
GWD-R, GWD-I or GWD-C
Authors:

Sergio Andreozzi*, INFN
Stephen Burke, RAL

Felix Ehm, CERN
Laurence Field*, CERN
Gerson Galang, ARCS

David Horat (editor), CERN
Balazs Konya*, Lund University

Maarten Litmaath, CERN
Paul Millar, DESY
JP Navarro, ANL

Florido Paganelli, Lund University
 *co-chairs

GLUE WG
http://forge.ogf.org/sf/sfmain/do/viewProject/projects.glue-wg

June 13,2012

GLUE v. 2.0 – Reference Realization Implementation of to an LDAP Schema

Status of This Document

This document provides information to the Grid community regarding the LDAP Schema
realizationimplementation of the GLUE information model (v.2.0). Distribution is unlimited. This
implementation is derived from the proposed recommendation GFD.147 specification document
“GLUE Specification v. 2.0”. This document is a draft to be submitted for public comment after
working group agreement .(wg-internal version 6)

Copyright Notice

Copyright © Open Grid Forum (2010). All Rights Reserved.

Trademark

Open Grid Services Architecture and OGSA are trademarks of the Open Grid Forum.

Abstract
The GLUE specification is an information model for Grid entities described in natural language
enriched with a graphical representation using UML Class Diagrams. This document presents an
realizationimplementation of this information model as an LDAP Schema, and includes
explanations of the major design decisions made during the rendering implementation process.

GWD-R, GWD-I or GWD-C Nov 20, 200913 June, 2012

GLUE-WG

glue-wg@ogf.org

Contents

1. Introduction ... 3
2. Notational Conventions .. 3
3. LDAP Schema Realization ... 3

3.1 Approach ... 3
3.2 Prefix conventions ... 3
3.3 Object Class and attribute naming conventions .. 4
3.4 Object Class types and inheritance ... 4
3.5 Data types ... 5
3.6 Relationships ... 6
3.7 Directory Information Tree ... 9
3.8 OID Assignments ... 15

4. Security Considerations ... 16
5. Author Information .. 16
6. Contributors & Acknowledgements .. 16
7. Intellectual Property Statement .. 16
8. Disclaimer ... 17
9. Full Copyright Notice .. 17
10. References.. 17

GWD-P-R 13 June 201220
Nov 2009

example@ggf.org 3

1. Introduction

The GLUE 2.0 information model defined in [glue-2] is a conceptual model of Grid entities. In
order to be adopted by technology providers, a realization in terms of a concrete data model is
needed. In order to be used by Grid middleware an implementation in terms of a concrete data
model is required.
This document describes the normative realizationimplementation of the GLUE 2.0 conceptual
model in terms of an LDAP Schema. The approach followed to map the entities and relationships
in the conceptual model to the LDAPconcrete data model is also described.

2. Notational Conventions

The key words ‘MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,”
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be interpreted as
described in RFC 2119 (see http://www.ietf.org/rfc/rfc2119.txt).

References to entitiesclasses and attributes in the abstract model of GFD.147schema are in italic,
and to Object Classes and attributes in the concrete LDAP schema are in bold .

3. LDAP Schema RealizationImplementation

3.1 Approach

There are many possible approaches to realise the GLUE conceptual model as an LDAP
Schema. The approach followed here is informed by practical experience with the LDAP
implementation of the GLUE 1 schema [glue-1], and by general considerations relating to the
efficiency and simplicity of likely queries. Conversely, the GLUE 2 schema itself was designed in
the expectation that LDAP would be one of the main implementation technologies, and hence
there is in many cases a natural way to translate the schema concepts into LDAP.

 The GLUE LDAP implementation needs to map each entity in the GLUE information model to a
specific LDAP entry defined in terms of Object Classes. We have chosen the most
straightforward mapping in which there is a one to one correspondence between LDAP Object
Classes and GLUE entities, with inheritance in the abstract schema represented explicitly by
Object Class inheritance in LDAP.

In the following sections we discuss the detailed design decisions that have been made while
converting the GLUE model into LDAP.

3.2 Prefix conventions

LDAP allows the same descriptor to refer to different object identifiers in certain cases and the
registry supports multiple registrations of the same descriptor (each indicating a different kind of
schema element and different object identifier). However, multiple registrations of the same
descriptor are to be avoided if possible [rfc4520].

In practical experience with version 1 of the GLUE schema it has generally been the case that the
schema does not need to coexist with other schemas, but it nevertheless seems useful to allow
for this as a possibility. As Object Classes and attributes might have the same names in different
schemas (there is only a global namespace), in order to make schemas compatible and able to
coexist with other schemas in the same LDAP server we have decided that all Object Class and
attribute names should be prefixed with a concrete string.

Given that GLUE 2.0 represents a major version change which may be required to cohabit with
older versions for some time, GLUE2 is used as a clean short prefix for all schema elements in
the model – this compares with the prefix of Glue used for the version 1.x schemas.

