
GFD-I
Open Cloud Computing Interface

TBD...
July 23, 2009

occi-wg@ogf.org 1

Open Cloud Computing Interface Specification

Status of This Document

TBD...

Copyright Notice

Copyright (c) Open Grid Forum (2009). All Rights Reserved.

Abstract

TBD...

Contents

TOC comes here

1. Introduction

An overview of the document.

2. OCCI Walkthrough

2.1. Overview
This document may lag behind the actual specification

The Open Cloud Computing Interface (OCCI) is an API for managing cloud infrastructure
services (also known as Infrastructure as a Service or IaaS) which strictly adheres
to REpresentational State Transfer (REST) principles and is closely tied to HyperText
Tranfer Protocol (HTTP). For simplicity and scalability reasons it specifically avoids Remote
Procedure Call (RPC) style interfaces and can essentially be implemented as a horizontally
scalable document repository with which both nodes and clients interact.

This document describes a step-by-step walkthrough of performing various tasks as at the
time of writing.

2.2. Getting Started

Connecting

Each implementation has a single OCCI end-point URL (we'll use http://example.com/) and
everything you need to know is linked from this point - configuring clients is just a case
of providing this parameter. In the simplest case the end-point may contain only a single
resource or type of resource (e.g. a hypervisor burnt into the BIOS of a motherboard exposing
compute resources, a network switch/router exposing network resources or a SAN exposing
storage resources) and at the other end of the spectrum it may provide access to a global
cloud infrastructure (e.g. the "Great Global Grid" or GGG). You will only ever see those
resources to which you have access to (typically all of them for a private cloud or a small
subset for a public cloud) and flexible categorisation and search provide fine-grained control
which resources are returned, allowing OCCI to handle the largest of installations. You will
always connect to this end-point over HTTP(S) and given the simplicity of the interface most
user-agents are suitable, including libraries (e.g. urllib2, LWP), command line tools (e.g. curl,
wget) and full blown browsers (e.g. Firefox).

Authenticating

When you connect you will normally be challenged to authenticate via HTTP (this is not
always the case - in secure/offline environments it may not be necessary) and will need to do
so via the specified mechanism. It is anticipated that most implementations will require HTTP
Basic Authentication over SSL/TLS so at the very least you should support this (fortunately



GFD-I
Open Cloud Computing Interface

TBD...
July 23, 2009

occi-wg@ogf.org 2

almost all user-agents already do), but more advanced mechanisms such as NTLM or
Kerberos may be deployed. Certain types of accesses (such as a compute resource querying
OCCI for introspection and configuration) may be possible anonymously (having already
been authenticated by interface and/or IP address). Should you be redirected by the API to
a node, storage device, etc. (for example, to retrieve a large binary representation) then you
should either be able to transparently authenticate or a signed URL should be provided. That
is, a single set of credentials is all that is required to access the entire system from any point.

Representations

As the resource itself (e.g. a physical machine, storage array or network switch) cannot
be transferred over HTTP (at least not yet!) we instead make available one or more
representations of that resource. For example, an API modeling a person might return
a picture, fingerprints, identity document(s) or even a digitised DNA sequence, but not
the person themselves. A circle might be represented by SVG drawing primatives or
any three distinct points on the curve. For cloud infrastructure there are many useful
representations, and while OCCI standardises a number of them for interoperability
purposes, an implementation is free to implement others in order to best serve the specific
needs of their users and to differentiate from other offerings. Other examples include:

• Open Cloud Computing Interface (OCCI) descriptor format (application/occi+xml)

• Open Virtualisation Format (OVF) file (application/ovf+xml?)

• Open Virtualisation Archive (OVA) file (application/x-ova?)

• Screenshot of the console (image/png)

• Access to the console (application/x-vnc)

The client indicates which representation(s) it desires by way of the URL and/or HTTP Accept
headers (e.g. HTTP Content Negotiation) and if the server is unable to satisfy the request
then it should return HTTP 406 Not Acceptable.

