co-allocation for MPICH
u Unconventional job-like services next?
u Advance reservation or co-scheduling next?


