
A service API for Deployment

Steve Loughran

steve_loughran@hpl.hp.com
October 18, 2004

Abstract

This paper discusses a prototype SOAP API for deploying software described in configuration
languages -languages such as XML-CDL and SmartFrog.

The endpoint supports only a few operations: deploy, undeploy, serverStatus,
applicationStatus, listApplications, setCallback and lookup. The key operation is deploy; the
message used to trigger this operation is designed to be extensible, deployment language
independent and easy to generate by a front-end application or portal with which the user can
interact. Key to this are support of a JSDL job descriptor, arbitrary XML for the deployment
descriptor, and a mechanism for adding optional XML fragments to the message, replicating
aspects of the SOAP Header design.

The service makes minimal use of WS-RF facilities. The rationale for not doing so was to
make the service broadly available to all callers. We will recommend improvements to the
WS-BaseFault fault proposal.

Finally, we will explore implementation details: how to effectively implement the API, and
how to deploy and test it using the underlying deployment framework. As testing distributed
systems is always a challenge, it is interesting to explore how a deployment framework can
improve the test process.

Introduction

The CDDLM working group has been addressing the problem of deployment, the act of
instantiating running code on remote systems. For this purpose, we have been both
standardising an existing language, SmartFrog [smartfrog], and developing an XML
descendant (XML-CDL) [xmlcdl]. These languages describe a deployment as a declarative
graph of components, each of which knows how to configure, start and stop an individual part
of the greater system. How these components interact is being defined in the ongoing
Component Model, a design which will use WS-RF to couple the component instances [wsrf].
The design of the component model is still ongoing, as it is a complex problem.

For deployment to be possible, one must not only have a representation of a system, and a
runtime to parse and instantiate that representation, one needs a way of sending that
representation to the deployment runtime. This is the role of a deployment service API.

This paper describes the initial service API for CDDLM deployment. It is very much an
exploratory design, to see what works and what does not in terms of a public API for
CDDLM-managed deployment.

Design Goals

The deployment API is intended to be broadly accessible to anything that wishes to to deploy.
We expect a portal application using JSDL submissions [jsdl] to be the front end for job
submissions. This portal would retrieve the code and data files of the deployment, and -after

negotiating with the resource management framework- send a deployment request to the
CDDLM runtime. For the lifespan of the deployment, this front end would be expected to be
sent notifications of changes in deployment status, be able to poll for the current status of the
deployment, and to terminate the deployed application.

1. Provide a simple SOAP1.1 service endpoint for deploying, undeploying, and pinging
applications.

2. Be agnostic as to the language of the deployment.

3. Offer a notification mechanism for lifecycle events.

4. Be flexible and extensible by implementations.

Service API

There is a single endpoint for the deployment service1. It offers seven operations.

Operation meaning
deploy Deploy an application described by the nested descriptor
undeploy Undeploy an application
setCallback Set or clear the lifecycle event callback for an application
applicationStatus Check the current status of an application
listApplications List all running applications
serverStatus Get information about the server
lookupApplication Map from an application name to a URI

Deployed applications are identified by URIs. These are only guaranteed to be unique to a
service instance, and do not have to resolve to any valid URL.

deploy

Deployment is the whole rationale for this service, so it is unsurprising that this is the most
complex request in XML terms. It has four main features:

• A JSDL job descriptor [jsdl]

• A deployment descriptor. The namespace of this descriptor is used to determine the
language of the deployment. That is, there is no explicit declaration of the language, it is
implicit from the XML itself.

• The optional declaration of a callback to receive lifecycle events. This is the exact same
information as in a setCallback request, except it is attached to the deployed application
from the outset.

• A list of options.

1 This does not preclude a WS-RF based design for direct access to individual components.

The option list is a very powerful aspect of the deployment API, but potentially dangerous.
Any protocol standard which has optional aspects is harder to write clients against than one
which does not, as there is likely to be less consistency between different implementations.

1. All options must be that: optional. A service implementation must be able to deploy an
application when the entire options/ portion of the request is empty.

