
GWD-R Thijs Metsch, Platform Computing
OCCI-WG Andy Edmonds, Intel

October 7, 2010
Updated: December 6, 2010

Open Cloud Computing Interface - RESTful HTTP Rendering

Status of this Document

This document provides information to the community regarding the specification of the Open Cloud Com-
puting Interface. Distribution is unlimited.

Copyright Notice

Copyright c©Open Grid Forum (2009-2010). All Rights Reserved.

Trademarks

OCCI is a trademark of the Open Grid Forum.

Abstract

This document, part of a document series, produced by the OCCI working group within the Open Grid Forum
(OGF), provides a high-level definition of a Protocol and API. The document is based upon previously gathered
requirements and focuses on the scope of important capabilities required to support modern service offerings.

(Andy: need to set the official version of OCCI - is it 1.1, 0.2, 1.0??)

(Andy: Kind sub-types are mentioned in the doc as are resource instances. Need to align this
terminology with the core and infrastructure documents e.g. a REST resource is the equivalent of
an ’entity sub-type’ instance. Could be dealt with by glossary.)

Ralf: Yes, Kind need be replaced with Entity in serveral places. “resource instance” is ok to use (when
referring to Entity sub-type instance), it is in the glossary already

(Andy: Filtering mechanism should be MUST)

(Andy: little reference to collections)

(Andy: there are references to service provider, service etc. This should be aligned to core and
infrastructure. There is is known as an ’OCCI implementation’)

(Andy: header should be referred to as ’HTTP header’ throughout)



GWD-R December 6, 2010

Contents

1 Introduction 3

2 Notational Conventions 3

3 A RESTful HTTP Rendering for OCCI 4

3.1 Behaviour of the HTTP Verbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 A RESTful Rendering of OCCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2.1 Namespace Hierarchy and Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2.2 Various Operations and their Prerequisites and Behaviours . . . . . . . . . . . . . . . 7

3.3 Syntax and Semantics of the Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Rendering of an OCCI-Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.2 Rendering of OCCI-Links and OCCI-Actions . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.3 Rendering of OCCI-Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.4 Rendering of Location-URLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.5 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 General HTTP Behaviour Adopted by OCCI . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.1 Security and Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.2 Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.3 Content-type and Accept headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.4 Return codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Contributors 16

5 Glossary 17

6 Intellectual Property Statement 17

7 Disclaimer 17

8 Full Copyright Notice 18

9 References 18

occi-wg@ogf.org 2



GWD-R December 6, 2010

1 Introduction

The Open Cloud Computing Interface (OCCI) is a RESTful Protocol and API for all kinds of Management
tasks. OCCI was originally initiated to create a remote management API for IaaS1 model based Services,
allowing for the development of interoperable tools for common tasks including deployment, autonomic scaling
and monitoring. It has since evolved into an flexible API with a strong focus on interoperability while still
offering a high degree of extensibility. The current release of the Open Cloud Computing Interface is suitable
to serve many other models in addition to IaaS, including e.g. PaaS and SaaS.

In order to be modular and extensible the current OCCI specification is released as a suite of complimentary
documents which together form the complete specification. The documents are divided into three categories
consisting of the OCCI Core, the OCCI Renderings and the OCCI Extensions.

• The OCCI Core specification consist of a single document defining the OCCI Core Model. The OCCI
Core Model can be interacted with renderings (including associated behaviours) and expanded through
extensions.

• The OCCI Rendering specifications consist of multiple documents each describing a particular rendering
of the OCCI Core Model. Multiple renderings can interact with the same instance of the OCCI Core
Model and will automatically support any additions to the model which follow the extension rules defined
in OCCI Core.

• The OCCI Extension specifications consist of multiple documents each describing a particular extension
of the OCCI Core Model. The extension documents describe additions to the OCCI Core Model defined
within the OCCI specification suite.

The current specification consist of three documents. Future releases of OCCI may include additional rendering
and extension specifications. The documents of the current OCCI specification suite are:

OCCI Core describes the formal definition of the the OCCI Core Model [?].

OCCI HTTP Rendering defines how to interact with the OCCI Core Model using the RESTful OCCI API
[?]. The document defines how the OCCI Core Model can be communicated and thus serialised using
the HTTP protocol.

OCCI Infrastructure contains the definition of the OCCI Infrastructure extension for the IaaS domain [?].
The document defines additional resource types, their attributes and the actions that can be taken on
each resource type.

2 Notational Conventions

All these parts and the information within are mandatory for implementors (unless otherwise specified). The
key words ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”, ”SHOULD”, ”SHOULD
NOT”, ”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in this document are to be interpreted as described
in RFC 2119 [?].

All examples in this document use one of the following three Categories. An example namespace is also given.
Syntax and Semantics is explained in the remaining sections of the document. These examples do not strive
to be complete but to show the functionalities OCCI has:

Ralf: Instead of ”Categories” say ”HTTP Category Headers representing two Kind instances and one Mixin
instance” or similar.

