A Service API for
Deployment

Steve Loughran
HP Laboratories
steve loughran@hpl.hp.com

Goals

- Widely usable deployment API

» Public face of CDDLM Basic Services

- Integrate with portal, resource manager
- Language agnostic

« Use core WS-I SOAP, if possible, for
interoperability

- Be extensible

Explore what works, what doesn't

PPPPP

XML Layer

- SOAP1.1, WS-l level

- Seven operations:
deploy
undeploy
serverStatus
applicationStatus
listApplications
setCallback
(LookupApplication)

« ~2000 lines of XML Schemal!

Page 3 2004-09-14

[JSDL metadata]

XML descriptor

| types:callbackinformationType |

| |
oo B (e | opescaesnasessime |

R |
-1 caltback B} P saaress LR E = |
E optional caliback | | | |
|
|

[callback]

——————— J
|
|
Ee;p& PE}T;E ________ _|
| e |
| | | . [options]
5 |
L apions B () | apion 3B]
“hie i for cptions I _____ oz | | |
- ' L => UR]
L. T B |
.. ST -

Page 4 2004-09-14

Deployment supports optional

extensions

—~ string

—"integer

(optionType I}IL_I—[—”EEI—:EI——ch-lean

[typesz:unboundedXMLAnyHamespace

- a list of options
—name: URI

—~mustUnderstand:boolean
- SOAP Header semantics

Page 5 2004-09-14

Defined optional extensions

validateOnly: validate descriptor, do not deploy
name: unique name for the application

propertyMap: hame-value pairs of late binding
information

extractable from configuration file (e.g. by
SmartFrog PROPERTY) keyword.

PPPPP

- URI for deployed applications.
— Unique to that machine
— use wall time and counter to keep unique over restarts

- Option for explicit 'application name'
— SmartFrog runtime permits cross application resolution

Proved to brittle for testing, let alone deployment
Retained as a vestigial/optional feature

Recommend: use real naming/dir/location services

Page 7 2004-09-14

undeploy

Eapp-li{:ﬂti::rr'l

~reason

- Idempotent
- asynchronous
- not an error to undeploy a nonexistent application

Page 8 2004-09-14

applicationStatus

<applicationStatusResponse>
<reference>http://cddlm/job2</reference>
<name>job2</name>
<state>running</state>
<stateInfo xsi:nil="true" />
</applicationStatusResponse>

- probes application health (blocking call)
- optional arbitrary stateInfo section

- Recommend: make fault information explicit

Page 9 2004-09-14

Callbacks raised on lifecycle events

- Message contents:
— Application URI
— Application state
— Caller supplied identifier
— Application Status
—xXsd:any
- Callback information can be in a deploy request

- setCallback operation sets a callback on a
running application

- setCallback=null to unsubscribe.

Trouble with Callbacks

- No standard callback mechanism

- WS-Notification v. complex

- WS-Notification/WS-Eventing convergence?
- Firewalls?

- Jabber/XMLPP goes through firewalls!

- Prototype just has simple direct callback endpoint
- notifications are queued; failures ignored.

Implementation

- Java based
- Uses Apache Axis 1.2beta for SOAP
- Built on SmartFrog

- Hosted in SmartFrog (Axis Component, CDDLM
component supplies a new endpoint)

- Mildly Asynchronous (worker threads for notification
callbacks)

- Deploys SmartFrog descriptors
- Parses and Validates XML-CDL descriptors

Architecture

deploy
Axis endpoint undeploy ——— ——
serverStatus worker queue
| I
job worker
Job Repository | ,
job job host

SmartFrog

Page 13

2004-09-14

Issue: Faults

- Not using WS-BaseFaults: too inflexible
"BaseFault does NOT include open element
extensibility”

- requires explicit typing of all possible fault content
» requires explicit naming of all throwable faults

the "checked exception” pattern

- using classic SOAPFault
- constants.xml declares fault codes

Not yet addressed

- Logging
— need dynamic reconfigure of running logs
— feeding of log data (buffered?) to monitors

— caching of data for polling

- Code/data file provisioning
— assume portal copies files to shared file system

— could handle attachments, though that is an interop
black spot.

- Security

JAX-RPC considered wrong

- JAX-RPC is the standard Java SOAP API
- Built around O/X mapping "serialization"

- Some support for arbitrary XML in MessageElement
class (JAX-M) derivative:

public Document getAsDocument () {
String s = getAsString();
Reader reader = new StringReader(s);
InputSource s=new InputSource (reader)
return XMLUtils.newDocument (s) ;

}

This APl is hopeless for supporting arbitrary XML

Page 16

2004-09-14

Thinking of an alternative: Alpine

- doc/lit, SOAP1.2, Java1.5 only

- No O/X binding: use XOM or XMLBeans

- No client/server distinction: processing chain
- Multi transport

* non blocking

- JMX management
- Fast, lightweight

- For experts only

Next Steps

integrate with a front end (the Iceni one?)
integrate with a resource manager

iIncorporate feedback/experience

work on trouble areas: callbacks, faults, security,
logging

5. implementation: XML-CDL support as it evolves

s W~

product placements:

hitp:/itws_apache org /
Apac!e <Web Services /> Project a’X LS

A

I Inteli)iDEA 4.5

MindreefSOAPscope 4.0

Page 19 2004-09-14