2. Every option configures a deployment feature of the remote system.

3. Every option is named by a URI

4. All URIs which begin http://gridforum.org/cddlm/ are reserved for the CDDLM
standards.

5. Options can contain string, integer, boolean or arbitrary XML values.

6. All options that a service implementation supports must be enumerated in serverStatus
requests.

undeploy

This operation undeploys a named application. To be idempotent, this call does not raise a fault
when an application is already terminated, or when the application is undefined. That is
because there may be no record of the now-terminated application.

setCallback

This operation sets a lifecycle event callback for an application, or clears an existing
application. Callbacks will be covered in more detail below.

applicationStatus

This operation probes the health of an application. The response -for a healthy application- is a
simple message containing status information:-
<applicationStatusResponse >
 <reference>http://localhost/cddlm/1095458549045/job1</reference>
 <name>job1</name>
 <state>running</state>
 <callback>
 <type>cddlm-prototype</type>
 <address>
 <uri>http://localhost:5051/client/callbacks</uri>
 </address>
 <identifier>1564</identifier>
 </callback>
 <stateInfo xsi:nil="true"/>
</applicationStatusResponse>

The operation probes the health of the root component of the deployment hierarchy, which
return build up a model of the health of subsidiary components. The draft component model
[component-model] specification covers this. The call blocks until the health check is
complete.

ServerStatus

This operation returns the status of the server. The status is composed of a static section and a
dynamic section. The static section includes server build information,

<serverStatusResponse
xmlns="http://gridforum.org/cddlm/serviceAPI/types/2004/07/30">
 <static>
 <server>
 <name>SmartFrog implementation</name>
 <build>$Id: Constants.java,v 1.12 2004/09/15 12:59:13 steve_l Exp $</build>
 <home>http://smartfrog.org/</home>
 <location>unknown</location>
 <timezoneUTCOffset>0</timezoneUTCOffset>
 </server>
 <languages>
 <language>
 <name>SmartFrog</name>
 <version>1.0</version>
 <namespace>http://gridforge.org/cddlm/smartfrog/2004/07/30</namespace>
 </language>
 <language>
 <name>XML-CDL</name>
 <version>0.1</version>

 <namespace>http://gridforge.org/cddlm/xml/2004/07/30/</namespace>
 </language>
 </languages>
 <callbacks>
 <item>cddlm-prototype</item>
 </callbacks>
 <options>
 <item>http://gridforum.org/cddlm/serviceAPI/options/name/2004/07/30</item>
 <item>http://gridforum.org/cddlm/serviceAPI/options/propertyMap/2004/07/30
 </item>
 <item>http://gridforum.org/cddlm/serviceAPI/options/validateOnly/2004/07/30
 </item>
 </options>
 </static>
 <dynamic/>
</serverStatusResponse>

In this example, the server lists support for two languages, one prototype option and three
deployment options; there is no dynamic status

listApplications

This operation returns a list of URIs of deployed application.

lookupApplication

This operation maps from a predefined application name to the current URI of an application
deployed under that name. This is a vestigial operation that is likely to be removed in future.

Design Issues

Language Support

The protocol is independent of any particular configuration language; the sole requirement is
that it must be embeddable inside the xsd:any section of the deployment descriptor, and that
the namespace qualified name of the language must be unique enough to distinguish the
language.

For the XML-CDL language, these attributes are implicit. To deploy SmartFrog content, we
defined a minimal XML encoding, in which the entire document is encoded as text inside a
suitably qualified element.

One interesting exercise would be to implement Apache Ant support [ant]. This may pose a
challenge, as the core language is namespace-free XML; namespace support is a recent edition
primarily to address task declaration clashes. As with SmartFrog, we may need to provide a
wrapper element that declares an appropriate default namespace.

The alternate strategy for multi-language support would be to require explicit declaration of
the language, and potentially the version of that language. This was not adopted as we felt that
the XML namespace should provide all such information implicitly. It would be relatively
easy to migrate to an explicit language declaration model. It may also improve readability for
people viewing the wire format of the messages.

Options

The option mechanism offered in the deploy request provides a powerful, structured means of

customising the deployment, either with specific options offered by a single implementation of
the service API, or through widely-recognised options formally defined in group
specifications.

As stated above, having optional aspects to a protocol with multiple implementations is
potentially dangerous. If a program deploys expecting a particular option being available, and
that option turns out to be absent, then things will not work as expected. The mustUnderstand
attribute of each option lets the caller mandate which options must be understood, and the
ability to enumerate available options in a serverStatus call provides the ability to enumerate
the set of supported options without even attempting to deploy an application. These features ,
and the requirement that an option-free deployment must be supported reduces the risk of the
option feature.

The next way to reduce risk is to standardise the names and semantics of common options. The
ones we propose are

• validateOnly: a flag to indicate that the deployment descriptor should be validated to the
best of the ability of the runtime, without being actually deployed.

• name: this is covered below; it specifies an explicit name for the application within the
runtime, which can be entirely unrelated to the URI used in the service API.

• properties: a set of name-value pairs to define properties for examination by the
deployment descriptor. These properties can be used for deployment-time customisation of
a descriptor, without rewriting the descriptor itself. For example, properties could define the
final locations of uploaded code files, mapped into the file system of the target machine.