That would make this text unreadable – -1

1Infrastructure as a Service

occi-wg@ogf.org 3



GWD-R December 6, 2010

Category: compute;

scheme=http://schemas.ogf.org/occi/infrastructure;

location=/compute

(This is an compute kind)

Category: storage;

scheme=http://schemas.ogf.org/occi/infrastructure;

location=/storage

(This is an storage kind)

Category: my_stuff;

scheme=http://example.com/occi/my_stuff;

location=/my_stuff

(This is a mixin of user1)

The following namespace hierarchy is used in the examples:

http://example.com/-/

http://example.com/vms/user1/vm1

http://example.com/vms/user1/vm2

http://example.com/vms/user2/vm1

http://example.com/disks/user1/disk1

http://example.com/disks/user2/disk1

http://example.com/compute/

http://example.com/storage/

http://example.com/my_stuff/

By default all examples given in this document created using text/plain as Content-Type and Accept HTTP
header.

The following notations are used when referring to parts or complete URIs:

http://www.example.com:8080/foo/bar;action=stop

< > < Authority >< Path >< Fragment >

^

Scheme

3 A RESTful HTTP Rendering for OCCI

Ralf: The intro text in below gives a nice description of OCCI and REST. However I am missing the relation
to OCCI Core here. I.e. that OCCI HTTP Rendering in fact is just one rendering of possibly many etc.
Adding an some text describing OCCI Core vs OCCI renderings first and then jumping in to the HTTP REST
specifics should solve it nicely though.

The HTTP Protocol is the underlying core fabric of OCCI and OCCI uses all the features of the HTTP
and underlying protocols offer. OCCI also builds upon the Resource Oriented Architecture (ROA). ROA’s
use Representation State Transfer (REST) (Andy: use references of Feldings thesis and the O’Reilly
book on REST) to cater for client and service interactions. Interaction with the system is by inspection
and modification of a set of related resources and their states, be it on the complete state or a sub-set.
Resources MUST be uniquely identified. HTTP is an ideal protocol to use in ROA systems as it provides
the means to uniquely identify individual resources through URLs as well as operating upon them with a set
of general-purpose methods known as HTTP verbs. These HTTP verbs map loosely to the resource related
operations of Create (POST), Retrieve (GET), Update (POST/PUT) and Delete (DELETE).

The following section describe the general behaviour for all HTTP based renderings. Later sections will
describe the syntax and semantic of how to render the OCCI Core model with different Content-Types.

occi-wg@ogf.org 4



GWD-R December 6, 2010

Each Kind sub-type instance (Andy: This now should be Entity sub-type) within an OCCI system must
be uniquely identified by an URI. The structure of these URIs is opaque and the system should not assume a
static, pre-determined scheme for their structure (Example: http://example.com/vms/user1/vm1).

3.1 Behaviour of the HTTP Verbs

As OCCI adopts a ROA, REST-based architecture and uses HTTP as the foundation protocol the means of
interaction with all RESTful resource instances is through the four main HTTP verbs (Andy: We should
mention the existence of other verbs too (HEAD, OPTIONS)). OCCI service implementations MUST,
at a minimum, support these verbs as shown in Table 1:

Table 1. HTTP Verb Behaviour (Andy: Can this table be completely ruled? Is hard to read left to right) Ralf: Done. Still
a bit hard to read though.

Type GET POST (cre-
ate)

POST (ac-
tion)

PUT (create) PUT (update) DELETE

resource instance
(Andy: this needs
to be aligned to
core and infrastruc-
ture terminology)

Rendering of
this instance

Create a new
instance

Trigger action
(Andy: at-
tributes/ pa-
rameters?)

Create an in-
stance at the
given path

Update an in-
stance at an
given path

Delete this
resource
instance

Path in the names-
pace hierarchy end-
ing with /

Listing of
all instances
below this
namespace

Create a new
instance

N/A N/A N/A Delete all
the entries
below this
namespace
hierarchy

Location of an Mixin
or Kind

URI-Listing
containing
Paths to all
entities be-
longing to this
Mixin or Kind

N/A Trigger action
(defined for
this kind or
mixin) on
all resource
entities be-
longing to this
Mixin or Kind
(Andy: at-
tributes/parameters?)

Add an
resource in-
stance to a
mixin

N/A Delete an
instance given
in the request
from a mixin

Query Interface
(Andy: new reader
’what’s this?’ per-
haps introduce or
reference section)

Listing of all
registered cat-
egories

N/A N/A Add a user de-
fined mixin

N/A remove a user-
defined mixin
(defined in the
request)

3.2 A RESTful Rendering of OCCI

The following sections and paragraphs describe how the OCCI model MUST be implemented by service
providers. Operations which are not defined are out of scope for this specification and MAY be implemented
by the service provider. This is the minimal set to ensure interoperability.

