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Abstract 
 
This document provides experience information to the OGF community on the original Data 
Format Description Language (DFDL) 1.0 specification (GFD-P-R.174). 
 
It lists and describes the non-editorial errata identified in the DFDL 1.0 specification. It 
contains all errata up to 2014-09-09.  
 
All such errata have been incorporated into a revised Data Format Description Language 
(DFDL) 1.0 specification (GFD-P-R.207), which henceforth obsoletes GFD-P-R.174. 
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1. Introduction 

This document has been created to list issues encountered by implementers of the original 
DFDL 1.0 specification [DFDL], and users of implementations of the DFDL 1.0 specification. 
Specifically, it records all those issues requiring a non-editorial change to the DFDL 1.0 
specification, in the form of errata. 

The OGF GFD process [GFD] recognises three different kinds of error that may be found in 
OGF specifications: 

Editorial fixes. Updates to a document which are not widely announced or publicized. 
This category might include headers/footers, spelling, formatting, or simple wording 
changes for clarity. 
 
Minor technical fixes. Updates to a document which are not simply editorial. For example, 
an update to an XML schema or addition to a protocol, to bring the document into 
agreement with current practice.  
 
Major technical fixes. Such fixes will often require additional technical review and result 
in an updated or replaced document.  

The following sections of this document list the errata that fall into the last two categories.  

All the errata in this document have been incorporated into a revision of the DFDL 1.0 
specification [DFDLREV]. 
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2. Minor Technical Fixes 

 
The following minor technical fixes have been identified.  

2.1. Section 7.2.2.  The ref property needs to state that circular paths are a schema definition 
error.  

2.2. Section 13.13. Clarify what packed and BCD calendars mean.  
o There is no need to use a separate VDP property. The only place where a decimal 

point can occur is for fractional seconds. This is detectable from the pattern at the 
boundary of 's' and 'S', ie sS.   

o Property calendarPatternKind = 'explicit' must be used with binary calendar 
representations, as the defaults for 'implicit' use non-numeric characters. Schema 
definition error otherwise.  

o Property binaryCalendarRep should restate the rule from property calendarPattern.  
o Examples to be provided. 

2.3. Section 13.11.1.  Does not fully state the time zone symbol behaviour. It should say: 

z 
 

Time Zone: specific non-location Text z, zz, zzz 
zzzz 

PDT 
Pacific Daylight Time 

Z  
 

Time Zone: ISO8601 basic format 
Time Zone: localized GMT 

Text Z, ZZ ZZZ 
ZZZZ 

-0800, +0000 
GMT-08:00, GMT+00:00 

O Time Zone: localized GMT Text O 
OOOO 

GMT- 
GMT-08:00 

v  Time Zone: generic non-location Text v 
vvvv 

PT 
Pacific Time 

V  Time Zone: short time zone ID 
long time zone ID 
exemplar city 
generic location.  

Text V 
VV 
VVV 
VVVV 

uslax 
America/Los_Angeles 
Los Angeles 
Los Angeles Time 

x Time Zone: ISO8601 basic or 
extended format  

Text x 
xx 
xxx 

-08, +0530, +0000 
-0800, +0000 
-08:00, +00:00 

X Time Zone: ISO8601 basic or 
extended format .The UTC 
indicator "Z" is used when local 
time offset is 0. 

Text X 
XX 
XXX 

-08, +0530, Z 
-0800, Z 
-08:00, Z 

Note this table reflects updates made by erratum 2.121. 

2.4. Sections 22.1.1 & 22.2.1. Binary representations can have property lengthKind set to 
‘delimited’.  

2.5. Sections 22.1.2 & 22.2.2. Complex elements can have property lengthKind set to 
‘endOfParent’.  

2.6. Throughout. Specification often uses the term 'content region' but it should be more 
specific in terms of the grammar, and use 'SimpleContent region' or 'ComplexContent region', 
or both.  

2.7. Section 17. Text says that inputValueCalc and outputValueCalc applies to simple types, 
which is not correct. Absorbed into erratum 3.2. 

2.8. Section 13.16. In the description of property nilValue, state that nilLiteralCharacter test 
takes place on the untrimmed representation value.  
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2.9. Section 12.3.3. Clarify that when property lengthUnits is ‘bytes’, using property 
lengthKind ‘implicit’ for a string interprets the min/maxLength facets as byte values and not 
characters when parsing or unparsing.  

2.10. Section 6.3. Bullet for logical value. State that the string must obey the lexical 
representation of the type.  

2.11. Section 6.3. Clarify that literal white space is only ever used as list token separator, and 
that entities must be used if literal white space is needed as part of the property value.  

2.12. Section 6, 7.7. Clarify that if A.xsd includes B.xsd then A can refer to a variable defined 
in B and reference is via Qname in the usual way. This is best expressed by simply saying 
that DFDL Qnames behave like XSDL Qnames in section 6. The existing text in section 7.7 
can be removed.  

2.13. Section 9.2. Correct the grammar to reflect that a prefix length type can itself have a 
prefix length. This is sufficient to allow the grammar to describe the needed “one more level” 
of prefix (as required for modeling an ASN.1 format) without allowing recursion. 

The updated grammar is in Chapter 5 of this document.  

2.14. Section 12.3.4. Clarify that when a prefix length type itself has a prefix length, the simple 
types cannot be the same.  

Explicitly list the property restrictions that must apply to a prefix length type to comply with 
modeling just SimpleContent region. It is a schema definition error if the type specifies 
lengthKind 'delimited' or 'endOfParent' or ‘pattern’ or ‘explicit’ where length is an expression, 
or a value for initiator or terminator other than empty string, or  alignment other than '1', or 
leadingSkip or trailingSkip other than '0'. 

2.15. Section 13.6. When property textNumberRep is ‘zoned’, the property description should 
state that base is assumed to be 10.   

2.16. Section 13.2.1. Clarify string literal content of properties escapeCharacter, 
escapeEscapeCharacter, extraEscapedCharacters, escapeBlockStart and escapeBlockEnd. 

o DFDL character entities are allowed 
o The raw byte entity ( %#r ) is not allowed 
o DFDL Character classes ( NL, WSP, WSP+, WSP*, ES ) are not allowed 

 
2.17. Sections 13.4, 13.6, 13.9, 13.12. Clarify string literal content of properties 
textStringPadCharacter, textBooleanPadCharacter, textCalendarPadCharacter and 
textNumberPadCharacter. 

o DFDL character entities are allowed 
o The raw byte entity ( %#r ) is allowed subject to the restrictions already documented 

for these properties 
o DFDL Character classes ( NL, WSP, WSP+, WSP*, ES ) are not allowed 

 
2.18. Section 13.6. Clarify string literal content of properties textStandardDecimalSeparator, 
textStandardGroupingSeparator, textStandardExponentCharacter, textStandardInfinityRep, 
textStandardNaNRep. 

o DFDL character entities are allowed 
o The raw byte entity ( %#r ) is not allowed 
o DFDL Character classes ( NL, WSP, WSP+, WSP*, ES ) are not allowed 

 
2.19. Section 13.9. Clarify string literal content of properties textBooleanTrueRep and 
textBooleanFalseRep. 

o DFDL character entities are allowed 
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o The raw byte entity ( %#r ) is not allowed 
o DFDL Character classes ( NL, WSP, WSP+, WSP*, ES ) are not allowed 

 
2.20. Section 13.16. Remove restriction that property nilValue only applies when 
representation is text. It is not clear where this originated.  
 
Clarify string literal content of nilValue when nilKind is ‘literalValue’: 
When representation is text:  

o DFDL character entities are allowed 
o The raw byte entity ( %#r ) is allowed 
o DFDL Character classes ( NL, WSP, WSP+, WSP*, ES ) are allowed. 

When representation is binary: 
o DFDL character entities are allowed 
o The raw byte entity ( %#r ) is allowed 
o DFDL Character class ES is allowed. 
o Other DFDL Character classes ( NL, WSP, WSP+, WSP* ) are not allowed. 

 
Clarify string literal content of nilValue when nilKind is ‘literalCharacter’: 
When representation is text:  

o DFDL character entities are allowed 
o The raw byte entity ( %#r ) is allowed subject to the restrictions already documented 

for this property 
o DFDL Character classes ( NL, WSP, WSP+, WSP*, ES ) are not allowed. 

When representation is binary: 
o DFDL character entities are allowed 
o The raw byte entity ( %#r ) is allowed. 
o DFDL Character classes ( NL, WSP, WSP+, WSP*, ES ) are not allowed. 

 
 
2.21. Section 13.6. Change meaning of textNumberCheckPolicy enum 'lax' to align with ICU.: 
"If ‘lax' and dfdl:textNumberRep is 'standard' then grouping separators are ignored, leading 
and trailing whitespace is ignored, leading zeros are ignored, quoted characters may be 
omitted." 
 
 
2.22. Section 13.6. Disallow the use of empty string for property 
textStandardDecimalSeparator, and state property must be set if the pattern contains a '.'  or 
‘E’ or ‘@’ symbol (schema definition error otherwise).  
 
2.23. Section 13.6. Allow decimal separator to be a List of DFDL String Literals or a DFDL 
expression. This allows modelling of the EDIFACT standard where a user can choose a 
dynamic decimal separator in the ISA header but '.'  is always allowed.  
 
2.24. Section 13.6. Disallow the use of empty string for property 
textStandardGroupingSeparator, and state property must be set if the pattern contains a ',' 
(schema definition error otherwise). 
 
2.25. Section 13.6. When property textNumberPadCharacter is '0' (or an equivalent DFDL 
Character Entity) which it commonly is, a value of say '00000' will get trimmed to the empty 
string, whereas the intent is to trim to '0'.  Add a new rule that says the last remaining digit is 
never trimmed for text numbers regardless of its value. This rule only applies to the character 
‘0’, and not to any other numeric character nor to DFDL Byte Value Entity. 
 
2.26. Section 13.6. Allow the use of empty string for property textStandardExponentCharacter 
to model text numbers of the form nnn+mmm. Property must be set even if the pattern does 
not contain an 'E' symbol, to match ICU behaviour (schema definition error otherwise). 
 
2.27. Section 13.6. State type-dependency rules for textStandardDecimalSeparator.  
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Updated by public comment 121 (http://redmine.ogf.org/boards/15/topics/121) to revert to 
original behaviour whereby textStandardDecimalSeparator applies to all number types. 
 
textStandardDecimalSeparator must be ignored when the logical type is not 
decimal/float/double. 
 
2.28. Section 13.6.1.1. Add support for ICU significant digits symbol ‘@’.  Note that this is not 
needed as a change in 13.6.1.2. 
 
2.29. Section 13.6.1.1. Formatting. Uses terms 'minimum/maximum integer/fraction digits' but 
does not define them. The term ‘maximum integer digits’ is defined as 309 to match the ICU 
default, the other terms are defined by the pattern content.  
 
2.30. Section 13.9. State that textBooleanTrueRep and textBooleanFalseRep properties are 
used after trimming when parsing, and before padding when unparsing. If lengthKind is 
‘explicit’ or ‘implicit’ and either textPadKind or textTrimKind  is ‘none’ then the properties must 
have the same length else it is a schema definition error. 
 
2.31. Section 16.2. State it is a processing error if the stop value is missing from the data 
when parsing.  
 
2.32. Section 12.1.1. Clarify the note after Table 14 mean. "Specifying the implicit alignment 
in bits does not imply  that dfdl:lengthUnits 'bits' can be specified for all simple types". It is 
really saying that alignmentUnits and lengthUnits are independent and have their own rules 
for when they are applicable.  
 
2.33. Section 12.3.. One line descriptions of 'delimited' and 'endOfParent' are not worded 
correctly in the property description of lengthKind, and should be improved.  

 
2.34. Section 12.3.2. Rule 3 for resolving ambiguity between delimiters, which says "When 
the separator and terminator on a group have the same value, the separator has 
precedence", needs clarifying to say “When the separator and terminator on a group have the 
same value, then at a point where either  separator or terminator could be found, the 
separator is tried first.”  
 
2.35. Section 17. InputValueCalc. Description talks about returning an empty string being ok if 
minLength permits this. Replace sentence with a fuller clarification that inputValueCalc value 
is validated like a parsed value, so schema definition error if value does not conform to base 
type, and validation error if validation enabled and value conforms to base type but not actual 
type.  
 
2.36. Section 16. Spec allows occursCount to be a non-negative integer. This is superfluous 
as the property is only used when occursCountKind is expression. Change so that 
occursCount is only allowed to be a DFDL Expression. 
 
2.37. Section 23.3. Clarify that DFDL expression syntax "{}" is invalid, as it results in an empty 
Xpath 2.0 expression, which is not legal. In particular, clarify that setting a property to {} does 
not give the same result as setting a property to the empty string.  
 
2.38. Section 11. Specification does not definitively list which binary reps are subject to 
byteOrder. Clarify that byteOrder applies to all Numbers and Calendars with representation 
binary. Specifically that is binary integers, packed decimals, BCD, binary floats, binary 
seconds and binary milliseconds.  
 
2.39.  Section 13.11.1. When parsing an xs:date or xs:datetime, if a calendarPattern doesn't 
specify some parts (other than time zone), say, calendarPattern="MM", then the Unix epoch 
1970-01-01T00:00:00.000 is used to provide the missing parts.  
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Noted that if a pure month or day or year is needed, then this would be achieved by a future 
DFDL extension to expand the supported simple types to include xs:gMonth, xs:gDay, 
xs:gYear types. 
 
2.40. Section 13.6.1.1. The paragraphs that describe the V symbol (virtual point) and P 
symbol (scaling factor) talk about ‘number region’. This relates to the BNF and so it should 
say ‘vpinteger region’ instead, which is where in the pattern the V and P symbols reside.  
Table 20 should also be updated so that it matches the BNF.   
 
2.41. Section 13.6.1.2. This section does not explicitly say that its content is effectively a delta 
on section 13.6.1.1. The section should be rewritten to make it clear which behaviour is the 
same as 13.6.1.1 and which is different.  
 
2.42. Section 13.6. Clarify string literal content of property textStandardZeroRep. 

o DFDL character entities are allowed 
o The raw byte entity ( %#r ) is not allowed 
o DFDL Character classes ( NL, ES ) are not allowed 
o DFDL Character classes ( WSP, WSP+, WSP* ) are allowed, however, WSP* cannot 

appear alone as one of the string literals for this property as this would allow an 
empty string to match as the representation. (Consistent with not allowing the ES 
character class entity.)  

 
2.43. Section 13.11. Property calendarTimeZone is defined as an Enum of type string, but in 
reality is better defined as a String constrained by a regular expression: 
(UTC)([+\-]([01]\d|\d)((([:][0-5]\d){1,2})?))?)  
See also errata 2.50 and 2.65. 
 
 
2.44. Section 13.11. Property calendarLanguage is defined as an Enum of type string, but in 
reality is better defined as a String constrained by a regular expression: 
 
([A-Za-z]{1,8}([\-_][A-Za-z0-9]{1,8})*)  
 
Updated to allow underscores as well as hyphens in calendarLanguage syntax. 
 
2.45. Sections 13.17 and 22. State that property useNilForDefault is only examined when 
xs:nillable is “true”, and must be set when xs:nillable is “true”.   
 
2.46. Section 13.6. Allow multiple characters for property textStandardExponentCharacter to 

handle representations like 1.23x10^4 as ICU allows that. Note that property name will 
therefore change to textStandardExponentRep. 
  
2.47. Section 13.6. Change name of property textStandardNanRep to textStandardNaNRep 
to reflect common usage of NaN and avoid typographical errors in models.  
 
2.48. Section 14.1. Spec states that an empty sequence that is the content of a complex type 
is a schema definition error. Many schema processors are not able to distinguish this 
condition from a complex type with no content at all (it is not required to do so by the XML 
Schema specification). As a complex type with no content is not useful in DFDL, change the 
spec to state that both conditions are schema definition errors.  
 
2.49. Section 23.3. Clarify that when a property can be either a DFDL String Literal or a 
DFDL Expression, then if the value is a DFDL String Literal and the first character is ‘{‘ then it 
MUST be escaped as ‘{{‘. For such a property, a value ‘{xxx’ will be treated as an (invalid) 
expression, and not as a string literal. 
 
2.50.  Section 13.11. The calendarTimeZone property is used to supply a time zone when 
there is none in the data (and by implication none in the pattern). However this means DFDL 
is not compatible with XML Schema 1.0 where "no time zone" is an allowable state for a 
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calendar infoset value. Further, XML Schema 1.0 validation validates a calendar value 
against facets according to rules that cater for “no time zone” [XSDL2]. It is desirable 
therefore for DFDL to permit a calendar value to have “no time zone”. Accordingly, the 
calendarTimeZone property will allow a value of empty string to indicate “no time zone”. 
 
2.51. Section 13.11. The calendarTimeZone property will apply when parsing only. This 
avoids any problem with values changing after validation has taken place. 
 
2.52. Section 13.11.1. DFDL only allows 'y' as year symbol in dfdl:calendarPattern. This 
only allows positive values, any negative value is ignored unless the 'G' (era) symbol is also 
specified, and there is no year 0 (which means that negative astronomical dates are one year 
out). DFDL will also support the ICU 'u' extended year symbol which allows year 0 (means 
1BC) and corresponds to astronomical years. 
 
2.53. Section 13.13. Property binaryCalendarEpoch is used when the binaryCalendarRep is 
either binarySeconds or binaryMilliseconds, and is of type xs:dateTime.  It is allowable to omit 
the time zone component from the binaryCalendarEpoch property value, and if this occurs 
UTC is used as the time zone. 
 
2.54. Section 13.11. ICU has some lax behaviour when parsing numbers using the supplied 
textNumberPattern, using property textNumberCheckPolicy. Erratum 2.21 corrects the 
definition of behaviour when ‘lax’ is specified but does not state what the base behaviour is 
when ‘strict’ is specified. This should be stated as follows:  
 
“If ‘strict’ and dfdl:textNumberRep is ‘standard’ then the data must follow the pattern with the 
exceptions that digits 0-9, decimal separator and exponent separator are always recognised 
and parsed.” 
 
2.55. Section 9.2. Grammar  terminal FinalUnusedRegion is intended to handle unmodeled 
bytes in the data that arise due to ‘specified length’ settings of lengthKind on a complex 
xs:element and choiceLengthKind on a xs:choice. It is not doing so correctly when a 
terminator is present on a xs:sequence or xs:choice. To fix this, the terminal is removed from 
the grammar and replaced by two new terminals ElementUnused and ChoiceUnused.  
 
