
GWD-R
Network Measurement Control Working Group
https://forge.gridforum.org/projects/nmc-wg

Jason Zurawski, Internet2
Martin Swany, University of Delaware

January 19, 2012

An Extensible Protocol for Network Measurement and Control
DRAFT

Status of This Document

This document provides information to the Grid community regarding the design of protocols to control
software engaged in the creation, storage, and exchange of network measurements. Distribution is unlim-
ited.

Copyright Notice

Copyright c© Open Grid Forum (2008-2010). All Rights Reserved.

1 Abstract

The exchange of network measurement and performance data isa common problem for communities that
rely on distributed computing methods such as the Grid and dynamic provisioning of network circuits.
Work produced in related efforts, such as the Network Measurements Working Group (NM-WG) [8], has
provided an extensible mechanism for therepresentationof these data sets but does not provide guidance
for collection, storage, or exchange.

The Network Measurement Control Working Group (NMC-WG) [6] has taken the task of designing
flexible protocolsto be implemented by software systems that are interested inworking with network mea-
surements as encoded by theNM-WG standards. These protocols provide the basic communication recom-
mendations that a service should implement. The recommendations brought forward in this work should not
reflect any one implementation: these protocols are kept general and are extensible to many use cases and
potential software systems.

Contents

1 Abstract 1

2 Introduction 4

3 Motivation 4

4 Messages 6
4.1 Preliminary Example 6
4.2 Message Actions 8
4.3 Request Message 8

4.3.1 Request Message Schema 9

nmc-wg@ogf.org 1

GWD-R January 19, 2012
4.3.2 Request Message Analysis 10

4.3.2.1 Message . 10
4.3.2.2 Parameters .10
4.3.2.3 Parameter . 11
4.3.2.4 Metadata . 12
4.3.2.5 Subject . 12
4.3.2.6 Key . 13
4.3.2.7 EventType . 14
4.3.2.8 Data . 14

4.3.3 Request Message Example 15
4.4 Response Message 16

4.4.1 Response Message Schema 16
4.4.2 Response Message Analysis 17

4.4.2.1 Message . 18
4.4.2.2 Parameters .18
4.4.2.3 Parameter . 19
4.4.2.4 Metadata . 20
4.4.2.5 Data . 20
4.4.2.6 Key . 21
4.4.2.7 Datum . 21

4.4.3 Response Message Example 21

5 Information Chaining 23
5.1 Merge Chaining 23

5.1.1 Mergeable Elements and Recursion 24
5.1.2 Duplication, Augmentation, and Replacement 24
5.1.3 Merge Chaining Examples 24

5.2 Filter Chaining 30
5.2.1 Operator Chaining Examples 31

6 Result Codes 32
6.1 Syntax 33

6.1.1 Informational 33
6.1.2 Successful 33
6.1.3 Redirection 33
6.1.4 Clienterror 34
6.1.5 Servererror 34

6.2 Semantics 34
6.2.1 Informational 35
6.2.2 Successful 35
6.2.3 Redirection 35
6.2.4 Clienterror 35
6.2.5 Servererror 36

6.3 Use Cases 36
6.3.1 Basic Structure 36
6.3.2 Extension 37

nmc-wg@ogf.org 2

GWD-R January 19, 2012
6.4 Examples 37

6.4.1 Successful Code 37
6.4.2 Servererror Code 37

7 Extension 38
7.1 Echo Protocol 38

7.1.1 Architecture 38
7.1.2 Request Message 38

7.1.2.1 Request Message Schema .. . 39
7.1.2.2 Request Message Analysis 39

7.1.2.2.1 Message . 39
7.1.2.2.2 Metadata . 40
7.1.2.2.3 EventType . 40
7.1.2.2.4 Data . 40

7.1.2.3 Request Message Example .. . 41
7.1.3 Response Message 41

7.1.3.1 Response Message Schema .. . 42
7.1.3.2 Response Message Analysis 42

7.1.3.2.1 Message . 42
7.1.3.2.2 Metadata . 42
7.1.3.2.3 EventType . 43
7.1.3.2.4 Data . 44
7.1.3.2.5 Datum . 44

7.1.3.3 Response Message Example 44
7.1.4 Result Codes 45
7.1.5 Protocol Extension 46

7.1.5.1 eventType Extension 46
7.1.5.2 Other Extensions .. 46

8 Security Considerations 47
8.1 Quality of service and resource control 47
8.2 Data protection and privacy 48

9 Conclusion 48

10 Acknowledgements 48

11 Notational Conventions 49

12 Contributors 49

13 Intellectual Property Statement 49

14 Disclaimer 49

15 Full Copyright Notice 50

nmc-wg@ogf.org 3

GWD-R January 19, 2012

2 Introduction

This document describes aprotocol designed to manage the interaction between systems focusedon the
collection, storage, andexchangeof network performance information. This protocol becomesrelevant
in an incarnation of a performance measurement framework; consisting of a set of services, each acting
as an intermediate layer, between the performance measurement tools and the diagnostic or visualization
applications all within a federated environment. This specification defines a service-oriented design style
with isolated a set of functions so that each function can be delivered by potentially different software
entities.

In this model, all services must communicate using well-defined protocols. While this document does
not formally specify these details, it is envisioned that implementations of the proposed architecture shall
make this functionality available viaWeb Services(WS). Existing implementation either use SOAP over
HTTP or RESTful webservices, but no requirement is given in this document for a particular transport
protocol.

The work presented here builds upon the output of other working groups focused on the accurate descrip-
tion of network measurements [8] and topological representation of network elements [7]. When applicable,
we will directly cite terminology and ideas from these working groups. We do not describe a particular sys-
tem currently in use, although several prototypes exist that implement messaging similar to this work.

3 Motivation

A common message exchange pattern for Web Services (WS) is aRequestfollowed by aResponse. This
particular communication pattern is important and involves two actors for the general case. Consider the
example in Figure 1 of aclientapplication interacting with some service, in this case ameasurement service.
This exchange assumes that both the client and the service speak a common dialect of some communication
protocol.

Figure 1: Two serial two way exchanges between a client and a service. The middle actor
acts both as a client and a server.

It becomes the burden of both the service developer and the client developer to document what an
exchange consists of as well as how it takes place (albeit from different points of view). A second example
pictured in Figure 2 illustrates that a single actor can be involved in multiple message exchanges, with
different roles.

Another interaction is the notion of aSubscription, Notificationor other form of “one-sided” exchange.
Services may use this to perform tasks such as subscribing tostatus updates from a service, or otherwise

nmc-wg@ogf.org 4

GWD-R January 19, 2012

Figure 2: Simple two way exchange between two services.

alerting a service or client about the existence of some key piece of information. Figure 3 describes this
exchange in detail.

Figure 3: One way exchange where a client subscribes to a service. Other services may
already receive notifications.

The acts of sendingrequests, receivingresponses, and being able to discern success or failure are com-
mon across many specific interactions. One aim of this document is to prevent the following redundancies:

• Duplicate Schemata - Messagesdiffer from service to service, but the overarching concepts will not;
we present some of the common features that must be present inevery exchange and describe how
extension is possible.

• Duplicate Semantic Principals - Concepts used in services designed in the past are carried over into
future iterations. Common practices and common features are only described once.

• Duplicate Error Conditions - Some errors will occur across services and are only defined once (e.g.
Unknown Message Type).

• Duplication of Common Exchanges - Common protocols must be the same among services in a
framework. For example being able to retrieve the “status” of a neighbor or wrapping your communi-
cation in a secure channel are communication patterns that will be required everywhere. A common
Echoprotocol is presented in this document as an example.

With a set design and format to this base functionality, it ispossible to define protocol extensions on a
“type by type” basis instead of a “service by service” approach. This also allows for a sufficient reduction in
documentation due to service types implementing the same underlyingformatof messages (e.g. services that
store measurements may implement the same message types with notable exceptions and data differences).

nmc-wg@ogf.org 5

GWD-R January 19, 2012
It is expected that the following extensions to this base document will be prepared to describe specific service
interactions:

• Measurement Collection - Describes the process of communicating with services thatperform and
gather measurements

• Measurement Storage - Describes communication with services that archive measurements

• Information Location - Interacting with services that index and locate services and data

• Service Authentication - Describes communication within secure data channels in a federated envi-
ronment

4 Messages

As described in Section 3, the communication protocol is simple and based on the notion ofRequestandRe-
sponsemessages. The construction of themessageitself takes advantage of work produced in theNM-WG
by re-using several key constructs. Both message types are fundamentally the same: a series ofmetadata
anddataunits linked via identifying attributes (e.g.id and idRef attribute values). These concepts, shown
in [10, 13], observe the same rules with regards to splittingboth measurement and communication.

4.1 Preliminary Example

To cement an early understanding of how the messages work, consider this rudimentary query for some data
from a service:

<message type="request">

<metadata id="m1">
<!-- some partial metadata the service may or may not understand -->

</metadata>

<data id="d1" metadatIdRef="m1" />

</message>

There are some important things to note about this query:

• Message Type - Every messagemust contain atype, these facilitate the semantic intentions of the
internal data

• Message Structure - There must bemetadataand/ordataelements in each message; there does not
need to be a matching data for every metadata (e.g.Chaining, see Section 5)

• Metadata - Must contain measurement data, identifying information about a service, or even infor-
mation meant to serve as a modifier (see see Section 5). Note that we still loosely observe the static
rule of thumb

• Data - Serves a dual role: in request messages this may be empty (e.g. this is adata trigger. An
empty data element lets the service know we need action on theaccompanying metadata), or it may
contain dynamic measurement data or even other metadata elements

nmc-wg@ogf.org 6

GWD-R January 19, 2012
Simply stated, we are sending a request (either partial or complete) to a capable service to perform some

interactive behavior. We are interested in having the service verify that it is able to service our request, either
by acting in a positive or negative manner. We are interestedin either setting or retrieving information on
this target data set - subsequent operations may be necessary. When the service receives this request it will
check for several things:

• Syntax - Does the request parse correctly? Incorrect syntax will triggererror routines.