3.2.1 Namespace Hierarchy and Location

Ralf: I think we need a section explicitly describing the mapping of OCCI Core to OCCI HTTP rendering.
After all, an OCCI rendering describes ”how to interact with the OCCI Core model”. This section should
describe:

• The flat names-pace used in Core, i.e. just a bunch of IDs (Entity.id).

• The hierarchical names-pace of RESTful HTTP (very brief).

occi-wg@ogf.org 5



GWD-R December 6, 2010

• How the hierarchical HTTP names-pace is mapped into the OCCI Core names-pace. (This is the
important stuff.)

Ralf: Names-pace and ”names-pace hierarchy” need to be defined, but the above described section should
handle that.

The namespace and the hierarchy are free definable by the Service Provider. Although the Service Provider
MUST implement the location path feature(Andy: reference to this section needed), which is required by
OCCI for discovery capabilities and operations on Mixins and Kinds. Location paths tell the client where all
resource instance of one Kind or Mixin can be found regardless of the hierarchy the service provider defines.
These paths are discoverable by the client through the Query interface (Andy: section ref needed).

These location paths can be part of the namespace or rendered alongside. The following example shows how
the locations paths are rendered alongside the namespace hierarchy:

Category: compute;

scheme=http://schemas.ogf.org/occi/infrastructure;

location=/compute

(This is an compute kind)

Category: storage;

scheme=http://schemas.ogf.org/occi/infrastructure;

location=/storage

(This is an storage kind)

Category: my_stuff;

scheme=http://example.com/occi/my_stuff;

location=/my_stuff

(This is a mixin of user1)

The following namespace hierarchy is used in the examples:

http://example.com/-/

http://example.com/vms/user1/vm1

http://example.com/vms/user1/vm2

http://example.com/vms/user2/vm1

http://example.com/disks/user1/disk1

http://example.com/disks/user2/disk1

http://example.com/compute/

http://example.com/storage/

http://example.com/my_stuff/

Location paths can also be part of the namespace hierarchy:2

(Andy: what’s the difference with the two examples? It’s not obvious)

Category: compute;

scheme=http://schemas.ogf.org/occi/infrastructure;

location=/vms

(This is an compute kind)

Category: storage;

scheme=http://schemas.ogf.org/occi/infrastructure;

location=/disks

(This is an storage kind)

Category: my_stuff;

2/vms/user1/vm1 (= OCCI base type ID) is a resource instance below the namespace path /vms/user1/.

occi-wg@ogf.org 6



GWD-R December 6, 2010

scheme=http://example.com/occi/my_stuff;

location=/my_stuff

(This is a mixin of user1)

The following namespace hierarchy is used in the examples:

http://example.com/-/

http://example.com/vms/user1/vm1

http://example.com/vms/user1/vm2

http://example.com/vms/user2/vm1

http://example.com/disks/user1/disk1

http://example.com/disks/user2/disk1

http://example.com/my_stuff/

3.2.2 Various Operations and their Prerequisites and Behaviours

3.2.2.1 Operations on Resource Instances The following operations MUST be implemented by the
service provider for operations on resource instances. The resource instance is uniquely identified (Andy: say
how it maps to in core Entity::id) by an URI (For example: http://example.com/vms/user1/vm1).The
path MUST not end with an ’/’ (Andy: say why, what does it mean if ’/’ is appended).

Creating a Resource Instance A request to create a resource instance MUST contain at least one Category
definition Ralf: Say ”Category Header” instead of ”Category definition”. Otherwise it is easy to mix-up
this with the OCCI Core model Category type. Even when using text/plain rendering it is ”Category
Headers” that we put into the body. It least from a syntax point of view. which is (or relates to) a
Kind definition. If multiple Categories are defined the first one which is (or relates to) to a Kind MUST
be used for defining the type of the resource instance (Andy: Is this defined in core? If not should
it in some way? This mechanism seems somewhat arbitrary.). Ralf: I would rather say something
like: “If multiple Category Headers are supplied in a request and they refer to more than one unique
Kind instance, ...”. That would be OK with Core. However, I would argue this particular case MUST
return Bad Request. Optional information which might be provided by the client and if available MUST
be used are Links and Attributes. Two ways can be used to create a new resource instance - HTTP
POST or PUT (Andy: HTTP 200 is mentioned here and makes no reference to 202 until much
later in doc. Should mention/reference it here):

> POST / HTTP/1.1

> [...]

>

> Category:compute;scheme=http://schemas.ogf.org/occi/infrastructure

> X-OCCI-Attribute:occi.compute.cores=2 occi.compute.hostname=foobar

> [...]

< HTTP/1.1 200 OK

< [...]

< Location:http://example.com/vms/user1/vm1

The path on which this POST verb is executed can be any existing path in the hierarchy of the service
providers namespace. The service must return the Location of the newly created resource instance.

