
GWD-I.71 Shantenu Jha, University College London
SAGA-RG Andre Merzky, Vrije Universiteit, Amsterdam

May 09 2006

A Requirements Analysis for a Simple API for Grid
Applications

Status of This Document

This document provides information to the GGF Applications Area in the Grid
Standards council. It does not define any standards or technical recommenda-
tions. Distribution is unlimited.

Copyright Notice

Copyright c© Global Grid Forum (2006). All Rights Reserved.

Abstract

This document distills the use cases [6] received by the Simple API for Grid
Applications research group (SAGA-RG) and extracts the salient features into
a set of requirements for the API In addition to the requirements drawn from
the use cases, by analysing related ongoing developments in the grid community,
this document tries to define further the scope and requirements of any simple
API for applications.

Contents

1 Introduction 2
1.1 Target Audience . 3

2 Requirements from SAGA Use Cases 3
2.1 Use Cases in Detail . 5
2.2 Functional Areas covered by the Use Cases 8
2.3 Non-Functional Areas covered by the Use Cases 12

3 Requirements from Other Implementations 15
3.1 GAT . 15
3.2 CoG / pyGlobus . 17
3.3 RealityGrid . 18
3.4 gLite (EGEE) . 19

GWD-I.71 May 09 2006

4 Infrastructure Requirements Assumptions 20
4.1 Relation to Other GGF Groups 20
4.2 Relation to Major Grid Middleware 24
4.3 Language binding Requirements 25
4.4 Portability . 26

5 Summary 26

6 Security Considerations 27

7 Contributors 27

8 Intellectual Property Statement 27

9 Disclaimer 28

10 Full Copyright Notice 28

References 28

1 Introduction

The GGF’s SAGA Research Group1 strives to define a high level API that
addresses directly the need of application developers. This document outlines
the main features that such an API should capture and in the process guides
the scope, granularity and design of such an API. The bulk of these features
are derived from an analysis of the use cases that the SAGA-RG receieved [6];
the remaining features discussed are derived from an analysis of the status and
trends in related areas of grid computing.

A useful though informal way of understanding SAGA’s aim and scope is to
think of the MPI standard. We believe that SAGA will do for grid applications
what MPI did for parallel applications: it will extract the correct semantics and
right level of abstraction, so as to permit the writing of portable applications
(across different middlewares) using a simple, minimally complete, consistent,
uniform set of function calls and thus be widely usable. All this, while at
the same time enabling the application to be coded in a manner that keeps it
independent of the underlying infrastructural details.

It is also very useful to mention explicitly that SAGA API is for coding against
a middleware and not for coding middleware directly. Admittedly, the term
application is an overloaded term and means different things to different people,
however for the purposes of this document (and understanding SAGA in general)
it is useful to remember that the applications in scope and of interest to SAGA

1The group is currently undergoing a transformation: the SAGA RG is changing focus to
be an umbrella group, tasked primarily with spawning smaller, focussed working groups which
in turn will be ultimately responsible for the API. The umbrella research group will ensure
a consistent look and feel across the WG and in will addition coordinate SAGA’s activities
with other groups within the GGF.

saga-rg@ggf.org 2

GWD-I.71 May 09 2006

as well as being potential users of SAGA are those most typically used by the
end-user.

This document distills the use cases [6] received by the Simple API for Grid
Applications research group (SAGA-RG) and extracts the salient features into
a set of requirements for the API2. In addition to the requirements drawn from
the use cases, by analysing related ongoing developments in the grid community,
this document tries to define further the scope and requirements of any simple
API for applications.

This document is divided into three main sections. In Section 2 the salient
points and primary conclusions from the submitted use cases are presented.
We then change perspectives and utilise the use cases to motivate a discussion
of functional and non-functional requirement areas of relevance. The aim of
this section is to capture and prioritize the functional and non-functional areas
which in turn guide the design and implementation of the SAGA API. Section 3
contains an analysis and discusses the main lessons learnt from projects that
implemented frameworks that are based upon the SAGA philosophy of grid en-
abling applications via user-level API. This section also discusses gLite which
is an instance of a distinct approach to programming applications for grid en-
vironments. A discussion of SAGA’s relation vis-a-vis other GGF groups and
middleware development projects is presented in Section 4. This section closes
with remarks on portability and language binding issues relevant to SAGA.

As alluded to, the development of the API is guided by the use cases received;
however it is important to realize that there is still a need for more use cases,
especially from non-academic projects and application developers. These use
cases in turn may possibily influence the design of future versions of SAGA.

1.1 Target Audience

The document targets primarily the SAGA Research Group, and is supposed to
both document and guide the work performed in the group. In particular, the
scope of the SAGA API is primarily derived from the findings in this document.
The target audience however, is not confined to the SAGA Research Group. It
is also instructive for designers, developers and implementors of independent
efforts such as gLite [2], Superscalar [10, 11] and GAT [1].

2 Requirements from SAGA Use Cases

The SAGA Research Group elicited a number of use cases to guide its API
specification process. These use cases are published as GGF document “GGF

2These requirements are supposed to drive the API development, however given that the
group has had a design team put together a strawman of the API, which has been well received,
this document will instead allow a sanity check of the strawman.

saga-rg@ggf.org 3

GWD-I.71 May 09 2006

SAGA-RG Use Cases” [6]. This section discusses the use case template, main
features of the use cases, and then analyses the implications for the SAGA API.

Deriving Requirements: Some General Remarks

It was a rather simple exercise to derive the set of requirements for most of
the considered use cases. This speaks, we think, for both the design of the use
case templates and of the work the use case authors took to provide the use
cases. The next subsection 2.1 enumerates the functional and non-functional
areas and annotates them – which helps the interpretation of the less obvious
requirements.

Subsections 2.2 and 2.3 list the requirements – both functional and non-functio-
nal – derived from an analysis of the use cases and discusses them, from which
a set of recommendations for the SAGA API design are derived.

A histogram of the functional and non-functional areas from the use cases is pre-
sented in Table. 2.2. The frequency count needs careful interpretation though.
For example, the frequency is not weighted by importance; sometimes an area is
very central to a use case, sometimes it is barely touched, but both are treated
the same for the histogram. Also not reflected in the frequency count is the fact
that an area is sometimes not explicitly mentioned, but might well be useful to
the use case (e.g., ’events’ for visualization use cases). There is also the issue
that some areas have some level of functional overlaps (i.e., steering and events).

