
Basic Execution Management
input from Globus Alliance

Karl Czajkowski
Univa Corporation



2

Must Support: Non-trivial Applications

l Real-time or deadline-sensitive jobs
u Want localized, very good resource

l Large jobs
u Large and/or coupled models
u Want to coordinate a few good resources

l High-throughput job sets
u Many related jobs from one user/problem
u Many unrelated jobs from many users
u Want scalable job control everywhere



3

Scope: BES is Step 3 Only

1. Discovery
u “What is out there? (of relevance) (to me)…”
u Finds BES providers

2. Inspection
u “How do relevant providers compare?”
u Compare policies, status, etc.

3. Agreement
u “Will/did I get what I need executed?”
u The core Execution Management problem

…Process can iterate due to adaptation



4

GRAM GRAM GRAM

Job CPU Disk

Application

Domain-specific goals

Incremental tasks

Information 
Service

Local
resource
managers

Goal
satisfaction

Planner

Concrete plans

Coordinator

Monitor
& Discover

(GRAM/BES are Bottom Layer)



5

WS-Agreement

l Ongoing standardization effort
u In GGF’s GRAAP-WG
u Several issues raised in public comment period

l Need 3-6 months to address and reenter public comment?

l Generalizes GRAM ideas
u Service-oriented architecture
u Container/host becomes Service Provider
u Tasks/jobs become Negotiated Services
u Mgmt state presented as Agreement services

l Supports composition w/ domain terms



6

JSDL

l Job Submission Description Language
u Provides an ontology for “job to be run”

l Requires external spec to put it in context
u WS-Agreement can use JSDL as “service terms”

l A mix of abstract and concrete job bits
u Executable+args+environment

l Assume application already provisioned at host

u Abstract “portable” job profiles
l Try to cope w/ localized differences



7

Need to Clarify Timeline

l Theoretically: WS-Agreement + JSDL + epsilon
u Delivery could be delayed by dependencies

l WS-Agreement needs another revision
l JSDL might as well, to address concrete job issues?

u Scoping concerns
l Is current JSDL 1.0 target complete enough? Too big?
l No practical experience w/ WS-Agreement yet

l Conservative/fast: base on existing system(s)
u We would help slice/dice WS-GRAM WSDL
u Other vendors offering to help?



8

State of the Art

l Discovery is very hard and immature
u Some viable information gathering systems
u But information models have gaps

l Lots of low-level “buttons and knobs” stuff, e.g. CIM
l Some overly abstract stuff, e.g. GLUE, GRAM today
l Complexity already a barrier to entry

u RM policy: personalized scope/relevance
l BES needs some basic metadata/properties

u Introspect for “dialect” support
l Assume more will be developed over time



9

Caution!

l Must choose scope wisely and stick to it
u Many groups flounder on recurring debates

l Old issues revisited for new participants
l Old issues tripped over from new angle (and not noticed)

u The real work is in rendering abstract archictectural 
consensus into concrete syntax w/o fatal warts and 
flaws

l Compositionality a mixed blessing
u Defer decisions on difficult problems

l Can BES address file staging? Credential mgmt?

u But, more opportunities for non-interop
l “Power set” of different specs/extensions...



10

WS-Agreement Entities

Policy

Agreement
Ops:
setTerminationTime(limits)
findServiceData(query)
...
SDEs:

status query

(negotiate)

Consumer

Terms Related

Application Service

Status
Agrmts.

(monitor)

(invoke)

Agreement Provider

Application Service Provider

?Initiator
Agreement



11

Simple Negotiation

l AgreementFactory::createAgreement()
u Coarse-grained
u Conventional fault/response model
u Batch negotiation of complex terms
u Idiom: enables one-shot job submission

l Agreements can be chained
u Establish stateful context of Agreements
u New Agreement depends on or claims context

l Need companion specs for advanced scenarios



12

WS-Agreement is a Protocol

l WS-Agreement is a message model…
u Not a software component

l …applicable to previous examples
u Interface standard between components
u Improve interoperability of other systems
u To enable composition/federation

(Possible WS-Agreement conversion examples:
u GRAM, Condor
u Workflow, economic scheduling
u PBS, LSF, CSF)



13

Specifying Terms: Who and What?