Descriptors

In addition to the protocol itself, OCCI defines a simple key/value based descriptor format
for cloud infrastructure resources:

compute Provides computational services, ranging from dedicated
physical machines (e.g. Dedibox) to virtual machines (e.g.
Amazon EC2) to slices/zones/containers (e.g. Mosso Cloud
Servers).

network Provides connectivity between machines and the outside
world. Usually virtual and may or may not be connected to
a physical segment.

storage Provides storage services, typically via magnetic mass
storage devices (e.g. hard drives, RAID arrays, SANs).

Given the simplicity of the format it is trivial to translate between wire formats including plain
text, JSON, XML and others. For example:

occi.compute.cores 2
compute.speed 3200
compute.memory 2048

Identifiers

Each resource is identified by its dereferenceable URL which is by definition unique, giving
information about the origin and type of the resource as well as a local identifier (the



GFD-I
Open Cloud Computing Interface

TBD...
July 23, 2009

occi-wg@ogf.org 3

combination of which forms a globally unique compound key). The primary drawback is that
the more information that goes into the key (and therefore the more transparent it is), the
more likely it is to change. For example, if you migrate a resource from one implementation
to another then its identifier will change (though in this instance the source should provide a
HTTP 301 Moved Permanently response along with the new location, assuming it is known,
or HTTP 410 Gone otherwise).

In order to realise the benefit of transparent, dereferenceable identifiers while still being
able to track resources through their entire lifecycle an immutable UUID attribute should be
allocated which will remain with the resource throughout its life. This is particularly important
where the same resource (e.g. a network) appears in multiple places.

New implementations should use type 4 (random) UUIDs anyway, as these can be safely
allocated by any node without consulting a register/sequence, but where existing identifiers
are available they should be used instead (e.g. http://amazon.com/compute/ami-ef48af86).

2.3. Operations

Create

To create a resource simply POST it to the appropropriate collection (e.g. /compute, /network
or /storage) as an HTML form (supported by virtually all user agents) or in another supported
format (e.g. OVF):

POST /compute HTTP/1.1
Host: example.com
Content-Length: 35
Content-Type: application/x-www-form-urlencoded

compute.cores=2&compute.memory=2048

Rather than generating the new resource from scratch you may also be given the option to
GET a template and POST or PUT it back (for example, where "small", "medium" and "large"
instances or pre-configured appliances are offered).

Retrieve

The simplest command is to retrieve a single resource by conducting a HTTP GET on its
URL (which doubles as its identifier):

GET /compute/b10fa926-41a6-4125-ae94-bfad2670ca87 HTTP/1.1
Host: example.com

This will return a HTTP 300 Multiple Choices response containing a list of available
representations for the resource as well as a suggestion in the form of a HTTP Location:
header of the default rendering, which should be HTML (thereby allowing standard browsers
to access the API directly). An arbitrary number of alternatives may also be returned by way
of HTTP Link: headers.

If you just need to know what representations are available you should make a HEAD request
instead of a GET - this will return the metadata in the headers without the default rendering.

Some requests (such as searches) will need to return a collection of resources. There are
two options:

Pass-by-reference A plain text or HTML list of links is provided but each needs
to be retrieved separately, resulting in O(n+1) performance.

Pass-by-value A wrapper format such as Atom is used to deliver [links to]
the content as well as the metadata (e.g. links, associations,
cahching information, etc.), resulting in O(1) performance.



GFD-I
Open Cloud Computing Interface

TBD...
July 23, 2009

occi-wg@ogf.org 4

Update

Updating resources is trivial - simply GET the resource, modify it as necessary and PUT it
back where you found it.

Delete

Simply DELETE the resource:

DELETE /compute/b10fa926-41a6-4125-ae94-bfad2670ca87 HTTP/1.1
Host: example.com

2.4. Sub-resource Collections

(For want of a better name)

Each resource may expose collections for functions such as logging, auditing, change
control, documentation and other operations (e.g. http://example.com/compute/123/log/456)
in addition to any required by OCCI. As usual CRUD operations map to HTTP verbs (as
above) and clients can either PUT entries directly if they know or will generate the identifiers,
or POST them to the collection if this will be handled on the server side (using POST Once
Exactly (POE) to ensure idempotency).