The updated grammar is in Chapter 5 of this document.  
 
2.56. Section 13.13. State that when property binaryCalendarRep is set to 'binaryMilliseconds' 
or 'binarySeconds', it is a schema definition error if the type is xs:time or xs:date. This is 
because when unparsing it is not possible to obtain a milliseconds or seconds value from just 
an xs:time or xs:date and the epoch. 
 
2.57. Section 13.13. State that when property binaryCalendarRep is set to 'binarySeconds' or 
‘binaryMilliseconds’, the value in the data is treated as signed. This lets DFDL support 
POSIX/Unix times, which are allowed to be negative.  
 
2.58. Section 13.16. State that property nilValueDelimiterPolicy is ignored when property 
nilKind is set to ‘logicalValue’, and the behaviour of the DFDL processor is to expect 
delimiters when parsing and to output delimiters when unparsing, if delimiters are specified for 
the element. This is to simplify implementations. 
 
2.59. Section 7.1.3.3. State that short form property syntax is not allowed on the xs:schema 
object as an equivalent to the element form property syntax of the default dfdl:format (or any 
other global DFDL) annotation.  
 
2.60. Section 13.3. Remove redundancy from the names of some of the bidirectional text 
properties, specifically textBidiTextOrdering becomes textBidiOrdering, and 
textBidiTextShaped becomes textBidiShaped. 
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2.61. Section 9.2. The child content of xs:sequence and xs:choice are almost the same, so 
the grammar can be refactored to remove duplication. 
 
The updated grammar is in Chapter 5 of this document.  
 
2.62. Section 11. Clarify that when the encoding property is specified as ‘UTF-8’ then that is a 
strict definition of UTF-8 and does not include variants such as CESU-8. This is in keeping 
with ICU’s interpretation of UTF-8. 
 
2.63. Sections 12.2, 14.2. Properties that use the empty string as a special value to switch off 
use of the property, and that allow the value to be a DFDL expression, should not be able to 
set empty string by evaluating the expression. It must be possible to evaluate statically 
whether the property is used or not. This affects properties initiator, terminator, separator. It is 
a schema definition error if an expression returns the empty string. 
 
2.64. Section 6.3.1. Update to say that empty string is not allowed as a string literal value, 
unless explicitly stated otherwise in the description of a property, in which case any semantic 
must be a special behaviour of the property and not the literal empty string (for which DFDL 
provides entity %ES;). 
 
Updated by public comment 88 (http://redmine.ogf.org/boards/15/topics/88) to provide the 
actual words: 
 
“Empty String: The special DFDL entity %ES; is provided for describing an empty string or 
an empty byte sequence. The %ES; entity is the only way to do this. A DFDL string literal with 
value "" (the empty string) is usually invalid. There are a few properties that explicitly allow an 
empty DFDL String Literal, and these properties assign a property-specific meaning to the 
empty string value.” 
 
2.65. Section 13.11. Property calendarTimezone is changed to accept either a UTC offset or 
an Olson format time zone. Property calendarObserveDST is changed so that it is only used 
when calendarTimeZone is Olson format. If it is a UTC offset then calendarObserveDST is 
ignored.  
 
2.66. Section 13.11. When unparsing and property calendarPattern contains a formatting 
symbol for time zone (zzz, Z, VVVV etc) and the infoset value does not contain a time zone, it 
is a processing error. This matches the behaviour on parsing when the data does not contain 
a time zone but the pattern does.  
 
2.67. Section 4.1.2. The second paragraph of the description of [dataValue] should be 
replaced with: 
 
“For information items of datatype xs:string, the value is an ordered collection of unsigned 16-
bit integer codepoints each having any value from 0x0000 to 0xFFFF. Where defined, these 
are interpreted as the ISO646 character codes. Codepoints disallowed by ISO 10646, such as 
0xD800 to 0xDFFF are explicitly allowed by the DFDL infoset. The codepoints of the string 
are stored in 'implicit' (also known as logical), left-to-right bidirectional ordering and 
orientation. DFDL's infoset represents Unicode characters with character codes beyond 
0xFFFF by way of surrogate pairs (2 adjacent codepoints) in a manner consistent with the 
UTF-16 encoding of ISO 10646.” 
 
2.68. Section 13.11.1. Calendar formatting symbols ‘I’ and ‘T’ are intended as a short-hand 
way of accepting a subset of ISO 8601 variants. However the description of the behaviour is 
not correct and is unnecessarily complex. The ‘T’ symbol is dropped altogether, and the ‘I’ 
symbol behaviour is defined as the following: 

“The 'I' symbol must not be used with any other symbol with the exception of 'escape for text'. 
It represents calendar formats that match those defined in the restricted profile of the ISO 
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8601 standard proposed by the W3C at http://www.w3.org/TR/NOTE-datetime. The formats 
are referred to as 'granularities'.  

• xs:dateTime. When parsing, the data must match one of the granularities. When 
unparsing, the fullest granularity is used.  

• xs:date. When parsing, the data must match one of the date-only granularities. When 
unparsing, the fullest date-only granularity is used.  

• xs:time. When parsing, the data must match only the time components of one of the 
granularities that contains time components. When unparsing, the time components 
of the fullest granularity are used. The literal 'T' character is not expected in the data 
when parsing and is not output when unparsing.  

• The number of fractional second digits supported is implementation defined but must 
be at least millisecond accuracy.    

• For a granularity that omits components, when parsing the values for the omitted 
components are supplied from the Unix epoch 1970-01-01T00:00:00.000.” 

Updated 2014-07-15 to match S symbol accuracy for fractional seconds. 
 
Additional update by public comment 30 (http://redmine.ogf.org/boards/15/topics/30): 

 
• When unparsing and the time zone is UTC, the time zone is output as ‘+00:00’. 
 

2.69. Section 23.3. The last paragraph is inconsistent with the rest of the section. It should 
say:  
 
“The result of evaluating the expression must be a single atomic value of the type expected 
by the context, and it is a schema definition error otherwise. Some XPath expressions 
naturally return a sequence of values, and in this case it is also schema definition error if an 
expression returns a sequence containing more than one item.” 
 
The sentence “If the expression returns an empty sequence it will be treated as returning nil” 
is removed. 
 
2.70. Section 12.2, 14.2. Clarify the parser matching algorithm used for properties initiator, 
terminator and separator.  
 
Updated 2014-06-10 to make words clearer: 
 
When parsing, the list of values is processed in a greedy manner, meaning it takes all the 
initiators, that is, each of the string literals in the white space separated list, and matches 
them each against the data. In each case the longest possible match is found.  The initiator 
with the longest match is the one that is selected as having been ‘found’, with length-ties  
being resolved so that the matching initiator is selected that is first in the order written  in the 
schema.  Once a matching initiator is found, no other matches will be subsequently attempted 
(ie, there is no backtracking). 
 
Additionally for separator and terminator only add: 
 
This property can be used to determine the length of an element as described in Section 
12.3.2 dfdl:lengthKind 'delimited'. 
 
2.71. Section 13.16. Clarify that nilValue is sensitive to ignoreCase when nilKind is 
‘literalValue’ or ‘logicalValue’, to be consistent with properties such as textBooleanTrueRep, 
but not when nilKind is ‘literalCharacter’, to be consistent with properties such as 
textBooleanPadCharacter. 
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2.72. Section 12.3.6. Additional constraints and clarifications apply to the use of lengthKind 
‘endOfParent’ beyond those already documented: 
 
Updated by public comment 51 (http://redmine.ogf.org/boards/15/topics/51): 
 
The parent element lengthKind must not be 'implicit' or 'delimited'. 
 
When looking for end of parent, the parser is not sensitive to any in-scope terminating 
delimiters. 
 
If the element is in a sequence then: 

o the sequence must be the content of a complex type 
o the separatorPosition of the sequence must not be 'postFix'  
o the sequenceKind of the sequence must be 'ordered'  
o no terminator on the sequence 
o no trailingSkip on the sequence 
o no floating elements in the sequence  

 
If the element is in a choice where choiceLengthKind is 'implicit' then 

o the choice must be the content of a complex type 
o no terminator on the choice 
o no trailingSkip on the choice 

 
A simple element must have either type xs:string or representation ‘text’ or type xs:hexBinary 
or (representation ‘binary’ and binaryNumber/CalendarRep ‘packed’, ‘bcd, ‘ibm4690Packed’).  
 
As noted in erratum 2.5, a complex element can have 'endOfParent'. If so then its last child 
element can be any lengthKind including 'endOfParent'. 
 
Note: Further improved words for section 12.3.6 are provided by erratum 4.10.  
 
2.73. Section 12.3.6. An element with lengthKind ‘endOfParent’ is allowed to be the root 
element of a parse or unparse. 
 
2.74. Sections 13.2.1, 22.2.1. During unparsing, the application of escape scheme processing 
should take place before the application of the emptyValueDelimiterPolicy property. 
 
2.75. Section 4.1.1. Replace the existing description of the Document Information Item’s 
[schema] member with ‘This member is reserved for future use’. 
 
2.76. Section 12.3.4. When property prefixIncludesPrefixLength is ‘yes’ there are some 
restrictions that need to be added to enable reliable lengths to be calculated: 

o If the prefix type is lengthKind 'implicit' or 'explicit' then the lengthUnits properties of 
both the prefix type and the element must be the same. 

 
2.77. Sections 12.3.4, 12.3.2.  The sections for lengthKind 'prefixed' and 'delimited' need the 
equivalent of Table 16 to express their rules for binary data.  
 
2.78. Section 12.3.4. Add a note to cover the scenario where lengthUnits is 'bits' and 
lengthKind is 'prefixed'. When parsing, any number of bits can be precisely extracted from the 
data stream, but when unparsing the number of bits written will always be a multiple of 8 as 
the Infoset does not contain bit-level information.  
 
2.79. Section 13.6.1.1. Clarify text number pattern rules for use of V and P symbols in 
conjunction with # symbol. 

o A pattern with a V symbol must not have # symbols to the right of the V symbol. 
o A pattern with P symbols at the left end must not have # symbols .  
o A pattern with P symbols at the right end can have # symbols. 
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2.80. Section 13.6.1.1. Clarify text number pattern rules for use of V and P symbols in 
conjunction with @ and E and * symbols. 

o A pattern with a V symbol must not have @ or * symbols. 
o A pattern with P symbols must not have @ or E or * symbols. 

 
This means that a V symbol and an E symbol may occur in the same text number pattern. 
The BNF in Figure 5 is revised to allow this. 
 
2.81. Section 15.2. The specification originally says “On unparsing the choice branch supplied 
in the infoset is output”. This does not handle the case where one or more branches of a 
choice is a sequence or a choice (or a group ref to such). Here, the element in the Infoset is 
one of the children of the branch sequence but it might not be the first in the sequence, or the 
element in the Infoset is one of the children of the branch choice. To handle this scenario, the 
element in the Infoset is used to search the choice branches in the schema, in schema 
definition order, but without looking inside any complex elements. If the element occurs in a 
branch then that branch is chosen. If the chosen branch causes a processing error, no other 
branches are chosen (that is, there is no backtracking).  
 
To avoid any unintended behaviour, a branch sequence may be wrapped in an element. 
 
2.82. Section 12.3.5. The behaviour for unparsing when lengthKind is ‘pattern’ is the same as 
for ‘delimited’, ie, for a simple element use textPadKind to determine whether to pad, for a 
complex element the length is that of the ComplexContent region. 
 
Table 16 can accordingly be deleted. 
 
2.83. Section 23.3. Clarifications on what is returned by an expression.  

o Every property that accepts an expression must state exactly what the expression is 
expected to return 

o To ensure the returned value is of the correct type, use XPath constructors or the 
correct literal values  

o What is returned lexically by an expression follows XPath 2.0 rules, which this is not 
the same as xs:default and  xs:fixed lexical content. 

o No extra auto-casting is performed over and above that provided by XPath 2.0. XPath 
2.0 has rules for when it promotes types and when it allows types to be substituted. 
These are in Appendix B.1 of the XPath 2.0 spec [XPATH2]. 

o If the property is not expecting an expression to return a DFDL string literal, the 
returned value is never treated as a DFDL string literal. 

o If expecting expression to return a DFDL string literal, the returned value is always 
treated as a DFDL string literal. 

o Within an expression, a string is never interpreted as a DFDL string literal 
 
2.84. Section 23.5.3. The dfdl:property() function is removed. 
  
2.85. Section 23.5.3. Three new functions are provided to assist in the creation of expressions 
that return and manipulate DFDL string literals.  
 

dfdl:encodeDFDLEntities ($arg)  

Returns a string containing a DFDL string literal 
constructed from the $arg string argument. If $arg 
contains any '%' and/or space characters, then 
the return value replaces each '%' with '%%' and 
each space with '%SP;', otherwise $arg is 
returned unchanged.  

Use this function when the value of a DFDL 
property is obtained from the data stream using 
an expression, and the type of the property is 
DFDL String Literal or List of DFDL String 
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Literals, and the values extracted from the data 
stream could contain '%' or space characters. If 
the data already contains DFDL entities, this 
function should not be used. 

dfdl:decodeDFDLEntities ($arg) 

Returns a string constructed from the $arg string 
argument. If $arg contains syntax matching DFDL 
Character Entities syntax, then the corresponding 
characters are used in the result.  Any characters 
in $arg not matching the DFDL Character Entities 
syntax remain unchanged in the result. 
 
It is a schema definition error if $arg contains 
syntax matching DFDL Byte Value Entities 
syntax. 
 
Use this function when you need to create a 
value which contains characters for which DFDL 
Character Entities are needed.  An example is to 
create data containing the NUL (character code 
0) codepoint. This character code is not allowed 
in XML documents, including DFDL Schemas; 
hence, it must be specified using a DFDL 
Character Entity. Within a DFDL Expression, use 
this function to obtain a string containing this 
character. 

dfdl:containsDFDLEntities ($arg)  
Returns a Boolean indicating whether the $arg 
string argument contains one or more DFDL 
entities.  

 
2.86. Section 24. State that DFDL regular expressions do not interpret DFDL entities. 
 
2.87. Section 12.3.7. State that when unparsing a specified length element of type 
xs:hexBinary, and the simple content region is larger than the length of the element in the 
Infoset, then the remaining bytes are filled using the fillByte property. (The fillByte is not used 
to trim an element of type xs:hexBinary when parsing.) 
 
2.88. Section 13.5. Add support for HP NonStop Tandem zoned decimals. In this architecture, 
the negative sign is incorporated in the last byte of the number in the usual manner, but the 
overpunching occurs on the highest bit (ie, value 8) of the byte. Consequently, a new enum 
value 'asciiTandemModified’ is added to property textZonedSignStyle.  
 
Because the overpunching is on the highest bit, it means the resultant bytes are not code 
points in standard ASCII, so the modeller must specify an encoding like ISO-8859-1 in order 
for such zoned decimals to parse without an encoding error.  
 
2.89. Section 12.1. In the description of the alignment property, remove the rule that states 
‘The alignment of a child component must be less than or equal to the alignment of the parent 
element, sequence or choice’. It is overly restrictive. 
 
2.90. Sections 12.3, 12.3.7.2. Additionally allow lengthUnits 'bits' to apply to binary signed 
integer types, to support the modeling of signed integer bit fields in the C language. The 
physical bits are interpreted as a two's complement integer.  However it is a schema definition 
error for a signed integer type if the length is 1 bit. 
 
2.91. Section 12.3.4. State that the global simple type referenced by prefixLengthType only 
obtains values for missing properties from its own schema’s default dfdl:format annotation. If 
the using element resides in a separate schema, the simple type does not pick up values from 
the element's schema’s default dfdl:format annotation. 
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2.92. Section 13.6. When property textNumberRep is ‘zoned’, the property description should 
state that ‘zoned’ is only allowed for EBCDIC encodings or ASCII compatible encodings 
(schema definition error otherwise).   

2.93. Sections 13.6, 13.7. State that when unparsing a number and excess precision is 
supplied in the Infoset and rounding is not in effect, it is a processing error. Applies to text 
numbers when rounding is not enabled (matches ICU behaviour), and to binary numbers 
(always no rounding).  
 
2.94. Sections 6.3.1.3, 12.2. Correct the wording for NL mnemonic in Table 5 to make it clear 
that when parsing it means either %LF; or %CR; or %CR;%LF% or %NEL; or %LS; and not 
combinations of those. Similarly, state that outputNewLine can only be either %LF; or %CR; 
or %CR;%LF% or %NEL; or %LS; and not combinations of those. 
 
2.95. Section 12.1. State that if representation is text or type is string, then alignment is 
determined by character set encoding. Most encodings are 8-bit (including those with 16-bit 
codepoint size like UTF-16).  
 
Updated 2014-07-22 to remove explicit mention of DFDL standard encodings 
 
Some implementations may include encodings which are not 8-bit aligned.   
 
Section 12.1.1 is amended. 
 
The table of explicit alignments, table 14, is modified. The column for Text is changed. The 
value 8, which appears in all entries in this column is replaced by “encoding dependent” 
 
A new section 12.1.2 is added: Mandatory Alignment for Textual Data. 
 
We use the term textual data to describe data with dfdl:representation="text", as well as data 
being matched to delimiters (parsing) or output as delimiters (unparsing), and data being 
matched to regular expressions (parsing only - as in a dfdl:assert with testKind='pattern'). 
 
Textual data has mandatory alignment that is character-set-encoding dependent. That is, 
these mandates come from the character set specified by the dfdl:encoding property.  
 
When processing textual data, it is a schema definition error if the dfdl:alignment and 
dfdl:alignmentUnits properties are used to specify alignment that is not a multiple of the 
encoding-required mandatory alignment. 
 
If the data is not aligned to the proper boundary for the encoding when textual data is 
processed, then bits are skipped (parsing) or filled from dfdl:fillByte (unparsing) to achieve the 
mandatory alignment. 
 
All required character set encodings in DFDL have alignment of 8-bit/1-byte. 
 
Some implementations may include additional encodings which have other alignments.  
 

 
2.96. Section 23.5.3. Changes to the DFDL-specific functions for use with arrays. 
 
The following function is renamed: 
• dfdl:position() -> dfdl:occursIndex() 
The function may be used on non-array elements. 
 