The SAGA-RG received nine use cases from the GridRPC Working Group; for
the sake of this analysis, these have been pooled together into a single use
case, due to their similarity. Hence, the respective areas are counted only once.
Currently, a dedicated design team in working in the SAGA-RG to derive more
detailed requirements for an integration of RPC into SAGA, and to draft a RPC
focused strawman API. are counted only once.

Functional Requirement versus Non-functional Requirements:

The separation into functional and non-functional areas is based more on a
classification scheme than a rigid definition. Thus, as with most classification
schemes, it is not water tight and there is scope for some ambiguity about which
category a particular requirement might fall into. Functional requirements are
loosely speaking those for which a direct API call (or calls) exists, e.g., job
management. Non-functional requirements do not have explicit call(s) associ-
ated with them, though they may influence the syntax and semantics as well as
the design and implementation of specific API calls and maybe even the API as
a whole. For example, the requirement for security and bounds on Quality-of-
service (QoS), do not require explicit calls, but do need to be supported by the
API. Auditing is an example of a possible requirement that could fall into both
categories.

Requirement Levels and RFC 2119:

The use of the requirement levels from RFC 2119 [3], such as “must”, “should”,

saga-rg@ggf.org 4

GWD-I.71 May 09 2006

“may”, and their negations, has been investigated in the course of writing this
document. The authors, however decided not to use these terms as they were
found to be not appropriate for expressing different levels of requirements on
a technical (here: API) specification. The key words from RFC 2119 have
been defined for use within a specification, and they only make sense in such a
context. In the following, only the word “should” is used to express whether or
not a certain functional or non-functional property should be met by a SAGA
specification.

2.1 Use Cases in Detail

2.1.1 The SAGA Use Case Template

The use case template was aimed at an audience that consisted of projects
as well as specific applications, that had either developed APIs/interfaces to
facilitate grid applications, or those that felt that a SAGA like API would make
grid-enabling applications easier, robust and extensible. The use case template
was drafted so as to facilitate the extraction of information that would inform
the initial scope and design of a SAGA API. After initially gathering general
information about the projects and applications of interest, the template sought
information on actual usage scenarios of the applications. Information on the
typical users and resources required by the applications was also requested.
Resources in this context ranged from software and hardware constraints to
services required for running the application in a distributed environment.

The issues of security, performance, typical resource selection and runtime en-
vironments were queried. The audience was then asked to enumerate all grid
technologies used and importantly were asked how often the applications in
scope were used in a grid-context. Finally the respondents were asked to pro-
vide pseudo-code for some prototypical API calls that would illustrate their
requirements.

The usecases are archived and online accessable at the GGF Use Case Reposi-
tory [4], and also published as an information GGF document [6].

2.1.2 CoreGrid Use Case

The use case has a broad scope, and explicitly lists both functional and non
functional areas which are expected to be covered by the SAGA API. Resource
discovery and selection are listed, but interpreted as being required at the mid-
dleware level and not at the application level. Integration with commodity
techniques, however is a noteworthy additional requirement. Also noteworthy
is the requirement for synchronous event notification.

saga-rg@ggf.org 5

GWD-I.71 May 09 2006

2.1.3 Coastal Modeling Use Case

Relative to CoreGrid this presents a rather specific usage scenario. It describes
an ongoing project and lists a wide range of requirements. It is not easy to pri-
oritize the relative importance of the many requirements. “Must have” require-
ments appear to be those of data access, management, and remote visualization.
There is a stated requirement for QoS – although it is somewhat unclear if they
need to be exposed at the API level, e.g., the API might possibly provide a
means for specification, but not necessarily negotiation of QoS.

2.1.4 DRMAA Use Case

Although the two have very different scopes, the DRMAA Working Group [5, 9]
and SAGA Research Group share a common aim – that of providing a high
level API. That motivates the SAGA API to adhere to the API structure de-
fined in DRMAA for job submission. It further motivates the consideration
of bulk operations as a major performance obstacle in distributed systems. It
describes bulk job submission, but the argumentation of the use case authors
seems applicable to other bulk operations than just job submission, as well.

2.1.5 DiVA Use Case

This very elaborate use case describes the design of a grid distributed compo-
nent system, which can be assembled into a visualization pipeline. Security,
QoS, resource and service discovery, and data streaming are the cornerstones
of the DiVA requirements. There is an implicit requirement for asynchronous
operations and notifications (although both could be provided outside SAGA).
It is interesting to note, that if the performance requirements of the use case
were fully respected in SAGA, it would imply a very low latency throughput
overhead of the API implementation (zero copy), at least for streaming and
event notification.

2.1.6 GridLab Use Case

Notable for this use case is the paradigm of self-awareness for a Grid application:
the application can handle itself as a job instance, clone itself, spawn children
etc. (saga::self::get-job-description). The use case further motivates the
use of application level monitoring and asynchronous notification.

2.1.7 KoDaVis Use Case

This use case focusses primarily on data management and visualization. How-
ever, interesting is the expressed need for an application level information ser-

saga-rg@ggf.org 6

GWD-I.71 May 09 2006

vice. Interstingly, this appears to be the only use case (UC) that has asked
explicitly for information services.

2.1.8 Medical Imaging Use Case

The GEMSS use case is unique amongst received UC as it focuses on resource
reservation, management, advanced reservation and QoS negotiations. These
are all advanced requirements, and traditionally not often exposed traditionally
at the API level.

2.1.9 RealityGrid Use Case

The RealityGrid use case adds important non-functional requirements, such as
API stability, scalability, and the need to support a wide range of Grid middle-
ware. The single main functional requirement is computational steering. Com-
putational steering however, requires several other functions, e.g., migrations,
checkpointing and monitoring. Additional functional areas are job submission
and data management.

2.1.10 Superscalar Use Case

Superscalar is special in the respect that it describes a middleware or tool set,
not a scientific application. However, its requirements match the level and
scope of the other use cases very well, and focuses on job and data manage-
ment. Asynchronous and synchronous notification are prominent non-functional
requirements.

2.1.11 Visit Use Case

This use case focuses on application level steering and communication, whereby
large amounts of data are to be streamed between components. Asynchronous
operations and notification seem to add a lot of flexibility to that use case.

2.1.12 Visualization Service Use Case

The visualization service described in this use case opens a completely new
aspect for the SAGA API, as it describes the access to a custom remote service.
That functionality is comparable to the automatic creation of client side stubs
for a WSDL description. In some respect that area is covered by GridRPC like
methods (see below). However, interesting for SAGA are service and resource
discovery aspects, as well as steering and asynchronous notification.

saga-rg@ggf.org 7

GWD-I.71 May 09 2006

2.1.13 LSU Viz Service Use Case

The use case describes a block oriented message API with asynchronous notifi-
cation, and motivates its use for remote visualization of large data sets.

