
Advance Reservation and
Co-Allocation Protocol 

Dean Kuo
School of Computer Science

The e-Science North West Centre
The University of Manchester

dkuo@cs.man.ac.uk



Assumptions
• Message latency is unbounded

– Reliable messaging will only guarantee that a 
message will eventually be delivered in FIFO 
order

– A service can not tell if another service has failed 
or it is a slow network or processor

• Consumer and providers can belong in 
different administrative domains
– A consumer must not be able to “lock” a slot

• Providers must have full control AT ALL TIMES
• Locking introduces the risk of denial of service attacks



Cancellation
• Advance reservation needs to support 

cancellation
– Providers must be able to cancel a reservation at 

anytime
• Required for unscheduled downtime
• It could cancel straight after it has agreed to a reservation 

request or seconds before the scheduled start time
• Cancel if the consumer does not confirm before timeout 

period has expired
– Consumer may also cancel a reservation at anytime

• Consumer may be required to pay a cancellation fee if the 
reservation has been confirmed

– Two-phase commit and Paxos commit is an 
agreement protocol not intended to support 
cancellation



Aim
• Specification of an advance 

reservation protocol
• Specify a co-allocation protocol

using the advance reservation 
protocol
– The following pairwise interactions 

are use the advance reservation 
protocol

• User and co-scheduler
• Each resource and co-scheduler

– Support for nested configuration
– Resource can not distinguish 

between a reservation directly from a 
user or a co-scheduler

User

Co-scheduler

Co-schRes Res

Res Res



Unit of Work
• Unit of work (conversation) begins when 

user sends its first message
– Terminates when the job execution 

completes
• The co-allocation protocol does not 

provide atomicity
– It is impossible to support ALL or 

NOTHING property



Advance Reservation Protocol
• 11 Messages between consumer and 

provider
– Completed execution

• BookingReq, Booked, Confirm, Close (successful/failed), 
CloseAck

• Booked message include details of pricing and 
cancellation policy

– Consumer Cancellation
• ConsumerCancel, ConsumerCancelAck

– Provider Cancellation
• ProviderCancel, ProviderCancelAck

– Booking rejected
• Reject, RejectAck



Provider Protocol



Agreed Outcomes
• Booking request rejected
• Scheduled job executed

– Successful or faulted
• Consumer cancelled

– Consumer cancelled before confirmation then 
there is no fee

– Consumer cancelled after confirmation then fees 
specified in the cancellation fee applies

• Provider cancelled
• Define charging model in terms of on final 

agreed outcome



Race Situations
• What if consumer and provider cancel 

“simultaneously”?
– Agreed outcome is “consumer cancelled”

• What if consumer cancels but when the 
provider receives the message, the job 
has already completed
– Agreed outcome is “job completed”

• All possible race situations dealt with in 
the protocol



Co-Allocation
• Reservation of multiple 

resources
• Run the advance reservation 

protocol between
– User and co-scheduler
– Co-scheduler and Res 1
– Co-scheduler and co-sch 2
– Co-scheduler and Res 3
– …

• Main benefit
– Simplicity and nesting

User

Co-scheduler

Co-sch 2Res 1 Res 3

Res 2.1 Res 2.2



Booking Rejected



Co-Allocation Protocol -
Completed

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.



Co-Scheduler Cancels I

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.



Co-Scheduler Cancels



Co-Allocation Protocol I
• Two phase to confirm a reservation

– Cancellation can be initiated at anytime by any 
party

– If consumer does not confirm a reservation before 
a timeout period then the provider cancel

• Prevents denial of service attacks

• Atomicity is not supported
– It is possible reservations with some resources 

terminated in the completed state while others 
terminate in the provider cancelled or consumer 
cancelled state

– Co-allocation is not a consensus protocol



Co-Allocation Protocol II
• Other co-allocation strategies can also 

be supported besides the two phase 
protocol
– Co-scheduler reserve each resource 

sequentially
– Greater chance where co-scheduler needs 

to cancel a confirmed reservation with a 
resource



Correctness of Protocol
• Advance reservation protocol and co-

allocation protocol have been modeled 
and verified using the SPIN model 
checker
– Co-allocation protocol verification

• Model contains only two resources



Charging Framework I
• Defined in terms of the agreed outcome 

between the user and the co-scheduler
– Rejected

• No fee
– Successful completion

• Full price as specified in the booked message
– Faulted execution

• No fee or whatever is defined in the policy in 
the booked message



Charging Framework II
• Consumer cancel

– No fee if consumer cancels and has not sent a 
confirmation message

– Fee as defined by the cancellation policy specified 
in the booked message

• Co-scheduler may incur a financial loss in the co-
allocation protocol

– Less chance of incurring a loss for the two phase strategy
• Co-scheduler can charge a premium to on all 

reservations to cover losses

• Provider Cancel
– No fee or ?



Last Minute Reservations
• The need for greater fault tolerance

– Need to know if a reservation is confirmed 
or not once a provider sends a “booked”
message

• Can we layer or merge Paxos commit 
with the advance reservation and co-
allocation protocol?
– Fault tolerance + support for cancellation



Concluding Remarks
• Defined an advance reservation and co-

allocation protocol based on a single protocol
– Supports cancellation
– A unit of work starts when user (consumer) 

initiates a reservation process and terminates 
when the job execution terminates

– Includes a simple framework to support charging
– Transaction atomicity is not possible as the 

protocol MUST be non-blocking and any party 
may cancel a reservation

• Co-scheduler may incur a financial loss
– Protocol provides a framework for explicitly

defining charging models


