Application of Grid Technologies to Next Generation Telecom Services

Nobutaka Matsumoto, Takahiro Miyamoto {nb-matsumoto, tk-miyamoto}@kddilabs.jp KDDI R&D Laboratories Inc.

OGF24@Singapore (Sep. 2008)

Abstract

The goal of this presentation is to provide a candidate for deliverables of NSI, especially focused on the use case from the viewpoint of telecom carriers.

Title: Network Service Interface use cases

<u>Deliverable 1.</u> A informational document describing the key use cases and user requirements.

- Use cases describing requirements of a variety of users, including Grid Middleware, Grid Applications, and by other Network service providers
- Identification of requirements for users and network service providers.

(Draft charter for NSI-WG, 21th Aug, 2008)

Agenda

- Requirement for network resource management technologies on telecom carrier networks
- Demonstrations of resource management using GNS-WSIbased technologies
- Conclusion

KDDI R&D Laboratories Inc. Proprietary

Network resource management technologies for telecom carriers

Paradigm shifts in network operator businesses
 Network provider -> Multi service provider (e.g. Voice, Video, VPN)
 "Open" environments pushed by NGN (e.g. Parlay X, MDS*)

*MDS: Managed Delivery Service

KDDI R&D L

- Propositions on operations and management
 - Meet various QoS requirements over a common infrastructure
 - □ Shorten time to market even further
 - Support creation of new services
- E2E network resource management is required, but...
 - Network is heterogeneous : Different mechanisms (QoS, control plane, resource handling, API) must be smoothed out.

Possible approach to "E2E resource management/control"
 Virtualization middleware to <u>hide underlying technologies</u>
 Layered SOA for distributed and scalable <u>resource orchestration</u>
 Time-schedulable E2E resources to <u>create new services</u>

Proposed system in a big picture

- NRB: Single point of contact to service control layer
- NRMs: Distributed management to cover E2E
- NRB and NRMs are orchestrated via SOA-bus using GNS-WSI-based interfaces

Demonstration

Southbound implementation of NRMs

A-NRM: CLIs of OLT, C-NRM: CLI of router, M-NRM: CORBA of EMS

Typical server platforms for NRB and NRMs

E2E quality under congestion

Pre-planned (DiffServe-based)

- Entire services are degraded without admission control and BW management
- Degradation of entire video services
- NRM/NRB-controlled
 - E2E CIR is assured on-demand
 - Voice and video services are preserved

Traffic	Typical service	BW profile
ToS=6	Voice	90kbps*(200 flows)
ToS=5	Real- time video	6Mbps*(N flows)
ToS=0	Data	5Mbps*(140 flows)

Resource scheduling & allocation

- Successful hierarchical path computation and scheduling
 Detailed route adaptation by C NDM (Degreest 2)
 - Detailed route adaptation by C-NRM (Request 3)
 - □ Abstracted rerouting by roll back operation of NRB (Request 4)

Request # EP 1	ED 1		Bandwidth	Latency		Scheduled time frame							
		(M bit/s)	(ms)	10:0	00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	
1	Rtr1	Rtr2	500	8									
2	CPE1	EP1	300	10									
3	CPE2	EP2	300	22									
4	CPE3	EP3	350	10									
5	CPE3	EP1	300	7									

Request #	Initial route selected by NRB	Final assigned route (w/ assist of NRMs)				
1	Rtr1-Rtr2	Rtr1-XC1-XC2-Rtr2				
2	CPE1-OLT1-RPR1-RPR4-Rtr1-Rtr2- RPR8-RPR6	CPE1-OLT1-RPR1-RPR4-Rtr1-XC1-XC2-Rtr2- RPR8-RPR6				
3	CPE2-OLT1-RPR1-RPR4-Rtr1-Rtr2- RPR8-RPR7	CPE2-OLT1-RPR1-RPR4-Rtr1-XC1-XC3-XC4-XC2- Rtr2-RPR8-RPR7				
4	CPE3-OLT1-RPR1-RPR4-Rtr1-Rtr2- RPR8-RPR7	CPE3-OLT1-RPR1-RPR4-Rtr3-XC3-XC4-Rtr4- RPR8-RPR7				
5	CPE3-OLT1-RPR1-RPR4-Rtr1-Rtr2- RPR8-RPR6	CPE3-OLT1-RPR1-RPR4-Rtr1-XC1-XC2-Rtr2- RPR8-RPR6				

Distributed messaging flow

Successful roll back with two-phase commit (request #4)

Observed SOAP message (Reserve message from NRB to A-NRM)

2007-10-06 14:46:49 NetResourceReservationRequest@f2f973[singleReservationRequests= {SingleReservationRequests[0]=jp.kddilabs.nrm.transport.common.reservation.types.SingleReservationRequest@1d6fad7[aPoi nt=<mdNm>ANR#1</mdNm><mlsnNm>GE-PON</mlsnNm><meNm>OLT</meNm><ptpNm>/slot=1/port=0</ptpNm> <ctpNm>/onu=192.168.1.3</ctpNm>,zPoint= <mdNm>ANR#1</mdNm><mlsnNm>GE-PON</mlsnNm>CLT </meNm><ptpNm>/slot=1/port=1</ptpNm> <ctpNm>/cvlan=3</ctpNm>,bandwidth=350000,qos=0,availability=0, latency=10,startTime=2007/10/07-13:00:00,endTime=2007/10/07-16:00:00]}]

Conclusion

NSI is the possible interface to be applied to resource management architecture for the next generation networking and services in telecom carriers

 GNS-WSI-based end-to-end network resource management was successfully demonstrated
 Preserved E2E quality of video and voice service flows
 Schedulable orchestration of E2E network resources
 Roll back operation and two phase commit handling

Considerable use case in telecom carrier networks

This work is partially supported by NICT (National Institute of Information and Communications Technology), Japan.

KDDI R&D Laboratories Inc. Proprietary

Thank you.

KDDI R&D Laboratories Inc. Proprietary