• Message Type - Can this service accept and act on this kind of message? An unexpected message
must be rejected outright by discarding it and responding with a corresponding error message.

• Structure - Is there at least a single metadata and data pair that is capable of being acted on? A
service that cannot determine if there is actionable content in the request willdiscard the message
with anerror routine.

• Semantics - Does the request make sense according to the schematic rules; can the metadata be acted
upon; are the chains resolved properly? Handling of semantic rules are the discretion of the service:
error routinesare possible or perhaps some form ofpanic parsingmay result in partial completion of
a request.

The service has two options at this point: acting on the message (e.g. returning data) or reporting some
other form of “status” (e.g. anerror message). We will explore the first option initially:

<message type="response">

<metadata id="m1">
<!-- specific metadata that matched -->

</metadata>

<data id="d1" metadatIdRef="m1">
<!-- data, or perhaps a pointer (key) to data -->

</data>

</message>

Note this message is similar to the request in many ways. The major differences:

• Message Type - This becomes the foil of the previous request; it is common to simply replace the
word “Request” with “Response”

• Message Structure - All valid metadata and data pairings must be acted on, chained items may be
truncated

• Metadata - May be “completed” (e.g. augmented information added to the original) if it was incom-
plete in the initial request

• Data - Must contain information, especially if it was empty in theinitial request

The second situation is not very different, but is indicative of something occurring that was not expected.
We don’t explicitly use the term “error” to describe this situation because many paths that lead to this are
not wrong. Some examples of status may be:

• Message Syntax/Structure/Semantics - The service must be able to understand the request, if it
cannot be parsed on either the syntactic or semantic levels the status must reflect this.

nmc-wg@ogf.org 7

GWD-R January 19, 2012
• Metadata/Data Search - The backend storage may simply be devoid of references to what a request

is interested in, this should be expressed by returning nothing in the response or having an explicit
message to do so.

• Catastrophic Events - Internal events may trigger some sort of panic in the service; note that not all
events may be recovered from and are not the fault of the service itself (host machine failures, etc.).

The general format of a status message is as follows, parallels between the previous response as well as
the request can easily be drawn.

<message type="response">

<metadata id="m1">
<!-- some (machine level) status information -->

</metadata>

<data id="d1" metadatIdRef="m1">
<!-- some human readable status information -->

</data>

</message>

4.2 Message Actions

The examples from Section 4.1 characterizes many of the common actions services perform on receipt of a
request message. A more formal description of this interaction is described in Figure 4. Note that this is a
generalized attempt, and should not directly reflect the actions of any particular service. Protocol extensions
should provide a description where this example is lacking.

Figure 4: Typical programmatic flow of a messages through a measurement service.

The example illustrates that any stage of processing a request may trigger entry into the status routine.
Specifics regarding available status messages are available in Section 6.

4.3 Request Message

The Request Messageis a container for submitting communication to capable services. Enclosed in this
simple envelope must be a series ofmetadataanddatapairs containing various instructions to act out. We
first present a very simple schema in Section 4.3.1 along withan analysis of the elements in Section 4.3.2.
We conclude with examples in Section 4.3.3.

nmc-wg@ogf.org 8

GWD-R January 19, 2012
4.3.1 Request Message Schema

The following schema is a native description of the request schema as in the RELAX-NG[9] language.
Through the use of tools such as Trang[11] and MSV[5] it is possible to convert this to other widely accepted
formats such as XSD[12].

Begin Schema

namespace nmwg = "http://ggf.org/ns/nmwg/base/2.0/"

start =
element nmwg:message {

Identifier? &
MessageIdRef? &
attribute type { "Request" } &
Parameters? &
(
Metadata |
Data

)+
}

Parameters =
element nmwg:parameters {

Identifier &
Parameter+

}

Parameter =
element nmwg:parameter {

attribute name { xsd:string } &
(
attribute value { xsd:string } |
(

anyElement |
text

)
)

}

Metadata =
element nmwg:metadata {

Identifier &
MetadataIdentifierRef? &
anyElement*

}

Data =
element nmwg:data {

Identifier &
MetadataIdentifierRef &
anyElement*

}

Identifier =
attribute id { xsd:string }

MessageIdRef =
attribute messageIdRef { xsd:string }

MetadataIdentifierRef =
attribute metadataIdRef { xsd:string }

anyElement =
element * {

anyThing
}

anyAttribute =
attribute * { text }

anyThing =
(

anyElement |
anyAttribute |
text

)*

End Schema

nmc-wg@ogf.org 9

GWD-R January 19, 2012
4.3.2 Request Message Analysis

The following is a breakdown of the elements featured in the schema. Note that services in general must not
implement or attempt to understand this, it is provided as a tool to aid in the development of extensions.

4.3.2.1 Message

<nmwg:message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
id="message1"
type="Request">

<nmwg:parameters />

<nmwg:metadata />

<nmwg:data />

</nmwg:message>

Table 1: Message Element Specifics
Message Element

localname message
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes id, messageIdRef, type
nested elements parameters, metadata, data
required yes

The message construct is meant to serve as a container for transportingrequeststo capable services.
The message element itself is unremarkable, it featuresattributes to aid in the identification of messages
(e.g. ids) and contains elements with measurement or instructionalcontent. We first examine the available
attributes:

• id - Identifier that may be used to track state between messages and services

• messageIdRef - Optional identifier that may be used to track state to previous message exchanges.

• type - Must designate the message to a particular type; fully enumerated in each protocol extension

There are three major elements that should be contained in the message element:

• Parameters - Described in Section 4.3.2.2

• Metadata - Described in Section 4.3.2.4

• Data - Described in Section 4.3.2.8

4.3.2.2 Parameters

<nmwg:parameters xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="parameters1">

<nmwg:parameter />

</nmwg:parameters>

nmc-wg@ogf.org 10

GWD-R January 19, 2012

Table 2: Parameters Element Specifics
Parameters Element

localname parameters
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes id
nested elements parameter
required no

The parameters element encloses a series of parameter elements that may be used to adjust variable
aspects of this schema. This element serves as a container for theParameter(see Section 4.3.2.3) elements
that must populate it. The single available attribute is described first:

• id - Identifying attribute that may be used to track state.

The element (only one possible in this case) is described next:

• Parameter - Described in Section 4.3.2.3

Note that the use of this element (in this particular location) is optional. Services are not required to
understand this element and should ignore this element if not expected by the service. Please consult service
documentation before proceeding.

4.3.2.3 Parameter

<nmwg:parameter xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
name="NAME">VALUE</nmwg:parameter>

<!-- OR -->

<nmwg:parameter xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
name="NAME" value="VALUE" />

Table 3: Parameter Element Specifics
Parameter Element

localname parameter
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes name, value
nested elements text, undefined
required yes

The parameter element features a generic structure that allows easy adaptation to the needs of a partic-
ular schema. For brevity, possible names and values are not listed here and are beyond the scope of this
document. This exercise must be done at the protocol extension and service documentation level.

• name - Must specify the name of some variable value

nmc-wg@ogf.org 11

GWD-R January 19, 2012
• value - May be used instead a text element (or enclosed element) to set the value of thename

In lieu of thevalueattribute, atext (or unspecifiedcomplex) element may be used for the same purpose.
It is recommended that protocol extensions adopt a single method for all uses of this element. The other
possibility for element containment is left unspecified. Wedo not rule out that “alternate” elements would
be useful in this case, but the exact use is left up to other extensions.

4.3.2.4 Metadata

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
id="metadata2" metadataIdRef="metadata1">

<!-- Possible Values Include: -->

<nmwg:subject />

<nmwg:key />

<nmwg:eventType />

<nmwg:parameters />

</nmwg:metadata>

Table 4: Metadata Element Specifics
Metadata Element

localname metadata
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes id, metadataIdRef
nested elements undefined, (subject, key, eventType, andparametersare common)
required yes

The metadata element normally contains the static parts of measurements, and shall differ from ser-
vice to service. Besides measurement data it is possible to send other items such asservice descriptions.
The schema description itself of what is possible inside of this element uses vague language that allows
for any reasonable XML to be contained within. The most common elements that are included areSubject
(see Section 4.3.2.5),Key (see Section 4.3.2.6),EventType(see Section 4.3.2.7), andParameters(see Sec-
tion 4.3.2.2). We will present only a brief discussion of these within this document; a more exact definition
should be found in specific measurement documentation.

There are two attributes possible. These should be used to both track state and perform the various
forms of chaining (e.g.operatoror merge) that a request message may require. A detailed descriptionof
this element follows:

• id - Identifying attribute that may be used to track state.

• metadataIdRef - Identifying attribute that may be used to track state or forchainingprocedures.

4.3.2.5 Subject

<nmwg:subject xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
id="subject1" metadataIdRef="metadata1" />

nmc-wg@ogf.org 12

GWD-R January 19, 2012

Table 5: Subject Element Specifics
Subject Element

localname subject
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes id, metadataIdRef
nested elements undefined, (topology elements are common)
required N/A

The subject element normally containstopologicalspecifications that relate directly to a measurement or
a specific service. We leave a full description of this element up to individual implementations but mention
it here due to common use. There are two recommended attributes, these are used to both track state and
perform a specific type ofchaining (e.g. subjectchaining) that may be required in a request message. A
detailed description follows:

• id - Identifying attribute that may be used to track state.

• metadataIdRef - Identifying attribute that may be used to track state or used in chaining.