Or HTTP PUT can be used. In this case the client ask the service provider to create a resource instance
at a certain path in the namespace hierarchy.3 (Andy: PUT will fail if the identifier supplied as the
last fragment already exists. Implementations must ensure unique identities for resources.)

3If a Service Provider does not want the user to define the path of a resource instance it can return a Bad Request return
code - See section 3.4.4.

occi-wg@ogf.org 7



GWD-R December 6, 2010

> PUT /vms/user1/my_first_virtual_machine HTTP/1.1

> [...]

>

> Category:compute;scheme=http://schemas.ogf.org/occi/infrastructure

> X-OCCI-Attribute:occi.compute.cores=2 occi.compute.hostname=foobar

> [...]

< HTTP/1.1 200 OK

< [...]

The service will return an OK code.

Retrieving a Resource Instance For retrieval the HTTP GET verb is used. It MUST return at least the
Category which defines the Kind of the resource instance. Links pointing to related Ralf: When referring
to the ”Link Header” say ”Link Header” instead of just Link/Links. resource instances, other URI or
Actions MUST be included if present. Those Links SHOULD only be the Actions which are currently
applicable (Andy: remember we should be able to use the general Link specification too, e.g.
link to documentation.). The Attributes of the resource instance MUST be exposed to the client if
available.

> GET /vms/user1/vm1 HTTP/1.1

> [...]

< HTTP/1.1 200 OK

< [...]

< Category:compute;scheme=http://schemas.ogf.org/occi/infrastructure

< Category:my_stuff;scheme=http://example.com/occi/my_stuff

< X-OCCI-Attribute:occi.compute.cores=2 occi.compute.hostname=foobar

< Link: [...]

Updating a Resource Instance Before updating a resource instance it is RECOMMENDED that the client
first retrieves the resource instance. Updating is done using the HTTP PUT verb. Only the information
(Links, Attributes or Mixin Categories), which are updated MUST be provided along with the request.4

(Andy: Is this advocating partial-updates? If so recommend that this is removed in favour of
full updates. Partial-PUTs are not clear in REST systems.) Ralf: I think it is. I argue we keep it
that way, i.e. do support partial updates. You can always supply the whole attribute-set if you want a
full update. We are not fully REST compliant in any case.

> PUT /vms/user1/vm1 HTTP/1.1

> [...]

>

> X-OCCI-Attribute: occi.compute.memory=4.0

> [...]

< HTTP/1.1 200 OK

< [...]

Deleting a Resource Instance A resource instance can be deleted using the HTTP DELETE verb. No other
information SHOULD be added to the request. (Andy: What are the effects on possibly linked
resources or resources that have Links to the resource to be deleted?)

> DELETE /vms/user1/vm1 HTTP/1.1

> [...]

< HTTP/1.1 200 OK

< [...]

4Changing the type of the resource instance MUST not be possible.

occi-wg@ogf.org 8



GWD-R December 6, 2010

Triggering an Action on a Resource Instance To trigger an action on a resource instance the request
MUST containing the Category (Andy: The example does not show this.) defining the Action. It
MAY include attributes which are the parameters of the action. Actions are triggered using the HTTP
POST verb and by adding a fragment to the URI. This fragment exposes the term of the Action. If an
action is not available or a proper return code (Andy: what code precisely?) should be returned.

> POST /vms/user1/vm1;action=stop HTTP/1.1

> [...]

> X-OCCI-Attribute:method=poweroff

< HTTP/1.1 200 OK

< [...]

Ralf: I like the Action implementation. I.e. action=<term> in the URI and attributes as X-OCCI-
Attribute headers. Only thing I want to change is to use ?action=... instead of ;action=... The
’?’ query separator is recommended by RFC3986.

3.2.2.2 Handling the Query Interface The query interface MUST be implemented by all services sup-
porting OCCI. It MUST be found at the path /-/ (Andy: should be noted that /-/ is off the root of the
implementation’s domain e.g. http://foo.bar/-/) Ralf: Yes, and http://example.com/api/-/ should
also be allowed . The following operations, listed below, MUST be implemented by the service.

Ralf: In the query interface section it gets a bit tricky talking about ”Category Headers”, ”Kind instances”,
”Mixin instances” and ”Category instances (used to identify Actions)”. These are all different things. The
”Category Header” is used to render Kind, Mixin and Category instances. Saying ”Adding a Mixin category
definition” need ”Mixin category” to be defined somewhere. Saying ”Adding a Mixin instance” would be
more correct. Either way is probably ok as long as the terminology used is defined somewhere.

Retrieving All Registered Categories The HTTP verb GET must be used to retrieve all categories the
service can handle. This allows the client to discover the capabilities of the Service provider. The result
MUST contain all information about the Category (including Attributes and Actions assigned to this
Category). (Andy: content type? appears inline and not URI-List is the default - not clear.)

> GET /-/ HTTP/1.1

> [...]

< HTTP/1.1 200 OK

< [...]