Requests

Requests are used to trigger state changes and other operations such as backups,
snapshots, migrations and invasive reconfigurations (such as storage resource resizing).
Those that do not complete immediately (returning HTTP 200 OK or similar) must be handled
asynchronously (returning HTTP 201 Accepted or similar).

POST /compute/123/requests HTTP/1.1
Host: example.com
Content-Length: 35
Content-Type: application/x-www-form-urlencoded

state=shutdown&type=acpioff

The actual operation may not start immediately (for example, backups which are only handled
daily at midnight) and may take some time to complete (for example a secure erase which
requires multiple passes over the disk). Clients can poll for status periodically or use server
push (or a non-HTTP technology such as XMPP) to monitor for events.

3. OCCI Frequently Asked Questions

3.1. General

Who created the Open
Cloud Computing Interface
(OCCI)?

The Open Grid Forum (OGF)'s Open Cloud Computing
Interface Working Group (OCCI-WG) created the Open
Cloud Computing Interface (OCCI).

Who are the Open
Cloud Computing Interface
Working Group (OCCI-WG)
officials?

Andrew Edmonds (Intel, SLA@SOI), Thijs Metsch
(Sun Microsystems) and Alexis Richardson (Rabbit
Technologies Ltd) are the chairs and Sam Johnston
(Australian Online Solutions) is the secretary.

Who else was involved? Around 200 individuals representing over 100 companies
were involved in the development of the Open Cloud
Computing Interface (OCCI).

3.2. Use Cases

How were the use cases
collected?

Use cases were solicited from the working group mailing list
as well as other external sources.



GFD-I
Open Cloud Computing Interface

TBD...
July 23, 2009

occi-wg@ogf.org 5

3.3. Technical

Why didn't you invent your
own XML representation?

See Tim Bray's Don’t Invent XML Languages post.

4. OCCI Core

4.1. Introduction

The Open Cloud Computing Interface is an open community consensus API, initially targeting
cloud infrastructure services or "Infrastructure as a Service (IaaS)". A "Resource Oriented
Architecture (ROA)", it is as close as possible to the underlying HyperText Transfer Protocol
(HTTP), deviating only where absolutely necessary. Each resource (identified by a canonical
URL) can have multiple representations which may or may not be hypertext (e.g. HTML).
Metadata including associations between resources is exposed via HTTP headers (e.g. the
Link: header), except in the case of collections where Atom is used as the meta-model.

Table 1. Common Attributes

Attribute Type Description

id String (Typically UUID Type
4)

Random, immutable unique
identifier (atom:id)

title String Human readable title
(atom:title)

summary String Summary (atom:summary)

4.2. Basics

URL Namespace

An OCCI interface is defined by a single URL entry point (and optionally, suitable credentials
for HTTP based authentication schemes). Implementors should also expose an AtomPub
service document at the root to enable enumeration of resource types, supported formats
and categories.

Nouns, Verbs and Attributes

Interfaces expose "nouns" which have "attributes" and on which "verbs" can be performed.
The attributes are exposed as key-value pairs and appropriate verbs as links, following
HATEOAS principles.

CRUD Operations

Create, Retrieve, Update and Delete (CRUD) operations map to the POST, GET, PUT and
DELETE HTTP verbs respectively. HEAD and OPTIONS verbs may be used to retrieve
metadata and valid operations without the entity body to improve performance. Additionally,
all existing HTTP functionality is available for caching, proxying, gatewaying and other
advanced functionality.

POST (Create) POSTing a representation (e.g. OVF) to a collection (e.g. /
compute) will result in a new resource being created (e.g. /
compute/123) and returned in the Location: header. POST
is also used with HTML form data to trigger verbs (e.g.
restart)

GET (Retrieve) GETting a resource (e.g. /compute/123) will return a
representation of that resource in the most appropriate
supported format specified by the client in the Accept
header. Otherwise "406 Not Acceptable" will be returned.