2.1.14 GridRPC (set of) Use Cases

The GridRPC working group in GGF applied the SAGA use case template to
a number (9) of their own use cases, and submitted those to the SAGA group.
In fact, these use cases match the SAGA problem space very well. As they are
very similar in terms of scope, they are, for the sake of this document, treated
together.

The use cases motivate (not surprisingly) the utilization of Remote Procedure
Calls for Grid applications. That goes along with a set of requirements for
asynchronous operations, resource discovery and data management.

2.2 Functional Areas covered by the Use Cases

The functional areas identified in the submitted use cases are:

1. Job Management: Submission and management of jobs. Individual
resources are not necessarily specified, or only identified by name and job
requirements.

2. Resource Management: Allows for fine grained description and selec-
tion (discovery) of resources to be used for job management.

3. Data Management: Management of files as entities (copy, move, ...),
does not include access to file contents, nor replica management.

4. Data Access: Access to contents of files

5. Logical Files: File replica management

6. Streams: Communication between running processes, with mechanisms
similar to BSD streams

7. Data Bases: Access to remote data bases, no particular schema implied

8. Events: Short message style events as used for inter process communica-
tion, synchronization etc.

9. Steering: Support for steering of parameters of remote applications

10. Information Services: Read and write capabilities to persistent infor-
mation repositories, supporting application specific information storage

11. Communication: Any means of communication not covered above, as
large data messages and RPC

saga-rg@ggf.org 8

GWD-I.71 May 09 2006

Functional Area #
Job Management 16
Resource Management 13
Data Management 12
Information Services 11
Data Access 10
Streams 10
Events 9
Communication 7
Steering 5
Logical Files 3
Data Bases 1

Table 1: Functional areas covered by the use cases, ranked by occurrences

2.2.1 Discussion of Functional Areas

Job Management: The scenarios from the use cases cover most importantly
job submission, and tracking of job status. Additionally, most use cases classify
this requirement as a “must have”.

Jobs in the use cases are often described by RSL or JSDL like languages. The
most commonly used attributes in addition to executable name and parame-
ters, are environment variables and input/output files (which sometimes require
staging).

A number of use cases expect the API to allow various actions performed on
the jobs, which mostly change their state, such as: suspend(), continue(),
kill(), signal(), and migrate().

• Job Submission and Management should be included in the very
first SAGA API.

Resource Management: A number of use cases need the specific capability
of being able to select resources. In addition some projects and applications also
need the ability to discover suitable resources, before selecting and submitting
to resources.

It is important to note that there are ongoing developments in resource man-
agement [8], that could make it more meaningful to keep resource management
out of the API for some applications (i.e. away from the application level). It
is illustrative to note for example that GridRPC and MPI do not provide an
interface for resource management and so one could in principle argue neither
should SAGA.

But based upon use cases received, it is currently felt that the ability to manage
resources is required (and as a “must have”) at the API level in these use cases.

saga-rg@ggf.org 9

GWD-I.71 May 09 2006

• Resource discovery should be supported by the SAGA API.

Data Management: Navigating remote file directories structures and ma-
nipulating the location of files in these structures are intrinsic parts of many
use cases. Simple operations such as list(), mkdir(), copy(), move(), and
remove() are required; sometimes find() and iterators for large directories
seem useful.

• Data Management should be supported by the SAGA API.

Data Access: In addition to the requirement of data management, access
to the content of individual remote files is often required. The trinity read
/write/seek fulfills most of these use cases, however, some performance con-
siderations seem to imply other file access paradigms (although they are not
explicitly mentioned in the use cases received). SAGA should not however,
preclude efficient data access.

• Efficient Data Access should be supported by the SAGA API.

Logical Files: Only few use cases requested the support of replica systems.
This was surprising, as replica systems seems to be well accepted in the grid
community, and are amongst the more stable and widely deployed elements
of todays grids. This might either reflect a bias in the use cases received, or
might be a consequence of the fact that the use cases authors are currently not
working with replica systems, but could possibly utilize them anyway, if the API
provided appropriate support. The set of capabilities however, expected from
replica systems is small, e.g., management of the set of replicas for each logical
file, including replication (creation of new replicas). The support for meta data
(and search on them) for logical files is also mentioned explicitly in some of the
use cases received.

As data replication features are amongst the most accepted grid paradigms, it
is recommended that at the very least, basic support for it be included, even if
it is not required by the majority of use cases.

• Data Replication should be supported by the SAGA API.

Information Services: A surprisingly large number of use cases asked for
the support of application level information repositories. Those included some
use cases which wanted to attach meta data to logical files. Others wanted
to exchange (and persistently store) application specific meta data. The meta
data in question seem to be mostly lists of simple key/value pairs – however,
the set of keys and the set of value types is not predetermined, and application
dependent.

saga-rg@ggf.org 10

GWD-I.71 May 09 2006

• Persistent storage of application specific information should be
supported by the SAGA API.

Streams: As a means of exchanging larger amounts of data between appli-
cations, BSD like streams seem to be the favorite paradigm listed in the use
cases. In particular the various remote visualization scenarios require support
for remote data streaming, which allows for simple end point authorization, and
handles fire walls and other grid specific problems transparently. Connection
setup (client/server bootstrapping) and read()/write() seems to serve most
use cases, however, asynchronous notification on incoming data (select) seem
crucial for several applications.

• Streaming of data should be supported by the SAGA API.

• Asynchronous notification should be supported by the SAGA API.

At a more abstract level, most of the streaming use cases seem to exchange
messages at the application level, i.e., larger independent chunks of data with
intrinsic structure. One use case specifically requested support for messages
at the API level, and in fact, that paradigm would seemingly support (and
simplify) the other streaming use cases as well.

• Support for messages on top of the streaming API should be con-
sidered by the SAGA API.

Events and Steering: Along the same lines, various use cases benefit from
asynchronous and timely delivery of custom events – e.g., for synchronization of
multiple processes. Several use cases explicitly list steering as the usage scenario
for such events.

• Asynchronous notification should be supported by the SAGA API.

• Application level event generation and delivery should be supported
by the SAGA API.

• Application steering should be supported by the SAGA API, but
more use cases would be useful.

Communication: The communication schemes above (streams, events, steer-
ing) support not all use cases with need of remote communication. Some of
the remote visualization use cases require a more high level communication
scheme than streams for data exchange (send/receive of large message buffers,

saga-rg@ggf.org 11

GWD-I.71 May 09 2006

see above). Also, a significant number of use cases are very specifically request-
ing support for GridRPC (these use cases have been submitted by the GridRPC
group in GGF). In this analysis, those requirements are subsumed in the ’Com-
munication’ area. However, apart from GridRPC it is currently not possible to
pinpoint more specific communication schemes which need supporting – more
use cases are required for this.