< Category:compute;scheme=http://schemas.ogf.org/occi/infrastructure; \

attributes=occi.compute.cores,occi...; \

rel=http://schemas.ogf.org/occi/core\#entity; \

actions=http://schemas.ogf.org/occi/infrastructure/compute/action#stop,...; \

location=/compute

< Category:my_stuff;scheme=http://example.com/occi/my_stuff; \

location=/my_stuff

< Category: storage; scheme=http://schemas.ogf.org/occi/infrastructure;

< attributes="...";

< actions="...";

< rel=http://schemas.ogf.org/occi/core\#entity;

< location=/storage

<

(Andy: Useful if the backslash character in the verbatim sections is explained in the conventions
section) Ralf: I would rather remove the backslashes altogether. They are not necessary. RFC2616
allow line-breaking HTTP Headers. I have changed the last Category Header above to show what it
would look like.

occi-wg@ogf.org 9



GWD-R December 6, 2010

Note: A Service provider SHOULD support a filtering mechanism. If a Category is provided in the
request (Andy: body or header?) the server SHOULD only return the complete rendering of the
provided Category.

Adding a Mixin category definition (Andy: this feature is new - I presume it’s related to adding
tags? Doesn’t make sense for a client to add new ’functional’ mixins) Ralf: It is for user-defined
tags. Agreed that attributes/actions probably do not make much sense here. To add a Mixin to the
service the HTTP PUT verb MUST be used. All possible information for the Mixin category must be
defined. At least the Category term, scheme and location MUST be defined. Actions and Attributes
are optional:

> GET /-/ HTTP/1.1

> [...]

> Category:my_stuff;scheme=http://example.com/occi/my_stuff; \

rel=http:/example.com/occi/something_else#mixin; \

attributes=...; \

actions=...; \

location=/my_stuff

< HTTP/1.1 200 OK

< [...]

The service might reject this request if it does not allow user-defined Categories to be created. Also on
name collisions of the defined location path the service provider might reject this operation.

Removing a Mixin category definition (Andy: again, this is new but we need to state its purpose.
Is it for user management of tags?) A user defined Mixin CAN be removed (if allowed) (Andy:
removed from what?) by using the HTTP DELETE verb. The information about which Mixin should
be deleted MUST be provided in the request:

> DELETE /-/ HTTP/1.1

> [...]

> Category:my_stuff;scheme=http://example.com/occi/my_stuff;

< HTTP/1.1 200 OK

< [...]

3.2.2.3 Operations on Mixins or Kinds All the following operations CAN only be be done on a location
path provided by category definition. It MUST end with an /.

Retrieving All Resource Instances Belonging to Mixin or Kind (Andy: Should refer to collections in
core here)

The HTTP verb GET must be used to retrieve all resource instances. The service provider MUST return
a URI-list containing all resource instances which belong to the requested Mixin or Kind:

> GET /compute/ HTTP/1.1

> [...]

< HTTP/1.1 200 OK

< Content-type: text/uri-list

< [...]

<

< http://example.com/vms/user1/vm1

< http://example.com/vms/user1/vm2

< http://example.com/vms/user2/vm1

occi-wg@ogf.org 10



GWD-R December 6, 2010

Note: A Service provider SHOULD support a filtering mechanism. If a Category (Andy: Should
use Kind and Mixin here.) is provided in the request the server SHOULD only return the resource
instances belonging to the provided Category. The provided category definition SHOULD be different
from the one Category definition which defined the location path used in the request.

Ralf: Core currently requires an OCCI client to be able to retrieve a subset of a collection. Maybe
change the above to a MUST or introduce paging? (Andy: +1 to Ralf’s comment)

Triggering Actions on All Instances of a Mixin or Kind Actions can be triggered on all resource instances
of the same Mixin or Kind. The HTTP POST verb MUST be used. Also the Action MUST be defined
by the category which defines the location path which is used in the request:

> POST /compute/;action=stop HTTP/1.1

> [...]

X-OCCI-Attribute:method=poweroff

< HTTP/1.1 200 OK

< [...]

Adding a Resource Instance to a Mixin (Andy: Might be better phrased as ’adding a mixin to a
resource instance’ ) One or multiple resource instances can be associated with a Mixin using the
HTTP PUT verb. The URIs which uniquely defined the resource instance MUST be provided in the
request:

> PUT /my_stuff/ HTTP/1.1

> [...]

> X-OCCI-Location:http://example.com/vms/user1/vm1, \

http://example.com/vms/user1/vm2, \

http://example.com/disks/user1/disk1

< HTTP/1.1 200 OK

< [...]

Removing a Resource Instance from a Mixin (Andy: See previous comment)One or multiple resource
instances can be removed from a Mixin using the HTTP DELETE verb (Andy: This ’feels’ unRESTful
- operations on either one or all resources at a URL) . The URIs which uniquely defined the resource
instance MUST be provided in the request:

> DELETE /my_stuff/ HTTP/1.1

> [...]