PUT (Update) PUTting a representation (e.g. OVF) to a URL (e.g. /
compute/123) will result in the resource being created or



GFD-I
Open Cloud Computing Interface

TBD...
July 23, 2009

occi-wg@ogf.org 6

updated. The URL is known or selected by the client (in
which case UUIDs should be used), in contrast to POSTs
where the URL is selected by the server.

DELETE (Delete) DELETE results in the deletion of the resource (and
everything "under" it, as appropriate).

Collections

Operations that return multiple resources (e.g. categories, searches) are rendered as an
Atom feed with an Atom entry per resource. Metadata that would normally appear in the
HTTP headers appears in standard Atom elements with the entity-body itself being passed
by reference or by value in the Atom content element.

Versioning

Clients and servers should expose the protocol version (e.g. OCCI/1.0) via the User-Agent
and Server HTTP headers respectively. Should second or subsequent versions of the
descriptor format be required the version will be added to the Internet media type (e.g.
application/occi2+xml).

4.3. Formats

All server implementations must support rendering in at least the following formats:

4.3.1. Atom XML (application/occi+xml)

The following is an example of an OCCI resource in application/occi+xml format, which
is most useful for advanced clients including:

• Desktop management clients

• Network management systems

• Intercloud communication

<?xml version="1.0" encoding="utf-8"?>
<entry xmlns="http://www.w3.org/2005/Atom" xmlns:occi="http://purl.org/net/occi">
  <id>http://example.com/products/1234</id>
  <title>Resource #1</title>
  <summary>Web resource for demonstration purposes</summary>
  <author>
     <name>Acme, Inc.</name>
  </author>
  <updated>2005-07-31T12:29:29Z</updated>
  <occi:etag>46dd20-23-464015228e7c0</occi:etag>
  <category term="widget" scheme="http://example.com/products" label="Widgets" />
  <link rel="alternate" href="http://example.com/products/1234" title="Link to myself" />
</entry>

4.3.2. Plain Text

The following is an example of an OCCI resource in application/occi+txt format, which
is most useful for simple clients including:

• Manual manipulation by developers, system administrators, etc.

• Monitoring systems

• Scripts

• Scheduled cron jobs



GFD-I
Open Cloud Computing Interface

TBD...
July 23, 2009

occi-wg@ogf.org 7

id: 2acf3e85-33cb-493b-ab5c-7ef878032657
title: Resource #1
summary: Web resource for demonstration purposes
author.name: Acme, Inc.
updated: 2009-12-31T12:59:59Z
etag: "46dd20-23-464015228e7c0"
category[0].term: widget
category[0].scheme: http://example.com/products
category[0].label: Widgets
link[0].href: http://example.com/products/1234
link[0].rel: alternate
link[0].title: Link to alternate representation

4.3.3. JSON (application/occi+json)

The following is an example of an OCCI resource in application/occi+json format,
which is most useful for:

• Web interfaces

• JavaScript code

{
    "id": "f63aaa26-30b7-4a30-91ca-1d03c1e52214",
    "title": "Resource #1",
    "summary": "Web resource for demonstration purposes",
    "author": {
        "name": "Acme, Inc."
    },
    "updated": "2009-12-31T12:59:59Z",
    "etag": "46dd20-23-464015228e7c0",
    "category": [{
        "term": "widget",
        "scheme": "http://example.com/products",
        "label": "Widgets"
    }],
    "link": [{
        "href": "http://example.com/products/1234",
        "rel": "alternate",
        "title": "Link to alternate representation"
    }]
}

4.4. Extensions

4.4.1. Caching

Caching information improves performance by allowing clients to track freshness of cached
objects.

Table 2. Caching Attributes

Attribute Type Description

etag String ETag (must match HTTP
headers where present)

updated Date Time last updated
(atom:updated)

4.4.2. Categories

Categories allow for simple, flexible organisation of information.