GWD-P-R 13 June 201220
Nov 2009

example@ggf.org 4

3.3 Object Class and attribute naming conventions

The name of each LDAP Object Class is simply the name of the modelschema entity prefixed as
described above, e.g. the Object Class representing the Service entity is called GLUE2Service .
Each object-attribute of an entitypair in the abstract modelschema has a new is rendered as an
LDAP attribute type in LDAP, with a name which is composed from the names of the entityobject
and the name of and the attribute, for example GLUE2ServiceType corresponds to the Type
attribute of the Service entity. This gives a clear separation of attributes per Object Class, making
it less prone to mistakes if changes are made and in the construction of queries.

3.4 Object Class types and inheritance

The LDAP rendering is defined by following the most straightforward mapping in which there is a
one to one correspondence between the model entities and the LDAP Object Classes. Every
entity is represented by an LDAP Object Class with the set of mapped attributes affected by the
explicit inheritance.

The abstract modelschema uses inheritance to derive some entities from others. LDAP is not
object-oriented in the usual sense, but it allows inheritance to be represented explicitly by
composing Object Classes [rfc4512]. However, it would also be possible to define standalone
Object Classes including all inherited attributes directly. We have chosen to use explicit
inheritance, both as the most natural representation of the schema and because it simplifies
some queries. For example, it enables a generic query to be made for the URL attribute of every
Endpoint without any special treatment for Computing Endpoints, Storage Endpoints or any other
specialised classes which may be defined in the future. The main disadvantage of this approach
is more complexity in the naming of attributes within an object, for example a
GLUE2ComputingEndpoint object can include attributes called
GLUE2ComputingEndpointRunningJobs , GLUE2EndpointURL and GLUE2EntityName , but
in practice this seems unlikely to cause significant problems.

A separate case could be made for the Entity class, since it is unlikely that queries for the
attributes of all objects will be common. In general we conclude that consistency both with the
abstract modelschema and the general principles for the LDAP schema nevertheless make an
explicit GLUE2Entity Object Class the best solution.

We have however made an exception for the ID attribute. All LDAP objects have an attribute
which is used to construct its Distinguished Name (DN), and for the GLUE2 schema the natural
attribute to use is clearly the ID. If we simply followed the rules described above the name of the
ID attribute for every object would be GLUE2EntityID , and the DN of every object would be of the
form GLUE2EntityID =x, GLUE2EntityID =y, GLUE2EntityID =z. We consider that this would be
unduly opaque, and therefore introduce an additional rule that the ID attribute is defined in the
Object Classes representing the classes derived immediately from Entity, and the naming then
follows the standard rules. So for example the ID attribute for all of the GLUE2Service ,
GLUE2ComputingService and GLUE2StorageService objects is called GLUE2ServiceID .

One final point is that the schema document defines Policy, Domain, Share, Manager and
Resource as being abstract classes which MUST NOT be instantiated, but should only be used to
derive specialised entities. However, this rule is based on the fact that these objects in
themselves contain no useful information, rather than that there is any structural flaw caused by
instantiating them. Modifying an LDAP schema is a complex and time-consuming operation, so it
may be useful at some point to prototype a new class derived from, for example, Share using a
concrete GLUE2Share Object Class together with GLUE2Extension objects to carry the putative
new attributes, and only define a new specialised Object Class once the definition of the new
entity is stable. We have therefore decided to make these Object Classes concrete and
instantiable. However, it should be emphasised that such objects MUST NOT be regarded as
strictly compliant with the schema, that schema validation tools SHOULD reject such objects, and
that tools to translate the LDAP schema to another representation MAY reject or ignore them.

To summarise, the following rules were employed:

Comment [B1]: This strange choice is not
motivated and explained. What is the benefit
e.g. to not to have
GLUE2ComputingEndpointID or
GLUE2StorageSErvice ID while all the less
important entities such as Benchmark have their
own IDs?

GWD-P-R 13 June 201220
Nov 2009

example@ggf.org 5

• The GLUE2Entity Object Class in LDAP should carry all attributes defined in Entity
except ID.

• All classes immediately deriving from Entity will have their own ID attribute named after
the entityclass name. For example, the Object Class GLUE2Location will have the
attribute GLUE2LocationID .

• All classes deriving from Entity in GLUE2 will also inherit from the GLUE2Entity Object
Cclass in LDAP.

• The GLUE2Entity Object Cclass will be of type “Abstract”.

• All classes deriving from Entity will be of type “Structural”.

• All other classes will be of type “Auxiliary”.

3.5 Data types

LDAP does not have an extensive range of data types, and there is little overlap with the types
defined in the GLUE schema. For the implementation of the different data types, just two different
types of the standard LDAP v3 attribute set referred to in [rfc4517] are used:

- DirectoryIA5 String , with OID 1.3.6.1.4.1.1466.115.121.1.2615

- Integer , with OID 1.3.6.1.4.1.1466.115.121.1.27

- Boolean, with OID 1.3.6.1.4.1.1466.115.121.1.7

“Integer ” is used for types UInt32 and UInt64 of the original GLUE 2.0 Specification and
“DirectoryIA5 String ” and “Boolean ” is used for every other type.