• GridRPC should be supported by the SAGA API.

• Further communication schemes should be considered as additional
use cases are submitted to the group.

Data Bases: Only one use case requested API support for data base access,
and that included a very specific data base layout. We think that before SAGA
addresses data base access, more and more specific use cases are required.

• Data Base access does currently not require explicit support in the
SAGA API.

2.3 Non-Functional Areas covered by the Use Cases

The identified non-functional areas are listed below. They do not necessarily
need a representation in the API in the form of additional method calls – how-
ever, the API specification needs to be aware of these areas, and should allow
application to exploit these functionalities. Some areas, such as transactions,
may have no reflection in the API at all; others, such as tasks, may influence
the overall look and feel of the API.

1. Bulk Operations: Support large numbers of very similar or identical
remote operations efficiently

2. Security: Allow or require support for secure infrastructure (e.g., support
credential management)

3. Error: Have fine grained and verbose support for error handling, e.g., for
the sake of error recovery and debugging

4. Quality of Service: Support the notion of QoS on various levels, e.g.,
for deadline scheduling, bandwidth reservation etc.

5. Auditing: Allow for audit traces of all remote operations

6. Transactions: Support remote operations as transactions

7. Workflow: Include support for work flow on API level (e.g. allow to
specify job dependencies)

8. Asynchronous Operations: Allow for asynchronous operations

saga-rg@ggf.org 12

GWD-I.71 May 09 2006

Non-Functional Area #
Error 15
Security 12
Auditing 7
QoS 6
Asynchronous Operations 4
Bulk Operations 2
Workflow 2
Transactions 0

Table 2: Non-Functional areas covered by the use cases, ranked by occurrences

2.3.1 Discussion of Non-Functional Areas

Asynchronous Operations: Although these areas are not amongst the most
requested, we consider them to be of importance. Asynchronous operations are
very crucial to remote operations, as those have usually no guaranteed and po-
tentially very long and varying response times – very slow responses are difficult
to distinguish from failures and timeouts. Grid applications definitely require
support for asynchronous calls.

• Asynchronous Operations should be supported by the API.

It is prudent however, to not make every call asynchronous, but to have a clear
separation between asynchronous and synchronous calls. Having asynchronous
versions and synchronous versions which helps keep the complexity of the com-
monly used calls low, appears to be the right approach.

Bulk Operations: For bulk operations we received a very specific use case.
Also, many common distributed computing techniques (e.g. parameter sweeps)
can certainly benefit from bulk operations. Also, for many individual remote
operations, latencies and response time can add up to unreasonable long overall
response times – bulk operations (i.e., clustering of multiple remote requests
into a single one) are one way to avoid that. In the distributed community, bulk
operations and asynchronous method calls are well understood.

• Bulk Operations should be supported by the API.

Errors: support for good error reporting seems to be self-evident for every
API design. However, it seems particular important to distinguish several error
types. For illustration:

file.copy ("http://letalhost//tmp/file.dat", ".");

saga-rg@ggf.org 13

GWD-I.71 May 09 2006

The call above might fail for a plethora of reasons. However, it should be possible
to recover from some of them (e.g. service not available, timeout) by retrying
later, but it seems unlikely that it is possible to recover from the mis-spelling
(localhost → letalhost). Whether an error is recoverable or not, depends on
many things: the specific implementation of the API, the middleware it binds
to, the policy of the application etc.

• The error support of the API should allow for application level
error recovery strategies.

Security: Most use cases have at least some security requirements – however,
they are often not very specific, and mostly say “should be secure”. We think
that this reflects two points: firstly, users are willing to use whatever security
infrastructure is available and/or required; and secondly, users do not have much
experience with security, and are probably not willing to learn too much about
it, unless absolutely necessary.

• The SAGA API should be implementable on a variety of security
infrastructures.

• The SAGA API should expose only a minimum of security details,
if any at all.

SAGA might possibly target ACLs for files and name spaces. Unfortunately
however, at the time of writing (and development of version 1.0 of the SAGA
specification) it is still unclear how best to introduce and handle the issue of
security. Despite ongoing discussions with the security area in GGF, no clear
picture of either end user demands nor common middleware paradigms for secu-
rity emerged. We think this is a testament to the innate difficulty of the security
problem.

Auditing: Logging, bookkeeping, auditing and accounting are frequently ci-
ted as crucial for production level deployment of Grids, and are also listed in
several use cases. However, most use cases seem to require the existence of these
features at the implementation or middleware level, but do not seem not to need
access to them at the API level. More specific use cases would be required to
provide access to these features on API level.

• Auditing, logging and accounting should not be exposed in the API.

Workflow: Grids seem to provide optimal environments for complex work-
flows, and many projects and research groups are working both on workflow
specifications and execution environments. Workflow is also listed in a (small)

saga-rg@ggf.org 14

GWD-I.71 May 09 2006

number of SAGA use cases – however, a need for support of workflows at the
API level seems not required by any of them right now. Instead, support for
workflow seems to be required on middleware level.

• Workflows do not require explicit support on API level.

Quality of Service: Several use cases specified a need for Quality-of-service
negotiations. The use cases present specific and varied constraints, e.g. the need
for specific time lines for remote executions to be kept, have specific bandwidth
requirements, requirements to remote operations reliability etc. However, the
diversity of QoS problems covered makes it difficult to come up with a conclusion
on how QoS should influence the API – e.g. many additional parameters could
be thought of for the file copy method to specify its QoS needs, but the same
could be said for all other calls, and the API would be cluttered in no time.

Given that there are at least three (strong) use cases however, that request some
form of Qos, the topic should definitely addressed at some point. Unless more
specific QoS use cases are available to SAGA however, QoS should be considered
as a future, generic extension to the API, e.g. as a set of QoS related attributes
to objects or tasks. Maybe a “QoS context” which would in turn prevent the
API from being cluttered is an option worth considering.

• QoS does not require explicit support on API level. This issue
should be revisited for SAGA version 2.0.

Transactions: Surprisingly, not a single submitted use case placed an explicit
requirement of transactions for remote operations. Once again, this might just
be a reflection of the limited number (and scope) of use cases received.

• Transactions do not require explicit support at the API level.

3 Requirements from Other Implementations

A number of current and past projects in the area of Grid middleware and Grid
applications cover or touch the same area as the SAGA group. There exist a
number of APIs and interfaces, usually targeting a subset of the SAGA audience.