GFD-I
Open Cloud Computing Interface

TBD...
July 23, 2009

occi-wg@ogf.org 8

Table 3. Category Attributes

Attribute Type Description

category[i].term Token Category name
(atom:term)

category[i].scheme URI Category vocabulary/schema
(atom:scheme)

category[i].label String Human readable label
(atom:label)

4.4.3. Links

Linking allows resources to refer to:

• Alternative representations

• Sub-collections

• Other nouns

• Related resources

Table 4. Linking Attributes

Attribute Type Description

link[i].href URI Link target
(atom:link[@href])

link[i].rel URI Link relation
(atom:link[@rel])

link[i].title String Human readable title
(atom:link[@title])

4.4.4. Status

Status reporting allows clients to monitor the status of a given task.

Table 5. Status Attributes

Attribute Type Description

status.message String Human readable status
message

status.percentage Float (0..100) Percentage complete (0=not
started, 100=finished)

status.rate.average Float Average rate of progress

status.rate.current Float Current rate of progress

status.rate.units String Units (e.g. MB/s)

status.work.completed Float Work completed

status.work.remaining Float Work remaining

status.work.units String Units (e.g. MB)

status.time.start Date/Time Start time

status.time.finish Date/Time Finish time (may be an
estimate)

status.time.remaining Time Remaining time (may be an
estimate)



GFD-I
Open Cloud Computing Interface

TBD...
July 23, 2009

occi-wg@ogf.org 9

4.4.5. Tasks

Asynchronous operations ("tasks") immediately return HTTP 202 Accepted with a
Location: header pointing to a simple task [sub]resource. This allows tasks to be monitored
(GET), updated (PUT) and canceled (DELETE). Completed tasks may be deleted immediately,
after a reasonable period of time (allowing clients to retrieve status) or retained indefinitely
for audit purposes.

The collection of tasks for a given resource (including the entry-point itself for global tasks) is
advertised under the http://purl.org/occi#tasks link relation and new tasks should
be submitted via HTTP POST to the supplied href.

Table 6. Task Attributes

Attribute Type Description

task.type Token Task type (e.g. backup)

task.sub-type Token Task sub-type (e.g.
incremental)

task.schedule[i] String Task schedule (e.g. "every
Friday at 21:00")

4.5. References

The following standards are referenced by this implementation.

• RFC 2616 Hypertext Transfer Protocol -- HTTP/1.1

• RFC 4287 The Atom Syndication Format

• RFC 5023 The Atom Publishing Protocol

Additionally RFC 2119 Requirement Levels are used throughout.

4.6. Registration

4.6.1. IANA Considerations

The following media types are to be registered:

• application/occi+txt

• application/occi+json

• application/occi+xml

5. OCCI Infrastructure

OCCI Infrastructure defines three nouns and various extensions relating to management of
cloud infrastructure services (IaaS).

Table 7. Common Attributes

Attribute Type Description

hostname String Valid DNS hostname for the
resource (may be FQDN)

5.1. Nouns

Cloud infrastructure can be modeled using three primary nouns: compute, network and
storage.

5.1.1. Compute

A compute resource is capable of conducting computations (e.g. a virtual machine).



GFD-I
Open Cloud Computing Interface

TBD...
July 23, 2009

occi-wg@ogf.org 10

Table 8. Compute Attributes

Attribute Type Description

compute.cpu.arch Enum (x86, x64) CPU Architecture (e.g. x64)

compute.cpu.cores Integer Number of CPU cores (e.g. 1,
2)

compute.cpu.speed Float (10^9 Hertz) Clock speed in gigahertz (e.g.
2.4)

compute.memory.size Float (10^6 bytes) RAM in megabytes (e.g.
2048)

compute.memory.speed Float (10^9 bps) RAM speed in Gbit/s (e.g.
256)

compute.memory.reliabilityEnum (standard, checksum) Qualitative measure of RAM
reliability (e.g. ECC)

5.1.2. Network

A network resource is capable of transferring data (e.g. a virtual network or VLAN).