• environment: A set of name-value pairs defining the environment variables of the
deployed program. This is subtly different from the properties option, as the environment
is part of the operating system or shell, and so effects the system more dramatically. The
JSDL specification includes an environment block; this would be a mapping of the same
block into the options section of the deployment request.

Naming and identification

The original design of the service API had included a mandatory name attribute when
deploying an application. This was derived from experience in SmartFrog, where the name of
the deployed component graph could be used for cross-referencing components in parallel
deployments. To fulfil such a role, the name had to be unique across all currently deployed
applications.

It soon became clear -during testing- that this requirement was misguided, as it required the
service caller to know that there was no other application with the same name already
deployed. The service API was updated to remove the requirement to name any deployment,
although it is retained as an option. That is, a deployment request can include a name option in
its option map, and indicate whether the runtime is expected to understand that option or not.

One vestigial aspect of the original design is that we retain an operation lookup(name):URI,
which looks up an application by name. With unique names still being an option, there is some
value in retaining this operation. Yet there are other ways of binding running components
together, and naming seems both crude and brittle.

We propose that the future model should be:

1. Every deployment is given a URI reference by the runtime

2. These URIs are only guaranteed to be unique on a single runtime, not across machines.

3. URIs should be unique across restarts of the runtime. That is, a single host should never
deploy two applications which hold the same URI.

4. To locate applications or components in an application by well known names, other
discovery and binding mechanisms should be used, such as UDDI, or multicast DNS.

The prototype achieves requirements (1,2,3) by creating a new URI of the form
http://localhost/${time}/job/${counter} where ${time} is the startup time of the
runtime, and ${counter} is a counter that is incremented for every URI generated.

Callbacks

Callbacks are an outstanding issue with Web Services. Although an integral part of distributed
systems such as CORBA, DCOM and RMI, they are currently absent from the SOAP stack.
The reason for this was that SOAP, being an evolution of XML-RPC messages sent to web
sites via HTTP POST requests, was designed with the assumption of a firewall between the
client and the (HTTP) server).

There is still no widely supported standard for callbacks, though WS-Eventing and WS-
Notification are emerging as the two competing options -perhaps even two converging options.
Both standards are still unstable, with recent update to WS-Eventing narrowing the difference
between the two [wsevt]. It is also worth noting that the Jabber XMPP protocol has been used
with some success in XML messaging projects, because of its ability to tunnel through
firewalls via open port 80 connections to public jabber servers [xmpp].

With all the many emerging callback options, and with no one ready for use, the deployment
API opted to support multiple callback possibilities.

1. The server status request includes a list of which callback mechanisms a server supports.

2. The deployment request includes an identification of the desired callback mechanism, and
any XML data related to that specific callback option.

3. If the client wants to receive lifecycle events it must probe the server for a supported
callback option and use that at deployment time.

4. For the prototype, we added a callback option, that of direct dispatch of a WSDL described
lifecycle event message to a nominated HTTP URL.

This is too much flexibility to be useful, as clients do not have any guarantee that their
supported callback mechanism will be supported in the server. A client would need to support
all well-known callback options to be sure of receiving notifications.

The other callback issue is that one needs a means of subscribing to an existing deployment, to
receive notifications, or to unsubscribe a callback registration. WS-Notification covers such
options, if we expose our deployments as WS-Resource entities. As this an intended goal of
the component model, WS-Notification is likely to become integral to the runtimes, and so
supported by all deployment servers. If we were to mandate that this was required, then clients
would only need to implement a single callback mechanism to receive notifications.

Over time, WS-Notification will itself evolve, and we will be left with the problem of which
version of WS-Notification to support. It may be prudent to retain the enumeration of callback

types, and the ability to select a specific callback protocol, in order to adapt to this future need.

A further callback-related issue is how to support deployment from systems with no callback
mechanism at all. One option that was added to the deployment request is the ability to request
a blocking deploy, so that any deployment failure was detected and returned to the caller. This
is only viable for deployments that start up immediately -anything with a slow startup time
would start to trigger timeouts over the network.

Faults

We looked long and hard at the WS-Faults component of the WS-RF family of specifications.
The fact that it has a formal model for nested faults does appeal, as it makes it possible to nest
faults inside other faults in a structured manner.

However, one problem with the WS-Faults mechanism is that it seems to require the endpoint
to declare every fault -and every fault element/attribute. To be so explicit in one's fault
declaration seems to be opposed to the notion of future extensibility.

We need to experiment further with WS-RF to see if this is really the case, or it has been
misunderstood.