> X-OCCI-Location:http://example.com/vms/user1/vm1, \

http://example.com/vms/user1/vm2, \

http://example.com/disks/user1/disk1

< HTTP/1.1 200 OK

< [...]

3.2.2.4 Operation on Paths in the Namespace (Andy: Isn’t the namespace just a URL pointing
to resource(s)? The following operations are defined when operating on paths in the namespace hierarchy
which are not location paths nor resource instances (Andy: unclear sentence - what’s the intent?). They
MUST end with / (For example http://example.com/vms/user1).

Retrieving All Resource Instances Below a Path The HTTP verb GET must be used to retrieve all re-
source instances. The service provider MUST return a URI-list (Andy: noob comment ’what’s
that?!’) containing all resource instances which are children of the provided URI in the namespace
hierarchy:

occi-wg@ogf.org 11



GWD-R December 6, 2010

> GET /vms/user1/ HTTP/1.1

> [...]

< HTTP/1.1 200 OK

< Content-type: text/uri-list

< [...]

<

< http://example.com/vms/user1/vm1

< http://example.com/vms/user1/vm2

Note: A Service provider SHOULD support a filtering mechanism. If a category is provided in the
request the server SHOULD only return the resource instances belonging to the provided Category.

Deletion all resource instances below a path (Andy: this is a potentially dangerous operation!) Ralf:
+10 on that! The DELETE operation is very dangerous. DELETE used on a Mixin location only
disassociates a resource instance from the Mixin. The same operation on a non-Mixin-location would
remove everything there. This is especially dangerous with user-defined Mixins since the effect of the
DELETE operation on different paths can change at run-time. The HTTP verb DELETE must be used
to delete all resource instances under a hierarchy:

> DELETE /vms/user1/ HTTP/1.1

> [...]

< HTTP/1.1 200 OK

< [...]

Note: A Service provider SHOULD support a filtering mechanism. If a category is provided in the
request the server SHOULD only return the resource instances belonging to the provided Category.

3.3 Syntax and Semantics of the Rendering

(Andy: Perhaps should be before previous section?) The following subsections demonstrate how the
OCCI base types can be syntactically rendered.

Ralf: I would suggest talking about ”HTTP Category Header” instead of ”OCCI-Category”, ”HTTP Link
Header” instead of ”OCCI-Links”, etc. Then each section can describe how the particular HTTP header is
used by the OCCI HTTP rendering.

3.3.1 Rendering of an OCCI-Category

(Andy: Should we deal with/reference multiple header concatenation here? It’s pretty important
not to be hidden out of context.) The semantics of the Category in the OCCI context is described in the
OCCI Core & Models document. This rendering follows the Category header defined by the Web Categories
specification 5 and MUST be rendered accordingly.

Category: <term>; scheme="<scheme>"

[;rel=<space-separated list of related Category identifiers>]

[;attributes=<space-seperated list of attribute names>]

[;title=<Title of this Category>]

[;location=<Parent location>]

There is NO order for the optional part (Andy: What ’optional’ part?).

5http://tools.ietf.org/html/draft-johnston-http-category-header-01

occi-wg@ogf.org 12



GWD-R December 6, 2010

3.3.2 Rendering of OCCI-Links and OCCI-Actions

The semantics of the Link header in the OCCI context is described in the OCCI Core & Models document.
This rendering follows the Link header defined by the Web Linking specification 6 and MUST be rendered
accordingly.

Link: <Resource URL>;

rel=<space-separated list of Category identifiers of the target Resource type>

[;self=<Link instance URL>]

[;category=<space-separated list of Category identifiers of the Link type>

[;<attribute name>=<attribute value>] ... ]

or in case it is an Action:

Link: <Resource URL> + ";action=" + <Term of the Action>;

rel=<Category identifier of the Action>

3.3.3 Rendering of OCCI-Attributes

The X-OCCI-Attribute MUST be used to render the attributes associated with a OCCI Kind. A simple key-
value format is used. The field value consist of an attribute name followed by an equal sign (”=”) and the
attribute value. The attribute value must be quoted (Andy: double or single?) if it includes a separator
character, see RFC 2616 (page 16).

X-OCCI-Attribute: <attribute name>=<attribute value>

Valid attribute names for OCCI Kinds are specified in appropriate Extension documents (Andy: ref infras-
tructure).

3.3.4 Rendering of Location-URLs

To render an OCCI representation solely in the header, the X-OCCI-Location HTTP header MUST be used
to return a list of Kind URLs. Each header field value correspond to a single URL. Multiple Kind URLs are
returned using multiple X-OCCI-Location headers. See RFC 2616 for information on how to render multiple
HTTP headers.

X-OCCI-Location: <URL>

3.3.5 Fields

(Andy: a little unclear - maybe add ’the required HTTP headers are those needed at a minimum
to represent the particular OCCI core model entity’) Ralf: I like this table, having a clear overview of
which HTTP Header is used to render a particular OCCI type/instance is very good in my opinion. Table
need to be updated though. The following setups show how the Core Model MUST be rendered. Shown are
the fields which MUST be available in a request from the Client or a response from the Server.