In a service provisioning domain 
(e.g. “computational jobs”)
l A standard specifies domain terms/concepts
l A provider specifies its support for

u some or all of the domain standard terms
u a given term, specifically

l Within behavioral constraints
l Within negotiability constraints
l With extra fields/sub-terms
l Arbitrary term properties: e.g. optional or required

l A client discovers compatible providers



14

Agreement-based Jobs

l Agreement represents “queue entry”
u Commitment with job parameters etc.
u This is the management “proxy” for job

l Agreement Provider
u i.e. Job scheduler/Queuing system
u Management interface to service provider

l Service Provider
u i.e. scheduled resource (compute nodes)

l Provided Service is the Job computation



15

BES as WS-Agreement

l Write a BES spec
u A profile combining WS-Agrmt + JSDL
u Influence JSDL or spec. extensions?
u Be conservative about generating new dialects

l Get some implementation experience
u We know how to adapt WS-GRAM
u Tie into existing ManagedJob resource impl.

l Put BES in comment period
u Determine if experiences warrant revisions



16

WS-GRAM Approach

GridFTP
RFT

Delegation

GridFTP

GRAM
services

local sched.

user job

compute element

compute element and service host(s)

remote storage element(s)

FTP data

FTP control

cl
ie

nt

job submit

delegate

xf
er

 r
eq

ue
st

local job control

delegate
GRAM
adaptersu

do



17

WS-GRAM Software Map

Delegation

ManagedJobFactory

ManagedJob

Delegation

ReliableFileTransfer

Job's Credential

Scheduler Adapter

authz_exec

sudo: user

sudo: schedd

delegate

createJob

terminate

subscribe

createTransfer

system exec

setRP(status)
no

tif
y

notify

subscribe

create

create

start

Implementation Objects

Scripts and Tools

ResourcesServices

Local System

Arrow Legend

Invoke
Cause/Effect
Data Flow

Local Scheduler

Job Event Daemon

Credential Writer

authz_exec

sudo: user

ManagedJob

ManagedJobFactory

Job State Monitor

JobManager

start

User Job



18

W
S

-G
R

A
M

 B
as

e 
P

ro
to

co
l

T
F

T
E

T
B

T
0

T
C

T
E

a

T
Fa

cr
ea

te
Jo

b

ac
kn

ow
le

dg
e

C
lie

nt
G

R
A

M
Sc

he
du

le
r

Jo
b

su
bm

it 
jo

b
no

tif
y:

 p
en

di
ng

no
tif

y:
 a

ct
iv

e

jo
b 

ch
ec

k-
in

: e
xi

tin
g

jo
b 

ch
ec

k-
in

: s
ta

rt
ed

jo
b 

ex
ite

d

C
om

pu
te

no
tif

y:
 c

om
pl

et
e



19

W
S

-G
R

A
M

 F
ul

l P
ro

to
co

l

T
B

T
A

T
0

T
D

T
C

T
E

a

T
Fa

T
F

T
E

T
G

T
I

T
H

T
J

re
qu

es
t t

ra
ns

fe
r

G
R

A
M

R
FT

Sc
he

du
le

r
D

el
eg

at
io

n
C

lie
nt

de
le

ga
te

ac
kn

ow
le

dg
e

cr
ea

te
Jo

b

Jo
b

St
ag

e 
In

Se
tu

p

no
tif

y:
 s

ta
ge

 in
ac

kn
ow

le
dg

e

st
or

e 
cr

ed
en

tia
l

co
m

pl
et

e

tr
an

sf
er

 c
om

pl
et

e

su
bm

it 
jo

b
no

tif
y:

 p
en

di
ng

no
tif

y:
 a

ct
iv

e

jo
b 

ch
ec

k-
in

: e
xi

tin
g

jo
b 

ch
ec

k-
in

: s
ta

rt
ed

jo
b 

ex
ite

d

re
qu

es
t t

ra
ns

fe
r

no
tif

y:
 s

ta
ge

 o
ut

C
om

pu
te

St
ag

e 
O

ut

tr
an

sf
er

 c
om

pl
et

e

no
tif

y:
 c

le
an

up
-h

ol
d

re
qu

es
t d

el
et

io
n

C
le

an
up

T
er

m
in

at
in

g

no
tif

y:
 c

om
pl

et
e

te
rm

in
at

e

ac
kn

ow
le

dg
e

de
le

te
 c

re
d.

co
m

pl
et

e

de
le

tio
n 

co
m

pl
et

e

no
tif

y:
 c

le
an

up

re
m

ov
eH

ol
d(

cl
ea

nu
p)