The following functions are removed:  
• dfdl:count()  
• dfdl:countWithDefault() 
Their use is replaced by standard XPath 2.0 function fn:count(). 
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2.97. Section 12.3.2. Additionally allow lengthKind ‘delimited’ for elements of simple type 
xs:hexBinary. 
 
2.98. Section 13.7. State that the maximum allowed value for two’s complement binary 
integers is implementation independent but must be at least 8 bytes. 
 
2.99. Section 3, 13.7, 13.13 and others. Add support for the IBM 4690 point of sale variant of 
a packed decimal.  This has the following characteristics: 

o Nibbles represent digits 0 - 9 in the usual BCD manner 
o A positive value is simply indicated by digits 
o A negative number is indicated by digits with the leftmost nibble being xD 
o If a positive or negative value packs to an odd number of nibbles, an extra xF nibble 

is added on the left 

Existing properties binaryNumberRep and binaryCalendarRep each take a new enum 
‘ibm4690Packed’. For numbers, properties byteOrder and binaryDecimalVirtualPoint actively 
apply. For calendars, properties byteOrder calendarPatternKind and calendarPattern actively 
apply (same restrictions as for ‘packed’ and ‘bcd’). Property ‘binaryPackedSignCodes’ does 
not apply. Property ‘binaryNumberCheckPolicy’ applies but has no effect. 

Where the DFDL specification provides for general behaviours for 'packed' and 'bcd', those 
behaviours apply also to 'ibm4690Packed'. Specifically: 

o The same lengthKind enums and rules apply. 
o There is no rounding when unparsing, so a value that can't be accommodated is a 

processing error. 
o If logical type is unsigned and a negative value is received, it is a processing error. 
o If invalid bytes are parsed, it is a processing error. 

For ease of adding this erratum, a new Glossary definition is added to define a generic 
‘packed decimal’ and this term should be used as appropriate throughout the specification. 

2.100. Section 12.3.1. State that when unparsing an element with lengthKind ‘explicit’ and 
where length is an expression, then the data in the Infoset is treated as variable length and 
not fixed length. The behaviour is the same as lengthKind ‘prefixed’. 
 
Updated by public comment 25 (http://redmine.ogf.org/boards/15/topics/25): 
 
Also affects sections 12.3.7 and the property description for textPadKind in section 13.2. 
 
2.101. Section 23.4. The BNFL for DFDL expressions allows a variable to appear as a path 
segment. This is not supported by DFDL, which only allows variables to return a simple value, 
and XPath does not permit variables to return simple values in path segments.  
 
2.102. Section 23. State that it is a schema definition error if an array element appears as a 
segment in a path location and is not qualified by a predicate. 
 
2.103. Section 12.1. Clarify that when the alignment properties are applied to an array 
element, the properties are applied to each occurrence of the element (as implied by the 
grammar). 
 
2.104. Section 13.11.1. State that when parsing a calendar element with binaryCalendarRep 
‘packed’, ‘bcd’ or ‘ibm4690Packed’ then the nibbles from the data are converted to text digits 
without any trimming of leading or trailing zeros, and the result is then matched against the 
calendarPattern according to the usual ICU rules. 
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2.105. Section 9.1.1. State that the presence of a separator is not sufficient to cause the 
parser to assert that a component is known to exist. 
 
2.106. Section 13.6. State that textStandardDecimalSeparator, 
textStandardGroupingSeparator, textStandardExponentRep, textStandardInfinityRep, 
textStandardNanRep and textStandardZeroRep must all be entirely distinct from one another, 
and it is a schema definition otherwise. This is in the interests of clarity, and is an extra 
constraint compared to ICU. If any property value is an expression, the checking of this 
constraint cannot take place until processing. 
 
2.107. Section 3, 11.  
 
Updated 2014-07-21 and 2014-08-28 to introduce the concept of a DFDL standard encoding  
 
The list of kinds of value for the encoding property is extended to include ‘DFDL standard 
encoding’. This is needed to support encodings for which there is not an IANA name or a 
CCSID but for which the name and definition must be agreed upon by DFDL implementations. 
Such an encoding must start with ‘X-DFDL’ to avoid future name clashes. A definition of 
‘DFDL standard encoding’ will be added to the Glossary. 
 
No DFDL standard encodings will be in the set of encodings that a DFDL processor must 
accept in order to be minimally conformant.  
 
A new Appendix to the DFDL specification will define all DFDL standard encodings. 
 
Two examples of DFDL standard encodings are ‘X-DFDL-US-ASCII-7-BIT-PACKED’ and ‘X-
DFDL-US-ASCII-6-BIT-PACKED’. These are fully described in DFDL Experience Document 3 
[DFDLX3] along with a template for specifying further examples. 
 
 
2.108. Section 3. Update the Glossary concerning annotations, as follows, and use the new or 
changed terms as appropriate throughout the specification: 

o Add: Annotation point - A location within a DFDL schema where DFDL annotation 
elements are allowed to appear. 

o Add: Statement annotations - The annotation elements dfdl:assert, dfdl:discriminator, 
dfdl:setVariable, and dfdl:newVariableInstance. Also called DFDL Statements.  

o Add: Defining annotations - The annotation elements dfdl:defineFormat, 
dfdl:defineVariable, and dfdl:defineEscapeScheme 

o Change: Format annotations - The annotation elements dfdl:format, dfdl:element, 
dfdl:simpleType, dfdl:group, dfdl:sequence, and dfdl:choice. 

o Change: Physical Layer - A DFDL Schema adds DFDL annotations onto an XSDL 
language schema. The annotations describe the physical representation or physical 
layer of the data. 

o Add: Resolved set of annotations - When DFDL annotations appear on a group 
reference and the sequence or choice of the referenced global group, or appear 
among an element reference, an element declaration, and its type definition, then 
they are combined together and the resulting set of annotations is referred to as the 
resolved set of annotations for the schema component. 

 
2.109. Section 6.2. Clarify that at any single annotation point of the schema, there can be only 
one format annotation (as defined in 2.108).  
 
2.110. Section 7.3.1, 7.4.1. When testKind is ‘pattern’ for an assert or discriminator: 

o The pattern is applied to the data position corresponding to the beginning of the 
representation. Consequently the framing (including any initiator) is visible to the 
pattern. 

o It is a schema definition error if there is no value for encoding in scope. 
o It is a schema definition error if alignment is other than 1. 
o It is a schema definition error if leadingSkip is other than 0. 
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2.111. Sections 5.2, 23.5.3. Correct the XML Schema facets and attributes that are used by 
the dfdl:checkConstraints() function. Specifically, the function does not use the default, 
minOccurs and maxOccurs attributes. 
 
2.112. Section 3. Update the Glossary concerning arrays, as follows, and use the new or 
changed terms as appropriate throughout the specification: 

o Remove: Scalar Element 
o Remove: Fixed-Occurrence Item 
o Remove: Variable Occurrence Item 
o Remove: Optional Item 
o Remove: Number Of Occurrences 
o Change: Required Element. An element declaration or reference where minOccurs is 

greater than zero.  
o Change: Optional Element. An element declaration or reference where minOccurs is 

equal to zero.  
o Add: Fixed Array Element. An array element where minOccurs is equal to 

maxOccurs.  
o Add: Variable Array Element. An array element where minOccurs is not equal to 

maxOccurs.  
o Add: Occurrence. An instance of an element in the data, or an item in the DFDL 

Infoset. 
o Add: Count. The number of occurrences of an element. . 
o Add: Index. The position of an occurrence in a count, starting at 1. 
o Add: Required Occurrence. An occurrence with an index less than or equal to 

minOccurs.  
o Add: Optional Occurrence. An occurrence with an index greater than minOccurs.  

 
 
2.113. Section 23. Clarify that because of functions like fn:count(), the DFDL restriction on 
XPath sequences with length > 1 in reality applies to what a DFDL expression returns, and 
not what happens internally within an expression during evaluation. 
 
DFDL implementations may use off-the-shelf XPath 2.0 processors, but will need to pre-
process DFDL expressions to ensure that the behaviour matches the DFDL specification: 
1. Ensure that what is returned as the result is not a sequence with length > 1 by 

appropriate use of fn:exactly-one() 
2. Check for the disallowed use of those XPath 2.0 functions that are not in the DFDL 

subset  
This requires that fn:exactly-one() is added to the list of supported XPath functions. 
 
2.114. Section 23. DFDL implementations MUST comply with the error code behaviour in 
Appendix G of the XPath 2.0 spec [XPATH2] and map these to the correct DFDL failure type. 
All but one of XPath's errors map to a schema definition error. The exception is XPTY0004, 
which is used both for static and dynamic cases of type mismatch. A static type mismatch 
maps to a schema definition error, whereas a dynamic type mismatch maps to a processing 
error. A DFDL implementation should distinguish the two kinds of XPTY0004 error if it is able 
to do so, but if unable it should map all XPTY0004 errors to a schema definition error. 
 
2.115. Section 13.15. Situations can arise where taking an Infoset, unparsing it, and reparsing 
it will result in a second Infoset that is not the same as the original. Specifically, this may 
occur when empty strings or values that map to nil values appear in the Infoset. This 
information needs adding.  
 
This is covered in DFDL experience document 2 [DFDLX2]. 
 
2.116. Sections 7.7, 7.8, 7.9. To set empty string as the default value of a defineVariable or 
newVariableInstance annotation requires that the defaultValue attribute is used or an 
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expression {“”} must be used as the element value. Similarly for setting empty string as the 
value of a setVariable annotation; use the value attribute or an expression as element value. 
 
2.117. Section 13.2.1. Clarify that a padding character is not escaped by an escape 
character. When parsing, padding characters are trimmed without reference to an escape 
scheme. When unparsing, padding characters are added without reference to an escape 
scheme. 
 
2.118. Sections 11, 12.3.7.1.1. The encoding UCS-2 is not in the list of IANA encodings nor is 
it a CCSID. Its use in the DFDL specifications should be removed. 
 
2.119. Sections 3, 12.3.5. Update the definitions of ‘Delimiter scanning’, and ‘Scan’  
o Delimiter scanning - When parsing, the process of scanning for a specific item in the input 

data which marks the end of an item, or the beginning of a subsequent item is referred to 
as delimiter scanning. Delimiter scanning also takes into account escape schemes so as 
to allow the delimiters to appear within data if properly escaped. 

o Scan – Examine the input data looking for delimiters such as separators and terminators, 
or matches to regular expressions. 

 
The term scannable alone is not in the glossary, as its meaning is implied by the definition of 
scan. 
 
See also erratum 3.9. 
 
2.120. Sections 2.2 and 2.3. Clarify which errors are schema definition errors and which are 
processing errors. 
 
The following are processing errors: 

• Arithmetic Errors 

o Division by zero 

o Integer Arithmetic Underflow 

o Integer Arithmetic Overflow 

� Note: Floating point math can produce NaN (Not a Number) values. 

This is not an error, nor are properly typed operations on floating 

point NaN values.  

• Expression Errors 

o Dynamic Type  Error – unable to convert to target type 

� Example: non-digits found in string argument to xs:int(…) 

constructor. 

� Note: if a DFDL Implementation cannot distinguish Dynamic Type 

Errors from Static Type Errors, then a Dynamic Type Error should 

cause a Schema Definition Error 

o Index out of bounds error – index not <= number of occurrences, or is < 1. 

� Note: same error for dfdl:testBit if bitPos is not 1..8, or for character 

positions in a string-value 

o Indexing of non-array non-optional element 

� Example: x[1] when x is declared and has both minOccurs=”1” and 

maxOccurs=”1” explicitly, or by not stating either or both of them. 

o Illegal argument value (correct type, illegal value) 

• Parse Errors 

o Delimiter not found 

o Data not convertible to type 

o Assertion failed 

o Discriminator failed 

o Required occurrence not found 
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o No choice alternative successfully parsed. 

o Character set decoding failure and dfdl:encodingErrorPolicy='error' 

• Unparsing Errors 

o Truncation scenarios where truncation is being disallowed 

o Rounding error – rounding needed but not allowed. (Unparsing) 

o No choice alternative successfully unparsed. 

o Character set encoding failure and dfdl:encodingErrorPolicy='error' 

• Implementation Limit Errors - Implementations can have fixed or adjustable limits that 

some formats and some data may exceed at processing time. This specification does 

not further specify what these errors are, but some possible examples are: 

o Data longer than allowed for representation of a given data type 

� Example: exceed maximum length of representation of xs:decimal in 

dfdl:representation=”text”.  

o Expression references too far back into infoset (parsing) 

o Expression references too far forward into infoset (unparsing) 

o Number of array elements exceeds limit. 

• Regular expression exceeds time limit  

 

The following are schema definition errors, regardless of whether they are detected in 

advance of processing or once processing begins: 

• Errors in XML Schema Construction and Structure 

o See XML Schema Specification Section 5.1 

• Use of XSD constructs outside of DFDL subset 

• Implementation Limitations 

� Use of DFDL schema constructs not supported by this implementation. 

• Example: xs:choice is an optional part of the DFDL specification (see 

section 21). If not supported, it must be rejected as a Schema 

Definition Error.  

• Example: use of packed-decimal when it is not supported by the 

implementation.  

• Example: use of dfdl:assert when it is not supported by the 

implementation (See Spec section 21 on DFDL Subsets) 

� Note: Unrecognized DFDL properties or property values can produce 

a Schema Definition Warning and an implementation can attempt to 

process data despite the warning.  

� Exceeding limits of the implementation for schema size/complexity 

• Example: schema too large – simply a limit on how large the schema 

can be, how many files, how many top-level constructs, etc. 

• Schema Not Valid  

o See XML Schema Specification Section 5.2 

• UPA violation (Unique Particle Attribution) 

• Reference to DFDL global definition not found 

o Format definition (dfdl:defineFormat) 

o Escape schema definition (dfdl:defineEscapeScheme) 

o Variable Definition (dfdl:defineVariable) 

• DFDL Annotations not well-formed or not valid 

• DFDL Annotations Incompatible 

o E.g., dfdl:assert and dfdl:discriminator at same combined annotation point, or 

more than one format annotation at an annotation point. 

• DFDL Properties and their values 

o Property not applicable to DFDL annotation 
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o Property value not suitable for property 

o Property conflict 

� Between Element Reference and Element Declaration 

� Between Element Declaration and Simple Type Definition 

� Between Simple Type Definition and Base Simple Type Definition 

� Between Group Reference and Sequence/Choice of Group Definition 

o Required property not found 

• Expressions 

o Expression syntax error 

o Named child element doesn’t exist – E.g., /a/b, and there is no child b in 

existence. 

� Note: no child possible in the schema is a different error, but also a 

Schema Definition Error, as /a/b would not have a type in that case.  

� Note: This is an SDE, as schema authors are advised to use 

fn:exists(…) to test for existence of elements when it is possible that 

they not exist. 

o Variable read but not defined 

o Variable assigned after read 

o Variable assigned more than once 

o Static Type error – type is incorrect for usage 

� Note: if an implementation is unable to distinguish Static Type Errors 

from Dynamic Type Errors, then both should cause Schema 

Definition Errors. 

o Path step definition not found – e.g., /a/n:b but no definition for n:b as local or 

global element. 

o Not enough arguments for function 

o Expression value is not single node 

� Most DFDL expression contexts require an expression to identify a 

single node, not an array (aka sequence of nodes). There are a few 

exceptions such as the fn:count(…) function, where the path 

expression must be to an array or optional element.  

o Expression value is not array element or optional element. 

� Some DFDL expression contexts require an array or an optional 

element. 

� Example: The fn:count(...) function argument must be to an array or 

optional element. It is an SDE if the argument expression is 

otherwise.  

• Regular Expressions 

o Syntax error 

 
2.121. Section 13.11.1. To match revised behaviour from ICU 51, the following changes are 
made to the DFDL calendar pattern symbols: 
 
• Drop the DFDL-specific ‘U’ symbol  
• Add support for new ‘x’ and ‘X’ symbols (x, xx, xxx, X, XX, XXX only) 
• Add support for all variations of the new ‘O’ symbol 
• Adopt revised semantic for all variations of the ‘V’ symbol  
• Adopt revised semantic for all variations of the ‘z’ symbol.  
• Adopt revised semantic for all variations of the ‘Z’ symbol (but ZZZZZ not supported). 
 
Reference is the ICU SimpleDateTime class at 
 http://icu-project.org/apiref/icu4j/com/ibm/icu/text/SimpleDateFormat.html. Erratum 2.3 
updated. 
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Updated by public comment 24 (http://redmine.ogf.org/boards/15/topics/24): 
 
In the revised semantic for ICU 51, the Z, ZZ and ZZZ symbols allow optional seconds, 
however this is not supported by DFDL which does not allow seconds to appear in time 
zones. It is a processing error if seconds appear in that part of the SimpleContent region that 
represents a time zone. 
 
2.122. Section 5.1. Allow explicit setting of minOccurs = ‘1’ and/or maxOccurs = ‘1’ on model 
groups, as this is the equivalent to omitting the properties. 
 
2.123. Throughout.  Do not use the ‘xs’ prefix for XSD attributes as it is not strictly correct. 
Instead use the phrase ‘XSD xxx property’. 
 
2.124. Section 23.5.3. State that it is a schema definition error if the $node argument of 
dfdl:checkConstraints( ) function is a complex element. 
 
2.125. Section 12.3.5. "The DFDL processor scans the data stream to determine a string 
value that is the longest match to a regular expression."  The pattern itself dictates greediness 
so the word 'longest' is not needed and is removed. 
 
2.126. Section 3. Correct the current inconsistencies when referring to different kinds of DFDL 
property. Use the revised terms as appropriate throughout the specification: 
 
• Change. Format property – a DFDL property carried on a DFDL format annotation. 
 
• Change. Representation property – a format property that is used to describe a physical 

characteristic of a component. Such a property will apply to one or more grammar regions 
of the component.  

 
• Add: Non-representation property – a format property that is not a representation 

property, specifically dfdl:ref, dfdl:hiddenGroupRef, dfdl:inputValueCalc, 
dfdl:outputValueCalc, dfdl:choiceBranchKey, dfdl:choiceDispatchKey. 

 
Note that ‘property’ should be used instead of ‘attribute’ for all properties that are carried on 
any DFDL annotation, even when an XML attribute is the only way that a property may be 
specified. This is consistent with XML Schema where ‘attribute’ is technically just a rendering 
of a property.  
 