Operation Required HTTP-Header(s) Optional HTTP-Header(s) Notes
Rendering of a Category instance Category N/A
Rendering of a Kind instance Category N/A
Rendering of a Mixin instance Category N/A
Rendering a list of Category, Kind and Mixin instances Category N/A
Rendering a list of Entity sub-type instances X-OCCI-Location N/A
Rendering of a Resource Category X-OCCI-Attribute, Link
Rendering of an Action Category, Link X-OCCI-Attribute
Rendering of a Link Category, Link X-OCCI-Attribute

6http://tools.ietf.org/html/draft-nottingham-http-link-header-10

occi-wg@ogf.org 13



GWD-R December 6, 2010

3.4 General HTTP Behaviour Adopted by OCCI

The following sections deal with some general HTTP features which are adopted by OCCI.

(Andy: If this is general in respect to OCCI and in the context of HTTP then we should include
the use of caching-related headers)

3.4.1 Security and Authentication

OCCI does not require that an authentication mechanism be used nor does it require that client to service
communications are secured. It does recommend that an authentication mechanism be used and that where
appropriate, communications are encrypted using HTTP over TLS. The authentication mechanisms that CAN
be used with OCCI are those that can be used with HTTP and TLS, for example Basic ??, Digest ?? and
OAuth ??. If an OCCI service requires authentication the response to a request that MUST be authenticated
must be a HTTP 401 code that indicates the request is authorised. In response to authenticate the client
MUST set a WWW-Authenticate header field and through this indicate the authentication mechanism.

3.4.2 Versioning

Information about what version of OCCI is supported by a provider MUST be advertised to a client on each
response to a client. The version field in the response MUST include the value OCCI/X.Y, where X is the
major version number and Y is the minor version number of the implemented OCCI specification. In the
case of a HTTP Header Rendering, the server response MUST relay versioning information using the HTTP
header name ’Server’.

HTTP/1.1 202 Accepted

Server: occi-server/1.1 (linux) OCCI/1.0

[...]

Complimenting the service-side behaviour of an OCCI implementation, a client MUST indicate to the OCCI
service implementation the version it expects to interact with. For the clients, the information MUST be
advertised in all requests it issues. In the case of a HTTP Header Rendering, the client request MUST relay
versioning information in the ’User-Agent’ header. The ’User-Agent’ field MUST include the same value
(OCCI/X.Y) as supported by the Server HTTP header.

(Andy: what’s <UDN>?)

GET <UDN> HTTP/1.1

Host: example.com

User-Agent: occi-client/1.1 (linux) libcurl/7.19.4 OCCI/1.0

[...]

If a service receives a request from a client that supplies a version number higher than the service supports,
the service MUST respond back to the client with an exception indicating that the requested version is
not implemented. Where a client implements OCCI using a HTTP transport, the HTTP code 501, not
implemented, MUST be used.

3.4.3 Content-type and Accept headers

Ralf: Add some HTTP examples for the different Content-types. Just use the same style as in the other
sections.

A server MUST react according to the Accept header the client provides. If none is given - or */* is used - the
service MUST use the Content-type text/plain. This is the fall-back rendering and MUST be implemented.

occi-wg@ogf.org 14



GWD-R December 6, 2010

Otherwise the according rendering MUST be used. Each Rendering SHOULD expose which Accept and
Content-type header fields it can handle. Overall the service MUST support the text/occi, text/plain and
text/uri-list Content-types.

The server MUST also return the proper Content-type header. If a client provides information with a Content-
Type - the information MUST be parsed accordingly.

When the Client request a Content-Type that will result in an incomplete or faulty rendering the Service
MUST return the unsupported media type , 415, HTTP code.

3.4.3.1 The Content-type text/plain While using this rendering with the Content-Type text/plain the
information described in section 3.3 MUST be placed in the HTTP Body.

Each rendering of an OCCI base type will be placed in the body. Each entry consists of a name followed by
a colon (”:”) and the field value. The format of the field value is specified separately for each of the three
header fields, see section 3.3 (Andy: is it not section 3.2?).

3.4.3.2 The Content-type text/occi While using this rendering with the Content-Type text/occi the
information described in section ?? MUST be placed in the HTTP Header. The body MUST contain the
string ’OK’ on successful operations. (Andy: and on failures?).

The HTTP header fields MUST follow the specification in RFC 2616 [?]. A header field consists of a name
followed by a colon (”:”) and the field value. The format of the field value is specified separately for each of
the header fields, see section 3.3.