This section reviews these developments, and, from their experiences, derives a
set of non-functional requirements for the SAGA API specification.

3.1 GAT

The Grid Application Toolkit (GAT) is an application level Grid API, and tar-
gets a user group similar to SAGA. This section describes lessons learnt in

saga-rg@ggf.org 15

GWD-I.71 May 09 2006

the design process and from the implementation of the GAT. We derive several
points we feel should be used as requirements for SAGA, i.e., the ’lessons learnt’
in GAT. Given the similarities in the scope, the lessons learnt from GAT are
also applicable to SAGA – and thus we highlight several points that serve as
requirement for SAGA too.

3.1.1 GAT Design

The GAT API design followed an object oriented (OO) approach. It was felt
that a mapping of an OO API to procedural languages would be easier than
mapping a procedural API to OO languages. This proved a valid approach,
as the later implemented language bindings in both procedural (C) and OO
languages (C++, Java and Python), which are equally well accepted.

• The SAGA API Specification should be Object Oriented.

Also, the usage of asynchronous notification mapped very well to various lan-
guage bindings of GAT, and gave no unreasonable trouble to implementers. On
the other hand, they increased the simplicity and usability of the API signifi-
cantly (in fact, a major demand on the GAT today is to extend its asynchronous
capabilities).

• Asynchronous notification should be supported by the SAGA API.

3.1.2 GAT API Scope

The scope of GAT API was derived from a very limited set of use cases internal
to the project. The final GAT API served these use cases very well, but to some
extent failed to enable additional use cases.

• The range of motivating use cases should be as wide as possible,
and as narrow as necessary to agree on a finite scope.

The most heavily used parts of the API span File Management, Replica Man-
agement, Resource discovery and Job Submission, and the Advert Service. The
latter provides an interface to persistent storage for arbitrary information, and
also for serialized GAT objects.

• Application level persistent information exchange increases the
convenience of implementing Grid application scenarios signifi-
cantly.

Persistent information exchange was not derived from a specific use case, but
created in order to allow middleware independent, persistent exchange of custom

saga-rg@ggf.org 16

GWD-I.71 May 09 2006

information. It is well accepted by GAT users, and heavily used. However, the
GAT team learned that the learning curve for new paradigms must not be steep
– otherwise adoption is severely limited.

• Frequently used paradigms should be the most powerful ones.

• New paradigms should be the most simple ones.

3.1.3 GAT Implementation

The GAT is implemented in C and in Java, and provides wrappers around
the C implementation for bot C++ and Python. Adaptors (i.e., middleware
bindings) can be written in in C, C++ and Python (for the C implementation)
or Java (for the Java implementation). In particular the ability to provide
middleware bindings in various languages proved very useful. In respect to the
API specification, however, we did not encounter any facet which impacted the
implementability of the API significantly.

• Multiple language bindings for the API are essential.

• The ability to support diverse middleware technologies and pro-
gramming back ends is essential for the implementation, but of no
concern to the API design.

The single most asked feature of the various GAT implementations has been
Documentation, both as references, and also as tutorials and examples.

• The success of the API will stand and fall with the quality of its
specification and documentation.

3.2 CoG / pyGlobus

3.2.1 CoG Design

Although Globus has a powerful API, it is not an API that, due to its complexity,
is of direct utility for an application developer. Thus there is a need of a
wrapper layer that exposes the features of Globus (or for that matter any grid
middleware) at a level of abstraction natural to application developers. The
Commodity Grid (CoG) is such an application oriented API, which wraps the
various incarnations and versions of the Globus API. The CoG effort started
very early, within the Globus project. The design of the CoG changed over
time, from a thin wrapper, to a re-implementation of parts of Globus, to a more

saga-rg@ggf.org 17

GWD-I.71 May 09 2006

generic, flexible environment on top of Globus and other middleware. The CoG
comes in two flavors, Java (Java-CoG) and Python (pyGlobus). The Python
CoG, which is external to the Globus project developed at LBNL, sticks to the
’thin-wrapper’ design of the earlier Java-CoG.

3.2.2 CoG API Scope

The CoG, by design, strives to provide the same set of capabilities covered by
the Globus middleware. That includes job management on remote resources,
data management via GridFTP and the Globus Replica Service, access to the
Grid Information Service etc. The use cases covered by CoG are similar to those
targeted by the Globus project in general – however, the CoG intends to make
their implementation much simpler (rapid prototyping is a declared objective).

The stability of the CoG API (relative to the stability of the Globus APIs) and
the isolation from the Globus release cycles are perceived as major advantages
for using the CoG instead of coding against Globus directly.

• APIs should isolate developers from versioning and diversity of
underlying layers.

The latest CoG version comes with support for tasks, task dependencies, work
flow and other abstractions, which have no one-to-one equivalent in the under-
lying Grid Middleware. However, as there seems to be a clear demand for these
abstractions from the user community, they are well accepted.

• Additional abstractions and paradigms provided by the Java-CoG
are, where they serve well motivated use cases, welcomed by appli-
cation developers and constitute added value.

3.2.3 CoG Implementation

The previous observations focused mainly on Java-CoG. Both variants however
found a very broad user base (also outside the traditional Globus use commu-
nity), as both languages are very useful for rapid prototyping. Also, they are
well suited for Grid environments, as they do not need compilation, which makes
application deployment much simpler.

• The availability of the CoG for Languages other than C/C++ is
a very successful feature.

3.3 RealityGrid

RealityGrid is primarily concerned with typically large scale applications that
aim to use a grid infrastructure for computational steering. Computational

saga-rg@ggf.org 18

GWD-I.71 May 09 2006

steering is a term commonly used to cover a wide range of features, for example
the ability to change a simple parameter or the ability to spawn a simulation
when there is a scientific reason to. Computational steering is a compound
functionality, in the sense that it requires several simpler functionality to be
available. For example, computational steering might make use of features like
launch jobs, file staging or more complex features like checkpointing, monitoring,
dynamic resource allocation and QoS constraints. Consequently, computational
steering appears to be a functional area for which a standard interface should
be developed only after the areas that it depends on have been developed and
stabilized.

There are several distinct applications that require computational steering. Var-
ious applications are written in different languages, but more importantly use
different programming paradigms (MPI, PVM etc.). Consequently, a common
interface that can utilize the grid infrastructure but be used across different
programming paradigms is critical. Typically application codes are the result
of many years of development and there often is not sufficient expertise to sup-
port active re-engineering or development; consequently as few changes and as
infrequently as possible is the desired. Consequently, once an application has
been interfaced to a steering framework, it is highly desirable if it can be reused.
The above provides justification for a common, consistent API. The following
is strong motivation to add “simple” to the list of API attributes. Being able
to quickly engineer a specific code so as to implement functionality to be com-
putationally steered is important to the application scientists so as to keep the
barrier low.