Note that dfdl:escapeSchemeRef is considered to be a representation property. 
 
2.127. Section 13.11. The calendar pattern symbols Z, ZZ and ZZZ are equivalent. ICU 
prefers that Z is used singly, so the calendar pattern used for an xs:time object when 
calendarPatternKind is ‘implicit’ is changed to ‘HH:mm:ssZ’. 
 
2.128. Section 17. State that when an element which carries the inputValueCalc property 
appears in a sequence  that has a separator, no separator is associated with the element. 
When parsing, no separator is expected in the input data. When unparsing, no separator is 
written to the output data. 
 
2.129. Section 15. A choice that declares no branches in the DFDL schema is a schema 
definition error. This interpretation is consistent with the rule that says each declared branch 
must have minOccurs > 0. 
 
2.130. Section 13.2. In the description of textOutputMinLength, delete the sentence ‘The units 
are specified by the dfdl:lengthUnits property’ and replace with the sentence ‘For 
dfdl:lengthKind 'delimited', 'pattern' and 'endOfParent' the length units are always characters, 
for other dfdl:lengthKinds the length units are specified by the dfdl:lengthUnits property.’ 
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2.131. Section 12.3.3. After Table 15 add that it is a schema definition error if type is xs:string 
and lengthKind is 'implicit' and lengthUnits is 'bytes' and encoding is not an SBCS encoding. 
This prevents a scenario where validation against maxLength facet is in characters but 
parsing and unparsing using maxLength facet is in bytes. 
 
2.132. Section 12.3.7. In the paragraph that discusses specified length elements that are 
considered to have variable length when unparsing, add that it is a schema definition error for 
such elements if type is xs:string and textPadKind is not 'none' and lengthUnits is 'bytes' and 
encoding is not an SBCS encoding and minLength facet is not zero. This prevents a scenario 
where validation against minLength facet is in characters but padding to minLength facet is in 
bytes. 
 
2.133. Section 13.11.1. For the calendar pattern symbol ‘I’ add that the omission of time zone 
from the input data when the type is xs:dateTime or xs:time is not a processing error. If that 
occurs then the time zone is obtained from the calendarTimeZone property. 
 
2.134. Section 3. For the specification to correctly discuss parsing and unparsing of character 
data, the following new terms are added to the Glossary, and used in appropriate places in 
the rest of the spec.  
 
• CCSID - see Coded Character Set Identifier 

 
• Character - A ISO10646 character having a unique character code as its identifier. This 

concept is independent of font, typeface, size, and style, so 'F', 'F', 'F', are all the same 
character 'F' 
 

• Character Code - The canonical integer used to identify a character in the ISO10646 
standards. This number identifies the character, but can be independent of any specific 
character set encoding of the character. Example: The '{' character known in Unicode as 
LEFT CURLY BRACKET. Has character code U+007B. However, depending on the 
character set encoding, the value 0x7B may or may not appear in the representation of 
that character. 
 

• Character Set - An abstract set of characters that are assigned (or mapped to) a 
representation by a particular character set encoding. For most character set encodings 
their character set is a subset of the Unicode character set. 
 

• Character Set Encoding - Often abbreviated to just 'encoding'. A specific representation 
of a character set as bytes or bits of data. A character set encoding is usually identified by 
a standard character set encoding name or a recognized alias name, or by a coded 
character set identifier or CCSID. These identifiers are standardized. The names and 
aliases are standardized by the IANA (where unfortunately, they are called character set 
names). CCSIDs are an industry standard. Examples of character set encoding names 
are UTF-8, USASCII, GB2312, ebcdic-cp-it,  ISO-8859-5, UTF-16BE, Shift_JIS. The 
DFDL standard allows for implementation-specific character set encodings to be 
supported, and standardizes one name that is DFDL-specific which is USASCII-7bit-
packed.  
 

• Character Width - The number of code units or alternatively the number of bytes used to 
represent a character in a specific character set encoding is called the character width. 
Encodings are either fixed width (all characters encoded using the same width), or 
variable-width (different characters are encoded using different widths). For example the 
UTF-32 character set encoding has 4-byte character width, whereas USASCII has a 1-
byte character width. UTF-8 is variable width, and any specific character has width 1, 2, 
3, or 4 bytes. 
 

• Code Unit - When a character set encoding uses differing variable width representations 
for characters, the units making up these variable width representations are called code 
units. For example the UTF-8 encoding uses between 1 and 4 code units to represent 
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characters, and for UTF-8, the individual code units are single bytes. DFDL's 
interpretation of the UTF-16 encoding is either fixed or variable width. When format 
property dfdl:utf16Width='variable' then UTF-16 is variable width and this encoding uses 
either one or two code units per character, but in this case each individual code unit is a 
16-bit value. When a character set is fixed width, then there is no distinction between a 
code unit and a code point.  
 

• Coded Character Set Identifier (CCSID) - An alternate identifier of a character set 
encoding. Originally created by IBM, CCSIDs are a broadly used industry standard.  
 

• Encoding - See Character Set Encoding 
 

• Fixed-Width Character Encoding - A character set encoding where all characters are 
encoded using a single code unit for their representation. Note that a code unit is not 
necessarily a single byte.  
 

• Surrogate Pair - A Unicode character whose character code value is greater than 0xFFFF 
can be encoded into variable-width UTF-16BE or UTF-16LE (which are variable-width 
encodings when the DFDL property utf16Width='variable'). In this case the representation 
uses two adjacent code units each of which is called a surrogate, and the pair of which is 
called a surrogate pair.   
 

• Unicode - A character set defined by the Unicode Consortium, and standardized at the 
International Standards Organization (ISO) as ISO10646. 
 

• Variable-Width Character Encoding - A character set encoding where characters are 
encoded using one or more code units for their representation depending on which 
specific character is being encoded. An example is UTF-8 which uses from 1 to 4 bytes to 
encode a character. 

 
2.135. Section 23.5. State the types of arguments and return values where not specified. 
 

• 23.5.2.1. The return value of each Boolean function is xs:boolean. 
 

• 23.5.2.4. The return value of each Date, Time function is xs:integer except 
fn:seconds-from-dateTime and fn:seconds-from-time which return xs:decimal.  
 

• 23.5.6. The return value of fn:local-name is changed to xs:string.  
 

• 23.5.3. The $lengthUnits argument of dfdl:contentLength and dfdl:valueLength is 
xs:string. 
 

• 23.5.3. The $data argument of dfdl:testBits is xs:unsignedByte. 
 

• 23.5.3. The $bitPos argument of dfdl:testBits is xs:nonNegativeInteger. 
 

 
2.136. Section 23.5.3. Three new DFDL specific functions are provided that return the 
timezone from a calendar type. These complement the XPath functions that return other 
calendar components from calendar types.  
 

dfdl:timeZoneFromDateTime ($arg)  
dfdl:timeZoneFromDate ($arg) 
dfdl:timeZoneFromTime ($arg) 

Returns the timezone component of $arg if 
any. If $arg has a timezone component, then 
the result is a string in the format of an ISO 
Time zone designator. Interpreted as an offset 
from UTC, its value may range from +14:00 to -
14:00 hours, both inclusive. The UTC time 
zone is represented as "+00:00". If the $arg 
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has no timezone component, then "" (empty 
string) is returned. 

 
2.137. Section 13.11.1. Correct the paragraph for fractional seconds to say that excess 
fractional seconds are truncated, and not rounded up. (This is to match ICU behaviour.) 
 
2.138. Section 12.3.7. When representation is binary and the length specified for an element 
implies that the capacity of the simple type may be exceeded, the behaviour of the DFDL 
processor is not consistent and is dependent on whether lengthUnits is ‘bits’ or ‘bytes’. This is 
addressed. It is still a schema definition error if the length of a bit field is too large for the 
corresponding integer type when statically verifiable, but it should be a processing error if it 
occurs at runtime, and not a runtime schema definition error as stated. The same rules should 
also be applied when lengthUnits is 'bytes'. 
 
2.139. Section 12.3.7.2. Clarify that numbers with a binary packed representation are allowed 
to have lengthUnits ‘bits’ but the length must be a multiple of 4 and it is a schema definition 
error otherwise. 
 
2.140. Section 12.1. Clarify that numbers with a binary packed representation must be aligned 
on a nibble (ie, 4-bit) boundary and it is a schema definition error otherwise. 
 
2.141. Section 13.11. Change the type of property calendarLanguage so that it is String or 
DFDL Expression.  If an expression is provided, it must return a string that complies with the 
pattern given by erratum 2.44. This enhancement allows DFDL schemas to be authored that 
model locale-dependent calendars.  
 
2.142. Section 11. Clarify that property ignoreCase plays no part when comparing an element 
value with an XSDL enum facet, matching an element value to an XSDL pattern facet, or 
comparing an element value with the XSDL fixed property. It is therefore not used by 
validation when enabled, nor by the dfdl:checkConstraints function.  
 
2.143. Section 12.3.5.1. For lengthKind ‘pattern’ clarify that when a DFDL regular expression 
is matched against data: 

• The data is decoded from the specified encoding into Unicode before the actual 
matching takes place. 

• If there is no match (ie, a zero-length match) it is not a processing error but instead it 
means the length is zero. 

 
2.144. Section 7.3.1 and 7.4.1. Allow the message property of an assert or a discriminator to 
be either a string or a DFDL Expression that returns a string.  
 
Any element referred to by the message expression must have already been processed or 
must be a descendent of the component carrying the assert or discriminator (same rule as for 
the test expression). 
 
Example: 
<dfdl:assert message="{ fn:concat('unknown whatever ', ../data1) }"> 
{  if (...pred1...) then ...expr1...  
   else if (...pred2...) then ...expr2... 
   else fn:false() 
 }</dfdl:assert> 
 
The message specified by the message property is issued only if the assert or discriminator is 
unsuccessful, that is, the test expression  evaluates to false or the test pattern returns a zero-
length match. If so, and the message property is an expression, the message expression is 
evaluated at that time.  
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If a processing error or schema definition error occurs while evaluating the message 
expression, a recoverable error should be issued to record this error, then processing of the 
assert or discriminator continues as if there was no problem and in a manner consistent with 
the failureType property, but using an implementation-defined substitute message.  
 
2.145. Section 6.3. The specification does not formally state the XSDL type of all the DFDL 
property types. That is corrected as follows: 
 
Updated by public comment 251 (http://redmine.ogf.org/boards/15/topics/251). 
 

• DFDL string literal: restriction of xs:token that disallows the space character. 

• DFDL expression : xs:string  

• DFDL regular expression : xs:string 

• Enumeration: xs:token 

In addition: 
• Leading/trailing white space is trimmed for DFDL expressions 
• Leading/trailing white space is not trimmed for DFDL regular expressions 

 
Also, in section 6.3.2 bullet “Must start with a '{' in the first position and end with '}' in the last 
position” should be appended with “, after any white space has been trimmed.” 
 
2.146. Section 23.5.3. XPath 2.0 is not very good with literal hex binary data, in that the only 
types you can create are xs:hexBinary and xs:string. There is sometimes a need to create a 
number type from hex binary, and a hex binary type from a number. Accordingly the following 
new DFDL specific functions are added.  
 

 
dfdl:byte ($arg)  
dfdl:unsignedByte ($arg)  
dfdl:short ($arg)  
dfdl:unsignedShort ($arg)  
dfdl:int ($arg)  
dfdl:unsignedInt ($arg)  
dfdl:long ($arg)  
dfdl:unsignedLong ($arg)  
 

These constructor functions behave identically 
to the XPath 2.0 constructor functions of the 
same names, with one exception. The 
argument can be a quoted string beginning 
with the letter 'x', in which case the remainder 
of the string is hexadecimal digits that 
represent a big-endian twos complement 
representation of a binary number. 
 
If the string begins with 'x', it is a schema 
definition error if a character appears other 0-9, 
a-f, A-F. 
 
Each constructor function has a limit on the 
number of hex digits, with no more digits than 
2, 4, 8, or 16 for the byte, short, int and long 
versions respectively. It is a schema definition 
error if more digits are encountered than are 
suitable for the type being created 

 
Examples: 

• dfdl:unsignedInt("xa1b2c3d4") is the unsigned int value 2712847316.  

• dfdl:int("xFFFFFFFF") is the signed int value -1.  

• dfdl:unsignedByte("xFF") is the unsigned byte value 255. 

• dfdl:byte("xff") is the signed byte value -1. 

• dfdl:byte("x7F") is the signed byte value 127. 

• dfdl:byte("x80") is the signed byte value -128. 

• dfdl:unsignedByte("x80") is the unsigned byte value 128. 

• dfdl:byte("x0A3") is a schema definition error (too any digits for type). 

• dfdl:byte("xG3") is a schema definition error (invalid digit). 
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dfdl:hexBinary ($arg)  
 

This constructor function behaves identically to 
the XPath 2.0 constructor function of the same 
name, with one exception. The argument can 
also be a long, unsignedLong, or any subtype 
thereof, and in that case a xs:hexBinary value 
containing a number of hex digits is produced. 
The ordering and number of the digits 
correspond to a binary big-endian twos-
complement implementation of the type of the 
argument. Digits 0-9, A-F are used. 
 
The number of digits produced depends on the 
type of $arg, being 2, 4, 8 or 16. If $arg is a 
literal number then the type is the smallest 
signed type (long, int, short, byte) that can 
contain the value.  
 
If a literal number is not able to be represented 
by a long, it is a schema definition error. 

 
Examples: 

• dfdl:hexBinary(xs:short(208))  is the hexBinary value "00D0". 
• dfdl:hexBinary(208)  is the hexBinary value "D0". 
• dfdl:hexBinary(-2084) is the hexBinary value "F7FF". 

 
2.147. Section 23.1. Replace the paragraphs that talk about allowable element references in 
DFDL expression paths when parsing and unparsing with the following paragraph. 
 
Updated 2014-06-10 to remove unnecessary schema definition errors: 
 
In general, a DFDL expression can reference any element that precedes the position in the 
schema where the expression is declared, with the following exceptions: 

• An assert or discriminator on a component may reference an element that is a 
descendent of the component. 

• A dfdl:outputValueCalc property may reference an element that follows the position in 
the schema where the property is specified. 

• It is a schema definition error if a component in a choice branch references an  
element in another branch of the same choice or a descendent of such an element  

• It is a schema definition error if an element in an unordered sequence group   
references an element in the same sequence group or a descendent of such an  
element.  

• It is a schema definition error if an element in an ordered sequence group references  
a floating element in the same sequence group or a descendent of such an element.  

 
2.148. Section 12.2, 14.2, 6.3.1.3. Clarify DFDL Character Class entities allowed in delimiters. 
 
Updated by public comment 40 (http://redmine.ogf.org/boards/15/topics/40) to clarify WSP* 
on its own. Further updated on 2014-09-02 to allow ES where it matches WSP*. 
 
The initiator, terminator, and separator properties can have the character class entities NL, 
WSP, WSP+, WSP*, ES but not WSP* on its own. They cannot have ES. 
 
ES must not appear as the only DFDL string literal in the property. It can only appear as a 
member of a list. 
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Limitations apply when WSP* appears on its own, whether as a single DFDL string literal or 
as a member of a list of DFDL string literals, or when ES appears as a member of a list of 
DFDL string literals: 

• dfdl:initiator: disallowed when dfdl:initiatedContent is 'yes'. 
• dfdl:terminator: disallowed when determining the length of a component by scanning for 

delimiters. 
• dfdl:separator: disallowed when determining the length of a component by scanning for 

delimiters. 

Table 4 updated to remove the statement that ES only applies to dfdl:nilValue. 
 
2.149. Section 21. The raw byte entities feature is added to the list of optional features in the 
standard. 
 
2.150. Section 13.11.1. Property calendarPattern: Add support for calendar pattern ‘EEEEEE’ 
(6 x ‘E’) and ‘eeeeee’ (6 x ‘e’) provided by ICU, which provide a 2 letter abbreviation, eg, ‘Mo’.  
 
The 'EEEEE' (5 x ‘E') form is broken in some versions of the ICU library. Implementations 
should either fix this or release-note the limitation. The DFDL specification includes the 
‘EEEEE’ functionality as specified by ICU, irrespective of any bugs/flaws in ICU library 
versions.  
 
In general, flaws in the ICU libraries, or inconsistencies between the ICU4C and ICU4J 
variants of this library are not issues that affect the DFDL specification, but rather are 
limitations of implementations and should be release-noted or otherwise called out by 
implementations so that users can understand their impact. 
 
2.151. Section 13.11. Property calendarCheckPolicy: Clarify strict and lax behaviour as 
follows: 
 
1) Lenient parsing behaviour when in 'strict' mode:  
a) case insensitive matching for text fields  
b) MMM, MMMM, MMMMM all accept either short or long form of Month  
c) E, EE, EEE, EEEE, EEEEE, EEEEEE  all accept either abbreviated, full, narrow and short 
forms of Day of Week  
d) accept truncated leftmost numeric field (eg, pattern "HHmmss" allows "123456" (12:34:56) 
and "23456" (2:34:56) but not "3456")  
 
2) Additional lenient parsing behaviour when in 'lax' mode:  
a) values outside valid ranges are normalized (eg, "March 32 1996" is treated as "April 1 
1996")  
b) ignoring a trailing dot after a non-numeric field  
c) leading and trailing whitespace in the data but not in the pattern is accepted ****  
d) whitespace in the pattern can be missing in the data  
e) partial matching on literal strings (eg, data "20130621d" allowed for pattern 
"yyyyMMdd'date' " ****  

**** Only in ICU4C as of ICU 51. ICU4J will be changed to match ICU4C. Implementations 
are advised to document this limitation with a release note if it affects their functionality. 

2.152. Section 14.4. Clarifications around sequences containing floating elements. 
 
A non-floating array element must have its occurrences appearing contiguously, so the 
floating element can't appear in-between. In other words, floating 'yes' only makes a 
statement about the floating element, not about any other elements in the sequence. 
 
Change wording to:  
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"An ordered sequence of n element children all with dfdl:floating='yes' is equivalent to an 
unordered sequence with the same n element children with dfdl:floating='no'." 
 
Add restrictions:  
 
It is a schema definition error if an element with dfdl:floating 'yes' is an optional element or an 
array element and its dfdl:occursCountKind property is not ‘parsed’.  
 
