
Highly available, Fault tolerant
Co-scheduling System

With working implementation

Bringing it all Back Home

Acknowledgements
• This work isn’t part of an official project,

but it isn’t all my own work!

• Much of the design of this work, and in
particular the idea to use the Paxos
Consensue algorithm in the first place,
are entirely due to Mark Mc Keown from
Manchester.

Co-scheduling
• Most obvious definition is scheduling a

number of resources for the same time
• However, I think of it as meaning the

scheduling of multiple resources, where
the scheduling is done in an atomic
fashion - all resources or none are
booked

• The resources might be required for
different times...

Examples
• Schedule 8 procs on

Helix, 32 on Peyote,
plus optical network
for 12pm to 1pm

• Schedule workflow
tasks onto machines
X, Y and Z to start at
1pm (1 hour),
1.30pm (3 hours),
5pm (1 hour)

To Have
Phased Commit...

Can have phased commit:
1. resources are asked for a

reservation (prepare)
2. resources can say yes/no

(prepared/aborted), where
yes is a commitment to do the
work

3. Then:
a) If all resources return

prepared, then they will be
told to finalise the
reservations (commit)

b) Otherwise, all resources
are told to forget the
reservations (abort)

PreparePrepared Commit Prepared

To Have
Phased Commit...

Can have phased commit:
1. resources are asked for a

reservation (prepare)
2. resources can say yes/no

(prepared/aborted), where
yes is a commitment to do the
work

3. Then:
a) If all resources return

prepared, then they will be
told to finalise the
reservations (commit)

b) Otherwise, all resources
are told to forget the
reservations (abort)

PreparePrepared Abort Aborted

...Or To Not Have
Phased Commit

Can do without this, using WS-Agreement:
1. You make individual reservations with resources
2. If a resource says no, cancel the others

Is Phased Commit
Needed?

• Long debates on GRAAP mailing list about this
between me & Karl (agreed to differ!)

• Without phased commit, you make a lot of
assumptions about the RMs.
– May end up with some reserved, some not, e.g. if

there is some failure in the network
– You end up making & breaking reservations - the

end resources don’t know it’s coscheduling.
– You may hit a “reservation quota”
– You may get charged for making a reservation
– You may get a decreasing rate of response

(unreliable client who keeps canceling jobs!)
– RMs may even think this is some denial of service

attack

Problems with
2-phase Commit

• The transaction manager is a single
point of failure

• If it fails/goes away the user/RMs may
not be able to discover the outcome

• Not good in a distributed environment,
without reliable message delivery

Paxos Consensus
• Leslie Lamport’s (in)famous algorithm
• Hard to learn, but ultimately simple
• Maybe even obvious, inevitable
• Best formulation: “Paxos made Simple”

• Was applied to Transaction Commit by
Lamport and Jim Gray in “Consensus on
Transaction Commit”

• One instance of the consensus algorithm is
used for each Prepared/Aborted decision

Paxos Overview
• Too hard to explain here in detail
• But, essentially the TM functionality is

replicated in multiple acceptors
– Algorithm makes progress provided a majority of

acceptors are working
– Messages can be lost, repeated, arrive in an

arbitrary order (but can’t be tampered with)
– If you deploy 5 acceptors, you can get a MTTF of

about 12 years (assuming a MTTF of 48 hours,
and MTTR of 1 hour per acceptor)

– Goes up to 600 years if you use 7!

What are we doing?
• Co-schedule a set of actions
• Actions are:

– Make - create resv.
– Modify - change resources in resv.
– Move - change schedule of resv.
– Cancel - remove resv.

• Can co-schedule any set of these...
• Not all RMs have to support all of these

- can just abort with appropriate error

Example
• Co-schedule three

Makes on X,Y,Z
– X starts at 11.00,

runs for one hour
– Y starts at 12.15,

runs for one hour
– Z starts at 13.00,

runs for 90 mins

Example
• Need 30 mins

longer for Y
• Co-schedule

Modify on Y with
Move on Z

Example
• But this fails, saying

that Z doesn’t
support Move

• So we’re back here
(nothing changed)

Example
• Try again...
• Co-schedule

Modify on Y with
Cancel on Z and
Make on W

Describing the reservation
• It’s all XML. Send a set of actions...
• Make element contains:

– Resource - where
– Schedule - when
– Work - what

• Acceptors look at the “where” part, so they
know what to talk to

• Don’t look at Work/Schedule
• Could even be encrypted...

Other messages
• Response for successful Make is an

Ident element

• For Cancel, you send a Resource
element, and the Ident element

• For Move, you send a Resource, the
Ident, and a new Schedule

• For Modify, you send a Resource, the
Ident and a new Work description

Does it work?
• Yes!
• Have a working implementation
• XML over HTTP (no SOAP)
• Two RMs:

– PBSPro scheduler
– Calient DiamondWave network switch

• Co-scheduled 10 compute jobs and 2
switches at iGrid

• It’s available for download! (but...)

What’s missing?
• A couple of things not in the first

release!
– Security (but the model is thought out)
– Writing state to stable storage

Resources
• Everything will happen here!

http://www.cct.lsu.edu/personal/maclaren/CoSched/

• Page includes:
– Software for download
– Mailing list details

• Page will include:
– Documentation!
– Links to those cool papers