In addition, there is a need for sufficiently generic and versatile API which arises
from the fact that multiple codes from several application domains should ideally
be able to use the same API.

Once an application code has been extended to provide it a computational
steering feature, the same code should be usable in all computing environments
– grid, parallel or single processor environments. Refactoring for different or
specific environments is highly undesirable and thus an API that provides com-
putational steering (or in general any feature) should be usable across all pos-
sibly desirable computing environments. But this may come at an additional
compile/run-time complexity. (But possible work arounds like plugins may help
provide a compromise between single development tree and easy of deployment).

• Quick and easy and generic APIs need to be usable across all com-
monly used scientific computing environments.

3.4 gLite (EGEE)

The gLite web site states:

“gLite [...] is the next generation middleware for grid computing.

saga-rg@ggf.org 19

GWD-I.71 May 09 2006

[...] gLite provides a bleeding-e.g. best-of-breed framework for build-
ing grid applications tapping into the power of distributed computing
and storage resources across the Internet.”

gLite represents a Grid middleware, comprised of a number of services tailored
to the specific, but broad needs of the EGEE eScience project community. In-
teresting for this document is that gLite comes with an Application Interface
(a WSDL), which allows easy access to the complete gLite middleware from
within applications. The WSDL is, by design and intent, similar to what SAGA
tries to accomplish. However, that WSDL defines a web service interface, not
an API. That web service dispatches the Application requests to the particular
gLite middleware services.

That interface allows the creation and management of security certificates, sup-
ports access to data and replica management services, and job submission and
(workload) management services. It also allows for POSIX-like remote file I/O.
gLite further provides accounting, logging, and bookkeeping. Service discovery
is also exposed at the application level.

Defining an API is not the only way to serve application developers – tools
and high level services can complement the SAGA API efforts. That should
be kept in mind while defining the SAGA scope: some problems might best
be approached with a different tool set than APIs, keeping the SAGA API
focused and S imple. gLite’s ’Grid Access Service’ is a notable example. Similar
to SAGA, the GAS defines a Service which provides a simplified, stable and
abstract interface to the complete gLite middleware infrastructure. Despite its
differing architectural approach, the goals and scope of the GAS is very similar
to the SAGA effort.

• The SAGA API should be careful to not try to address problems
that might be better solved using alternative approaches. Also, it is
important to determine which problems are not effectively solved
using an API approach but competing approaches.

4 Infrastructure Requirements Assumptions

4.1 Relation to Other GGF Groups

The SAGA API, by design, touches a number of areas which are already covered
by efforts of other groups in GGF, such as for example the API for job submission
is covered by the DRMAA Working Group.

As the scope of the SAGA API is initially very limited, the number of groups af-
fected by the SAGA API specification is limited as well. These groups are listed
here, and actions for synchronization with these groups are recommended3. It

3Current negotiations about an extended SAGA scope in a re-chartered SAGA umbrella

saga-rg@ggf.org 20

GWD-I.71 May 09 2006

should be noted that interactions with these groups have been ongoing since
the formation of the SAGA group, and that the SAGA group members are
very happy and satisfied about the involvement and support from the respec-
tive GGF groups. It is worth mentioning that a more formal document ”SAGA
use of other Grid specifications” will be produced by the SAGA-RG. This docu-
ment will survey and evaluate SAGA reference implementations with underlying
models of grid-middleware including, but not confined to OGSA. We hope this
will help elaborate further SAGA’s relationship to other GGF groups.

4.1.1 Security

As described earlier, SAGA has received use cases with explicit security require-
ments. However, the work of the SAGA-RG is currently security model agnostic
due to ignorance. We seek input from GGF Security Area, as the right level
of abstraction for Grid security models is currently unclear to SAGA, and to
other groups working on Grid API in GGF (see also notes about security in
section 2.3).

• Synchronization with the GGF security area about API related se-
curity paradigms is essential, and should be continued.

4.1.2 Resource management and Job Submission

Management and utilization of resources is of course a central topic in Grids,
and a large number of groups in GGF touch that topic one way or the other.
Most notably, the DRMAA-WG defines a high level API for job submission, the
JSDL-WG defines a XML schema for job definition, and the OGSA BES-WG
defines a basic execution service for remote job submission.

• The SAGA-WG should synchronize the paradigms exposed by the
SAGA API with those defined by the high level work of the DR-
MAA, JSDL and OGSA BES working groups.

The OGSA and WSRF related middleware groups in GGF deals with the
specifics of resource utilization on a lower level, and are of no immediate con-
cern to the SAGA API specification. However, as the paradigms developed
and exposed by these groups are very central to the future Grid technologies, a
certain amount of synchronization, and check for paradigm compatibility (i.e.,
implementability) on OGSA/WSRF based middleware seems necessary.

• Although the SAGA API specification seems unrelated to the low
level efforts of OGSA/WSRF, the paradigms defined and provided
by these groups should be considered and frequently checked for
compatibility.

RG will require a thorough review of this list.

saga-rg@ggf.org 21

GWD-I.71 May 09 2006

A number of WGs at the GGF are tackling the problems of resource discovery
and, of information services, e.g. CIM. That problem space is, for now, outside
the scope of the SAGA Strawman API (see discussion in the summary). It
is possible that at some stage, if SAGA API has a responsibility to address a
wider scope, there will be a need to review SAGAs relationshop to groups such
as CIM. Naturally, any scope extension of the SAGA API should imply the
review of the SAGA-WG relations to groups such as CIM.

4.1.3 Name Spaces

The SAGA API will touch the topic of name spaces on various levels, e.g.
for physical and for logical files. In particular the Grid File System WG in
GGF covers that problem field in respect to paradigms, definitions and service
architecture.

• The SAGA-WG should synchronize their notion of name spaces
with those defined by the GFS-WG.

4.1.4 Files

The area of management of and access to is covered by several groups: GridFTP,
ByteIO, and DAIS4. The GridFTP group, working on wire level, is probably of
no direct concern to the API specification, however, there are lessons to learn
about performance issues of grid file management and data access.

• GridFTP should not influence the SAGA API specification di-
rectly, however, their findings about performance issues for remote
data management and access should be taken into consideration.

The ByteIO-WG defines a WSRF interface for binary access to remote files.
As such, the groups goals are very similar to the SAGA goals, although their
specification aims at a different technology level.