This also means that data type integrity will largely not be checked in the LDAP implementation
itself, but must be ensured by other means, for example external validation tools.

The attribute multiplicity in the modelschema maps naturally to LDAP since it supports both
optional and multi-valued attributes directly, and hence the constraints implied by the
modelschema (MUST/MAY and SINGLE-VALUE) are imposed directly in the LDAP attribute
definitions.

Note that there are two principle changes from the LDAP representation used for GLUE 1. One is
that in that case we chose IA5String (OID=1.3.6.1.4.1.1466.115.121.1.26) as the string type.
However, this is basically 7-bit ASCII which does not allow text in various non-English languages
to be represented, and moreover the presence of such strings may cause the entire object to be
rejected by an LDAP server. We have therefore decided to use DirectoryString for GLUE 2,
which is basically the UTF-8 encoding of Unicode which includes ASCII as a subset. Potentially it
would be possible to use IA5String for the majority of attributes where the permitted values could
be restricted and only use DirectoryString for attributes which represent free text, but in practice
it seems simpler to use a uniform representation. We note that the schema document itself does
not define the string type in any detail, which also implies that we should use the broadest
possible type.

The second change concerns case sensitivity. The GlueLUE 1 schema defines strings not to be
case-sensitive (a matching rule of caseIgnoreIA5Match), and to some extent this makes queries
simpler. However, many external tools are case-sensitive, and for the GLUE 2 schema we
explicitly defined strings to be case-sensitive. We have therefore followed this in the LDAP
schema by defining the matching rules to be caseExact . This also supports the change to
DirectoryString , since case-matching rules are more complex for extended character sets.
However, this will be the most visible change in behaviour relative to GLUE 1, and hence may
require some education for users.

The existence of mandatory attributes also represents a partial change from GLUE 1 which had
essentially all attributes as optional. This may require more care in the writing of information
providers, but also helps to ensure the quality of the published data.

Comment [B2]: Seems to restrictive to allow
only the first child of the Entity to be structural.
Choice of structural/auxiliary should be revised .
For example ComputingService is not structural.

Comment [B3]: This is not true in the latest
schema that uses IA5String

Comment [B4]: This is not true in the latest
schema

GWD-P-R 13 June 201220
Nov 2009

example@ggf.org 6

3.6 Relationships

LDAP is not a relational database, but a directory. Thus, LDAP neither provides nor ensures
relationships other than the parent-child relations implied by the hierarchical DN.

To implement relationships between objects in LDAP, for each relationship a new attribute
therefore needs to be defined. In the GlueLUE 1 schema we defined two such attributes,
GlueChunkKey pointing to parent objects in the DN hierarchy and GlueForeignKey pointing to
objects outside the hierarchy. These attributes contain ID-value constraints of the form
GlueClusterUniqueID =xyz.

In GLUE 2 we have two differences that imply a change in the way that relationships are
represented. In GlueLUE 1 the need for the ChunkKey is related to the fact that some objects
have only a non-unique LocalID , and there is therefore a need to relate those objects explicitly to
their parent in order for them to be identified. For example, a GlueSA object can only be identified
relative to its parent GlueSE object. By contrast, in GLUE 2 all entities (other than Extension)
have a unique ID and hence can be identified uniquely, which removes the need for something
similar to the ChunkKey .

Secondly, in GlueLUE 1 the unique ID attributes are only unique within objects of the same type,
so for example a GlueClusterUniqueID and a GlueSubClusterUniqueID may be identical.
However, in GLUE 2 we require ID attributes to be globally unique even across object types. It is
therefore possible for the relationship value to simply be the ID.

In terms of the attribute names we felt that it would be clearer and more explicit for the name to
specify the relation it represents, rather than using a generic name such as GLUE2ForeignKey .
This also prevents the accidental publication of relationships not defined in the schema. The
naming convention chosen is to have the prefix and Object Class name as for other attributes,
followed by the name of the Object Class to which the reference points, and finally a suffix
ForeignKey . (We also considered using FK as a more compact suffix, but decided that the
longer string is likely to be easier to understand.) As an example, this means that a relation from
GLUE2Endpoint to GLUE2Service is called GLUE2EndpointServiceForeignKey , and will have
a value which is the corresponding GLUE2ServiceID . These attributes are inherited in the same
way as any other attribute, so for example a GLUE2StorageEndpoint will be related to a
GLUE2StorageService via an attribute with the same name.

Relational attributes need to be defined in the LDAP schema corresponding to every relation
defined in the abstract modelschema, and with multiplicities as defined in the modelschema
document. Relations are bidirectional, but there is no general need to define an attribute for both
ends of the relation since LDAP queries can be performed in either direction. That is, it is possible
either to query for an object which has a particular ID in its ForeignKey attribute, or for an object
with an ID which has been extracted from a ForeignKey . Depending on the circumstances there
may be differences in efficiency or ease of use, for example queries which return multiple IDs are
likely to be more complex, but in general we decided to define a ForeignKey only for one end of
a relationship.