It is a schema definition error if two or more elements with dfdl:floating 'yes' in the same group 
have the same name and the same namespace. 
 
2.153. Section 3, 12.3.7.2. Clarify length of elements with binary representation. Separate the 
material about computing the values of elements of binary representation. 
 

• Move to glossary entries, moving them out of the sections on length.  
o Bit Position 
o Bit String 

• Add new glossary entries for these terms, which we use repeatedly. 
o Data Stream 
o Binary - clarify ambiguity around binary meaning not text, and binary meaning 

twos-complement. 
o Decimal - clarify ambiguity around decimal meaning base-10, and decimal 

meaning binary packed representations. 
o Text 
o Twos-Complement 

 

• Change titles of sub-section 12.3.7.1 "… with dfdl:representation 'text', to "…with 
textual representation" 

• New sub-section title for 12.3.7.2, like 12.3.7.1, but "… with binary representation". 
• Move materials on computing values of binary integers to section 13.7.1. 
• Move sub-section 12.3.7.2.5 up so it occurs between 12.3.7.2 and 12.3.7.3. 

 
2.154. Section 13.11. Property calendarLanguage. Add statement about required language 
support. 
 
All DFDL Implementations must support calendarLanguage value "en". Implementations may 
support additional values, however, the values are always interpreted as a Unicode Language 
Identifier as defined by the Unicode Locale Data Markup Language [ULDML] and the Unicode 
Common Locale Data Repository [UCLDR]. These references are added to the references 
section of the spec. 
 
2.155. Sections 3, 7.3.1, 7.3.2, 12.3.5. Scan, scannable, scannable-as-text 
These terms all added to the glossary. Definitions removed from the prose. Scannable now 
means able to scan, which is natural. More specific term scannable-as-text used when we 
want the recursive requirement of uniform encoding. 
 
Erratum 2.9 updated to use term scannable-as-text. 
 
2.156. Section 13.6.1. Remove the following statement: 
 
“If the pattern uses digits/fractions then these must match any XML schema facets. If not it is 
a schema definition error.” 
 
2.157. Section 9.2. Definition of grammar construct RightPadOrFill is not correct. 
 
There is a possibility that both padding and filling can occur on the right of a text element with 
specified length in bytes, a non-SBCS encoding and textPadKind ‘padCharacter’. This occurs 
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when the specified length does not exactly match the encoded length including padding. This 
gap is filled with the fillByte. 
 
The updated grammar is in Chapter 5 of this document.  
 
2.158. Section 16.6. Correct the wording of the array forward progress requirement 
introduced by erratum 3.11. This is reflected in updated DFDL experience document 2 
[DFDLX2].  
 
2.159. Section 13.13, 13.11.1. Improve the property description for binaryCalendarRep to 
clarify the relationship between the packed representations and the calendar pattern: 
 
To the end of the paragraphs for ‘packed’, ‘bcd’ and ‘ibm4690Packed’, append sentence “The 
digits are interpreted according to the dfdl:calendarPattern property”. 
 
To the end of the paragraph for ‘packed’, additionally append sentence “Property 
dfdl:binaryPackedSignCodes is applicable.”  
 
Replace the first (bulleted) paragraph starting with “For packed decimals…” with: 
“For all packed decimals, property dfdl:binaryNumberCheckPolicy is applicable.”   
 
Replace the second paragraph starting with “For packed decimals…” with: 
 “For all these packed decimals, dfdl:calendarPattern can contain only characters and 
symbols that always result in the presentation of digits. It is a schema definition error 
otherwise. This implies that property dfdl:calendarPatternKind must be 'explicit' because the 
default patterns for 'implicit' contain non-numeric characters. It is a schema definition error 
otherwise.” 
 
Change incorrect sentence in section 13.11.1 from "If dfdl:representation is binary, any 
characters in the pattern that are not digits must be quoted." to "If dfdl:representation is 
binary, then the pattern can contain only characters and symbols that always result in the 
presentation of digits." 
 
2.160. Section 12.3.7.2. Change sub-section on packed decimal calendars to state the 
representation maximum specified length is implementation defined (but not less than 9 
bytes, corresponding to calendar pattern 'yyyyMMddhhmmssSSS').  
 
Add a footnote: This is the smallest pattern that contains all the digit-only symbols. SSS is the 
minimum precision for fractional seconds, but in can be more, hence why 'not less than 9 
bytes'. 
 
2.161. Sections 5.2.6, 5.2.7.  State the XSDL rule that XSDL default and fixed properties are 
mutually exclusive on a given element declaration.  
 
2.162. Section 13.6.  It transpires that the overpunching characters used by EBCDIC zoned 
decimals are not fixed, but can vary according to the EBCDIC encoding. However the 
underlying code point value is fixed. The description of textZonedSignStyle is updated to 
reflect this. 
 
2.163. Section 12.1. The description of the AlignmentFill region calculation is not correct 
where it talks about the position to start from. It is replaced by: 
 
"The length of the AlignmentFill region is measured in bits. If alignmentUnits is 'bytes' then 
we multiply the alignment value by 8 to get the bit alignment, B. If the position in the data 
stream of the start of the AlignmentFill region is bit position N, then the length of the 
AlignmentFill region is the smallest non-negative integer L such that (L + N) mod B = 1.  The 
position of the first bit of the aligned component is P = L + N." 
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2.164. Section 13.2.1. Clarify the allowable position in the data of the escapeBlockEnd string. 
In the property description for escapeKind, update the ‘escapeBlock parsing’ paragraph to 
say: 
 
“On parsing the dfdl:escapeBlockStart string must be the first characters in the (trimmed) data 
in order to activate the escape scheme. The dfdl:escapeBlockStart string is removed from the 
beginning of the data. Until a matching dfdl:escapeBlockEnd string (that is, one not preceded 
by the dfdl:escapeEscapeCharacter) is found in the data, any in-scope separator or 
terminator encountered in the data is not interpreted as such, and any 
dfdl:escapeEscapeCharacters are removed when they precede an dfdl:escapeBlockEnd 
string. The matching dfdl:escapeBlockEnd string is removed from the data.. The matching 
dfdl:escapeBlockEnd does not have to be the last characters in the (trimmed) data in order to 
de-activate the escape scheme. A dfdl:escapeBlockStart occurring anywhere in the data other 
than the first characters has no significance.” 
 
Also update the matching paragraph for ‘escapeCharacter parsing’ to say: 
 
“On parsing any in-scope separator or terminator encountered in the data is not interpreted as 
such when it is immediately preceded by the dfdl:escapeCharacter (when not itself preceded 
by the dfdl:escapeEscapeCharacter). Occurrences of the dfdl:escapeCharacter and 
dfdl:escapeEscapeCharacter are removed from the data, unless the dfdl:escapeCharacter is 
preceded by the dfdl:escapeEscapeCharacter, or the dfdl:escapeEscapeCharacter does not 
precede the dfdl:escapeCharacter.  
  
2.165. Section 11. The property description for byteOrder states that the property only applies 
to binary Numbers and Calendars, but it also applies to binary Booleans. Also the Annotation 
list at the end of the description incorrectly includes sequence, choice and group.  
 
2.166. Sections 7.3, 7.4. For clarity, state explicitly that asserts and discriminators are not 
evaluated during unparsing.  
 
2.167. Section 23.5.3. Clarify that the dfdl:occursIndex() property must only be used within the 
context of an array (as defined by the glossary), and returns the index of the current 
occurrence of that array. It is a schema definition error if the function is used otherwise.  
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3. Major Errata 

 
The following major errata have been identified.  

3.1. Section 14.5. Changes to placement of property hiddenGroupRef. 

Change to behave like the ref property. That is, it cannot be placed in scope by a format 
annotation, and is only set at its point of use.  Empty string is not an allowed value. This 
reflects that there is no hiddenGroupRef value that applies universally. 

The spec is not clear as to whether this property is allowed on the sequences that are the 
direct children of global groups, or on group references.  Clarify that it is allowed on any 
xs:sequence but not on any xs:group, including group reference, nor can it appear on any 
xs:choice.  
 
If hiddenGroupRef appears on a sequence, the appearance of any other DFDL properties on 
that sequence is a schema definition error. 
 

3.2. Section 17. Changes to placement of properties inputValueCalc and outputValueCalc. 

Change to behave like the ref property. That is, they cannot be placed in scope by a format 
annotation, and are only set at their point of use.  Empty string is not an allowed value. This 
reflects that there is no inputValueCalc or outputValueCalc property value that applies 
universally 

The spec is confused as to whether these properties are applicable to simple types.  Remove 
any references to these properties in relation to simple types, as they are applicable to 
elements only. Any application to simple types is a future extension.  
 
The spec is not clear as to whether these properties are allowed on global elements or 
element references.  Clarify that they are allowed on local element and element references 
but not on global elements.  
 
Add that inputValueCalc is not allowed to appear on a local element or element reference that 
is the root of a choice branch. 
  
If inputValueCalc appears on an element, the appearance of any other DFDL properties on 
that element is a schema definition error. 
 
 
3.3. Section 12.3. Clarify that when property is lengthKind 'explicit', 'implicit' (simple only), 
'prefixed' or 'pattern', it means that delimiter scanning is turned off and in-scope delimiters are 
not looked for within or between elements. 
 
Consequently remove the last paragraph of section 5.2.2 starting "It is a processing error 
when a fixed-length string is found to have a number of characters not equal to the fixed 
number".  
 
 
3.4. Sections 2 and 7.3. Add a new failure type ‘recoverable error’ for use by the assert 
annotation when parsing, to permit the checking of physical constraints without terminating a 
parse. For  example, using an assert to check a physical length constraint when property 
lengthKind is 'delimited'. Details: 

o After a recoverable error the parser will continue. 
o Importantly, it does not cause backtracking to take place when speculating. 
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o It can be raised via a new enum attribute on dfdl:assert called 'failureType'. 
o An error occurring during evaluation of a dfdl:assert remains a processing error. 
o All existing stated processing errors remain as such. 
o Discriminators remain unchanged. 
o The issuing of recoverable errors is independent of whether validation is enabled. 

 
Property Name Description 
failureType Enum (optional) 

 
Valid values are 'processingError',  'recoverableError'. 
Default value is 'processingError'. 
 
Specifies the type of failure that occurs when the dfdl:assert is unsuccessful.  
 
When 'processingError', a processing error is raised. 
 
When 'recoverableError', a recoverable error is raised. 
 
Annotation: dfdl:assert 

 
Considered extending validation error to cover this, but the spec is quite clear that a validation 
error is a logical check performed on the infoset and the behaviour of the DFDL processor is 
unspecified. 

 
 

 
3.5. Section 13.8.  The spec is not clear which variants of IEEE binary floats are supported.  
Clarify that support is for IEEE 754-1985, the same as XSDL 1.0.  The implications of this are: 

o xs:float must have a physical length of 4 bytes for both 'ieee' and 'ibm390Hex'  
(schema definition error if explicit length is other than 4). 

o xs:double must have a physical length of 8 bytes for both 'ieee' and 'ibm390Hex' 
(schema definition error if explicit length is other than 8). 

o Add statement that there may be precision/rounding issues when converting IBM 
float/double to/from infoset float/double which is IEEE 

o Half-precision IEEE and quad-precision IEEE/IBM are not supported 
 
Noted that XSDL 1.1 moved to IEEE 754-2008 only because of new decimal support, and not 
for enhanced float support. That's why in XSDL 1.1 there are still just the xs:float and 
xs:double built-in types. Any future support for half-precision and quad-precision in XSDL 
would very likely be implemented by adding new built-in types that derive from 
xs:anySimpleType.  It is likely therefore that future DFDL support for half-precision and quad-
precision will build on XSDL. 
 
 
3.6. Section 4. It was observed that the content of the DFDL infoset after parsing is not 
sufficient to build a W3C Post Schema Validation infoset (PSVI).  Specifically, two things are 
missing: 

o whether an element is valid 
o for a simple element with a union type, which member the value matched. 

 
In order to achieve this the DFDL infoset is modified as follows: 

o Add a new Boolean [valid] member to element information item. A complex element 
information is not valid if any of its [children] are not valid. Empty if validation is not 
enabled. 

o Add a new string [unionMemberSchema] member to simple element information 
item. This is an SCD reference to the member of the union that matched the value of 
the element. Empty if validation is not enabled. Empty if the element’s type is not a 
union. 

 



GWD-E  Stephen M Hanson (IBM) 
OGF DFDL WG   September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 34 of 63  

On unparsing, any non-empty values for these properties are ignored. However, the 
augmented infoset which is built from the unparse operation should contain values for these 
properties if validation is enabled during unparsing.  

 

3.7. Section 4, 9, 11, 12.3.7.1.3. Forcing a DFDL author to explicitly model a Unicode byte 
order mark (BOM) is a significant usability issue. Most authors working with Unicode data will 
expect a DFDL processor to handle BOMs in the same way as other software applications. 
Accordingly the DFDL specification is enhanced to add automatic detection and generation of 
Unicode BOMs. 

A new string [unicodeByteOrderMark] member is added to the DFDL infoset document 
information item. When the encoding of the root element of the document is exactly UTF-8, 
UTF-16, or UTF-32 (or CCSID equivalent), the member value indicates whether the document 
starts with a BOM. If there is a BOM then for UTF-8 encoding the value is 'UTF-8'; for UTF-16 
encoding the value is 'UTF-16LE' or 'UTF-16BE'; for UTF-32 the value is 'UTF-32LE' or 'UTF-
32BE'. If there is no BOM then the member value is empty. When the encoding of the root 
element of the document is any other encoding, the member value is empty.  
 
The grammar production for the overall document changes to accommodate a BOM as 
shown in Chapter 5 of this document.  
 
Parsing behaviour: When the dfdl:encoding property of the root element is specified, and is 
exactly one of UTF-8, UTF-16, or UTF-32 (or CCSID equivalents), then a DFDL parser will 
look for the appropriate BOM as the very first bytes in the data stream.   
 

• UTF-8.  If a BOM is found then this is used to set the document information item 
[unicodeByteOrderMark] member. If no BOM is found the parser takes no action. There is 
no need to model the BOM explicitly.  

 

• UTF-16.  If a BOM is found then this is used to set the document information item 
[unicodeByteOrderMark] member, and all data with dfdl:encoding UTF-16 throughout the 
rest of the stream are assumed to have the implied byte order. If no BOM is found then all 
data with dfdl:encoding UTF-16 throughout the rest of the stream are assumed to have 
big-endian byte order. There is no need to model the BOM explicitly.  

 

• UTF-32.  If a BOM is found then this is used to set the document information item 
[unicodeByteOrderMark] member, and all data with dfdl:encoding UTF-32 throughout the 
rest of the stream are assumed to have the implied byte order . If no BOM is found then 
all data with dfdl:encoding UTF-32 throughout the rest of the stream are assumed to have 
big-endian byte order. There is no need to model the BOM explicitly.  

 
When the dfdl:encoding property of the root element is specified, and is exactly one of UTF-
16LE, UTF-16BE, UTF-32LE or UTF-32BE (or CCSID equivalents), then a DFDL parser will 
not look for the appropriate BOM. The byte order to use is implicit in the encoding. If a BOM 
does appear at the start of the data stream, then it simply will be treated as a Unicode Zero-
Width Non-Breaking Space (ZWNBS) character, because this shares the same codepoint as 
a BOM. 
 
The dfdl:byteOrder property is never used to establish the byte order for Unicode encodings.  
 
The parser never looks for a BOM at any other point in the data stream, so if a BOM appears 
elsewhere it will be treated as a Unicode ZWNBS character as described above. 
 
Unparsing behaviour: When the dfdl:encoding property of the root element is specified, and is 
exactly one of UTF-8, UTF-16 or UTF-32 (or CCSID equivalents), then a DFDL unparser will 
look in the infoset document information item for a BOM.   

• UTF-8.  If the document information item [unicodeByteOrderMark] member is 'UTF-8', the 
UTF-8 BOM is output as the very first bytes in the data stream. If the property is empty 
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then no BOM is output.  If the property has any other value, it is a processing error. There 
is no need to model the BOM explicitly.  

 

• UTF-16.  If the document information item [unicodeByteOrderMark] member is 'UTF-
16LE' or 'UTF-16BE', the corresponding UTF-16 BOM is output as the very first bytes in 
the data stream, and all data with dfdl:encoding UTF-16 throughout the rest of the 
document will be output with the implied byte order. If the property is empty then no BOM 
is output, and all data with dfdl:encoding UTF-16 throughout the rest of the document are 
assumed to have big-endian byte order. If the property has any other value, it is a 
processing error. There is no need to model the BOM explicitly.  

 

• UTF-32.  If the document information item [unicodeByteOrderMark] member is 'UTF-
32LE' or 'UTF-32BE', the corresponding UTF-32 BOM is output as the very first bytes in 
the data stream, and all data with dfdl:encoding UTF-32 throughout the rest of the 
document will be output with the implied byte order . If the property is empty then no BOM 
is output, and all data with dfdl:encoding UTF-32 throughout the rest of the document are 
assumed to have big-endian byte order. If the property has any other value, it is a 
processing error. There is no need to model the BOM explicitly. 

 
When the dfdl:encoding property of the root element is specified, and is exactly one of UTF-
16LE, UTF-16BE, UTF-32LE or UTF-32BE (or CCSID equivalents), then a DFDL unparser 
will not look at the document information item [unicodeByteOrderMark] member and will not 
output a BOM. The byte order to use is implicit in the encoding. If a BOM does need to be 
output at the start of the data stream, then it must be explicitly modelled as such.  
 
The dfdl:byteOrder property is never used to establish the byte order for Unicode encodings.  
The unparser never outputs a BOM at any other point in the data stream. If a BOM needs to 
appear, then it must be explicitly modelled as such. 
 
 
3.8. Section 2.2. Clarification is needed to schema definition error reporting criteria.  The 
intent of the spec is that a DFDL processor only needs to report schema definition errors that 
directly affect its processing of the data. This is because the nature of DFDL’s scoping rules 
mean that often it is not possible to validate an object definition for correctness in isolation.  
 