For now, we are using standard SOAP faults. A normative XML file accompanies the XSD
and WSDL descriptions of the service, to provide URIs, names and descriptions of every
standard fault in the service API.

When compared to WS-Faults, this approach is over-flexible. An Axis hosted implementation
can add arbitrary fields (stack trace, hostname), but other SOAP runtimes do not. This
inconsistency in return data is a danger all of its own -it is too easy to code against one
implementation, on one runtime, and so fail to correctly handle faults raised by other
implementations, or even the same implementation on a different JAX-RPC-compliant
runtime.

If we remain with "classic" SOAP faults, we must require that any of the service API faults
must include our own typed elements inside for structured analysis of the contents. This would
imply defining a DeploymentFault that extended the WS-BaseFault, and yet which included
all the dynamic extensibility we desire.

Future Work

Security

The current prototype does not have any security; it grants unlimited rights to callers. There is
only the option of using HTTP Basic Authentication for minimal security of the channel.
Clearly this is inadequate.

Logging

We have neglected the entire process of capturing output from the application. A deployment
descriptor is free to configure its own logging, but there is no integration of that with the
callback mechanism.

A first step would be to capture all output to files and provide a means of accessing the output
remotely -even from running applications. Presumably the information would also need to be
retained for some time after the application is terminated, so that it could all be retrieved.

JSDL Integration

Deployment requests take a JSDL descriptor, inside the request.

The prototype does not incorporate any of the information contained in this descriptor into its
deployment. There are a number of ways in which the information in the JSDL descriptor
could be used

1. The JobName and JobAnnotation text could be extracted for job information.

2. The environment variables can be extracted and used to set the environment for execution.
This could also be done by a front end application, assuming that the service supported the
proposed environment option.

3. Any explicit limits on jobs (such as JobVirtualMemoryLimit or CPUTimeLimit) should be
used to place constraints on job execution.

4. The stdIn and stdOut elements could be mapped to data files.

Overall, the JSDL specification is best-suited towards the queuing and execution of batch jobs.
Adapting it to a model in which a 'job' is now a deployment of a complex set of interconnected
sub-applications is possible, but it will take effort particularly if those applications are
distributed across multiple machines.

Integration between a JSDL-centric front-end would be a good approach towards integrating
with JSDL and to providing an end-user friendly front end to the deployment framework itself.
The WS-JDML system is designed to support custom back ends; CDDLM support would be
part of another such module [wsjdml]. The portal would be able to take on the task of
retrieving the submitted files and creating a deployment descriptor combining the user's own
submission with extra deployment information.

Implementation

Server

We have an initial implementation, written in Java and built on top of Apache Axis 1.2beta and
the SmartFrog 3.0.04 runtime [axis]. Axis and the SOAP service that it hosts are actually
deployed within the SmartFrog JVM; we wrote a SmartFrog component to configure and
deploy Axis, then extended this with our CDDLM deployment service.

The endpoint retains its own repository of deployed jobs, each job instance storing all the
extracted information from a deployment request -JSDL document, the deployment descriptor-
and all the binding information to a deployed application in the SmartFrog runtime.

Slow operations are processed by creating Action instances; these actions are queued for
execution in separate worker threads. The deploy and undeploy actions and all callbacks are
processed in this way. This can lead to actions and messages being processed after they are no
longer relevant -for example a series of lifecycle events could be queued in succession, or
multiple undeploy actions for the same job being in the queue. A refined system would be
more aware of the state of the queue, and merge duplicate or inconsistent actions.

Client

The initial deployment client consists of a set of command line based console applications -one
per operation. These applications are easy to fully test with JUnit -the command line
applications are effectively the core of the functional tests against the server. This is significant
as the tools for automated GUI testing are still significantly immature.

We have some experimental support in SmartFrog itself for deploying JUnit test suites across
multiple machines and correlating the results. This would make it possible to perform a full
functional test in which multiple remote clients made deployment requests of a single server.
This will be an interesting project in distributed testing.

Issues with JAX-RPC

Apache Axis is the most widely used open source implementation of the JAX-RPC API,
which is the official Java API for SOAP [jaxrpc]. Axis provided both the client and server
SOAP engines, and generated all the serialization classes that represent elements within the
SOAP messages.

The design of this service API was done using what is considered the strictest and purest
SOAP development process -we wrote the XML Schema, then the WSDL file, and used these
to generate Java classes to represent the XML data in the messages. We also had a design
which was explicitly designed to support arbitrary XML in a number of places, such as the

Axis endpoint

SmartFrog

worker queue

worker
workerworker

serverStatus

undeploy

deploy

…

job

job
Job Repository

job host

deployment descriptor itself, the options map, and in the server and application status
messages.