There were two main considerations taken into account in deciding which end of the relationship
to use. In many cases there is a natural parent-child relation, for example Service is a parent of
Endpoint, and it is likely to be better for the relation to point from child to parent. This is both for
likely ease of coding of information providers – create the parent and then loop over the children
– and because the most likely query direction is to find the children of a given parent rather than
vice versa.

The second consideration is multiplicity. For one-to-many relations it will normally be better to
have one attribute per object than many, and even for many-to-many relations it will often be the
case that one of the multiplicities is likely to be substantially more than the other. For example,
the relation between Share and Endpoint is many-to-many, but in most cases there will be many
more Shares than Endpoints.

Formatted: Font: Italic

GWD-P-R 13 June 201220
Nov 2009

example@ggf.org 7

In general this mechanism is similar to the one used in relational databases with foreign keys,
except for a few key points:

- In a relational database, when implementing a one-to-many relationship, the foreign key
attribute is included in the “many” object since a database cell can only have one value.
In LDAP attributes can be multivalued, so this may depend on the needs for each object.

- In a relational database, when implementing a many-to-many relationship, a new table is
created that holds all relations due to the fact that a table cell cannot hold multivalued
attributes. LDAP supports multivalued attributes directly so there is no need for any
intermediate table.

- Relational databases ensure relationship integrity, LDAP does not.

We then considered each of the schema relations individually to decide which end should carry
the foreign key attribute in the light of the considerations described above, and the result is shown
in Table 1. In the vast majority of cases the decision was obvious. The only exception to the “one
end” rule is for the two peer relations Service-Service and Activity-Activity where the keys need to
be at both ends.

Relation 1
Mult

1

Mult

2
Relation 2 Object with key Name

Entity 1 0..* Extension Extension
GLUE2ExtensionEntity

ForeignKey

Location 0..1 0..* Service Location
GLUE2LocationService

ForeignKey

Location 0..1 0..* Domain Location
GLUE2LocationDomain

ForeignKey

Contact 0..* 0..* Service Contact
GLUE2ContactService

ForeignKey

Contact 0..* 0..* Domain Contact
GLUE2ContactDomain

ForeignKey

AdminDomain 1 0..* Service Service
GLUE2ServiceAdminDomain

ForeignKey

AdminDomain 0..1 0..* AdminDomain AdminDomain (child)