Clarify that a DFDL processor: 

o That only implements a DFDL parser does not have to validate properties that are 
solely used when unparsing, though it is recommended that it does so for portability 
reasons. 

o That does not implement some optional features does not have to validate properties 
or annotations required by those optional features, but MUST issue a warning that an 
unrecognized property or annotation has been encountered. 

o Need not validate global objects as they may legitimately be incomplete, with the 
following exceptions which must be validated: 

1. Global simple types that are referenced by prefixLengthType property 
2. Global elements that are the document root. 

 
Clarify what action a DFDL processor should take when it encounters an object that explicitly 
carries properties that are not relevant to the object as defined. 
o Property not applicable to the object’s DFDL annotation. 

Schema definition error. Example is lengthKind on xs:sequence. 
o Property not applicable because of simple type.  

Warning (optional). Example is calendarPatternKind on xs:string. 
o Property not applicable because of another DFDL property setting.  

Warning (optional). Example is binaryNumberRep when representation is text. 
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3.9. Section 12.3.5, 7.3.1, 7.3.2.  The spec originally allows lengthKind ‘pattern’ to be used 
when the representation of the current element, or of a child element, is binary, but imposes 
restrictions on the encoding that can be in force.  
 
Clarify that the encoding property must be defined for the element (else schema definition 
error), and that a decoding processing error is possible if the match of the regex encounters 
data that does not decode in that encoding, dependent on the setting of encodingErrorPolicy. 
Remove section 12.3.5.1. 
 
Same clarifications needed for testKind ”pattern” property for asserts and discriminators. 
 
For consistency, the restriction that a complex element of specified length and lengthUnits 
‘characters’ must have children that are all text and that have the same encoding as the 
complex element, is dropped. 
 
 
3.10. Sections 5.1, 13.15. Allow complex elements to be nillable.  There are advantages in 
permitting complex elements to be nillable as well as simple elements. For example, it 
provides better interoperability with XML infosets. However, to avoid the concept of a complex 
element having a value, which is not possible in DFDL, the only permissible nil value is the 
empty string, represented by the DFDL %ES; entity.  
 
If a complex element has xs:nillable set to ‘true’, it is a schema definition error if nilKind is not 
‘literalValue’ or nilValue is not the single value ‘%ES;’.   
 
Allowing complex elements to be nillable also solves another problem, that of preserving the 
position of optional complex elements in an array that contains explicit gaps. An infoset item 
with the special value nil is created for each such gap. 
 
Property nilValueDelimiterPolicy is applicable. 
 
The grammar changes to reflect this, as shown in Chapter 5 of this document. 
 
 
3.11. Section 16. If the occurrences of an element in the data are not fixed (that is, the 
element is a variable array or is optional) and the count of the number of elements is not 
provided in the data nor is there a stop value, then the DFDL language only provides one 
mechanism for deducing the number of elements when parsing, namely occursCountKind 
‘parsed’. This causes the parser to speculate indefinitely until no more elements can be 
established. However there are circumstances where the minimum and maximum number of 
elements is known, and these facts could be used to guide the parse. 
 
A new occursCountKind enumeration called ‘implicit’ is added, which takes into account 
minOccurs and maxOccurs settings.   
 
The descriptions of the behaviour for the all occursCountKind enums is greatly enhanced, to 
cover both parsing and unparsing, to provide a rewrite semantic for an array as a sequence, 
to introduce a forward progress requirement and to clarify the action taken for non-normal 
representations.  
 
This is covered in DFDL experience document 2 [DFDLX2]. 
 
Updated 2014-09-02 to clarify occursCount ‘expression’ behaviour when unparsing. 
 
“When unparsing, any number of occurrences are expected in the infoset. If validation is 
enabled, it is a validation error if less than minOccurs occurrences are found or defaulted, or if 
more than maxOccurs occurrences are found. The dfdl:occurs expression is not evaluated, 
the ‘count’ is the number of occurrences in the augmented infoset.”  
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3.12. Section 2.4. Validation checks are constraints expressed in XSDL, and they apply to the 
logical content of the infoset.  Originally the spec says ‘an unparse validation error occurs 
when the physical representation being output would generate a validation error when parsing 
the data representation using the same DFDL schema.’ This is a convenient definition, but 
problematic, because the original infoset used by the unparser could have been invalid, and 
the act of DFDL unparsing created a data stream which when parsed created a valid infoset. 
This can occur because of rounding, for example.  
 
The specification will be changed to say that validation on parsing takes place on the infoset 
that is created by the parse, and that validation on unparsing takes place on the augmented 
infoset that is created by the unparser as a side-effect of creating the output data stream. 
 
The new approach is in keeping with the way that XML Schema 1.0 defines validation against 
its PSVI. 
 
 
3.13. Sections 4.1.2, 11. DFDL does not adequately describe how to handle decoding and 
encoding errors.  

A new sub-section is added to section 11. (this is probably 11.2, if 11.1 is about Unicode byte 
order marks) 
 
11.2 Character Encoding and Decoding Errors 
When parsing, these are the errors that can occur when decoding characters into 
Unicode/ISO 10646.  
 
1.    The data is broken - invalid bit/byte sequences are found which do not match the 
definition of a character for the encoding. 
2.    Not enough data is found to make up the entire encoding of a character. That is, a 
fragment of a valid encoding is found. 
 
When unparsing, these are the errors that can occur when encoding characters from 
Unicode/ISO 10646 into the specified encoding. 
1.    No mapping provided by the encoding specification.  
2.    Not enough room to output the entire encoding of the character (e.g., need 3 bytes for a 
character encoding that uses 3-bytes for that character, but only 1 byte remains in the 
available length.  
The subsections below describe how these errors are handled. 
 
11.2.1 property dfdl:encodingErrorPolicy 
 
A new property dfdl:encodingErrorPolicy is added. 
 
Property Name Description 
encodingErrorPolicy Enum  

 
Valid values are 'error', 'replace'. 
 
Specifies the action to take when a character decoding error occurs when 
parsing or a character encoding error occurs when unparsing. 
 
Applies whenever dfdl:encoding is used. 
 
When 'error', a processing error is raised. 
When 'replace', a substitution character is used if one is available. 
 
See section 11.2 for full description. 
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Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice, 
dfdl:group 

 
 
11.2.1.1 dfdl:encodingErrorPolicy='error' 
 
If 'error', then any error when decoding characters while parsing causes a parse error. For 
unparsing, any error when encoding characters causes an unparse error.  
 
When parsing, it does not matter if this happens when scanning for delimiters, matching a 
regular expression, matching a literal nil value, or constructing the value of a textual element.  
 
There is one exception. When lengthUnits='bytes', the 'not enough data' decode error is 
ignored, and the data making up the fragment character is skipped over. Symmetrically, when 
unparsing the 'not enough room' encoding error is ignored and the left-over bytes are filled 
with the dfdl:fillByte. 
 
11.2.1.2 dfdl:encodingErrorPolicy='replace' for Parsing 
 
If 'replace' then any error results in the insertion of the Unicode Replacement Character 
(U+FFFD) as the replacement for that error.  
It does not matter if this error and replacement happens when scanning for delimiters, 
matching a regular expression, matching a literal nil value, or constructing the value of a 
textual element.  
 
There is one exception. When lengthUnits='bytes', the 'not enough data' decode error is 
ignored, no replacement character is created. The data making up the fragment character is 
skipped over. (It will be filled with the dfdl:fillByte when unparsing.) 
 
Note that the "." wildcard in regular expressions will match the Unicode Replacement 
Character, so ".*" and ".+" regular expressions can potentially cause very large matches (up 
to the entire data stream) to occur when data contains errors and 
dfdl:encodingErrorPolicy='replace'. Bounded length negated regular expressions can help in 
this case. E.g., " [^\uFFFD]{0,50}" says to match any character excluding Unicode 
Replacement Characters, but only up to length 50. 
 
It is also worth noting that the Unicode Replacement Character can appear in data as an 
ordinary character, and this cannot be distinguished from the insertion of the Unicode 
Replacement Character due to a decode error.  
 
If lengthUnits='characters', then a Unicode Replacement Character counts as contributing a 
single character to the length. 
 
If the data contains more than one adjacent decode error, then the specific number of 
Unicode Replacement Characters that are inserted as the replacement of these errors is 
implementation dependent. That is, some implementations may view, for example, three 
consecutive erroneous bytes as three separate decode errors, others may view them as a 
single or two decode errors. All implementations MUST, however, insert some number of 
Unicode Replacement Characters, and then continue to decode characters following the 
erroneous data. 
 
The trimming of padding characters always happens after Unicode Replacement Characters 
have been inserted into the data.  
 
11.2.1.3 dfdl:encodingErrorPolicy='replace' for Unparsing 
 
For unparsing, each encoding has a replacement/substitution character specified by the ICU. 
This character is substituted for the unmapped character or the character that has too large 
an encoding to fit in the available space.  
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There is one exception. When lengthUnits='bytes', the 'not enough room' encoding error is 
ignored. The left-over bytes are filled with the dfdl:fillByte (they are skipped when parsing.) 
 
The definitions of these substitution characters can be conveniently found for many encodings 
in the ICU Converter Explorer (http://demo.icu-project.org/icu-bin/convexp). 
An encoding error is an unparse error if the encoding does not provide a 
substitution/replacement character definition. (This would be rare, but could occur if a DFDL 
implementation allows many encodings beyond the minimum set.) 
 
11.2.1.4  Parsing: Unicode Decoding Non-Errors 

 
The following specific situations involving encodings UTF-16, UTF-16LE, and UTF-16BE 
when utf16Width="fixed", and they do not cause a decoding or encoding error. 
•    unpaired surrogate code-point  
•    out-of-order surrogate code-point pair  
•    surrogate code point pair is encountered  
 
In all these cases the code-point(s) becomes a character code in the DFDL Information Item 
for the string.  
 
11.2.2    Preserving Data Containing Decoding Errors 
 
There can be situations where data wants to be preserved exactly even if it contains errors. 
It is suggested that if a DFDL schema author wants to preserve information containing data 
where the data may have decoding errors, that they model such data as xs:hexBinary, or as 
xs:string but using an encoding such as iso-8859-1 which preserves all bytes.  
 
 
3.14. Section 14.2. To better describe the property and its behaviour, property 
separatorPolicy is renamed to separatorSuppressionPolicy, and its enums renamed as 
follows: 
 
‘required’ -> 'never' 
‘suppressed’ -> 'anyEmpty' 
‘suppressedAtEndLax’ -> 'trailingEmpty' 
‘suppressedAtEndStrict -> 'trailingEmptyStrict'. 
 
Additionally the property description for separatorSuppressionPolicy is rewritten, introductory 
paragraphs are added to section 14.2, and section 14.2.1 is replaced with new tables. 
 
This is covered in DFDL experience document 2 [DFDLX2]. 
 
 
3.15. Section 15. A new mechanism is introduced for resolving choices, to be known as 
‘Direct Dispatch’, the motivation being to make the cost of resolution close to constant time for 
choices with large numbers of branches where the branch to take is known in advance of 
parsing the choice. 
 
Updated by public comment 159 (http://redmine.ogf.org/boards/15/topics/159) to allow groups 
to participate in direct dispatch choice. 
 
Updated 2014-07-21 to make the match case sensitive for performance. 
 
A new element property is added called choiceBranchKey of type 'DFDL String Literal'. This 
provides an alternative way to discriminate a choice containing this schema object. Allowed 
on all schema objects that can be the branch of a choice (so local element, element 
reference, local sequence, local choice, group reference).  
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A new dfdl:choice property is added called choiceDispatchKey of type 'DFDL Expression'. 
The expression must evaluate to an xs:string. The resultant string must match (case 
sensitive) the choiceBranchKey property value of one of the element branches of the choice, 
and if so discriminates in favour of that branch. The parser then goes straight to that branch, 
ignoring schema order.  
 
Rules:  
 
Because the branch is 'known to exist' no backtracking takes place if a processing error 
subsequently occurs. 
 
Both properties are non-representation properties (see erratum 2.126), it is not possible to set 
a value in scope by a dfdl:format annotation, and a value can only set at its point of use. This 
is because there is nothing sensible that could be set in scope. Empty string is not an allowed 
value.  
 
Both properties are only used when parsing.  
 
When choiceDispatchKey is present, all choice branches must be local elements or element 
references. It is a schema definition error otherwise. 
 
It is a schema definition error if choiceBranchKey is specified on a global element, or on a 
sequence or choice that is the child of a global group definition. 
 
It is a processing error if the resolved value of choiceDispatchKey does not match (case 
sensitive) one of the choiceBranchKey values.  
 
It is a schema definition error if individual choiceBranchKey values are not unique (case 
sensitive) across all elements that are branches of a choice that carries choiceDispatchKey 
 
It is a schema definition error if both initiatedContent and choiceDispatchKey are provided on 
the same choice.  
 
It is not a schema definition error if either initiatedContent or choiceDispatchKey is provided 
on a choice and a discriminator exists on a choice branch.  In this case the discriminator will 
apply to a point of uncertainty that encloses the choice. 
 
DFDL entity character classes and DFDL raw byte entities are not allowed in 
choiceBranchKey. 
 
 
3.16. Section 14.2. Property documentFinalSeparatorCanBeMissing is removed as it is 
redundant. A postfix separator where the final separator can be missing can be modelled as 
an infix separator with documentFinalTerminatorCanBeMissing on the parent element. 
 
 
3.17. Section 21. The list of optional DFDL features is extended to make it easier for 
implementers to create minimal and extended conforming DFDL processors. 

 
Updated by public comment 46 (http://redmine.ogf.org/boards/15/topics/46): 
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Feature  Detection  

Text representation for types 
other than String  

dfdl:representation="text" for Number, Calendar or Boolean 
types  

Delimiters  dfdl:separator <> "" or dfdl:initiator <> "" or dfdl:terminator <> 
"" or dfdl:lengthKind="delimited"  

BCD calendars  dfdl:binaryCalendarRep=”bcd”     

BCD numbers dfdl:binaryNumberRep="bcd"    

Multiple schemas  xs:include or xs:import in xsd  

Named Formats  dfdl:defineFormat or dfdl:ref  

Choices  xs:choice in xsd  

Arrays where size not known 
in advance  

dfdl:occursCountKind 'implicit', 'parsed', 'stopValue'  

Expressions  Use of a DFDL expression in any property or attribute value 

End of parent dfdl:lengthKind = "endOfParent" 

IBM 4690 packed calendars  dfdl:binaryCalendarRep=”ibm4690Packed”     

IBM 4690 packed numbers dfdl:binaryNumberRep="ibm4690Packed"    

DFDL Byte Value Entities Use of %#r syntax in a DFDL String Literal other than the 
dfdl:fillByte property 

 
Existing optional feature ‘Variables’ is clarified to be dependent on optional feature 
‘Expressions’. 
 
 
3.18. Section 9.2, 23.5.3. The DFDL grammar productions are revised to make clear the 
distinction between the different allowable representations that an element can have and to 
enforce the correct use of the terms ‘content’, ‘value’ and ‘representation’.  
 
This has a significant effect on the grammar is shown in Chapter 5 of this document. 
 
All sections of the specification are updated to ensure that ‘content’, ‘value’ and 
‘representation’ are used correctly and consistently. 
 
As a consequence two of the DFDL-specific functions are renamed: 
dfdl:representationLength() -> dfdl:contentLength() 
dfdl:unpaddedLength() -> dfdl:valueLength() 
 
 
3.19. Sections 7.7.  Additions and clarifications for the defineVariable annotation.  
 
A defaultValue expression must be evaluated before processing the data stream. It is a 
schema definition error otherwise. 
 
A defaultValue expression can refer to other variables but not to the infoset (so no path 
locations).The referenced variable must either have a defaultValue or be external. It is a 
schema definition error otherwise. 
 
If a defaultValue expression references another variable then that prevents the referenced 
variable’s value from ever changing, that is, it is considered to be a read of the variable’s 
value. 
 
If a defaultValue expression references another variable and this causes a circular reference, 
it is a schema definition error. 
 
If the type of variable is a user-defined simple type restriction, it is a schema definition error.  
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3.20. Sections 7.8.  Additions and clarifications for the newVariableInstance annotation.  
 
Updated by public comment 39 (http://redmine.ogf.org/boards/15/topics/39) to impose a 
predictable evaluation order: 
 
Only allowed as an annotation on sequence, choice or group reference. It is a schema 
definition error otherwise. 
 
The resolved set of annotations for a component may contain multiple newVariableInstance 
statements. They must all be for unique variables, it is a schema definition error otherwise. 
However, the order of execution among them is not specified. Schema authors can insert 
sequences to control the timing of evaluation of statements more precisely. 
The order of execution is specified in section 9.5. 

 
 
3.21. Sections 7.9.  Additions and clarifications for the setVariable annotation.  
 
Updated by public comment 39 (http://redmine.ogf.org/boards/15/topics/39) to impose a 
predictable evaluation order: 
 
Not allowed as an annotation on a complex element or element reference to such. 
 
The resolved set of annotations for a component may contain multiple setVariable 
statements. They must all be for unique variables, it is a schema definition error otherwise. 
However, the order of execution among them is not specified. Schema authors can insert 
sequences to control the timing of evaluation of statements more precisely. 
The order of execution is specified in section 9.5. 
 
Clarify that setVariable may be used with a variable defined with external ‘true’. 
 
 
3.22. New appendix. Add an explanation of the rationale behind the current variables design, 
covering why DFDL has adopted a write-once read-many behaviour for variables. 
 
 
3.23. Sections 7.3.1. Additions and clarifications for the assert annotation. 
 
Asserts can be placed as annotations on sequence, choice, group references, local and 
global element declarations, element references, and simple type definitions. 
 
Replace "More than one dfdl:assert may be used at an annotation point. The dfdl:asserts will 
be evaluated in the order defined in the schema." with "If the resolved set of annotations for a 
schema component contain multiple dfdl:assert statements, then those with testKind='pattern' 
are executed before those with testKind='expression' (the default). However, within each 
group the order of execution among them is not specified. Schema authors can insert 
sequences to control the timing of evaluation of statements more precisely.” 
 
Once any assert used at an annotation point is unsuccessful, no other asserts are executed 
at that annotation point. 
 
 
3.24. Sections 7.3.1. Additions and clarifications for the discriminator annotation. 
 
Discriminators can be placed as annotations on sequence, choice, group references, local 
and global element declarations, element references, and simple type definitions. 
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Replace "Any one annotation point can contain only a single dfd:discriminator or one or more 
dfdl:asserts, but not both. It is a schema definition error otherwise." with "The resolved set of 
annotations for a schema component can contain only a single dfd:discriminator or one or 
more dfdl:asserts, but not both. It is a schema definition error otherwise." 
 