4.3.2.6 Key

example of status response in 4.1 does not explain too much (looks the ¿ same as earlier response example)

<nmwg:key xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">

<nmwg:parameters />

</nmwg:key>

Table 6: Key Element Specifics
Key Element

localname key
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes id
nested elements parameters
required N/A

The key element is rooted in the concept of ahash function— a function or process designed to convert a
variable amount of information into a single value orindex. Once converted this single value can then be used
a shorthanded notation to reference the original entity, imparting a performance increase for computational
tasks.

The key structure shall used to convey sensitive or private information to and from the service. For this
reason the contents of the key must be viewed as “opaque”, andmust not be dissected. The key should
contain aParameters(see Section 4.3.2.2) element. There is only one attribute possible:id. This may used
to track state. A detailed description follows:

• id - Identifying attribute that may be used to track state.

nmc-wg@ogf.org 13

GWD-R January 19, 2012
4.3.2.7 EventType

<nmwg:eventType xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">TEXT</nmwg:eventType>

Table 7: EventType Element Specifics
EventType Element

localname eventType
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes N/A
nested elements text
required N/A

The eventType element must used to describe a measurement’sspecific data type (e.g. closely matching
the definitions described in [2] and [3]) or should be used to trigger an internal event within the service.
This element contains no attributes, and must only contain text, normally in the form of aURI. There may
bemanyeventType elements in a single metadata.

4.3.2.8 Data

<nmwg:data xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
id="data2" metadataIdRef="metadata2" />

Table 8: Data Element Specifics
Data Element

localname data
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes id, metadataIdRef
nested elements undefined
required yes

The data element must contain the dynamic parts of measurements, and shall differ from service to
service. Besides collected measurements the data field may also be populated with query data, or even other
other metadata information in certain applications. We leave the description of what is possible inside of
datablank, and use vague schema language that allows foranyreasonable content to be contained within.

There are two attributes possible. These may used to track state inside of a request message. A detailed
description follows:

• id - Identifying attribute that may be used to track state.

• metadataIdRef - must be used to link data to metadata.

nmc-wg@ogf.org 14

GWD-R January 19, 2012
4.3.3 Request Message Example

The following examples demonstrate some of the possible uses and layouts of request messages in the base
protocol. These examples are not an attempt to be exhaustive, but rather some examples of ways to perform
common tasks. Note that these messages are not indicative ofa particular service.

The first example demonstrates the most common use case: a single metadata and data pair. This
message represents the layouts of most request messages in ageneric measurement framework.

<!-- Begin XML -->

<message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
type="request"
id="message1">

<metadata id="m1">
<!-- metadata -->

</metadata>

<!-- data trigger -->
<data id="d1" metadataIdRef="m1" />

</message>

<!-- End XML -->

The second example is similar, but incorporates a parameters block that may be populated with optional
behaviors of a service.

<!-- Begin XML -->

<message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
type="request"
id="message2">

<nmwg:parameters id="parameters1">
<nmwg:parameter name="name">value</nmwg:parameter>

</nmwg:parameters>

<metadata id="m1">
<!-- metadata -->

</metadata>

<!-- data trigger -->
<data id="d1" metadataIdRef="m1" />

</message>

<!-- End XML -->

The third example is also similar to the first, but shows it is possible to ask for multiple pairs of metadata
and data in a single message. Note that there are two empty data triggers to signify that each message be
acted upon.

<!-- Begin XML -->

<message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
type="request"
id="message3">

<metadata id="m1">
<!-- metadata -->

</metadata>

<!-- data trigger -->
<data id="d1" metadataIdRef="m1" />

<metadata id="m2">
<!-- another metadata -->

</metadata>

nmc-wg@ogf.org 15

GWD-R January 19, 2012
<!-- data trigger -->
<data id="d2" metadataIdRef="m2" />

</message>

<!-- End XML -->

This example features merge chaining. Note there is only onedata trigger, and it is at the tail of the
chain. A service would perform the necessary chaining first,then act on the result of this operation.

<!-- Begin XML -->

<message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
type="request"
id="message4">

<metadata id="m1">
<!-- more metadata -->

</metadata>

<metadata id="m2" metadataIdRef="m1">
<!-- metadata -->

</metadata>

<!-- data trigger -->
<data id="d1" metadataIdRef="m2" />

</message>

<!-- End XML -->

The final example is an invalid case where the metadata does not have an appropriate data trigger.

<!-- Begin XML -->

<message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
type="request"
id="message5">

<metadata id="m1">
<!-- metadata -->

</metadata>

<!-- data trigger -->
<data id="d1" metadataIdRef="m2" />

</message>

<!-- End XML -->

4.4 Response Message

The response message is a container filled with the results ofa Response Messagefrom a capable service.
Enclosed in this simple envelope must be a series of metadataand data pairs containing the results of actions
performed by a service. We first present a very simple schema in Section 4.4.1 along with an analysis of the
elements in Section 4.4.2. We conclude with examples in Section 4.4.3.

4.4.1 Response Message Schema

The following schema is a native description of the request schema as in the RELAX-NG[9] language.
Through the use of tools such as Trang[11] and MSV[5] it is possible to convert this to other widely accepted
formats such as XSD[12].

nmc-wg@ogf.org 16

GWD-R January 19, 2012

Begin Schema

namespace nmwg = "http://ggf.org/ns/nmwg/base/2.0/"

start =
element nmwg:message {

Identifier? &
attribute messageIdRef { xsd:string }? &
attribute type { "Response" } &
Parameters? &
(
Metadata |
Data

)+
}

Parameters =
element nmwg:parameters {

Identifier &
Parameter+

}

Parameter =
element nmwg:parameter {

attribute name { xsd:string } &
(
attribute value { xsd:string } |
(

anyElement |
text

)
)

}

Metadata =
element nmwg:metadata {

Identifier &
MetadataIdentifierRef? &
anyElement*

}

Data =
element nmwg:data {

Identifier &
MetadataIdentifierRef &
anyElement*

}

Identifier =
attribute id { xsd:string }

MetadataIdentifierRef =
attribute metadataIdRef { xsd:string }

anyElement =
element * {

anyThing
}

anyAttribute =
attribute * { text }

anyThing =
(

anyElement |
anyAttribute |
text

)*

End Schema

4.4.2 Response Message Analysis

The following is a breakdown of the elements featured in the schema. Note that services in general must not
implement or attempt to understand this, it is provided as a tool to aid in the development of extensions.

nmc-wg@ogf.org 17

GWD-R January 19, 2012
4.4.2.1 Message

<nmwg:message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
id="message2"
messageIdRef="message1"
type="Response">

<nmwg:parameters />

<nmwg:metadata />

<nmwg:data />

</nmwg:message>

Table 9: Message Element Specifics
Message Element

localname message
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes id, type, messageIdRef
nested elements parameters, metadata, data
required yes

The message element, like it’s counterpart seen in Section 4.3.2.1 serves as a container for transporting
responses from capable services. The message itself is unremarkable, it features attributes to aid in the iden-
tification of messages and contains elements with measurement or instructional content. We first examine
the available attributes:

• id - Identifier that may be used to track state between messages and services

• type - Must designate the message to a particular type; fully enumerated in each protocol extension

• messageIdRef - Identifier that may be used to track state between messages and services

There are three major elements that may be contained in the message element:

• Parameters - Described in Section 4.4.2.2

• Metadata - Described in Section 4.4.2.4

• Data - Described in Section 4.4.2.5

4.4.2.2 Parameters

<nmwg:parameters xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="parameters1">

<nmwg:parameter />

</nmwg:parameters>

The parameters element should only be present in the messageelement if there was a corresponding
element in theRequest Message(see Section 4.3.2.1). It may also be used by services to relay back other
forms of information. As in Section 4.3.2.2, it encloses a series ofparameterelements. This element serves
merely as a container for the Parameter elements (see Section 4.4.2.3) that will populate it. The single
available attribute is described first:

nmc-wg@ogf.org 18

GWD-R January 19, 2012

Table 10: Parameters Element Specifics
Parameters Element

localname parameters
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes id
nested elements parameter
required no

• id - Identifying attribute that may be used to track state.

There is only one available element, although it may be used multiple times

• Parameter - Described in Section 4.4.2.3

4.4.2.3 Parameter

<nmwg:parameter xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
name="NAME">VALUE</nmwg:parameter>

<!-- OR -->

<nmwg:parameter xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
name="NAME" value="VALUE" />

Table 11: Parameter Element Specifics
Parameter Element

localname parameter
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes name, value
nested elements text, undefined
required yes

The parameter element features a generic structure that allows it to easily adapt to the needs of a par-
ticular schema. For brevity, possible names and values are not listed here and are beyond the scope of this
document. This exercise must be done at the protocol extension and service documentation level.

• name - Must generically specify the name of some variable value

• value - May be used instead a text element to set the value of thename

In lieu of thevalueattribute, a text element may be used for the same purpose. Itis recommended that
protocol extensions adopt a single method for all uses of this element. The other possibility for element
containment is left unspecified. We do not rule out that many elements would be useful in this case, but the
exact use is left up to other extensions.

nmc-wg@ogf.org 19

GWD-R January 19, 2012
4.4.2.4 Metadata

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
id="metadata2" metadataIdRef="metadata1">

<!-- These elements are commonly used: -->

<nwmg:subject />

<nmwg:key />

<nmwg:eventType />

<nmwg:parameters />

</nmwg:metadata>

Table 12: Metadata Element Specifics
Metadata Element

localname metadata
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes id, metadataIdRef
nested elements undefined, (subject, key, eventType, and parameters are common)
required yes

The metadata element in the response is normally an exact copy of the sentMetadata (see Sec-
tion 4.3.2.4). We leave the description of what is possible inside of a metadata blank, and use vague schema
language that allows for any reasonable XML to be contained within.