• The SAGA-WG should synchronize their data access paradigms
with those specified by the Byte-IO WG.

The DAIS-WG is dealing with access to remote data, but focuses mostly on Data
Bases. That topic is outside the scope of the SAGA API for now. However, the
development of both groups should be cross-checked now and then for potential
overlap.

4At the time of writing we became aware of a new WG that aims to look at APIs for data
movement - ’Data Movement Interface Standardisation’ Working Group

saga-rg@ggf.org 22

GWD-I.71 May 09 2006

• The DAIS-WG offers no direct overlap with the SAGA-WG as
of now, but future developments of the groups should continue to
monitor each other.

4.1.5 Logical Files

Several groups in GGF cover/covered the area of file replica management in
Grids: REP-RG, OREP-WG, PA-RG, and CIM-WG.

The PA-RG has published a document (GFD-26 [7]) which lists the most com-
mon paradigms and operations in data Grids, in particular with respect to
replica management.

• The SAGA API spec should make use of the paradigms listed in
the Persistent Archive RG document GFD-26.

The listed GGF groups are mostly concerned with the definitions of a server
architectures, and as such provide no immediate overlap with the SAGA API
spec, at least not further as the PA-RG document cited above.

4.1.6 Streams

Although communication between remote entities is a central topic in dis-
tributed systems (and hence also in Grid systems), no groups apart from the
GridFTP-WG touches that specific area. GridFTP has the primary focus of
access to remote files, however, the FTP protocol by design can also be used as
a memory to memory data transfer protocol, and hence, to a limited extend, for
streaming of data. However, for the moment there is no obvious group within
GGF which SAGA should be synchronize with in respect to data streaming.

• There seems currently no need to synchronize a streaming API
with other GGF efforts.

4.1.7 Monitoring and Steering

As far as we know, there is no ongoing GGF work that focusses on applica-
tion monitoring and steering (as apposed to job and resource monitoring and
control, which is well covered). However, WSRF and related middleware specs
do provide means for message exchange and notification, and the SAGA group
should, as already stated above, check the paradigms provided by these specs
for compatibility.

• There seems currently no need to synchronize an application level
steering and monitoring API with other GGF efforts, however,
lower level groups should be consulted with respect to available
paradigms.

saga-rg@ggf.org 23

GWD-I.71 May 09 2006

4.1.8 Other Areas

The SAGA WG has been approached by, and probably will continue to draw
interest from, other groups in GGF, which find the idea of both a high level
application oriented API, and of a common look and feel over a range of Grid
APIs very promising. Amongst these groups are notably GridRPC and Grid-
CPR, which both are actively interacting with the SAGA group about extension
of the SAGA scope into their domain. The GridRPC group submitted a number
of use cases to the SAGA group for consideration.

Based on those use cases, the SAGA-RG is currently forming a dedicated de-
sign team to explore the common space of SAGA and GridRPC. That seems
promising, and to be the right approach.

Other groups in GGF might in the near or far future consider a similar approach
of integration and collaboration with the SAGA-RG (the GridCPR WG beeing
a notable example).

• The currently well defined scope fits the SAGA-WG work prac-
tices very well. Future scope extension should imply a revisit of
the SAGA group structure and work model. The formation of ded-
icated additional design teams should be considered.

4.1.9 Community Areas

The groups and members of the GGF community areas are ultimately represent-
ing the customers of the SAGA-API. The current driving force (the SAGA use
cases) and feedback loop (SAGA use case authors and active group members)
encompass only a small subset of the GGF community area. If that link is not
strengthened, the SAGA API will be in danger to miss the target scope. Both
feedback and additional use cases should be seeked for in the GGF community
area (and elsewhere as appropriate) as soon and as frequently as possible.

• The SAGA-WG should as early as possible search for feedback from
the GGF community areas.

4.2 Relation to Major Grid Middleware

It seems obvious that the SAGA API should appeal (functionally) to those
application programmers who, prior to SAGAs availability, programmed against
the currently available and widely deployed Grid Middleware, such as Globus,
Unicore and gLite. Although a certain additional level of abstraction is to be
expected by intend and design, care should be taken of compatibility with (and
implementability of) the programming paradigms available in this Grid systems.

saga-rg@ggf.org 24

GWD-I.71 May 09 2006

• The programming paradigms exposed by the SAGA-API should be
checked for compatibility with the paradigms offered by existing
Grid middleware systems, and tools.

4.3 Language binding Requirements

The SAGA-WG stated its intend to define the SAGA API in a language inde-
pendent way. Hence the group leaves a certain amount of flexibility to various
language bindings (which are eventually also to be produced in the SAGA-WG),
e.g. to allow for language specific models for error handling, asynchronous op-
erations, or for the handling of multiple output parameters, and also for the
overall look-and-feel. This section tries to list some high level requirements
with respect to future language bindings.

The submitted use cases list a number of languages as target for the SAGA API:
C++, C, Java, Fortran, Perl, and Python. Most of these languages are object
oriented, C and Fortran are not. Earlier experiences in the group (e.g. with
the GAT) have shown, that a mapping of OO API specifications to non-OO
languages is possible, and actually straight forward. On the other hand it is
a well accepted fact that mappings of a procedural API specifications to OO
languages often end up not to be OO, but, well, procedural. As such it seems
advisable to define the SAGA API in OO fashion, as that seems to facilitate
the process of defining language bindings.

• The SAGA API specification should be Object Oriented.

Central to most languages are means of error handling, parameter handling,
consistency and concurrency. Those issues however will also be touched by the
SAGA API specification. Previous experience and the opinion of group members
shows, that the acceptance of an API increases significantly if it feels ’native’,
i.e., if it adheres to the native paradigms of the language for error handling etc.

• Language bindings should be able to replace SAGA API features
with language specific features if they are semantically consistent
with the SAGA API specification and are widely available and ac-
cepted.

• The language binding definitions should strive to provide common
look and feel and most importantly common semantics for the
SAGA API across all languages, while maintaining the language
specific (native) look and feel.

saga-rg@ggf.org 25

GWD-I.71 May 09 2006

4.4 Portability

Portability can be an issue at all levels: for API specifiers, implementors as
well the API consumers and it might just be a question of where to park the
portability problem. We believe it should be parked in the scope of the imple-
mentors whenever possible. In general, the API should be implementable on
any platform using any programming paradigm.

Language specific bindings (procedural or otherwise) will be more sensitive to
portability issues than the language independent API specification. For example
one could argue that, as the scope of the API is limited, there is no real need
for templates – but if used, the APIs portability is an issue for several specific
language binding.