GLUE2AdminDomain

AdminDomain

ForeignKey

UserDomain 1..* 0..* Policy Policy
GLUE2PolicyUserDomain

ForeignKey

UserDomain 0..1 0..* Activity Activity
GLUE2ActivityUserDomain

ForeignKey

UserDomain 0..1 0..* UserDomain UserDomain (child)
GLUE2UserDomainUserDomain

ForeignKey

Service 1 0..* Endpoint Endpoint
GLUE2EndpointService

ForeignKey

Service 1 0..* Share Share
GLUE2ShareService

ForeignKey

Service 1 0..* Manager Manager
GLUE2ManagerService

ForeignKey

Service 0..* 0..* Service Service (both)
GLUE2ServiceService

ForeignKey

Endpoint 0..* 0..* Share Share
GLUE2ShareEndpoint

ForeignKey

GWD-P-R 13 June 201220
Nov 2009

example@ggf.org 8

Endpoint 1 0..* AccessPolicy AccessPolicy
GLUE2AccessPolicyEndpoint

ForeignKey

Endpoint 0..1 0..* Activity Activity
GLUE2ActivityEndpoint

ForeignKey

Share 0..* 0..* Resource Share
GLUE2ShareResource

ForeignKey

Share 0..1 0..* Activity Activity
GLUE2ActivityShare

ForeignKey

Share 1 0..* MappingPolicy MappingPolicy
GLUE2MappingPolicyShare

ForeignKey

Manager 1 1..* Resource Resource
GLUE2ResourceManager

ForeignKey

Resource 0..1 0..* Activity Activity
GLUE2ActivityResource

ForeignKey

Activity 0..* 0..* Activity Activity (both)
GLUE2ActivityActivity

ForeignKey

ComputingService 1 0..* ToStorageService ToStorageService

GLUE2ToStorageService

ComputingService

ForeignKey

ComputingManager 1 0..*
Application

Environment
ApplicationEnvironment

GLUE2ApplicationEnvironment

ComputingManager

ForeignKey

ComputingManager 0..1 0..* Benchmark Benchmark

GLUE2Benchmark

ComputingManager

ForeignKey

Benchmark * 0..1
Execution

Environment
Benchmark

GLUE2Benchmark

ExecutionEnvironment

ForeignKey

ExecutionEnvironment 0..* 0..*
Application

Environment
ApplicationEnvironment

GLUE2ApplicationEnvironment

ExecutionEnvironment

ForeignKey

ApplicationEnvironment 1 0..* ApplicationHandle ApplicationHandle

GLUE2ApplicationHandle

ApplicationEnvironment

ForeignKey

ToStorageService - 1 StorageService ToStorageService

GLUE2ToStorageService

StorageService

ForeignKey

StorageService 1 0..*
StorageAccess

Protocol
StorageAccessProtocol

GLUE2StorageAccessProtocol

StorageService

ForeignKey

StorageService 1 0..*
StorageService

Capacity
StorageServiceCapacity

GLUE2StorageServiceCapacity

StorageService

ForeignKey

StorageAccessProtocol 0..* 0..* ToComputingService ToComputingService

GLUE2ToComputingService

StorageAccessProtocol

ForeignKey

StorageShare 1 0..*
StorageShare

Capacity
StorageShareCapacity

GLUE2StorageShareCapacity

StorageShare

ForeignKey

ToComputingService - 1 ComputingService ToComputingService

GLUE2ToComputingService

ComputingService

ForeignKey

ToComputingService - 1 StorageService ToComputingService GLUE2ToComputingService

GWD-P-R 13 June 201220
Nov 2009

example@ggf.org 9

StorageService

ForeignKey

Table 1: Foreign Key attributes

3.7 Directory Information Tree

In LDAP, object instances (entries) are arranged in a hierarchical structure called the Directory
Information Tree (DIT). An LDAP entry consists of set of attributes taken from the object classes
associated with the object. An LDAP entry MUST be composed of at least one structural
objectclass and MAY use several auxiliary object classes. Each entryobject MUST havehas a
unique Distinguished Name (DN) constructed from an ordered series of Relative Distinguished
Names (RDNs), each of which consists of an attribute name and its value taken from a structural
object class. The RDNs are required to be unique only to the extent that the full DN of every
object needs to be unique.The DNs through their hierarchically ordered RDNs define the tree
structure.

In the GLUE2 rendering approach the GLUE2 entries are built from objectclasses that are
grouped into the same entry only if there is an inheritance relationship in the model. This results
in an LDAP tree of GLUE2 entries where each non-related model entities have their own separate
node. As for the DN it is natural to use the unique ID of the model entity to form the RDN.In case
of entries with multiple objectclasses, the ID of the objectclass derived immediately from the
abstract objectclass GLUE2Entity is used.

For example, GLUE2ComputingEndpoint entry consists of attributes of the objectclassses
GLUE2Entity ,GLUE2Endpoint and GLUE2ComputingEndpoint . Following the example the
unrelated model entities ComputingEndpoint and ComputingManager rendered as
GLUE2ComputingEndpoint and GLUE2ComputingManager , are separate nodes in the tree.
The RDNs of GLUE2ComputingEndpoint and GLUE2ComputingManager are
GLUE2EndpointID=X and GLUE2ManagerID=Y.

in GLUE it is natural to use the unique ID of the object to form th The list of RDNs which form a
DN then correspond to a tree of objTo some extent LDAP allows the tree structure to be used to
specify queries. In particular, queries can be restricted to a subtree below a given point, and there
are also so-called extensible queries which include contraints on components of the DN.
However, the tree structure is specific to LDAP and will generally not be reflected in
implementations using other technologies. It was also decided to define an additional auxiliary
Object Class not derived from the model to facilitate grouping of same type of entries under a
single node in the tree. This grouping node SHOULD have a GLUE2Group object class with a
single attribute GLUE2GroupID . The attribute specifies the entity class of the entries to be
grouped. A GLUE2Group grouping entry MAY be inserted at any point in the DIT. The grouping
facilitates queries by restricting the query to the subtree below the GLUE2Group entry and also
improves visual presentation (e.g. avoiding very long object lists in an LDAP browser).
Implementations MAY define circumstances in which Group s will always be used, and MAY also
define how the GroupID s are constructed. However it should be emphasized that Group s are
specific to an LDAP implementation and there will in general be no corresponding entity in other
representations.

As a concrete example, ComputingActivity objects represent jobs in a computing system, and
hence may have a very large multiplicity. It may therefore be useful to introduce a GLUE2Group
entry with attribute GLUE2GroupID=ComputingActivities as their parent in the tree to allow
them to be manipulated and displayed as a unit.

When deciding the DIT for the GLUE2 rendering following considerations were taken: Also it may
be convenient for LDAP implementations to use a variable DIT, and for the tree to be restructured
as information is aggregated for different purposes. The conceptual modelschema design
ensures that any entityobject can be uniquely referenced by its unique ID irrespective of its DN,

Comment [B5]: LDAP is a hierarchical data
structure, no need to explain the opposite :)

Comment [B6]: This entry is used as a
structural one, therefore shouldn’t this be a
structural object class instead of auxiliary?

Comment [B7]: This attribute is NOT an ID,
furthermore it SHOULD carry information,
therefore it is more like a type or name.
GLUE2GroupClass or GLUE2GroupEntities

Comment [B8]: This is not true. Very similar
grouping is created in the XML rendering.