There are two attributes possible. These may be used to trackstate, possibly back to the sentMetadata.
A detailed description follows:

• id - Identifying attribute that may be used to track state.

• metadataIdRef - Identifying attribute that may be used to track state.

4.4.2.5 Data

<nmwg:data xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
id="data2" metadataIdRef="metadata2">

<nmwg:datum />

<nmwg:key />

<nmwg:metadata />

</nmwg:data>

The data element will contain results and is usually not not empty like the trigger that is used inData
(see Section 4.3.2.8). We leave the description of what is possible inside of a data blank, and use vague
schema language that allows for any reasonable XML to be contained within.

There are two attributes possible. These may be used to both track state inside of a response message.
A detailed description follows:

• id - Identifying attribute that may be used to track state.

• metadataIdRef - Must be used to link data to metadata.

nmc-wg@ogf.org 20

GWD-R January 19, 2012

Table 13: Data Element Specifics
Data Element

localname data
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes id, metadataIdRef
nested elements undefined, (datum, key, and metadata are common)
required yes

4.4.2.6 Key

<nmwg:key xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">

<nmwg:parameters />

</nmwg:key>

Table 14: Key Element Specifics
Key Element

localname key
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes id
nested elements parameters
required no

The key structure should be used to convey sensitive or private information to and from the service. For
this reason the contents of the key must be viewed as opaque, and generally not be dissected. The key should
contain theParameters(see Section 4.4.2.2) element. There is only one attributespossible: id. This may be
used to track state. A detailed description follows:

• id - Identifying attribute that may be used to track state.

4.4.2.7 Datum

<nmwg:datum xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" />

The datum element should be used to relay various types of information. Common uses are to return
measurement observations (e.g. time and value pairs) or even status (e.g. error messages). We leave the
attributes and nested elements purposely undefined as they may differ in various profiles of this document.

4.4.3 Response Message Example

The following examples demonstrate some of the possible uses and layouts of response messages in the base
protocol. These examples are not an attempt to be exhaustiveand are not indicative of a particular service.

The first example is the most common form of response message containing a single metadata and data
pair. This would be indicative of success.

nmc-wg@ogf.org 21

GWD-R January 19, 2012

Table 15: Datum Element Specifics
Datum Element

localname datum
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes undefined
nested elements undefined
required no

<!-- Begin XML -->

<message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
type="response"
id="message1"
messageIdRef="someothermessage">

<metadata id="m1">
<!-- metadata -->

</metadata>

<data id="d1" metadataIdRef="m1">
<!-- datum stuffs -->

</data>

</message>

<!-- End XML -->

The second example is similar, although it features two pairs.

<!-- Begin XML -->

<message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
type="response"
id="message1"
messageIdRef="someothermessage">

<metadata id="m1">
<!-- metadata -->

</metadata>

<data id="d1" metadataIdRef="m1">
<!-- datum stuffs -->

</data>

<metadata id="m2">
<!-- another metadata -->

</metadata>

<data id="d2" metadataIdRef="m2">
<!-- datum stuffs -->

</data>

</message>

<!-- End XML -->

The final example demonstrates an error condition. Note thatthis may contain multiple pairs if sent, and
it may be possible to have success for some, and errors for others.

<!-- Begin XML -->

<message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
type="response"
id="message1"
messageIdRef="someothermessage">

nmc-wg@ogf.org 22

GWD-R January 19, 2012
<metadata id="m1">

<!-- some error -->
</metadata>

<data id="d1" metadataIdRef="m1">
<!-- some error message -->

</data>

</message>

<!-- End XML -->

5 Information Chaining

Since inception, a key goal of the protocols has been extension. The authors of the original schemata realized
that not every situation could easily be described though the basic constructs; extending the basic building
blocks to complex situations is paramount. Uncharted concepts could be represented with newly created
constructs each time a foreign abstraction came to light; but extension and backwards compatibility must be
favored over quick and easy solutions. Therefore, basic extension mechanisms, known as chaining, are the
recognized procedure to extend metadata constructs as wellas express other operations on the underlying
data.

This section presents the major uses of chaining; note that individual service implementations may
choose to strictly or loosely interpret these guidelines for the sake of performance or protection. The protocol
itself offers no specific guidance on these issues in favor ofsimply describing the structural composition of
both the input data and the resulting output.

Chaining itself has taken on two major forms:merge chainingdescribed in Section 5.1 andfilter chaining
described in Section 5.2. These two instances will be described first in broad terms that explain the logic and
reasoning of why each operation makes sense, and in what context they should be employed. The specific
syntax and transformation steps will be presented in the next section.

5.1 Merge Chaining

As the name implies, we intend tomergeor combine metadata elements through this structure. Thereare
many things we may consider when describing this operation:

• Which elements aremergeable?

• How muchrecursionis needed for merge-able elements?

• When should weduplicateelements?

• When should wereplaceelements in the course of merging?

As stated previously, the schemata itself does not offer anysuggestions as to what is agood mergevs. a
bad merge. There are no rules regarding whichtypesof data should and should not be merged. There is no
guidance on when we should duplicate or replace elements.

We recommend some very simple and succinct guidelines that services may implement for this particular
style of merging. There shall be exceptions to rules, therefore the reader is encouraged to think carefully
about what a specific service may need when implementing thisrecommendation.

nmc-wg@ogf.org 23

GWD-R January 19, 2012
5.1.1 Mergeable Elements and Recursion

When merging we must first look at thetop-levelelements; namely subject, eventType, and parameters.
When faced with two metadata blocks to be merged, we only wishto combine:

• Like Elements (e.g. sharing the same localname)

• Elements in the same namespace

• Elements sharing the same (or “similar”) eventType

When this first criteria is met, we must traverse the chaindownward, recursively. A clear question to
answer is “How far should we venture into the XML structure looking for similarities or differences”? This
question does not have a definite answer such as “Stop at the grandchild of the current element”. While this
may be frustrating, domain knowledge shall help you make a passable decision especially with regards to
topology based elements.

Like elements that do not share a common namespace will require special rules that may differ from
service to service. Depending on the level of protection or speed we wish to attain, these rules may vary.
Service and protocol documentation must fill in details beyond the scope of this work.

5.1.2 Duplication, Augmentation, and Replacement

When are faced withlike elements that do not share a common namespace, we should not combine. We
must try to find theleast significantnamespace and work from there. Additionally we may run into items
that areexactlythe same (such as certainparameters, or eventTypes). In some cases we should take care to
addall of these together to make duplicates; other cases may dictate total replacement. Specific rule such as
these are best left to a service designer.

As an example of extreme cases, consider taking a very safe approach to the combining of elements
(i.e. not merginglike elements with different namespaces). This approach will ensure that we protect the
schema differences but may result in many morewronganswers when it comes to searching. The converse
is a very dangerous approach where we merge items that could be different on the inside. This may result in
an approach similar toI know what you meantand could yield a more robust query mechanism (providing
intuitive answers when something may not completely match,rejecting outright things that do not make
sense).

5.1.3 Merge Chaining Examples

A classic example of merge chaining is to partially specify ametadata (leaving out perhaps one unspec-
ified element) and then constructing new elements from this original. This example does not feature any
overwritingof duplicate elements.

Take for example a physicalLayer 3interface used to measure SNMP data. If we wanted to specify the
two commondirections(in andout) we could construct a chain similar to the below example.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>

</nmwgt:interface>

nmc-wg@ogf.org 24

GWD-R January 19, 2012
</netutil:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="m1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s2">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:direction>in</nmwgt:direction>

</nmwgt:interface>
</netutil:subject>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m3" metadataIdRef="m1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s3">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:direction>out</nmwgt:direction>

</nmwgt:interface>
</netutil:subject>

</nmwg:metadata>

Note that the chaining is performed via the use of themetadataIdReftag in the metadata element. This is
a signal for services (specifically perfSONAR services suchas the SNMP MA or RRD MA) to keep looking
deeper in an effort to resolve the chains. The Figure 5 demonstrates the linking between the metadata
elements. The resulting XML structure after chaining is also listed below.

Figure 5: Graphical representation of chaining.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>

</nmwgt:interface>
</netutil:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="m1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>in</nmwgt:direction>

</nmwgt:interface>
</netutil:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m3" metadataIdRef="m1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s1">

nmc-wg@ogf.org 25

GWD-R January 19, 2012
<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>out</nmwgt:direction>

</nmwgt:interface>
</netutil:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

</nmwg:metadata>

For continuity, this example has not attempted to modify themetadataIdRefattribute. Implementations
may choose to do so if they feel the need. Because eventTypes may be repeated (either as theeventType
element or asparameters) we must take special care when merging them. The next example features mul-
tiple eventType merging. This example also features a so called double chainwhere the results of the first
chaining operation must feed into the process for the second. This is a common occurrence, and should be
supported in services.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>in</nmwgt:direction>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="m1">
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m3" metadataIdRef="m2">
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/errors/2.0</nmwg:eventType>

</nmwg:metadata>

The resulting output and cartoon are pictured below. We did take two major issues into consideration:
multiple parametersandeventTypeelements that did conflict, and the double chaining. Services that do not
support multiple eventTypes (or simply wish to not implement a naive form of chaining) should not worry
about special cases such as Figure 6.