Although portability is definitely an issue for API specifiers, the overriding
concern for the specifiers should be simplicity of the API. Not to imply that
the specifiers are to maliciously make things non-portable, but when faced with
the choice of keeping the API simple or possibly more generic the tilt should
invariably be towards the former. For example, it is felt that there is a strong
need to provide a simple mechanism for asynchronicity. The implementation
details of asynchronicity in addition to being non-trivial, also varies significantly
across platforms (and not just languages, see above).

• For the SAGA API specification, simplicity of use should be more
important than simplicity of implementation.

5 Summary

This document derives the requirements – functional and non-functional – to
help define the scope and design of the SAGA API. The resources used to derive
the requirements are the use cases submitted to the SAGA-RG group, feedback
and documentation from projects with similar scope as the SAGA API, as well
as from efforts by other GGF groups on APIs (e.g. DRMAA) and infrastructure.

SAGA should support a simple, minimally complete, consistent, uniform set
of function calls and thus be widely usable. Defining and narrowing the scope
of the first version of SAGA to a level that would make it widely usable and
quickly implementable, whilst ensuring its stablilty to future changes is both
critically important and challenging – it requires balancing available expertise
with community demand.

The main conclusions in terms of requirements are that the SAGA API should
support, at the minimum, the following functional areas: job and resource man-
agement, resource discovery, data access, data management (including logical
files), and information services (for persistent storage and retrieval of applica-
tion level information). Also, given the strong requirements presented, streaming

saga-rg@ggf.org 26

GWD-I.71 May 09 2006

andremote procedure calls are also determined to be functional areas that are
appropriately placed in the SAGA API scope.

Similarly, the non-functional areas that should be considered when designing
the SAGA API specification, are deemed to be bulk operations, error handling,
and, importantly, asynchronous operations.

The priority with which these requirements are addressed by the SAGA RG
will depend on a several factors – such as available expertise within the SAGA
group, contributions from other GGF groups, available resources etc. In fact,
the current SAGA Strawman API does not cover all the requirements discusses
in this document for these and other reasons. It was deemed appropriate to
complete a subset of listed recommendations in the SAGA RG and address
others as time and resources permit, rather than having an extended Strawman
API scope and consequently a delayed version 1.0 of the SAGA API.

6 Security Considerations

This document is informational, and contains a set of use cases. As such, it does
not address security considerations directly. Security, however, is discussed in
this document, and several security requirements to Grid APIs are explicitely
listed.

7 Contributors

Most significant acknowledgments are to be given to the many use case con-
tributors, without whom, this analysis would not have been possible. We thank
members of the SAGA Design team and many others for providing useful feed-
back and discussion. We thank Tom Goodale for setting up an initial structure
of this document. The authors acknowledge useful discussions with Thilo Kiel-
mann regarding the use of RFC2119. We thank Graeme Pound and Steven
Newhouse (OMII) for useful feedback and for informing us about the existence
of the Data Movement Interface Standardisation Working Group.

8 Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which
any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses to

saga-rg@ggf.org 27

GWD-I.71 May 09 2006

be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover tech-
nology that may be required to practice this recommendation. Please address
the information to the GGF Executive Director.

9 Disclaimer

This document and the information contained herein is provided on an As Is
basis and the GGF disclaims all warranties, express or implied, including but
not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

10 Full Copyright Notice

Copyright c© Global Grid Forum (2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the GGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which
case the procedures for copyrights defined in the GGF Document process must
be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked
by the GGF or its successors or assignees.

References

[1] Gabrielle Allen, Kelly Davis, Tom Goodale, Andrei Hutanu, Hartmut
Kaiser, Thilo Kielmann, André Merzky, Rob van Nieuwpoort, Alexander
Reinefeld, Florian Schintke, Thorsten Schütt, Ed Seidel, and Brygg Ullmer.
The Grid Application Toolkit: Towards Generic and Easy Application Pro-
gramming Interfaces for the Grid. Proceedings of the IEEE, 93(8):534–550,
2005.

saga-rg@ggf.org 28

GWD-I.71 May 09 2006

[2] Rüdiger Berlich, Marcel Kunze, and Kilian Schwarz. Grid computing in
Europe: from Research to Deployment. In CRPIT ’44: Proceedings of
the 2005 Australasian workshop on Grid computing and e-research, pages
21–27, Darlinghurst, Australia, 2005. Australian Computer Society, Inc.

[3] S. Bradner. RFC 2119: Key words for use in RFCs to Indicate Requirement
Levels. http://www.ietf.org/rfc/rfc2119.txt, 1997.

[4] Global Grid Forum. GGF Use Case Repository.
http://www.ggf.org/ucr/.

[5] Global Grid Forum. Distributed Resource Management API Working
Group, 2003.
http://forge.gridforum.org/projects/drmaa-wg/.

[6] Andre Merzky and Shantenu Jha. Simple API for Grid Applications –
Use Case Document. Technical report, Global Grid Forum, March 2006.
GFD.70.

[7] Reagan Moore and Andre Merzky. Persistent Archive Concepts. Technical
report, Global Grid Forum, December 2003. GFD.26.

[8] NAREGI, Japan. The National Grid Research Initiative project.
http://www.naregi.org.

[9] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, An-
dreas Haas, Bill Nitzberg, Hrabri Rajic, and John Tollefsrud. Distributed
Resource Management Application API Specification 1.0. Technical report,
Global Grid Forum, June 2004. GFD.022.

[10] Raul Sirvent, Andre Merzky, Rosa M. Badia, and Thilo Kielmann. GRID
superscalar and SAGA: forming a high-level and platform-independent Grid
programming environment. In CoreGRID Integration WorkShop 2005,
2005.

[11] University of Barcelona, Spain. Grid SuperScalar.
http://www.bsc.es/grid/.

saga-rg@ggf.org 29

http://www.ietf.org/rfc/rfc2119.txt
http://www.ggf.org/ucr/
http://forge.gridforum.org/projects/drmaa-wg/
file:www.naregi.org
http://www.bsc.es/grid/

	Introduction
	Target Audience

	Requirements from SAGA Use Cases
	Use Cases in Detail
	Functional Areas covered by the Use Cases
	Non-Functional Areas covered by the Use Cases

	Requirements from Other Implementations
	GAT
	CoG / pyGlobus
	RealityGrid
	gLite (EGEE)

	Infrastructure Requirements Assumptions
	Relation to Other GGF Groups
	Relation to Major Grid Middleware
	Language binding Requirements
	Portability

	Summary
	Security Considerations
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice
	References