GWD-P-R 13 June 201220
Nov 2009

example@ggf.org 10

and the rendering choices for the associations of the model via GLUE2ForeignKey
implementation of references between objects described earlierabove also allows all entity object
relations to be followed directly. This means DNs are not needed to identify entries or to express
associationswithout reference to the DN.

Therefore it was agreed that as part of the GLUE2 LDAP rendering the DIT structure is not
mandated. Nevertheless a set of restrictions and a proposed structure is presented. The
proposed DIT structure (see figure) SHOULD be followed by those implementations that plan to
benefit from the hierarchical data model of LDAP.

The minimum restrictions regarding the structure of a GLUE2 DIT to be followed areWe have
therefore decided that implementations should be free to use whatever DIT they find convenient,
subject to the following restrictions:

• The LDAP tree requires a root DN, also called the base DN. For the DIT of a LDAP tree
containing GLUE2 information the o=glue MUST be used. This enables both GLUE2 and
Glue 1 information to be present in the same LDAP server since the Glue 1 tree has the
root o=grid. Having different base DNs means that it is not possible to perform single
queries across both trees and the separation also ensures that Glue 1 clients are not
affected by the presence of GLUE 2 information in the same server.

• When aggregating DITs from different LDAP servers entries MAY be added or removed
as part of the aggregation process but the DIT relations between existing entries
SHOULD be preserved. Aggregation is used to combine information taken from different
trees into a single DIT. Some LDAP servers may aggregate information from other
servers, for example to combine information from many sites to form a view of an entire
Grid. In such cases objects MAY be added or removed as part of the aggregation
process, but the DIT relations between existing objects SHOULD be preserved.

• GLUE2Admindomain entries SHOULD only aggregate services as their child entries in
the tree when those services are managed by that domain. If objects which are related to
a given AdminDomain have a GLUE2AdminDomain object as a parent in the tree it
SHOULD be the AdminDomain to which they relate. This effectively means that sites
should publish their own Services where possible.

• A GLUE2Service entry SHOULD aggregate all service related entries describing the
specific service via placing all those entries under its subtree, unrelated entries MUST
NOT appear there. If the DIT contains a GLUE2Service object then all objects which
represent components of the corresponding Service MUST be placed in the subtree
below the GLUE2Service object, and unrelated objects MUST NOT appear there.
However, isolated component objects MAY be published before aggregation into
complete Services

• All GLUE2Extension entriesobjects MUST appear immediately below the object they
extend, since they are logically part of the object.

• Implementations MAY impose additional constraints on the construction of the DIT.

As a consequence, The corresponding restriction on clients is that queries SHOULD NOTMUST
NOT make assumptions about the DIT except in accordance with these principles. This implies
that in general clients SHOULD NOT assume anything about the position of an entry in the
treenumber or existence of RDNs in the DN of a given object, but they MAY restrict the scope of
a query to a subtree at the level of GLUE2AdminDomain s or GLUE2Service s.The LDAP tree
requires a root DN - for GLUE 1 we chose o=grid for compatibility with the Globus MDS [globus-
mds]. There are no strong guidelines on the choice of root [ldap-root], so we chose o=glue as
being compact, similar to the existing usage and having reasonable justification to claim “glue” as
an organization name. This enables both GLUE 1 and GLUE 2 information to be present in the
same LDAP server. Having different base DNs means that it is not possible to perform single
queries across both schemas, but the schema structure is sufficiently different that this is not

Comment [B9]: Add rerefence to figures

Comment [B10]: Empty statement

Comment [B11]: In a hierarchical data
structure MUST is not the write phrase

GWD-P-R 13 June 201220
Nov 2009

example@ggf.org 11

likely to be useful, and the separation ensures that existing GLUE 1 clients will not be affected by
the presence of GLUE 2 information in the same server.

Finally, we decided to define one auxiliary Object Class, called GLUE2Group and with a single
attribute GLUE2GroupID . This is a “local” ID, i.e. it only needs to be sufficiently unique to ensure
the uniqueness of DNs. GLUE2Group objects MAY be inserted at any point in the DIT. Their
purpose is to group objects together in the tree, both to improve visual presentation (e.g. avoiding
very long object lists in an LDAP browser) and to facilitate queries by restricting the query to the
subtree below the GLUE2Group object. As a concrete example, ComputingActivity objects
represent jobs in a computing system, and hence may have a very large multiplicity. It may
therefore be useful to have one or more GLUE2Group objects as their parents in the tree to allow
them to be manipulated and displayed as a unit. Implementations MAY define circumstances in
which Group s will always be used, and MAY also define how the GroupID s are constructed.
However it should be emphasized that Group s are specific to an LDAP implementation and there
will in general be no corresponding entity in other representations.