Table 9. Network Attributes

Attribute Type Description

network.vlan-id Integer (0..4095) 802.1q VLAN ID (e.g. 4095)

network.vlan-tag Token Tag based VLANs (e.g.
external-dmz)

network.ipv4[i].gatewayIPv4 Address IPv4 gateway address (e.g.
192.168.0.1)

network.ipv4[i].netmaskIPv4 Address IPv4 netmask address (e.g.
255.255.255.0)

network.ipv4[i].networkIPv4 Address IPv4 network address (e.g.
192.168.0.0)

network.ipv4[i].cidr Integer (0..32) Netmask in CIDR notation
(e.g. 24)

5.1.3. Storage

A storage resource is capable of mass storage of data (e.g. a virtual hard drive).

Table 10. Storage Attributes

Attribute Type Description

storage.reliability Enum (transient, persistent,
reliable)

Qualitative device
persistence (e.g. transient)

storage.size Integer (10^9 bytes) Drive size in gigabytes (e.g.
40)

5.2. Extensions

Various extensions provide for more advanced management functionality such as billing,
monitoring and reporting.

5.2.1. State machine (state)

The state machine extension allows for the modeling of arbitrarily complex state machines
and associated transitions (e.g. start, stop, restart).



GFD-I
Open Cloud Computing Interface

TBD...
July 23, 2009

occi-wg@ogf.org 11

6. OCCI Registries

Table 11. HTTP Status Codes

Code Description Example

200 OK Request completed
successfully

Response is returned

201 Created Request completed
successfully, resource was
created

Pointer to new resource
returned

202 Accepted Request accepted,
processing not completed

Workload starting but not yet
active

301 Moved Permanently Resource has been assigned
a new permanent URI

Workload migrated to another
installation

302 Found Resource resides temporarily
under a different URI

Alias pointing to UUID can be
updated

304 Not Modified Conditional GET on resource
that is unchanged

Client already has the latest
version of the resource

400 Bad Request Request could not be
understood by the server due
to malformed syntax

Client sent a representation
that was unable to be
understood

401 Unauthorized The request requires user
authentication

Client must retry with
authentication

402 Payment Required The server has refused to
fulfill the request

Credit limit exceeded

403 Forbidden The server understood the
request, but is refusing to
fulfill it

Attempt to access resource
without permission

404 Not Found The server has not found the
resource

Feed or entry unknown

405 Method Not Allowed The method specified is not
allowed for the resource

Attempt to delete an
immutable resource

406 Not Acceptable The resource is not
capable of requested content
characteristics

Unsupported output format
requested

409 Conflict Request is in conflict with the
current state of the resource

Resource updated by a third-
party in the interim

410 Gone Resource is gone, no
forwarding address

Resource was deleted

500 Internal Server Error Server encountered an
unexpected condition

An unknown failure has
occurred (e.g. out of memory)

501 Not Implemented Functionality required to fulfill
request is not implemented

A missing extension was
called

502 Bad Gateway An invalid response was
received from an upstream
server

The gateway received a
malformed response from a
node

503 Service Unavailable Server is temporarily unable
to handle the request

Server may be overloaded or
down for maintenance

504 Gateway Timeout No response was received
from an upstream server

The gateway did not receive
a response within the timeout
period



GFD-I
Open Cloud Computing Interface

TBD...
July 23, 2009

occi-wg@ogf.org 12

7. Contributors

TBD...

8. Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the technology
described in this document or the extent to which any license under such rights might or
might not be available; neither does it represent that it has made any effort to identify any
such rights. Copies of claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to obtain a general license or
permission for the use of such proprietary rights by implementers or users of this specification
can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

9. Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the
OGF disclaims all warranties, express or implied, including but not limited to any warranty
that the use of the information herein will not infringe any rights or any implied warranties of
merchantability or fitness for a particular purpose.

10. Full Copyright Notice

Copyright (C) Open Grid Forum (2009). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are included on all such
copies and derivative works. However, this document itself may not be modified in any way,
such as by removing the copyright notice or references to the OGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which case the
procedures for copyrights defined in the OGF Document process must be followed, or as
required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF
or its successors or assignees.