 
3.25. Section 9.5. Evaluation Order for Statement Annotations 
 
Updated by public comment 39 (http://redmine.ogf.org/boards/15/topics/39) to impose a 
predictable evaluation order for variables: 
 
Of the resolved set of annotations for a schema component, some are statement annotations 
and the order of their evaluation relative to the actual processing of the schema component 
itself (parsing or unparsing per its format annotation) is as given in the ordered lists below. 
 
For elements and element refs:  
1.        dfdl:discriminator or dfdl:assert(s) with testKind='pattern' (parsing only) 
2.        dfdl:element following property scoping rules 
3.        dfdl:setVariable(s) - in lexical order, innermost schema component first 
4.        dfdl:discriminator or dfdl:assert(s) with testKind='expression' (parsing only) 

 
For sequences, choices and group refs:  
1.        dfdl:discriminator or dfdl:assert(s) with testKind='pattern' (parsing only)  
2.        dfdl:newVariableInstance(s) - in lexical order, innermost schema component first 
3.        dfdl:setVariable(s) - in lexical order, innermost schema component first 
4.        dfdl:sequence or dfdl:choice or dfdl:group following property scoping rules 
5.        dfdl:discriminator or dfdl:assert(s) with testKind='expression' (parsing only)  

 
The dfdl:setVariable annotations at any one annotation point of the schema are always 
executed in lexical order. However, dfdl:setVariable annotations can also be found in different 
annotation points that are combined into the resolved set of annotations for one schema 
component. In this case, the order of execution of the dfdl:setVariable statements from any 
one annotation point remains lexical. The order of execution of the dfdl:setVariable 
annotations different annotation points follows the principle of innermost first, meaning that a 
schema component that references another schema component has its dfdl:setVariable 
statements executed after those of the referenced schema component. For example, if an 
element reference and an element declaration both have dfdl:setVariable statements, then 
those on the element declaration will execute before those on the element reference. Similarly 
dfdl:setVariable statements on a base simple type execute before those of a simple type 
derived from it. The dfdl:setVariable statements on a simple type execute before those on an 
element having that simple type (whether by reference, or when the simple type is lexically 
nested within the element declaration). The dfdl:setVariable statements on the sequence or 
choice within a global group definition execute before those on a group reference. 

The dfdl:newVariableInstance annotations at any one annotation point of the schema are 
always executed in lexical order. However, dfdl:newVariableInstance annotations can also be 
found in different annotation points that are combined into the resolved set of annotations for 
one schema component. In this case, the order of execution of the dfdl:newVariableInstance 
statements from any one annotation point remains lexical. The order of execution of the 
dfdl:newVariableInstance annotations different annotation points follows the principle of 
innermost first, meaning that a schema component that contains or references another 
schema component has its dfdl:newVariableInstance statements executed after those of the 
contained or referenced schema component. For example, if a group reference and the 
sequence or choice group of a group definition both have dfdl:newVariableInstance 
statements, then those on the global group definition will execute before those on the group 
reference. 
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Asserts and Discriminators with testKind 'expression' 
 
Implementations are free to optimize by recognizing and executing discriminators or asserts 
with testKind 'expression' earlier so long as the resulting behavior is consistent with what 
results from the description above.   
 
Discriminators with testKind 'expression' 
 
When parsing, an attempt to evaluate a discriminator must be made even if preceding 
statements or the parse of the schema component ended in a processing error.  
 
This is because a discriminator's expression could evaluate to true thereby resolving a point 
of uncertainty even if the complete parsing of the construct ultimately caused a processing 
error.  
 
Such discriminator evaluation has access to the DFDL Infoset of the attempted parse as it 
existed immediately before detecting the parse failure. Attempts to reference parts of the 
DFDL Infoset that do not exist are processing errors.  
 
Elements and setVariable 
 
The resolved set of dfdl:setVariable statements for an element are executed after the parsing 
of the element. This is in contrast to the resolved set of dfdl:setVariable statements for a 
group which are executed before the parsing of the group.  
 
For elements, this implies that these variables are set after the evaluation of expressions 
corresponding to any computed DFDL properties for that element, and so the variables may 
not be referenced from expressions that compute these DFDL properties. 
 
That is, if an expression is used to provide the value of a property (such as dfdl:terminator, or 
dfdl:byteOrder), the evaluation of that property expression occurs before any dfdl:setVariable 
annotation from the resolved set of annotations for that element are executed; hence, the 
expression providing the value of the property may not reference the variable. Schema 
authors can insert sequences to provide more precise control over when variables are set. 
 
 
3.26. Sections 9, 13.15 and others.  Empty, Missing and Defaults. 
 
As originally specified, default values are used as follows. During unparsing, an Infoset with 
missing required element occurrences is augmented with values so that the resultant data 
stream that is generated is correct according to the schema and may be successfully re-
parsed.  During parsing, a sparse data stream with missing required element occurrences has 
values added to the Infoset so that the resultant Infoset is correct according to the schema.  
 
The parsing behaviour has the effect of making an invalid data stream valid. This is not 
actually a good idea. Why is DFDL trying to handle missing required occurrences in a data 
stream? If an occurrence may be missing from the data stream, it should be modelled as 
optional. Further this is not how XML Schema uses default values for elements. 

 
For elements, XML Schema uses defaults to fill in values for occurrences that are present but 
have empty content.  We shall use this principle for DFDL, as the main use case for using 
defaults on parsing is supplying a value for an empty required occurrence of a simple element 
(the CSV adjacent separator example). In order for this to work, we must be able to 
distinguish clearly between an empty occurrence and a missing occurrence when parsing.  
 
Accordingly, formal definitions for nil representation, empty representation, normal 
representation, and absent representation are added to the specification, along with the rules 
that the parser must use to establish these representations. This is reflected into the 
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grammar. The concept of missing from the data stream is redefined. When and how default 
values are applied when parsing and unparsing are provided.  
 
This is covered in DFDL experience document 2 [DFDLX2]. 
 
 
3.27. Section 13.6. Text number rounding. 
 
The DFDL specification behaviour for the properties that control text number rounding was 
derived from the documented behaviour for ICU4J. However the documentation is not correct. 
The text number rounding properties are revised as follows to reflect the actual ICU 
behaviour. In particular note that the way to switch off rounding is to use textNumberRounding 
‘explicit’ and new textNumberRoundingMode ‘roundUnnecessary’. 
 
textNumberRounding 

Enum 

Specifies how rounding is controlled during unparsing. 

Valid values ‘pattern', 'explicit' 

When dfdl:textNumberRep is 'standard' this property only 
applies when dfdl:textStandardBase is 10. 

If 'pattern' then rounding takes place according to the 
pattern. A rounding increment may be specified in the 
dfdl:textNumberPattern using digits '1' though '9', 
otherwise rounding is to the width of the pattern. The 
rounding mode is always 'roundHalfEven'.  

If 'explicit' then the rounding increment is specified by the 
dfdl:textNumberRoundingIncrement property, and any 
digits '1' through '9' in the dfdl:textNumberPattern are 
treated as digit '0'. The rounding mode is specified by the 
dfdl:textRoundingMode property.  

To disable rounding, use 'explicit' in conjunction with 
'roundUnnecessary' for the 
dfdl:textNumberRoundingMode. If rounding is disabled 
then any excess precision is treated as a processing error.  

Annotation: dfdl:element, dfdl:simpleType 

textNumberRoundingMode 
Enum 

Specifies how rounding occurs during unparsing, when 
dfdl:textNumberRounding is 'explicit'. 

When dfdl:textNumberRep is 'standard' this property only 
applies when  dfdl:textStandardBase is 10. 

To switch off rounding, use 'roundUnnecessary'.  

Valid values ‘roundCeiling’,  ‘roundFloor’, ‘roundDown’, 
‘roundUp’, ‘roundHalfEven’,  ‘roundHalfDown’, 
‘roundHalfUp', 'roundUnnecessary' 

Annotation: dfdl:element, dfdl:simpleType 

textNumberRoundingIncrement 
Double 

Specifies the rounding increment to use during unparsing, 
when dfdl:textNumberRounding is 'explicit'. 

When dfdl:textNumberRep is 'standard' this property only 
applies when  dfdl:textStandardBase is 10. 
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A negative value is a schema definition error. 

Annotation: dfdl:element, dfdl:simpleType 

 
 
 
3.28. Section 14.3. Unordered sequence groups. 
 
Updated by public comment 56 (http://redmine.ogf.org/boards/15/topics/56), to replace all 
occurrences of ‘unordered group’ by ‘unordered sequence’. 
 
Updated by public comment 244 (http://redmine.ogf.org/boards/15/topics/244), to disallow 
empty unordered sequences. 
 
Replace the wording in the existing section with the following, which clarifies the restrictions 
on unordered sequence groups and corrects the conceptual rewrite to a repeating choice: 
 
 14.3 Unordered Sequence Groups 
The occurrences of members of a sequence group with dfdl:sequenceKind=’unordered’ 
(hereafter referred to as an ‘unordered sequence’) may appear in the data in any order. 
Occurrences of the same member do not have to be contiguous. In the infoset, sequence 
groups are always in schema order, so a DFDL processor must sort the members of an 
unordered sequence into schema order when parsing. When unparsing, the infoset must 
already be in schema order, and the members of the sequence will be output in schema 
order. 
 
 14.3.1 Restrictions for Unordered Sequences 
It is a schema definition error if any member of the unordered sequence is not an element 
declaration or an element reference. 
It is a schema definition error if a member of an unordered sequence is an optional element or 
an array element and its dfdl:occursCountKind property is not ‘parsed’ 
It is a schema definition error if two or more members of the unordered sequence have the 
same name and the same namespace (see post-processing transformation below). 
It is a schema definition error if an unordered sequence has no members. 
 
 14.3.2 Parsing an Unordered Sequence 
When parsing, the semantics of an unordered sequence are expressed by way of:  

1. a source-to-source transformation of the sequence group definition, and  

2. a post-processing transformation of the infoset .  

An implementation may use any technique consistent with this semantic. 
 
 14.3.2.1  Source-to-source Transformation 
The source-to-source transformation turns the declaration of an unordered sequence into an 
ordered sequence group that contains a repeating choice. To ensure that the resulting 
schema is a valid DFDL schema, the choice group is wrapped in an array element.  
The unordered sequence is transformed as follows:  

- the dfdl:sequenceKind property of the unordered sequence is changed to “ordered”  

- the content of the unordered sequence is replaced by a complex element ( the 
‘choice element’ ) with the following properties: 

o XSDL minOccurs=”0” 

o XSDL maxOccurs=”unbounded” 

o dfd:lengthKind=”implicit” 

o dfd:occursCountKind=”parsed” 

- the content of the choice element’s complex type is a choice group with the following 
properties: 

o dfdl:choiceLengthKind=”implicit” 
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- The members of the unordered sequence become the members of the choice group, 
with their declaration order preserved. 

- The XSDL minOccurs and maxOccurs properties on each member of the choice 
group are both set to 1.  

Using the following example as an illustration: 
 

<xs:sequence dfdl:sequenceKind="unordered" dfdl:separator=","> 
  <xs:element name=”a” type="xs:string"  
                       dfdl:initiator="A:" /> 
  <xs:element name=”b” type="xs:int" minOccurs="0"  
                       dfdl:initiator="B:" /> 
  <xs:element name=”c” type="xs:string" minOccurs=”0” maxOccurs="10" 
                       dfdl:initiator="C:" /> 
</xs:sequence> 

 

The above unordered sequence group is conceptually rewritten into the following ordered 
sequence group: 

 

<xs:sequence dfdl:sequenceKind="ordered" dfdl:separator=","> 
  <xs:element name="choiceElement" minOccurs="0" maxOccurs="unbounded" 
                    occursCountKind="parsed"> 
    <xs:complexType> 
      <xs:choice dfdl:choiceLengthKind="implicit"> 
        <xs:element name="a" type="xs:string"  
                             dfdl:initiator="A:" /> 
        <xs:element name="b" type="xs:int"  
                             dfdl:initiator="B:" /> 
        <xs:element name="c" type="xs:string"  
                             dfdl:initiator="C:" /> 
      </xs:choice> 
    </xs:complexType> 
  </xs:element> 
</xs:sequence> 
 

 
Processing then constructs a temporary info set for this ordered sequence group by parsing 
the data.  
 
If a member element is found to have the empty representation then the parsing of that 
element must use the original value of XSDL minOccurs. In this example, element "b" has 
minOccurs="0" and if it is found with the empty representation then it must not be defaulted. 
 
 14.3.2.2  Post-processing Transformation 
Post-processing consists of the following steps: 

1. Sort the temporary infoset to produce the real infoset 

2. Check scalar elements and validate 
 

Sort the Temporary Infoset 
The temporary infoset is transformed into the infoset conforming to the original unordered 
sequence.  All members of the temporary infoset having the same name and namespace as 
the first child of the unordered sequence are placed first, in the order in which they were 
parsed. This algorithm repeats for the second child of the unordered sequence and so on until 
all members of the temporary infoset have been sorted into the schema declaration order of 
the original unordered sequence. 
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For the example above, the temporary infoset is transformed into the infoset corresponding 
to: 
 

<xs:sequence> 
  <xs:element name="a" type="xs:string" /> 
  <xs:element name="b" type="xs:int" minOccurs="0" /> 
  <xs:element name="c" type="xs:string" minOccurs="0" maxOccurs="10" /> 
</xs:sequence> 

 
Check Scalar Elements and Validate 
For each element in the unordered sequence having XSDL minOccurs=”1” and 
maxOccurs=”1”, the number of occurrences is checked. Each such element must occur 
exactly once in the infoset, else it is a processing error. 
 
If validation is enabled, the DFDL processor validates the number of occurrences of each 
member of the unordered sequence against XSDL minOccurs and maxOccurs.  
 
These checks are the same as those performed for an ordered sequence group. However, in 
an unordered sequence the checking of XSDL minOccurs and maxOccurs must be performed 
after the entire group has been parsed. 
 
 14.3.3 Unparsing an Unordered Sequence 
When unparsing, the behavior is exactly as if dfdl:sequenceKind='ordered'. The infoset must 
be presented to the unparser in schema declaration order, and the members of the unordered 
sequence are output in schema declaration order.  
 
 
3.29. Sections 24 and 30. The DFDL specification is not prescriptive enough when specifying 
what is allowed for regular expressions used in the length property and testPattern property.  
 
Section 24 is replaced by the following. 
 
“A DFDL regular expression may be specified for the dfdl:lengthPattern format property and 
the dfdl:testPattern attribute of the dfdl:assert and dfdl:discriminator annotations.  DFDL 
regular expressions do not interpret DFDL entities.  
 
A DFDL regular expression is defined by a set of valid pattern characters.  For portability,  
a DFDL regular expression pattern is restricted to the inclusive subset of the ICU regular 
expression [ICURE] and the Java(R) 7 regular expression [JAVARE] with the Unicode flags 
UNICODE_CASE and UNICODE_CHARACTER_CLASS turned on. DFDL regular 
expressions thereby conform to Unicode Technical Standard #18, Unicode Regular 
Expressions, level 1 [UNICODERE]. 
 
The following regular expression constructs are not common to both ICU and Java(R) 7 and it 
is a schema definition error if any are used in a DFDL regular expression:  
  
Construct Meaning Notes 

\N{UNICODE CHARACTER NAME} Match the named character ICU only  
\X Match a Grapheme Cluster ICU only 
\Uhhhhhhhh Match the character with the hex value 

hhhhhhhh 
ICU only 

(?# ... ) Free-format comment ICU only 
(?w-w) UREGEX_UWORD - Controls the 

behaviour of \b in a pattern 
ICU only 

(?d-d) UNIX_LINES - Enables Unix lines mode Java 7 only 
(?u-u) UNICODE_CASE - Enables Unicode-

aware case folding 
Java 7 only 
(1) 

(?U-U) UNICODE_CHARACTER_CLASS - Java 7 only 
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Enables the Unicode version of 
predefined character classes and 
POSIX  character classes 

(2) 

 
Notes: 
(1) Implementations using Java 7 must set flag UNICODE_CASE by default to match ICU. 
(2) Implementations using Java 7 must set flag UNICODE_CHARACTER_CLASS by default 
to match ICU. 
 
Additionally, the behaviour of the word character construct (\w) is not consistent in ICU and 
Java 7. In Java 7 \w is [\p{Alpha}\p{gc=Mn}\p{gc=Me}\p{gc=Mc}\p{Digit}\p{gc=Pc}],  
which is a larger set than ICU where \w is [\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}].    
The use of \w is not recommended in DFDL regular expressions in conjunction with Unicode 
encodings, and an implementation must issue a warning if such usage is detected.  
 
Character properties are detailed by the Unicode Regular Expressions [UNICODERE]. “ 
 
Section 30 is updated to correct the references used in section 24: 
• Add: [ICURE] - http://userguide.icu-project.org/strings/regexp 
• Add: [UNICODERE] - http://www.unicode.org/reports/tr18/  
• Remove: [PERLRE] - http://perldoc.perl.org/perlre.html#Extended-Patterns  
• Change: [JAVARE] - http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html  
 
 
3.30. Section 16. Changes to placement of occurs properties.  
 
Remove the restriction that DFDL occurs properties are not applicable to global elements. 
This rule causes problems when applying property scoping rules. DFDL occurs properties 
may now be specified on global elements.  
 
Also see update to erratum 3.8. 
 
 
3.31. Section 14.5. Clarifications to hidden groups. 
 
When unparsing a hidden group, the behaviour should be the same as when elements are 
missing from the infoset; that is, the default values algorithm applies. The only difference is 
that if a required element does not have a default value or a dfdl:outputValueCalc then it is a 
schema definition error instead of a processing error.  
 
When unparsing a hidden group, it is a processing error if an element information item is 
provided in the infoset for an element contained within the bounds of a hidden group. 
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4. Public Comments 

The following errata were identified during the public comment review of the revision of the 
DFDL 1.0 specification [DFDLREV]. They are grouped here for convenience.  

Some public comments affected previously identified errata in chapters 2 and 3. For these, 
the errata in chapters 2 and 3 have been updated instead, including a note to say that they 
were updated by public comment. 