As described above, implementations are broadly free to define the DIT as they choose.
However, we consider it useful to define a RECOMMENDED reference implementation, as
illustrated in Figure 1. This includes one use of a Group with GLUE2GroupID=grid at a level
immediately below the root, which enables information relating to an entire Grid to be separated
from other local information which may be published by the same server. Below this there MAY
be any number of Domain objects, which represent the hierarchical nature of the Domains in the
Grid environment. For example, a computing center C, participating in a national Grid
infrastructure N, which is part of a wider international infrastructure Z SHOULD construct the
following DN:

GLUE2DomainID =C, GLUE2DomainID =N, GLUE2DomainID =Z, GLUE2GroupID=grid, o=glue

Following the presentation of the general considerations and the minimal restrictions on the DIT,
below we describe the proposed GLUE2 LDAP DIT structure. The GLUE2 model can be used to
describe grid information on different levels:

• Local: At the bottom there are the set of services operated on local resources within a
same box or local network;

• Domain: local information from different sources then MAY be merged or aggregated at
an intermediate level called the domain information;

• Global: finally information taken from the domain or the local level are aggregated on a
global top level. The DIT representing the global level naturaly accommodates the
domain and local level trees as subtrees.

The DITs for the three levels are shown on the figures below.

Local-level DIT:

• Right beneath the o=glue root it MUST contain a GLUE2Group entry with
GLUE2GroupID=local. This entry SHOULD accommodate all the local services. With
their complete subtrees

• Right beneath the o=glue root it MAY contain GLUE2AdminDomain or
GLUE2UserDomain entries.

• The following groupings were introduced and MUST be placed into the tree as shown on
the figure: GLUE2GroupID=ComputingActivities,
GLUE2GroupID=ExecutionEnvironments, GLUE2GroupID=ApplicationEnvironments

GWD-P-R 13 June 201220
Nov 2009

example@ggf.org 12

Figure 1: Proposed DIT structure of a local information source publishing Service, Computing
Service and Storage Service together with Domain information.

GWD-P-R 13 June 201220
Nov 2009

example@ggf.org 13

Domain-level DIT :

• Right beneath the o=glue root it MUST contain only one GLUE2AdminDomain and MAY
have a GLUE2UserDomain

• The AdminDomain entry MUST have a GLUE2Group entry with
GLUE2GroupID=Services node that SHOULD contain all the service trees from the local
level belonging to that domain.

• Right beneath the o=glue root it MAY contain a GLUE2Group entry with
GLUE2GroupID=local. This entry MAY be used to describe the LDAP service itself.

Figure 2: Proposed DIT structure for Domain-level aggregation of local information sources.
Aggregation of the services from multiple local sources is done by moving every subtrees of the

GLUE2groupID=local entries under a common GLUE2GroupID=services entry.

Figure 1: The recommended LDAP DIT

GWD-P-R 13 June 201220
Nov 2009

example@ggf.org 14

Global-level DIT:
• Right beneath the o=glue root it MUST contain a GLUE2Group entry with

GLUE2GroupID=grid. This entry SHOULD accommodate all the local AdminDomains and
UserDomains with their complete subtrees

• Right beneath the o=glue root it MAY contain a GLUE2Group entry with
GLUE2GroupID=local. This entry MAY be used to describe the LDAP service itself.

Figure 3: Proposed DIT structure for global level aggregation from both domain
and local level information sources.

GWD-P-R 13 June 201220
Nov 2009

example@ggf.org 15

3.8 OID Assignments

The GLUE 2.0 LDAP implementation utilizes the sub tree of 1.3.6.1.4.1.6757 which is assigned to
the Global Grid Forum. An overview of the main use of the sub tree is given in Tables 2, 3 and 4
representing the main entities, Computing Service entities and Storage Service entities
respectively.

Since it is recommended that each attribute type should be linked to an object, we can clearly
identify attributes as parts of an object OID subtree. In the case of inherited objects, we can also
identify them as the parent's object OID subtree. The suggested order is that attribute types
should appear first in the OID tree and object children should appear later in a concrete Object
OID subtree.

Note that the OID numbers include the concrete chapter number in which the entity for that OID is
referenced in the GLUE 2.0 specification. (I.e. Entity is described in chapter 5.1, thus its OID is
1.3.6.1.4.1.6757.100.1.1.5.1).

Main Entities
OID Entity

1.3.6.1.4.1.6757.100.1.1.5.1 Entity <<abstract>>
1.3.6.1.4.1.6757.100.1.1.5.2 Extension
1.3.6.1.4.1.6757.100.1.1.5.3 Location
1.3.6.1.4.1.6757.100.1.1.5.4 Contact
1.3.6.1.4.1.6757.100.1.1.5.5 Domain <<abstract>>
1.3.6.1.4.1.6757.100.1.1.5.5.7 AdminDomain
1.3.6.1.4.1.6757.100.1.1.5.5.8 UserDomain
1.3.6.1.4.1.6757.100.1.1.5.6 Service
1.3.6.1.4.1.6757.100.1.1.5.7 Endpoint
1.3.6.1.4.1.6757.100.1.1.5.8 Share <<abstract>>
1.3.6.1.4.1.6757.100.1.1.5.9 Manager <<abstract>>
1.3.6.1.4.1.6757.100.1.1.5.10 Resource <<abstract>>
1.3.6.1.4.1.6757.100.1.1.5.11 Activity
1.3.6.1.4.1.6757.100.1.1.5.12 Policy <<abstract>>
1.3.6.1.4.1.6757.100.1.1.5.12.5 AccessPolicy
1.3.6.1.4.1.6757.100.1.1.5.12.6 MappingPolicy