Figure 6: Alternate graphical representation of chaining.

nmc-wg@ogf.org 26

GWD-R January 19, 2012

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>in</nmwgt:direction>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>in</nmwgt:direction>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m3" metadataIdRef="m2">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>in</nmwgt:direction>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/errors/2.0</nmwg:eventType>

</nmwg:metadata>

Services may treat particular elements (such as eventTypesand parameters with certainnameattributes)
in a special way. The service is careful not to overwrite or lose any information and will onlyadd these
items together. This is not the case for any element though, consider the following example.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>in</nmwgt:direction>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifName>eth1</nmwgt:ifName>
<nmwgt:direction>out</nmwgt:direction>

</nmwgt:interface>
</nmwg:subject>

</nmwg:metadata>

Note that we probably wanted to change the direction for thisparticular interface, not necessarily the
ifNameelement. The output of this chain is shown below.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">

nmc-wg@ogf.org 27

GWD-R January 19, 2012
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>in</nmwgt:direction>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth1</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>out</nmwgt:direction>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>

</nmwg:metadata>

This example shows that it is very easy to introduce semanticerrors when designing a chain instance. It
also shows that the service may not be interested in protecting a poorly designed chain from being accepted.
It is possible to build in different rules instead oflast seen valuesuch asfirst seen, original, or other com-
binations. It is imperative that services describe their own implementations of chaining, particularly when
interoperability becomes an issue.

A final example comes when we deal with items with the samelocalname, but perhaps a different
namespace. There are several approaches that can be taken to dealing with this type of situation. The SNMP
example follows a safe approach of simply adding all of the elements in question and not attempting to
internally merge at all. This causesunreadablemetadata in many cases, but does not permitdata pollution.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s2">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:direction>in</nmwgt:direction>
<nmwgt:capacity>1000000000</nmwgt:capacity>

</nmwgt:interface>
</netutil:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

</nmwg:metadata>

There are three approaches that I will illustrate here:safe yet stupid, dangerous yet intelligent, and
finally slow and steady. The last approach is sometimes used in practice; finding theproper balance will
require some thought (depending on how sensing or accurate aservice wishes to become. Approach one
yields output similar to the below example.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>

nmc-wg@ogf.org 28

GWD-R January 19, 2012
<nmwgt:ifName>eth0</nmwgt:ifName>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s2">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:direction>in</nmwgt:direction>
<nmwgt:capacity>1000000000</nmwgt:capacity>

</nmwgt:interface>
</netutil:subject>
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

</nmwg:metadata>

Note that this is not schema valid, and presumably would not return results from the backend storage.
This is rather ironic given that we are trying to preserve validity on the schema side, yet still generate a
clearly invalid result. The other end of the spectrum gives aresult such as the example below.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s2">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:direction>in</nmwgt:direction>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>

</nmwgt:interface>
</netutil:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

</nmwg:metadata>

Thestupidpart of this comes from not caring aboutnamespaces, and only merging based onlocalname.
Because the source metadata featured thenetutil namespace it remains and all other items are added to it.

The approach taken by some services is to have a littledomainknowledge before making a quick judge-
ment. Knowing full well thatnmwgis a more general namespace thannetutil, the service tries to guess the
intent and goes with the most general namespace in order to support a richer query set. Internally anything
that utilizes thenmwgnamespace receives a wild card when performing searches. When we are faced with
a choice between specific and general, the service errs on theside of general. An example of this merge is
below.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

nmc-wg@ogf.org 29

GWD-R January 19, 2012
</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:direction>in</nmwgt:direction>
<nmwgt:capacity>1000000000</nmwgt:capacity>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

</nmwg:metadata>

A final question remains: what happens if you are dealing withtwo very specific namespaces such as
this example.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<neterr:subject xmlns:neterr="http://ggf.org/ns/nmwg/characteristic/errors/2.0/" id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>

</nmwgt:interface>
</neterr:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/errors/2.0</nmwg:eventType>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s2">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:hostName>localhost</nmwgt:hostName>

</nmwgt:interface>
</netutil:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

</nmwg:metadata>

Some services will still guess “general” and convert to thenmwgnamespace. The resulting data set will
take on an interesting look:

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<neterr:subject xmlns:neterr="http://ggf.org/ns/nmwg/characteristic/errors/2.0/" id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>

</nmwgt:interface>
</neterr:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/errors/2.0</nmwg:eventType>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="1">
<nmwg:subject id="s2">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/errors/2.0</nmwg:eventType>

</nmwg:metadata>

Clearly the two eventTypes (for utilization and errors) maynot appear in the same metadata description,
but again the service can try to help out a bit. eventType descriptions are interpreted asor operations when
performing a query. Therefore even if our chain was constructed poorly, our final results will be rather robust
(perhaps a bit more robust than needed). The service designers will no doubt settle on an approach that fits
well for the data they are exposing.

5.2 Filter Chaining

Filter chaining involves the application of afilter (or function) to the underlying dataset that a particular
metadata describes. We can think of this much like a databaseoperation, where the first metadata is used to

nmc-wg@ogf.org 30

GWD-R January 19, 2012
select a broad range of data, and subsequent metadata elements that are chained in this manner are used to
slowly whittle down the dataset to a very specific range.

Figure 7 illustrates the distinction between the various operators of a filter chain. The circles themselves
represent the actual metadata description of a dataset (taken from the universe of all data). The intersection
of these two metadata descriptions becomes the data set thatwe are interested in.

M e t a d a t a 1 M e t a d a t a 2

D a t a

D a t a 1 D a t a 2

Figure 7: Diagram showing the intersection of information sets.

It is important to note that even though we are manipulating the data through this form of chaining,
we should not be harming it, or the related metadata elements. Chaining in general is a non-destructive
operation, although it is very possible that when implemented poorly response data corruption may occur.

Filter operations themselves can vary from time range selection to aggregations such as performing a
cumulative distribution function (CDF). Describing all possible operators is well beyond the scope of this
work. Current experience has named most statistical and database operations as candidates for filtering,
although new uses being devised.

5.2.1 Operator Chaining Examples

Filter chaining is an easier concept to manage than merge chaining, partially because there are less rules and
nuances to grasp. As stated above, it is easy to think of the dataset for the source metadata to beinput to
a function that is named by the metadata utilizing the filter chain. Consider Figure 8 as an example of the
internal process of resolving a filter chain.

datum ... datum ...
datum ... datum ...
datum ... datum ...

Operation:
select

datum ...
 datum ...
datum ... datum ...

M e t a d a t a 1 M e t a d a t a 2

Figure 8: Graphical results of a filtering step on a dataset.

The syntax of filter chaining is similar to that of merge chaining (by usingmetadataIdRefattributes) but
the placement is a bit different. Consider this example.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s1">

nmc-wg@ogf.org 31

GWD-R January 19, 2012
<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:direction>in</nmwgt:direction>
<nmwgt:capacity>1000000000</nmwgt:capacity>

</nmwgt:interface>
</netutil:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2">
<select:subject id="s2" metadataIdRef="m1" xmlns:select="http://ggf.org/ns/nmwg/ops/select/2.0/"/>
<select:parameters id="param2c" xmlns:select="http://ggf.org/ns/nmwg/ops/select/2.0/">

<nmwg:parameter name="startTime">1121472000</nmwg:parameter>
<nmwg:parameter name="endTime">1121904000</nmwg:parameter>
<nmwg:parameter name="consolidationFunction">AVERAGE</nmwg:parameter>
<nmwg:parameter name="resolution">60</nmwg:parameter>

</select:parameters>
<nmwg:eventType>http://ggf.org/ns/nmwg/ops/select/2.0</nmwg:eventType>

</nmwg:metadata>

The reference is placed in thesubjectelement in this case, as in merge chaining this is a signal to the
service that filter chaining may be required. This indicatesthat theinput is the data pointed to by the first
metadata and theoutputwill be a subset of this. For the sake of these examples we willbe dealing with the
selectnamespace as our filter of choice due to an abundance of examples and its common goal of filtering
based on time. Other filter examples should work in the same manner.

Because the operations of a filter chain are essentiallyinternal we do not present what resultant XML
should look like. Currently services ignore many of the steps that may go into reforming the XML for
response messages in favor of simply returning thebackendrepresentation of metadata. While quick and
easy, this does lead to information loss (specifically when dealing with the various ways to implement merge
chaining). Client applications may have no reason to see theoriginal filter information, and therefore are
built not to need it.

6 Result Codes

Result and status codes are an important part of an interactive service; these values are used to to convey in-
formation about the system during operation. Client and server software can consume these results, perform
a simple lookup, and return useful information back to users. This section will describe:

• A hierarchy of result codes based loosely on similar effortsin other protocols

• Guidelines for the use of these codes within software

• Guidelines for the types of textual messages that will accompany these codes

nmc-wg@ogf.org 32

GWD-R January 19, 2012
6.1 Syntax

A STATUS CODE is defined by the following pattern:

STATUS CODE =
STATUS PREFIX “/” STATUS CATEGORY “/” STATUS NAME “/” VERSION “/”

STATUS CATEGORY =
“informational”
| “successful”
| “redirection”
| “clienterror”
| “servererror”

STATUS PREFIX is the start of the URI, and will be defined as “http//schemas.ogf.org/nmc/status”. The
VERSION is defined to be a string presenting information about the version of protocol, e.g.201109or
20110925. This version is suggested to remain “date” based instead ofa haphazard assignment of numbers;
the former will impart additional information about when a particular version entered use. Lastly, note that
the final “/” is required in this format.

The following sections present acceptable status names forcertain category.

6.1.1 Informational

STATUS NAME =
“protocol version”
| “data limitation”
| “service contact”

6.1.2 Successful

STATUS NAME =
NULL

This status is left intentionally blank.

6.1.3 Redirection

STATUS NAME =
NULL

nmc-wg@ogf.org 33

GWD-R January 19, 2012
This status is left intentionally blank.