 
4.1. Public comment 26 (http://redmine.ogf.org/boards/15/topics/26) 
 
Sections 12.3, 12.3.7.2. Clarify that calendars with a binary packed representation are 
allowed to have lengthUnits ‘bits’ but the length must be a multiple of 4 and it is a schema 
definition error otherwise.  
 
 
4.2. Public comment 27 (http://redmine.ogf.org/boards/15/topics/27) 
 
Section 12.3.7.3. Amend the section so that the first three paragraphs are replaced by the 
following two paragraphs.  

“A complex element of specified length is defining a 'box' in which its child elements exist. An 
example of this would be a fixed length record element with a variable number of children 
elements. The dfdl:lengthUnits may be 'bytes' or 'characters' and it is a schema definition 
error otherwise. 

It is possible that the children may not entirely fill the full length of the complex element. An 
example is a complex element with a specified length of 100 characters, which contains a 
sequence of child elements that use up less than 100 characters of data, perhaps because an 
optional element is not present. In this case the remaining unused data is called the 
ElementUnused region in the data syntax grammar of section 9.2. Another example is a 
complex element with a specified length of 100 bytes, which contains a sequence of child 
elements the last of which has dfdl:lengthKind 'endOfParent', dfdl:representation 'text' and a 
multi-byte dfdl:encoding such that the element does not use up all the bytes of data. In this 
case the remaining unused bytes comprise the child element's RightFill region in the data 
syntax grammar of section 9.2. In both examples, the unused area is skipped when parsing, 
and is filled with the dfdl:fillByte on unparsing.” 

 
4.3. Public comment 28 (http://redmine.ogf.org/boards/15/topics/28) 
 
Sections 4.1, 13.15, 23. The special value nil is not compatible with XPath. The following 
amendments are needed so that nilled elements are handled correctly in the infoset: 
• Remove all discussion of nil as a special value. 
• Add [nilled] member to element information item.  
• Add XPath 2.0 fn:nilled() function to DFDL expression language. 
• An attempt to get the value of a [nilled] element returns the empty sequence. 
 
 
4.4. Public comment 41 (http://redmine.ogf.org/boards/15/topics/41) 

Section 13.11.1. Two clarifications to time zone processing: 

Add footnote to the calendar pattern symbol table: "When unparsing, if a time zone symbol is 
not available for a particular time zone, a fallback may be used, as defined in [ICUCalForm]." 
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Append "which uses symbols defined by [UnicodeLDML]" to sentence "The pattern is derived 
from the ICU SimpleDatetimeFormat class described here: [ICUCalForm]"   

 
4.5. Public comment 42 (http://redmine.ogf.org/boards/15/topics/42) 
 
Section 13.2.1. Improve first sentence of escapeEscapeCharacter property description so it 
says “Specifies one character that escapes an immediately following dfdl:escapeCharacter or 
first character of dfdl:escapeBlockEnd.” 
 
 
4.6. Public comment 45 (http://redmine.ogf.org/boards/15/topics/45) 
 
Section 12.1. The alignment of a model group should not depend on the alignment of its 
children, so replace the sentence “The 'implicit' alignment of a model group is the alignment of 
its child with the greatest alignment” with “The 'implicit' alignment of a model group is always 
1”. 
 
 
4.7. Public comment 47 (http://redmine.ogf.org/boards/15/topics/47) 
 
Section 3. Add definition of ‘validity’ to the glossary, to accompany the definition of ‘well-
formed’. 

 
 
4.8. Public comment 48 (http://redmine.ogf.org/boards/15/topics/48) 
 
Section 9.4.2. In this section, the term ‘string’ is defined to cover xs:string and xs:hexBinary. 
This can be mis-interpreted, so change the section to remove this usage of ‘string’ and 
instead use the correct XSDL types. 
 
 
4.9. Public comment 50 (http://redmine.ogf.org/boards/15/topics/50) 
 
Section 12.3.2.1. The title of this section should be changed to ‘Non-Delimited Elements 
within Delimited Constructs’, and the first paragraph updated to include ‘endOfParent’ in the 
list. 
 
 
4.10. Public comment 51 (http://redmine.ogf.org/boards/15/topics/51) 
 
Section 12.3.6. The paragraphs before and after the bullets are substantially reworded to 
improve clarity: 
 
Replace first paragraph with: 
 
“The dfdl:lengthKind 'endOfParent' means that the element is terminated either by the end of 
the data stream, or the end of an enclosing complex element with dfdl:lengthKind ‘explicit’, 
‘pattern’, ‘prefixed’ or ‘endOfParent’, or the end of an enclosing choice with 
dfdl:choiceLengthKind ‘explicit’. The ‘parent’ element or choice does not have to be the 
immediate enclosing component of the element, but there must be no other elements defined 
between the element specifying dfdl:lengthKind 'endOfParent' and the end of the parent.  
 
A convenient way of describing the parent is as a 'box', being defined as a portion of the data 
stream that has an established content length prior to the parsing of its children. If the parent 
is such a ‘box’ then the element specifying dfdl:lengthKind ‘endOfParent’ is the last element in 
the ‘box’ and its content extends to the end of the ‘box’.” 
 
Replace all paragraphs after the bullets with: 
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“A simple element must have either type xs:string, or dfdl:representation 'text', or type 
xs:hexBinary, or dfdl:representation 'binary' and a packed decimal representation.  
 
A complex element can have dfdl:lengthKind 'endOfParent'. If so then its last child element 
can be any dfdl:lengthKind including 'endOfParent'. 
 
The dfdl:lengthKind 'endOfParent' can also be used to allow the last element to consume the 
data up to the end of the data stream. 

 
The use of dfdl:lengthKind ‘endOfParent’ is distinct from the situation where the length of the 
last element in the parent is known but is not sufficient to fill the parent. In the latter case the 
remaining data are ignored on parsing and filled with dfdl:fillByte on unparsing. 
 
When parsing an element with dfdl:lengthKind ‘endOfParent’, delimiter scanning is turned off 
and in-scope terminating delimiters are not looked for within the element. 
 
When unparsing an element with dfdl:lengthKind ‘endOfParent’, if the parent is a complex 
element with dfdl:lengthKind 'explicit' where dfdl:length is not an expression, or a choice with 
dfdl:choiceLengthKind 'explicit', then the element with dfdl:lengthKind 'endOfParent' is padded 
or filled in the usual manner to the required length, by completing the LeftPadding, 
RightPadOrFill or ElementUnused regions of the data as appropriate.” 
 
Note: erratum 2.72 also updated. 
 
 
4.11. Public comment 57 (http://redmine.ogf.org/boards/15/topics/57) 
 
Section 12.1. The rule on the alignment of an optional element, that it has to be same as what 
follows, is removed. It is overly restrictive. 
 
 
4.12. Public comment 60 (http://redmine.ogf.org/boards/15/topics/60) 
 
Section 23.5.2.3. Remove the use of ‘collation’ and ‘collation units’: 
• Drop forms of all functions that take collation as argument. 
• Change occurrences of "collation unit" to "character". 
• Add that DFDL always uses the default unicode collation algorithm (which is a 

comparison of codepoint values). 

 
4.13. Public comment 61 (http://redmine.ogf.org/boards/15/topics/61) 
 
Section 3. Add definition of ‘node’ to the glossary, being an equivalent term to an Element 
Information Item in the DFDL augmented Infoset. 
 
 
4.14. Public comment 62 (http://redmine.ogf.org/boards/15/topics/62) 
 
Section 23.5.2.6. Because the DFDL infoset does not carry a namespace prefix, and an 
element’s name is fully described by the fn:local-name() and fn:namespace-uri() functions, the 
fn:name() function should not be part of the DFDL XPath 2.0 subset. Remove. 
 

 
 
 
 
 



GWD-E  Stephen M Hanson (IBM) 
OGF DFDL WG   September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 53 of 63  

4.15. Public comment 64 (http://redmine.ogf.org/boards/15/topics/64) 
 
Section 32 (Appendix B). The specification is not really the place for this material, it is best 
covered by one of the tutorials. Remove the appendix.  
 

 
4.16. Public comment 65 (http://redmine.ogf.org/boards/15/topics/65) 
 
Section 34.3 (Appendix D). To avoid unnecessary redundancy, the character code lists for 
DfdlNSEntity and DfdlWSPEntity should be replaced by references to table 4 in section 
6.3.1.3. 
 
 
4.17. Public comment 66 (http://redmine.ogf.org/boards/15/topics/66) 
 
Section 3. The entry in the glossary for ‘text’ needs to mention that the dfdl:encoding property 
is required in order to understand the encoding of the text. The entry in the glossary for ‘text 
representation’ should refer to the SimpleContent region.  
 
Section 7.1.3. Change “… in delimited text representations …” to “… in delimited text data 
formats …”. 
 
 
4.18. Public comment 67 (http://redmine.ogf.org/boards/15/topics/67) 
 
Section 14.2.1. The definitions of ‘Potentially trailing element’ and ‘Trailing or Actually Trailing’ 
are updated.  This is reflected in updated DFDL experience document 2 [DFDLX2]. 
 
 
4.19. Public comment 70 (http://redmine.ogf.org/boards/15/topics/70) 
 
Sections 9.1, 18. Replace occurrences of the term ‘distinguished root node’ with 
‘distinguished global element declaration’.  
 
 
4.20. Public comment 90 (http://redmine.ogf.org/boards/15/topics/90) 
 
Section 6.3.1.2. The %ES; entity is not allowed to be used in a DFDL String Literal in 
conjunction with other characters or entities. The grammar in table 2 is updated to reflect this. 
 
DfdlStringLiteral ::= (DfdlStringLiteralPart)+ | DfdlESEntity 
   
DfdlCharClassName        ::= DfdlNLEntity | DfdlWSPEntity | DfdlWSPStarEntity | 

DfdlWSPPlusEntity | DfdlESEntity 
 
 
4.21. Public comment 106 (http://redmine.ogf.org/boards/15/topics/106) 
 
Section 2.7. Add a paragraph describing optional warning if there is an invalid property value 
for a property that is unused or being ignored. For example: dfdl:lengthKind is not ‘explicit’ but 
dfdl:length is an expression and that expression contains invalid syntax. Also add a reference 
to new ‘implementation-dependent’ section (see erratum 4.27). 
 
Section 2.6. Change ‘Schema Definition Warning’ to ‘warning’. 
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4.22. Public comment 116 (http://redmine.ogf.org/boards/15/topics/116) 
 
Section 13.6. In the property description for textZonedSignStyle, replace the second 
paragraph with the following less restrictive words, which allows the use of CCSID 943 (and 
others): 
 
“Used only when dfdl:encoding is an ASCII-derived character set encoding. The encoding 
must provide the character to single byte code point mapping used by the specified value of 
dfdl:textZonedSignStyle, as stated below.” 
 
 
4.23. Public comment 170 (http://redmine.ogf.org/boards/15/topics/170) 
 
Section 13.10. The property description for binaryBooleanTrueRep is missing the unparsing 
behaviour when the property value is “”. Add that the unparser will use the one’s complement 
of the binaryBooleanFalseRep property.  
 
The second paragraph of the property description for binaryBooleanTrueRep is restating 
information from elsewhere, so should be replaced by “The length of the data value of the 
element must be between 1 bit and 32 bits (4 bytes) as described in section 12.3.7.2. It is a 
schema definition error if the value (when provided) of dfdl:binaryBooleanTrueRep cannot fit 
as an unsigned binary integer in the specified length.". Equivalent change to be made to the 
property description for binaryBooleanFalseRep. 
  
 
4.24. Public comment 43 (http://redmine.ogf.org/boards/15/topics/43) 
 
The byteOrder property on its own is not sufficient to implement the family of US military 
formats that includes MIL-STD-2045.  When fields are not a whole number of bytes, the bytes 
are filled from the least significant bit first.  This is seen in conjunction with little-endian byte 
order.  
 
A new DFDL property bitOrder is added to handle this, with values ‘leastSignificantBitFirst’ 
and ‘mostSignificantBitFirst’. It applies to content and framing. 
 
The full description of this property is provided by DFDL Experience Document 3 [DFDLX3]. 
 
 
4.25. Public comment 59 (http://redmine.ogf.org/boards/15/topics/59) 
 
Section 22. The property precedence section only mentions the textBidi property, it should 
mention all of the bidirectional text properties.   
 
<Awaiting resolution of DFDL WG action 241> 
 
 
4.26. Public comment 63 (http://redmine.ogf.org/boards/15/topics/63) 
 
Section 23.5.3. Improve the description of the dfdl:valueLength() function.   
 
<Awaiting resolution of DFDL WG action 242> 
 
 
4.27. Public comment 59 (http://redmine.ogf.org/boards/15/topics/59) 
 
Section 3. Add definitions of ‘implementation-defined feature’ and ‘implementation-dependent 
feature’ to the Glossary.  
 



GWD-E  Stephen M Hanson (IBM) 
OGF DFDL WG   September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 55 of 63  

Implementation-defined feature. A feature where the implementation has discretion in how 
it is performed, and the implementation must document how it is performed. 
 
Implementation-dependent feature. A feature where the implementation has discretion in 
how it is performed, but the implementation is not required to document how the feature is 

performed.  
 
Sections throughout. Correct the specification to use the above terms where needed.  
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5. Revised Grammar 

 
This chapter provides a consolidated grammar that incorporates the several errata in this 
document that affect it. 
 

Productions 

 
Document =  UnicodeByteOrderMark DocumentElement 
DocumentElement = SimpleElement | ComplexElement 
 
SimpleElement = SimpleLiteralNilElementRep | SimpleEmptyElementRep |  
                            SimpleNormalRep  
SimpleEnclosedElement = SimpleElement | AbsentElementRep  

 
ComplexElement = ComplexLiteralNilElementRep | ComplexNormalRep |  
                               ComplexEmptyElementRep  
ComplexEnclosedElement = ComplexElement | AbsentElementRep  

 
EnclosedElement = SimpleEnclosedElement | ComplexEnclosedElement 
 
 
AbsentElementRep = Absent 

 
SimpleEmptyElementRep =  EmptyElementLeftFraming EmptyElementRightFraming 
ComplexEmptyElementRep =  EmptyElementLeftFraming EmptyElementRightFraming 
 
EmptyElementLeftFraming = LeadingAlignment EmptyElementInitiator PrefixLength 
EmptyElementRightFraming = EmptyElementTerminator TrailingAlignment 
 
 
SimpleLiteralNilElementRep = NilElementLeftFraming [NilLiteralCharacters |  
                                                 NilElementLiteralContent] NilElementRightFraming 
ComplexLiteralNilElementRep = NilElementLeftFraming NilLiteralValue  
                                                    NilElementRightFraming 
 
NilElementLeftFraming = LeadingAlignment NilElementInitiator PrefixLength 
NilElementRightFraming = NilElementTerminator TrailingAlignment 
 
NilElementLiteralContent = LeftPadding  NilLiteralValue RightPadOrFill 
 
 
SimpleNormalRep = LeftFraming PrefixLength SimpleContent RightFraming 
ComplexNormalRep = LeftFraming PrefixLength ComplexContent ElementUnused 
                                    RightFraming 
 
LeftFraming = LeadingAlignment Initiator  
RightFraming = Terminator TrailingAlignment 
 
PrefixLength = SimpleContent | PrefixPrefixLength SimpleContent 
PrefixPrefixLength = SimpleContent  
 
SimpleContent =   LeftPadding [ NilLogicalValue | SimpleValue ]  RightPadOrFill  
ComplexContent = Sequence | Choice  
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Sequence =  LeftFraming SequenceContent RightFraming  

SequenceContent = [ PrefixSeparator  EnclosedContent [ Separator EnclosedContent ]*  

                                   PostfixSeparator ] 

 

Choice = LeftFraming ChoiceContent RightFraming 

ChoiceContent = [ EnclosedContent ] ChoiceUnused 
 
EnclosedContent = [ EnclosedElement | Array | Sequence | Choice ] 
 
Array = [ EnclosedElement [ Separator EnclosedElement ]*  [ Separator StopValue] ] 
StopValue = SimpleElement 
 
 
LeadingAlignment = LeadingSkip AlignmentFill 
TrailingAlignment = TrailingSkip 
RightPadOrFill = RightPadding | RightFill | RightPadding RightFill 
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6. Security Considerations 

Security considerations are dealt with in the corresponding sections of the DFDL 1.0 
specification [DFDL].   
 
No additional security issues have been raised. 
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8. Intellectual Property Statement 

The OGF takes no position regarding the validity or scope of any intellectual property or other 
rights that might be claimed to pertain to the implementation or use of the technology 
described in this document or the extent to which any license under such rights might or might 
not be available; neither does it represent that it has made any effort to identify any such 
rights.  Copies of claims of rights made available for publication and any assurances of 
licenses to be made available, or the result of an attempt made to obtain a general license or 
permission for the use of such proprietary rights by implementers or users of this specification 
can be obtained from the OGF Secretariat. 
 
The OGF invites any interested party to bring to its attention any copyrights, patents or patent 
applications, or other proprietary rights which may cover technology that may be required to 
practice this recommendation.  Please address the information to the OGF Executive 
Director. 
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9. Disclaimer 

This document and the information contained herein is provided on an “As Is” basis and the 
OGF disclaims all warranties, express or implied, including but not limited to any warranty that 
the use of the information herein will not infringe any rights or any implied warranties of 
merchantability or fitness for a particular purpose. 



GWD-E  Stephen M Hanson (IBM) 
OGF DFDL WG   September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 62 of 63  

10. Full Copyright Notice 

 
Copyright (C) Open Grid Forum (2014). Some Rights Reserved.  
 
This document and translations of it may be copied and furnished to others, and derivative 
works that comment on or otherwise explain it or assist in its implementation may be 
prepared, copied, published and distributed, in whole or in part, without restriction of any kind, 
provided that the above copyright notice and this paragraph are included as references to the 
derived portions on all such copies and derivative works. The published OGF document from 
which such works are derived, however, may not be modified in any way, such as by 
removing the copyright notice or references to the OGF or other organizations, except as 
needed for the purpose of developing new or updated OGF documents in conformance with 
the procedures defined in the OGF Document Process, or as required to translate it into 
languages other than English. OGF, with the approval of its board, may remove this restriction 
for inclusion of OGF document content for the purpose of producing standards in cooperation 
with other international standards bodies.  
 
The limited permissions granted above are perpetual and will not be revoked by the OGF or 
its successors or assignees.  
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