Table 2: Main Entities

Computing Service
OID Entity

1.3.6.1.4.1.6757.100.1.1.6.1 ComputingService
1.3.6.1.4.1.6757.100.1.1.6.2 ComputingEndpoint
1.3.6.1.4.1.6757.100.1.1.6.3 ComputingShare
1.3.6.1.4.1.6757.100.1.1.6.4 ComputingManager
1.3.6.1.4.1.6757.100.1.1.6.5 Benchmark
1.3.6.1.4.1.6757.100.1.1.6.6 ExecutionEnvironment
1.3.6.1.4.1.6757.100.1.1.6.7 ApplicationEnvironment
1.3.6.1.4.1.6757.100.1.1.6.8 ApplicationHandle
1.3.6.1.4.1.6757.100.1.1.6.9 ComputingActivity
1.3.6.1.4.1.6757.100.1.1.6.10 ToStorageService

Table 3: Computing Service

Comment [B12]: Inheritance rules are not
applied consistently, it used only for policy and
domain.

Comment [B13]: The proposed order is not
extensible when it comes to adding new
attributes

GWD-P-R 13 June 201220
Nov 2009

example@ggf.org 16

Storage Service
OID Entity

1.3.6.1.4.1.6757.100.1.1.7.1 StorageService
1.3.6.1.4.1.6757.100.1.1.7.2 StorageServiceCapacity
1.3.6.1.4.1.6757.100.1.1.7.3 StorageAccessProtocol
1.3.6.1.4.1.6757.100.1.1.7.4 StorageEndpoint
1.3.6.1.4.1.6757.100.1.1.7.5 StorageShare
1.3.6.1.4.1.6757.100.1.1.7.6 StorageShareCapacity
1.3.6.1.4.1.6757.100.1.1.7.7 StorageManager
1.3.6.1.4.1.6757.100.1.1.7.8 DataStore
1.3.6.1.4.1.6757.100.1.1.7.9 ToComputingService

Table 4: Storage Service

4. Security Considerations
Using LDAP to implement the GLUE 2.0 specification raises several considerations especially in
the field of data integrity.

LDAP is not a relational database, thus it can not ensure relationship integrity. This must be
ensured by other means.

LDAP can not ensure most data types referred in the GLUE 2.0 specification, thus this
implementation uses the generic types “DirectoryString” and “Integer” specified in [rfc4517].

5. Author Information
Sergio Andreozzi, INFN

Stephen Burke, RAL

Felix Ehm, CERN

Laurence Field, CERN

Gerson Galang, ARCS

David Horat, CERN

Balazs Konya, Lund University

Maarten Litmaath, CERN

Paul Millar, DESY

JP Navarro, ANL

Florido Paganelli, Lund University

6. Contributors & Acknowledgements
We gratefully acknowledge the contributions made to this document.

7. Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies

Comment [B14]: Not consistent with the
latest schema

GWD-P-R 13 June 201220
Nov 2009

example@ggf.org 17

of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

8. Disclaimer
This document and the information contained herein is provided on an “As Is” basis and the OGF
disclaims all warranties, express or implied, including but not limited to any warranty that the use
of the information herein will not infringe any rights or any implied warranties of merchantability or
fitness for a particular purpose.

9. Full Copyright Notice

Copyright (C) Open Grid Forum (2008). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the OGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
OGF Document process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assignees.

10. References

[glue-2] “GFD.147, GLUE 2.0 Specification”. http://ogf.org/documents/GFD.147.pdf

http://forge.gridforum.org/sf/go/doc15519

[glue-1] GLUE Schema Specification version 1.3. http://forge.gridforum.org/sf/go/doc14185

 [rfc4512] RFC 4512. “Lightweight Directory Access Protocol (LDAP): Directory Information

Models”. http://tools.ietf.org/html/rfc4512

[rfc4517] RFC 4517. “Lightweight Directory Access Protocol (LDAP): Syntaxes and Matching

Rules”. http://tools.ietf.org/html/rfc4517

[rfc4520] RFC 4520. “Internet Assigned Numbers Authority (IANA) Considerations for the

Lightweight Directory Access Protocol (LDAP)”. http://tools.ietf.org/html/rfc4520

[ldap-root] “LDAP: Root Name Angst”. http://www.zytrax.com/books/ldap/apa/ldap-root.html

[globus-mds] “MDS 2.4 in the Globus Toolkit 2.4 Release”.

http://www.globus.org/toolkit/docs/2.4/mds/

