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Must Support: Non-trivial Applications

l Real-time or deadline-sensitive jobs
u Want localized, very good resource

l Large jobs
u Large and/or coupled models
u Want to coordinate a few good resources

l High-throughput job sets
u Many related jobs from one user/problem
u Many unrelated jobs from many users
u Want scalable job control everywhere
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Scope: BES is Step 3 Only

1. Discovery
u “What is out there? (of relevance) (to me)…”
u Finds BES providers

2. Inspection
u “How do relevant providers compare?”
u Compare policies, status, etc.

3. Agreement
u “Will/did I get what I need executed?”
u The core Execution Management problem

…Process can iterate due to adaptation
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WS-Agreement

l Ongoing standardization effort
u In GGF’s GRAAP-WG
u Several issues raised in public comment period

l Need 3-6 months to address and reenter public comment?

l Generalizes GRAM ideas
u Service-oriented architecture
u Container/host becomes Service Provider
u Tasks/jobs become Negotiated Services
u Mgmt state presented as Agreement services

l Supports composition w/ domain terms
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JSDL

l Job Submission Description Language
u Provides an ontology for “job to be run”

l Requires external spec to put it in context
u WS-Agreement can use JSDL as “service terms”

l A mix of abstract and concrete job bits
u Executable+args+environment

l Assume application already provisioned at host

u Abstract “portable” job profiles
l Try to cope w/ localized differences
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Need to Clarify Timeline

l Theoretically: WS-Agreement + JSDL + epsilon
u Delivery could be delayed by dependencies

l WS-Agreement needs another revision
l JSDL might as well, to address concrete job issues?

u Scoping concerns
l Is current JSDL 1.0 target complete enough? Too big?
l No practical experience w/ WS-Agreement yet

l Conservative/fast: base on existing system(s)
u We would help slice/dice WS-GRAM WSDL
u Other vendors offering to help?
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State of the Art

l Discovery is very hard and immature
u Some viable information gathering systems
u But information models have gaps

l Lots of low-level “buttons and knobs” stuff, e.g. CIM
l Some overly abstract stuff, e.g. GLUE, GRAM today
l Complexity already a barrier to entry

u RM policy: personalized scope/relevance
l BES needs some basic metadata/properties

u Introspect for “dialect” support
l Assume more will be developed over time
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Caution!

l Must choose scope wisely and stick to it
u Many groups flounder on recurring debates

l Old issues revisited for new participants
l Old issues tripped over from new angle (and not noticed)

u The real work is in rendering abstract archictectural 
consensus into concrete syntax w/o fatal warts and 
flaws

l Compositionality a mixed blessing
u Defer decisions on difficult problems

l Can BES address file staging? Credential mgmt?

u But, more opportunities for non-interop
l “Power set” of different specs/extensions...
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WS-Agreement Entities
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Simple Negotiation

l AgreementFactory::createAgreement()
u Coarse-grained
u Conventional fault/response model
u Batch negotiation of complex terms
u Idiom: enables one-shot job submission

l Agreements can be chained
u Establish stateful context of Agreements
u New Agreement depends on or claims context

l Need companion specs for advanced scenarios
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WS-Agreement is a Protocol

l WS-Agreement is a message model…
u Not a software component

l …applicable to previous examples
u Interface standard between components
u Improve interoperability of other systems
u To enable composition/federation

(Possible WS-Agreement conversion examples:
u GRAM, Condor
u Workflow, economic scheduling
u PBS, LSF, CSF)
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Specifying Terms: Who and What?

In a service provisioning domain 
(e.g. “computational jobs”)
l A standard specifies domain terms/concepts
l A provider specifies its support for

u some or all of the domain standard terms
u a given term, specifically

l Within behavioral constraints
l Within negotiability constraints
l With extra fields/sub-terms
l Arbitrary term properties: e.g. optional or required

l A client discovers compatible providers
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Agreement-based Jobs

l Agreement represents “queue entry”
u Commitment with job parameters etc.
u This is the management “proxy” for job

l Agreement Provider
u i.e. Job scheduler/Queuing system
u Management interface to service provider

l Service Provider
u i.e. scheduled resource (compute nodes)

l Provided Service is the Job computation
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BES as WS-Agreement

l Write a BES spec
u A profile combining WS-Agrmt + JSDL
u Influence JSDL or spec. extensions?
u Be conservative about generating new dialects

l Get some implementation experience
u We know how to adapt WS-GRAM
u Tie into existing ManagedJob resource impl.

l Put BES in comment period
u Determine if experiences warrant revisions
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WS-GRAM Approach
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WS-GRAM Software Map
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