6.1.4 Clienterror

STATUS NAME =
“bad message”
| “bad request”
| “authenticationfailed”
| “unauthorized”
| “messagenot allowed”
| “event type not allowed”
| “requesttoo large”
| “requesttimeout”
| “protocol not allowed”
| “chaining not understood”

6.1.5 Servererror

STATUS NAME =
“data fetch error”
| “too busy”
| “administrativedown”

6.2 Semantics

The following categories were chosen to classify errors. Note that these recommendations form the basis
of the standard, extension by implementations may be more specific as required. E.g. we anticipate that
an implementation may choose to offer a specific category that further extends something in this spec.
For example “http://schemas.ogf.org/nmc/status/servererror/datafetch error/databasedown/201109/” may
be an extension of “http://schemas.ogf.org/nmc/status/servererror/datafetch error/201109/”. This does not
go against the spirit of this specification. Client applications should be advised that parsing an error code
may result in seeing this “unexpected” last part, and could terminate parsing up to this point to avoid a
complete failure.
A final note relates to the location of the “version” string, e.g. the date the status was last modified by NMC.
Conventional wisdom notes that namespaces should be constructed with a date in the middle of the string
[4]. Experience has found that this date is more effective atthe end, and allows for updates to certain parts
of the schematic standard, without re-writing all of them.

nmc-wg@ogf.org 34

GWD-R January 19, 2012
6.2.1 Informational

This represents valid responses for informational requests. Using just the top level, e.g.
“http://schemas.ogf.org/nmc/status/informational/201109/” is considered to be acceptable. The following
subclasses were identified:

• protocol version: Returns the version of the NMC protocol in use

• data limitation: Returns a message indicating that responses will be limited to a pre-set range or size

• service contact: Returns the contact information (e.g. administrative contacts, etc.) for the service

6.2.2 Successful

This represents valid responses for any form of successful interaction. Using just the top level, e.g.
“http://schemas.ogf.org/nmc/status/successful/201109/” is considered to be the only acceptable response.

6.2.3 Redirection

This represents valid responses for any form of redirectionthat the service deems acceptable. Using just the
top level, e.g. “http://schemas.ogf.org/nmc/status/redirection/201109/” is considered to be the only accept-
able response. This redirection activity is assumed to be “temporary”, e.g. clients should not cache/store
this redirection for any reason.

6.2.4 Clienterror

This represents an error issued to a client based on the request. Use of the top level, e.g.
“http://schemas.ogf.org/nmc/status/clienterror/201109/” may be possible, but is not recommended. The fol-
lowing subclasses were identified:

• bad message: Returns a message indicating there is a syntactic (XML based) or semantic (logical
structure of request) error. Context will be given in human readable text.

• bad request: Request was send to non-existent endpoint on the node/service in question

• authentication failed: The service could not determine who the user really was

• unauthorized: The user is not allowed to request the content/resource

• message not allowed: The wrong type of message was sent to the service (indicatesa deeper level
of semantic checking beyondbad message)

• event type not allowed: The eventType is not allowed or unsupported by this service(indicates a
deeper level of semantic checking beyondbad message)

• request too large: The request message was too large to process

• request timeout: The request has taken too long to service

nmc-wg@ogf.org 35

GWD-R January 19, 2012
• protocol not allowed: Version of NMC protocol was not understood between the client and server.

We choose to draw the line at NMC protocol in this case, and not“higher” into the Network Mea-
surement description, or “lower” into SOAP, HTTP, TCP, etc.In the event that we cannot handle
schematic nuances beyond NMC (or lower layer issues from something else) we should fall back to
the general error, orbad message

• chaining not understood: The chaining used in the message, either merge or operation, was not
understood by the parser. This is a specific use case ofbad message

6.2.5 Servererror

This represents an error issued to a client based on the behavior of the service that s serving the request.
Using just the top level, e.g. “http://schemas.ogf.org/nmc/status/servererror/201109/” is considered to be
acceptable, but not recommended. The following subclasseswere identified:

• data fetch error: The request is valid, but there is an underlying problem with the service backend.

• too busy: The service is unable to act on the request at this time due tointernal limitations on resource
consumption

• administrative down: The service has been configured to not respond.

6.3 Use Cases

There are two primary use cases of these coded values:

• Basic Structure: Using the codes and user meanings as prescribed in this document

• Extension: Adding new codes, or alternate meanings, to extend this document

6.3.1 Basic Structure

Two items which characterize the basic massage structure containing a status code are as follows:

• The namespace “http://ggf.org/ns/nmwg/result/2.0/” of xml tags containing status code information.

• The “metadata” containingSTATUS CODE and “data” withSHORT DESCRIPTION of a status
code.

The following xml snippet presents the structure:

<nmwg:message xmlns:nmwg=http://ggf.org/ns/nmwg/base/2.0/
xmlns:nmwgr="http://ggf.org/ns/nmwg/result/2.0/">

<nmwg:metadata id="status-code">
<nmwg:eventType>
STATUS_CODE

</nmwg:eventType>
</nmwg:metadata>

<nmwg:data id="status-code-desc"
metadataIdRef="status-code">

<nmwgr:datum>
SHORT_DESCRIPTION

</nmwgr:datum>
</nmwg:data>

</nmwg:message>

nmc-wg@ogf.org 36

GWD-R January 19, 2012
6.3.2 Extension

The basic structure of status code message can be extended byintroducing new namespaces (seenew-
namespace in the xml snippet below). They allow to redefine the datum element in order to contain more
complex information formats.

<nmwg:message xmlns:nmwg=http://ggf.org/ns/nmwg/base/2.0/>

<nmwg:metadata id="status-code">
<nmwg:eventType>
STATUS_CODE

</nmwg:eventType>
</nmwg:metadata>

<nmwg:data id="status-code-desc"
metadataIdRef="status-code">

<new-namespace:datum>
STATUS_EXTENDED_CONTENT

</new-namespace:datum>
</nmwg:data>

</nmwg:message>

6.4 Examples

The following examples show use of the result codes.

6.4.1 Successful Code

<nmwg:message id="response" type="EchoResponse"
xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
xmlns:nmwgr="http://ggf.org/ns/nmwg/result/2.0/">

<nmwg:metadata id="status-code">
<nmwg:eventType>
http://schemas.ogf.org/nmc/status/successful/201109/

</nmwg:eventType>
</nmwg:metadata>

<nmwg:data id="status-code-desc"
metadataIdRef="status-code">

<nmwgr:datum>
This is the success echo response from the service.

</nmwgr:datum>
</nmwg:data>

</nmwg:message>

6.4.2 Servererror Code

<nmwg:message id="resp1"
type="MetadataKeyResponse"
xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
xmlns:nmwgr="http://ggf.org/ns/nmwg/result/2.0/">

<nmwg:metadata id="status-code">
<nmwg:eventType>
http://schemas.ogf.org/nmc/status/servererror/data_fetch_error/201109/

</nmwg:eventType>
</nmwg:metadata>

<nmwg:data id="status-code-desc"
metadataIdRef="status-code">

<nmwgr:datum>
Requested metadata items are not available.

</nmwgr:datum>
</nmwg:data>

</nmwg:message>

nmc-wg@ogf.org 37

GWD-R January 19, 2012

7 Extension

This section must become the basis for all extension protocols. As a demonstration we include a protocol
that must be implemented by all measurement services: theEcho Protocol. This protocol will incorporate
the preceding work to eliminate duplication as much as possible, only specifying parts that are necessary
for clarification. Each protocol extension may be treated asa separate work, and will include the necessary
schema, analysis, and example sections.

7.1 Echo Protocol

The sole purpose of certain services, in a measurement framework, is to aid in the discovery and protection
of the enterprise. The tasks undertaken by these critical components also require sound communication
protocols based on the same formats used to exchange and store measurement data as defined by theNM-
WG [8].

TheEcho Protocolcan be used by client applications as well as other services to ascertain theliveness
of a given service. A well formattedEchoRequest message, when sent to a service, should trigger a similar
EchoResponse. This interaction allows a client or service to gauge the responsiveness of a service; the
potential to learn more information is also available for services who wish to implement more functionality.

The core functionality of theEcho Protocolis to provide a simplerequestandresponsecapable of deliv-
ering rudimentary status information. This protocol for exchange is similar to other types of communication,
notablyping. While this protocol may seem to be a reinvention of existingtooling, the extension possibility
far outweighs the duplication of functionality.

We present an overview of the messages used in this protocol,including both schematic designs and
examples for theRequest Message(see Section 7.1.2) andResponse Message(see Section 7.1.3). We
conclude with a brief description of where extensions are possible followed by some current examples
in Protocol Extension(see Section 7.1.5).

7.1.1 Architecture

To ensure availability, each service must be able to respondto simple queries regarding status. Services that
fail to answer a direct question may be experiencing difficulty, and therefore may not be able to complete
interaction with interested parties. Client applications, services, or external monitoring tools should use this
simple method to quickly come to conclusions regarding framework availability.

All services must contain the ability to respond to the most basic ofEcho Protocolmessages as de-
scribed by this document. The minimum requirement of anEcho Protocolexchange is simply responding
to a properly encoded request.Echo Protocolextensions may be built from this general protocol to elicit
additional functionality on a service by service basis to dotasks such as test the capabilities of the service, re-
ceive statistics, or monitor erroneous behavior. The assignment of these other tasks within anEchoRequest
message is valid provided that the basic structure is not compromised.

7.1.2 Request Message

TheEchoRequest message can be initiated by a client application or service wanting to know the availability
of some other service. The format of this message is minimal with respect to other protocol messages as
the input is rather simple. The basic format described in this work for measurements has been adapted as a
template for use in service communication as well, keeping the concept of metadata and data intact.

nmc-wg@ogf.org 38

GWD-R January 19, 2012
7.1.2.1 Request Message Schema

The following schema is a native description of the request schema as in the RELAX-NG[9] language.
Through the use of tools such as Trang[11] and MSV[5] it is possible to convert this to other widely accepted
formats such as XSD[12]. The following describes theEchoRequest schema. Note that this will only
validateEchoRequest messages.