It was somewhat unfortunate, therefore, that the JAX-RPC API, which is the standard Java
API for working with SOAP messages, proved fundamentally unsuited towards supporting
arbitrary XML within a request. All xsd:any declarations in the schema were mapped into
MessageElement instances, a class that -mostly- resembles a W3C DOM. Yet the standard
way of extracting the XML from the MessageElement classes is to marshal the XML into a
string, and then parse it again. Turning arbitrary XML into a MessageElement tree is an even
more complex operation. There is a fundamental mismatch here between what is consider best
practise for XML Schema -adding structured extension points for future extensibility, and
what JAX-RPC supports.

We also found that the object serialization generated for us was inadequate or inappropriate.
For example, all enumeration types (xsd:enumeration) were mapped to Java1.4 classes with
a string for each enumeration value, strings named value1, value2, value3, rather than with
useful names. A change in the ordering of the enumeration values in the schema would
therefore stop the code working.

A further issue is that as there is no real schema validation of incoming messages, it is left to
the endpoint to validate the presence or absence of elements, as minOccurs and maxOccurs
declarations in the schema have no effect. This increases the complexity of the endpoint -and
increases the probability that other implementations will not be as robust.

Finally, the client API is unsatisfactory. The remote web service is presented as a remote
procedure call, a metaphor which is possibly justifiable over a low-latency, high bandwidth
network, but not over a WAN. The metaphor of 'near-instantaneous local object invocation' is
faulty because the remote system is not an object, and because invocation overhead can be
measured in seconds for a long-distance call, minutes if the message payload includes a multi-
megabyte attachment.

There has to be a better way of allowing SOAP endpoints to process arbitrary incoming
messages, a way that is resilient to change and works at the XML level, rather than that of
badly-serialized Java datatypes. Similarly, clients need an equivalent view of the message, and
a invocation mechanism that combines a queue with a progress callback facility and a
cancellation option. If such a technology is not created, then SOAP users will be left with the
worst of both words -a painful interface to a wire format optimised for interoperability
problems.

Conclusions

We have described an XML-based API for deploying services, one that is compatible with
SOAP1.1 engines. The API is independent of any particular deployment language; the
prototype has complete support for the SmartFrog syntax and rudimentary handling of XML-
CDL content.

A key to future flexibility of the system is that a deployment request can contain an arbitrary
set of options, any of which can be marked as an options which the runtime is required to be
able to understand. This, combined with a group design of common options, should provide a
structured extension mechanism for the API.

Many open issues have been raised by the prototype, such as naming, fault representation and

callbacks. Ultimately, a single callback mechanism for SOAP-based applications will emerge.
Until then, SOAP users are left to suffer. The multiple-callback tactic adopted by this API is
crude and potentially likely to lead to incompatibilities between caller and service, unless
every service implementation is guaranteed to support all common callback options.

Finally, the prototype implementation raises concerns about the suitability of Java's JAX-RPC
SOAP API for handling arbitrary XML. Many of the 'convenience' mappings of XML to Java
turned out to be less than useful. We believe that if XML-centric processing of inbound or
outbound SOAP messages is considered a good SOAP development practise, then something
significantly more usable than JAX-RPC is required.

Bibliography

[ant] Duncan-Davidson et al., Apache Ant 1.6,
http://ant.apache.org/

[axis] Apache Axis,
 http://ws.apache.org/axis

[jaxrpc] Chinnici et al, Java API for XML-RPC JAX-RPC 1.1, Sun Microsystems. 2003,
http://java.sun.com/xml/jaxrpc/

[jdml]McGough, S. The WS-JDML: A Web Service Interface for Job Submission and
Monitoring
http://www.nesc.ac.uk/talks/415/02.pdf

[jsdl] The JSDL Specification, draft 0.5
http://forge.gridforum.org/projects/jsdl-wg/document/draft-ggf-jsdl-spec/en/9

[smartfrog] Goldsack, P. SmartFrog Language , 2004
http://forge.gridforum.org/projects/cddlm-wg/document/SmartFrogLanguage/en/1

[sreq] Loughran, S. Requirements of a Service API for CDDLM
http://forge.gridforum.org/projects/cddlm-wg/document/Deployment_API_Requirements/en/1
[wsevt] Web Services Eventing (WS-Eventing)

http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
[wsrf] The WS-Resource Framework,

http://www.globus.org/wsrf/
[xmlcdl] Tatemura, J. XML-CDL, 2004,

http://forge.gridforum.org/projects/cddlm-wg/document/XML_CDL/en/1
[xmpp] Jabber::Protocol

http://www.jabber.org/protocol/