Limitations: HTTP header fields MAY appear multiple times in a HTTP request or response. In order
to be OCCI compliant the specification of multiple message-header fields according to RFC 2616 MUST be
fully supported. In essence there are two valid representation of multiple HTTP header field values. A header
field might either appear several times or as a single header field with a comma-separated list of field values.
Due to implementation issues in many web frameworks and client libraries it is RECOMMENDED to use the
comma-separated list format for best interoperability.

HTTP header field values which contain separator characters MUST be properly quoted according to RFC
2616.

Space in the HTTP header section of a HTTP request is a limited resource. By this, it is noted that many
HTTP servers limit the number of bytes that can be placed in the HTTP Header area. Implementers MUST
be aware of this limitation in their own implementation and take appropriate measures so that truncation of
header data does NOT occur.

3.4.3.3 The Content-type text/uri-list This Rendering can handle the text/uri-list Accept Header. It
will use the Content-type text/uri-list.

This rendering cannot render resource instances or Kinds or Mixins directly but just links to them. For concrete
rendering of Kinds and Categories the Content-types text/occi, text/plain MUST be used. If a request is
done with the text/uri-list in the Accept header, while not requesting for a Listing a Bad Request MUST be
returned.

3.4.4 Return codes

At any point the service provider CAN return any of the following HTTP Return Codes:

Note: Other return codes can also be used if properly used. (Andy: possibly not useful - might encourage
behaviour not helpful to interop)

occi-wg@ogf.org 15



GWD-R December 6, 2010

Table 2. HTTP Return Codes

Code Description Notes

200 OK
202 Accepted For example when creating a Virtual machine the operation

can take a while.
400 Bad Request For example on parsing errors or missing information
401 Unauthorized
403 Forbidden
405 Method Not Allowed
409 Conflict
410 Gone
415 Unsupported Media Type
500 Internal Server Error
501 Not Implemented
503 Service Unavailable

4 Contributors

Editors: Andy Edmonds, Thijs Metsch
Contributors: Alexander Papaspyrou, Ralf Nyrén, Sam Johnston

We would like to thank the following people who contributed to this document:

Name Affiliation Contact
Michael Behrens R2AD behrens.cloud at r2ad.com
Andy Edmonds Intel - SLA@SOI project andy at edmonds.be
Sam Johnston Google samj at samj.net
Gary Mazzaferro OCCI Counselour - Exxia, Inc. garymazzaferro at gmail.com
Thijs Metsch Platform Computing, Sun Mi-

crosystems
tmetsch at platform.com

Ralf Nyrn Aurenav ralf at nayren.net
Alexander Papaspyrou TU-Dortmund alexander.papaspyour at tu-

dortmund.de
Shlomo Swidler Orchestratus shlomo.swidler at orchestratus.com

Next to these individual contributions we value the contributions from the OCCI working group.

occi-wg@ogf.org 16



GWD-R December 6, 2010

5 Glossary

Term Description
Action An OCCI base type. Represent an invocable operation on a Entity sub-type instance

or collection thereof.
Category A type in the OCCI model. The parent type of Kind.
Client An OCCI client.
Collection A set of Entity sub-type instances all associated to a particular Kind or Mixin

instance.
Entity An OCCI base type. The parent type of Resource and Link.
Kind A type in the OCCI model. A core component of the OCCI classification system.
Link An OCCI base type. A Link instance associate one Resource instance with another.
mixin An instance of the Mixin type associated with a resource instance. The “mixin”

concept as used by OCCI only applies to instances, never to Entity types.
Mixin A type in the OCCI model. A core component of the OCCI classification system.
OCCI Open Cloud Computing Interface
OCCI base type One of Entity, Resource, Link or Action.
OGF Open Grid Forum
Resource An OCCI base type. The parent type for all domain-specific resource types.
resource instance An instance of a sub-type of Entity. The OCCI model defines two sub-types of

Entity, the Resource type and the Link type. However, the term resource instance
is defined to include any instance of a sub-type of Resource or Link as well.

Tag A Mixin instance with no attributes or actions defined.
Template A Mixin instance which if associated at resource instantiation time pre-populate

certain attributes.
type One of the types defined by the OCCI model. The OCCI model types are Category,

Kind, Mixin, Action, Entity, Resource and Link.
concrete type/sub-type A concrete type/sub-type is a type that can be instantiated.
URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name

6 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that
it has made any effort to identify any such rights. Copies of claims of rights made available for publication
and any assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or users of this specification can
be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this recommendation.
Please address the information to the OGF Executive Director.

7 Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all
warranties, express or implied, including but not limited to any warranty that the use of the information herein
will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.

occi-wg@ogf.org 17



GWD-R December 6, 2010

8 Full Copyright Notice

Copyright c©Open Grid Forum (2009-2010). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment
on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph
are included on all such copies and derivative works. However, this document itself may not be modified in
any way, such as by removing the copyright notice or references to the OGF or other organizations, except
as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights
defined in the OGF Document process must be followed, or as required to translate it into languages other
than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or
assignees.

9 References

occi-wg@ogf.org 18