Begin Schema

namespace nmwg="http://ggf.org/ns/nmwg/base/2.0/"

start =
element nmwg:message {

attribute id { xsd:string } &
attribute messageIdRef { xsd:string }? &
attribute type {
"EchoRequest" |
"http://schemas.perfsonar.net/messages/EchoRequest/1.0"

} &
element nmwg:metadata {
attribute id { xsd:string } &
element nmwg:eventType {

"http://schemas.perfsonar.net/tools/admin/echo/2.0"
}

} &
element nmwg:data {
attribute id { xsd:string } &
attribute metadataIdRef { xsd:string }

}
}

End Schema

7.1.2.2 Request Message Analysis

The following is a breakdown of the elements featured in the schema.

7.1.2.2.1 Message

<nmwg:message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
type="EchoRequest"
id="STRING">

<nmwg:metadata />

<nmwg:data />

</nmwg:message>

Table 16: Message Element Specifics
Message Element

localname message
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes id, type
nested elements metadata, data
required yes

This appears the same was as it does in Section 4.3.2.1, the only notable exception is a requirement that
thetypeattribute contain the valuesEchoRequest or http://schemas.perfsonar.net/messages/EchoRequest/1.0.

nmc-wg@ogf.org 39

GWD-R January 19, 2012
7.1.2.2.2 Metadata

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="STRING">

<nmwg:eventType />

</nmwg:metadata>

Table 17: Metadata Element Specifics
Metadata Element

localname metadata
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes id, MetadataIdRef
nested elements eventType
required yes

This appears the same was as it does in Section 4.3.2.4, the only exception is specifying thatEventType
can be theonly child.

7.1.2.2.3 EventType

<nmwg:eventType xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
http://schemas.perfsonar.net/tools/admin/echo/2.0

</nmwg:eventType>

Table 18: EventType Element Specifics
EventType Element

localname eventType
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes N/A
nested elements text
required yes

TheeventTypeelement is normally used to specify an action for a service ormeasurement. We utilize
it for this role in theEcho Protocolby specifying the action of responding to anEchoRequest. There are
no attributes permitted for this element, and only text can be used as a child, specifically text reporting
http://schemas.perfsonar.net/tools/admin/echo/2.0.

Because this element is currently well defined into a specificrole and purpose, the eventType is non-
negotiable.Extensions, as discussed in Section 7.1.5, may be employed on a service by service basis to
expand this basic specification, as long as the role is preserved.

7.1.2.2.4 Data

<nmwg:data xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
id="STRING"
metadataIdRef="STRING" />

nmc-wg@ogf.org 40

GWD-R January 19, 2012

Table 19: Data Element Specifics
Data Element

localname data
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes id, metadataIdRef
nested elements N/A
required yes

This appears the same was as it does in Section 4.3.2.8.

7.1.2.3 Request Message Example

The first example shows a correct configuration for anEchoRequest message.

<!-- Begin XML -->

<message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
type="EchoRequest"
id="message1">

<metadata id="m1">
<nmwg:eventType>
http://schemas.perfsonar.net/tools/admin/echo/2.0

</nmwg:eventType>
</metadata>

<data id="d1" metadataIdRef="m1" />

</message>

<!-- End XML -->

The final example shows two incorrect items: the messagetypeandeventTypeare both wrong. This
must be rejected by a service.

<!-- Begin XML -->

<message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
type="Echo"
id="message2">

<metadata id="m1">
<nmwg:eventType>
echo

</nmwg:eventType>
</metadata>

<data id="d1" metadataIdRef="m1" />

</message>

<!-- End XML -->

7.1.3 Response Message

TheEchoResponse message is a reply to a givenEchoRequest message from a client application or service.
The format of this message is minimal with respect to other protocol messages as the input is rather simple.
The basic format described in this work for measurements hasbeen adapted as a template for use in service
communication as well, keeping the concept of metadata and data intact.

nmc-wg@ogf.org 41

GWD-R January 19, 2012
7.1.3.1 Response Message Schema

The following schema is a native description of the responseschema as in the RELAX-NG[9] language.
Through the use of tools such as Trang[11] and MSV[5] it is possible to convert this to other widely accepted
formats such as XSD[12]. The following describes theEchoResponse schema. Note that this will only
validateEchoResponse messages.

Begin Schema

namespace nmwg="http://ggf.org/ns/nmwg/base/2.0/"
namespace nmwgr="http://ggf.org/ns/nmwg/result/2.0/"

start =
element nmwg:message {

attribute id { xsd:string } &
attribute messageIdRef { xsd:string }? &
attribute type {
"EchoResponse" |
"http://schemas.perfsonar.net/messages/EchoResponse/1.0"

} &
element nmwg:metadata {
attribute id { xsd:string } &
element nmwg:eventType {

xsd:string
}

} &
element nmwg:data {
attribute id { xsd:string } &
attribute metadataIdRef { xsd:string } &
element nmwgr:datum {

xsd:string |
attribute value { xsd:string }

} |
element nmwg:datum {

xsd:string |
attribute value { xsd:string }

} |
}

}

End Schema

7.1.3.2 Response Message Analysis

The following is a breakdown of the elements featured in the schema.

7.1.3.2.1 Message

<nmwg:message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
type="EchoResponse"
id="STRING">

<nmwg:metadata />

<nmwg:data />

</nmwg:message>

This appears the same was as it does in Section 4.4.2.1, the only exception is a requirement that thetype
attribute contain the valuesEchoResponse or http://schemas.perfsonar.net/messages/EchoResponse/1.0.

7.1.3.2.2 Metadata

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="STRING">

<nmwg:eventType />

</nmwg:metadata>

nmc-wg@ogf.org 42

GWD-R January 19, 2012

Table 20: Message Element Specifics
Message Element

localname message
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes id, type
nested elements metadata, data
required yes

Table 21: Metadata Element Specifics
Metadata Element

localname metadata
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes id, metadataIdRef
nested elements eventType
required yes

This appears the same was as it does in Section 4.4.2.4, the only exception is specifying thatEventType
can be theonly child.

7.1.3.2.3 EventType

<nmwg:eventType xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
http://schemas.perfsonar.net/tools/admin/echo/2.0

</nmwg:eventType>

or

<nmwg:eventType xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
http://schemas.perfsonar.net/status/success/echo/1.0

</nmwg:eventType>

Table 22: EventType Element Specifics
EventType Element

localname eventType
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes N/A
nested elements text
required yes

TheeventTypeelement is normally used to specify anaction for a service or measurement. We utilize
it for this role in theEcho Protocolby specifying the action of a response to anEchoRequest. There are
no attributes permitted for this element, and only text can be used as a child, specifically text reporting the
statusof the transaction. A complete list of available status strings is available in Section 7.1.4.

nmc-wg@ogf.org 43

GWD-R January 19, 2012
7.1.3.2.4 Data

<nmwg:data xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
id="STRING"
metadataIdRef="STRING" />

Table 23: Data Element Specifics
Data Element

localname data
namespaces http://ggf.org/ns/nmwg/base/2.0/
attributes id, metadataIdRef
nested elements datum
required yes

This appears the same was as it does in Section 4.4.2.5 with the exception of allowingDatum as a child
element.

7.1.3.2.5 Datum

<nmwgr:datum xmlns:nmwgr="http://ggf.org/ns/nmwg/result/2.0">
TEXT

</nmwgr:datum>

<!-- OR -->

<nmwg:datum xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
TEXT

</nmwg:datum>

Table 24: Datum Element Specifics
Datum Element

localname datum
namespaces http://ggf.org/ns/nmwg/result/2.0/, http://ggf.org/ns/nmwg/base/2.0/
attributes value
nested elements text
required yes

Thedatumelement describes measurements in most circumstances; theintent in theEcho Protocolis to
report back a human readablestatusmessage. There is only one possible attribute accepted for this element,
value, and it may be used in place of an enclosed text element. The text could be any message the service
wishes to return.

7.1.3.3 Response Message Example

The first example shows a correct configuration for anEchoResponse message.

<!-- Begin XML -->

nmc-wg@ogf.org 44

GWD-R January 19, 2012
<nmwg:message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"

xmlns:nmwgr="http://ggf.org/ns/nmwg/result/2.0/"
type="EchoResponse"
id="message3"
messageIdRef="message1">

<metadata id="m1">
<nmwg:eventType>success.echo</nmwg:eventType>

</metadata>

<data id="d1" metadataIdRef="m1">
<nmwgr:datum>The echo request has passed.</nmwgr:datum>

</data>

</nmwg:message>

<!-- End XML -->

The final example shows the result of a failedEchoRequest.

<!-- Begin XML -->

<nmwg:message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
xmlns:nmwgr="http://ggf.org/ns/nmwg/result/2.0/"
type="EchoResponse"
id="message4"
messageIdRef="message2">

<metadata id="m1">
<nmwg:eventType>error.echo</nmwg:eventType>

</metadata>

<data id="d1" metadataIdRef="m1">
<nmwgr:datum>The echo request has failed.</nmwgr:datum>

</data>

</nmwg:message>

<!-- End XML -->

7.1.4 Result Codes

The following new result codes can be incorporated into the echo protocol based on Section 6. We will
introduce these into both styles to allow for backwards compatibility. The original style is presented first:

success.
echo

error.
echo

We can express the same information using the new URI style:

http://schemas.perfsonar.net/status/
success/

echo/
1.0

error/
echo/

1.0

Note that it is possible to add more specific error conditionsas the functionality of this protocol increases.
For example, if we are testing database connectivity it may make sense to add anecho.db.range of status.
This is left as an exercise for extensions to this protocol.

nmc-wg@ogf.org 45

GWD-R January 19, 2012
7.1.5 Protocol Extension

There are two avenues for extension within theEcho Protocolas described in this document. It is possible
to manipulate the values contained within theeventTypeto advance functionality, or throughschema modifi-
cation it is possible to add additional elements capable of handling a wider range of actions. Extensions that
modify the schema for a given service must not change the themes presented in this protocol specification.
It is imperative that all services respect the basic functionality in their quest to add new features.

7.1.5.1 eventType Extension

The current accepted eventType for theEcho Protocol’s EchoRequest message is
http://schemas.perfsonar.net/tools/admin/echo/2.0. This action must be accepted by all services. By
adding additional eventTypes with the same format it is possible to extract additional information via a
service.

Consider simple service X. The designer of this service wishes to create a special behaviour for specific
eventTypes. The following new eventTypes are added to her service code (and to her implementation of the
schema):

• http://schemas.perfsonar.net/tools/admin/echo/X/2.0 - Allows service contact information to be re-
turned vianmwgr:datum

• http://schemas.perfsonar.net/tools/admin/echo/X/contact/2.0 - Allows service contact information
to be returned vianmwgr:datum

• http://schemas.perfsonar.net/tools/admin/echo/X/stats/2.0 - Allows service usage statistics to be
returned vianmwgr:datum

• http://schemas.perfsonar.net/tools/admin/echo/X/db/2.0 - Allows a basic database test to be per-
formed, the results of which are returned vianmwgr:datum

By simply allow some additional string matching to occur in the eventType it is now possible to receive
additional data to check the health and status of the system.

7.1.5.2 Other Extensions

Similar to the above approach, it is possible to extend the schema by adding additional elements to increase
functionality. Individuals pursuing this route must be comfortable with schema design in general and the
layout of theNM-WG andNMC-WG schema descriptions specifically.

A simple extension involves allowing the commonly used parameters structure to reside in theMessage
of theEchoRequest message. This modification is presented below.

Begin Schema

namespace nmwg="http://ggf.org/ns/nmwg/base/2.0/"

start =
element nmwg:message {

attribute id { xsd:string } &
attribute messageIdRef { xsd:string }? &
attribute type {
"EchoRequest" |
"http://schemas.perfsonar.net/messages/EchoRequest/1.0"

} &
element nmwg:metadata {

nmc-wg@ogf.org 46

GWD-R January 19, 2012
attribute id { xsd:string } &
element nmwg:eventType {

"http://schemas.perfsonar.net/tools/admin/echo/2.0"
} &
element nmwg:parameters {

element nmwg:parameter {
attribute name { xsd:string }

}
}?

} &
element nmwg:data {
attribute id { xsd:string } &
attribute metadataIdRef { xsd:string }

}
}

End Schema

Building on the example in Section 7.1.5.1, the following example message shows how to ask for similar
information as previously described.

<nmwg:message type="http://schemas.perfsonar.net/messages/EchoRequest/1.0"
id="message.96587"
xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">

<nmwg:metadata id="metadata.21324">
<nmwg:eventType>
http://schemas.perfsonar.net/tools/admin/echo/2.0
</nmwg:eventType>
<nmwg:parameters>
<nmwg:parameter name="status" />

</nmwg:parameters>
</nmwg:metadata>

<nmwg:data id="data.54365" metadataIdRef="metadata.21324"/>

</nmwg:message>

While this method does require some additional schema modification, the result produced is the same as
described in Section 7.1.5.1. An important consideration is the inclusion ofparametersin anEchoRequest.

It must be noted that the extension methods proposed here preserve the underlying base protocol com-
pletely. Existing services that provide strict validationmay reject messages that do not fit this standard
explicitly, so be sure to design client applications appropriately.

8 Security Considerations

8.1 Quality of service and resource control

Any service that processes requests from external sources,will not respond or progress requests (in a timely
matter) if the resources that the service acts upon are saturated. Given any request always causes some
resource utilization, resources can always be saturated bysimply sending a lot of requests. This is known
as a Denial of Service(DoS) attack. NMC-based services might be more likely to suffer successful attacks
as their underlying function(collect, perform or analyse network measurements) are resource intensive, thus
requiring fewer requests to to saturate the service.

Implementers and deployers should assert how prone there service is to attack and implement, configure
or deploy countermeasures. Because information on this subject matter is widely available, we will only
mention that NMC facilitates Authentication and Authorization; which could play a role in protecting the
service.

nmc-wg@ogf.org 47

GWD-R January 19, 2012
Beyond this, a NMC service might in turn act upon external resources. Because of this an NMC service

could be prone to be abused to perform, boost or amplify DoS attacks. Related; there is the subtle problem
that emerges when the external resource has some for of protection against abuse:

A NMC service may obtain a ’bad reputation’ given it emits certain request patterns, a ’bad reputation’
skews measurements. For example, given a NMC service(A) performs a measurement of resource(B), if
such a measurement is performed frequent enough, resource(B) might presume that it’s being attacked by
service(A) and therefore, opt to block service(A). Given that service(A) is now being blocked, the service
might falsely report that resource(B) is unavailable.

These issues could be solved by tracking the actions performed by the service and based upon this
information opt to not perform certain requests at that point in time. Given that this is the case opt to return
to the client that it should try later(insert footnote with link to respond code) or ’throttle’ the measurements.
Alternatively, if the service can assert that the action to be triggered would have a too great of an impact
upon the network it can opt to refuse to perform it all together and instead inform the client that it should
break the action up into smaller actions if possible.(insert footnote with link to result code)

8.2 Data protection and privacy

As outlined by Martin Swany in An Extensible Schema for Network Measurement and Performance
Data[10], data passing through NMC services might be sensitive. Implementers should provide means
to control distribution of such data and deployers should configure their services as well as manage the
environment to prevent unauthorised access to the data.

In select cases part of the data that is invariant towards analysis can be anonymised to prevent information
being available to unauthorised parties while still allowing measurements and analysis to take place. In such
cases, to ensure that the information is correctly interpreted, results must always clearly advertise if and
what information is anonymised.(insert link to section that describes a standardised? way to do advertise
this.)

Given sensitive information is provided by a service to a authorized party one has to prevent ease-
dropping(or snooping), NMC-WG protocols will provide no protection as we delegate this responsibility
to the underlying transport. This means implementers and deployers should take care in choosing which
transport(NMC-WG binding) to use.

9 Conclusion

The preceding work has described a simple protocol that willform the basis of communication for software
exchanging both network measurements and topological information. This protocol is both minimal and
flexible — extension to specific use cases is possible and expected. This work has been careful to retain
the concepts described in other working groups includingNM-WG andNML-WG in an effort to remain
compatible with the primary data types.

10 Acknowledgements

The authors gratefully acknowledge the contributions of the perfSONAR consortium to this work. Specifi-
cally staff and member institutions from ESnet, GÉANT, Internet2, and RNP have provided extensive input
and feedback into the implementation of this and all NMC-WG protocols.

nmc-wg@ogf.org 48

GWD-R January 19, 2012

11 Notational Conventions

The key words “MUST” “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC 2119
[1], except that the words do not appear in uppercase.

12 Contributors

Jason Zurawski
Internet2
1150 18th Street, NW
Suite 1020
Washington, DC 20036

D. Martin Swany
University of Delaware
Department of Computer and Information Sciences
Newark, DE 19716

13 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that
it has made any effort to identify any such rights. Copies of claims of rights made available for publication
and any assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rightsby implementers or users of this specification
can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or
other proprietary rights which may cover technology that may be required to practice this recommendation.
Please address the information to the OGF Executive Director.

14 Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims
all warranties, express or implied, including but not limited to any warranty that the use of the information
herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular
purpose.

nmc-wg@ogf.org 49

GWD-R January 19, 2012

15 Full Copyright Notice

Copyright c© Open Grid Forum (2008-2012). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that com-
ment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of anykind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself may
not be modified in any way, such as by removing the copyright notice or references to the OGF or other
organizations, except as needed for the purpose of developing Grid Recommendations in which case the
procedures for copyrights defined in the OGF Document process must be followed, or as required to trans-
late it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors
or assignees.

References

[1] S. Bradner. Key Words for Use in RFCs to Indicate Requirement Levels. RFC 2119, March 1997.

[2] B. Lowekamp, B. Tierney, L. Cottrell, R. Hughes-Jones, T. Kielmann, and M. Swany. A Hierarchy
of Network Performance Characteristics for Grid Applications and Services. Community practice,
Global Grid Forum, June 2003.

[3] B. Lowekamp, B. Tierney, L. Cottrell, R. Hughes-Jones, T. Kielmann, and M. Swany. Enabling Net-
work Measurement Portability Through a Hierarchy of Characteristics. In4th International Workshop
on Grid Computing (Grid2003), 2003.

[4] A. Anjomshoaa M. Drescher. Standardised Namespaces forXML infosets in OGF. Open grid forum
community document, Open Grid Forum, October 2006.

[5] Sun Multi-Schema XML Validator (MSV).https://msv.dev.java.net/.

[6] Network Measurement Control Working Group (NMC-WG).https://forge.gridforum.
org/projects/nmc-wg.

[7] Network Markup Language Working Group (NML-WG).https://forge.gridforum.org/
projects/nml-wg.

[8] Network Measurements Working Group (NM-WG).http://nmwg.internet2.edu.

[9] RELAX-NG Schema Language.http://relaxng.org/.

[10] M. Swany. An Extensible Schema for Network Measurementand Performance Data. Open grid forum
working group document, Open Grid Forum, February 2008.

[11] Multi-format schema converter based on RELAX NG.http://www.thaiopensource.com/
relaxng/trang.html.

nmc-wg@ogf.org 50

GWD-R January 19, 2012
[12] XML Schema).http://www.w3.org/XML/Schema.

[13] J. Zurawski, M. Swany, and D. Gunter. A scalable framework for representation and exchange of
network measurements. InIEEE/Create-Net Conference on Testbeds and Research Infrastructures for
the Development of Networks and Communities, Barcelona, Spain, March 2006.

nmc-wg@ogf.org 51

