
Steve Loughran
HP Laboratories
steve_loughran@hpl.hp.com

A Service API for 
Deployment



20040914Page 2

Goals

• Widely usable deployment API
• Public face of CDDLM Basic Services
• Integrate with portal, resource manager
• Language agnostic
• Use core WS-I SOAP, if possible, for 

interoperability
• Be extensible

Explore what works, what doesn’t



20040914Page 3

XML Layer

• SOAP1.1, WS-I level
• Seven operations:
deploy
undeploy
serverStatus 
applicationStatus
listApplications
setCallback
(lookupApplication)

• ~2000 lines of XML Schema!



20040914Page 4

Deploy

XML descriptor

[JSDL metadata]

[callback]

[options]

=> URI



20040914Page 5

Deployment supports optional 
extensions

• a list of options
– name: URI
– mustUnderstand:boolean

• SOAP Header semantics 



20040914Page 6

Defined optional extensions

validateOnly: validate descriptor, do not deploy

name: unique name for the application

propertyMap: name-value pairs of late binding 
information

extractable from configuration file (e.g. by 
SmartFrog PROPERTY) keyword.



20040914Page 7

Naming

• URI for deployed applications. 
– Unique to that machine
– use wall time and counter to keep unique over restarts

• Option for explicit 'application name'
– SmartFrog runtime permits cross application resolution
– Proved to brittle for testing, let alone deployment
– Retained as a vestigial/optional feature
– Recommend: use real naming/dir/location services



20040914Page 8

undeploy

• idempotent
• asynchronous
• not an error to undeploy a nonexistent application



20040914Page 9

applicationStatus

<applicationStatusResponse>
<reference>http://cddlm/job2</reference>
<name>job2</name>
<state>running</state>
<stateInfo xsi:nil="true" /> 

</applicationStatusResponse> 

• probes application health (blocking call)
• optional arbitrary stateInfo section
• Recommend: make fault information explicit



20040914Page 10

Callbacks raised on lifecycle events

• Message contents:
– Application URI
– Application state
– Caller supplied identifier
– Application Status
– xsd:any

• Callback information can be in a deploy request
•setCallback operation sets a callback on a 

running application
•setCallback=null to unsubscribe.



20040914Page 11

Trouble with Callbacks

• No standard callback mechanism
• WS-Notification v. complex
• WS-Notification/WS-Eventing convergence?
• Firewalls?
• Jabber/XMLPP goes through firewalls!

• Prototype just has simple direct callback endpoint
• notifications are queued; failures ignored.



20040914Page 12

Implementation

• Java based
• Uses Apache Axis 1.2beta for SOAP
• Built on SmartFrog
• Hosted in SmartFrog (Axis Component, CDDLM 

component supplies a new endpoint)
• Mildly Asynchronous (worker threads for notification 

callbacks)
• Deploys SmartFrog descriptors
• Parses and Validates XML-CDL descriptors



20040914Page 13

Architecture

Axis endpoint

SmartFrog 

worker queue

worker
workerworker

serverStatus

undeploy

deploy

…

job

job
Job Repository

job host



20040914Page 14

Issue: Faults

• Not using WS-BaseFaults: too inflexible
"BaseFault does NOT include open element 
extensibility"

• requires explicit typing of all possible fault content
• requires explicit naming of all throwable faults

the "checked exception" pattern

• using classic SOAPFault
• constants.xml declares fault codes



20040914Page 15

Not yet addressed

• Logging
– need dynamic reconfigure of running logs
– feeding of log data (buffered?) to monitors
– caching of data for polling

• Code/data file provisioning
– assume portal copies files to shared file system
– could handle attachments, though that is an interop 

black spot. 

• Security



20040914Page 16

JAX-RPC considered wrong

• JAX-RPC is the standard Java SOAP API
• Built around O/X mapping "serialization"
• Some support for arbitrary XML in MessageElement 

class (JAX-M) derivative:

public Document getAsDocument() { 
 String s = getAsString();
 Reader reader = new StringReader(s);
 InputSource s=new InputSource(reader)
 return XMLUtils.newDocument(s);
}

This API is hopeless for supporting arbitrary XML



20040914Page 17

Thinking of an alternative: Alpine

• doc/lit, SOAP1.2, Java1.5 only
• No O/X binding: use XOM or XMLBeans
• No client/server distinction: processing chain
• Multi transport
• non blocking 
• JMX management
• Fast, lightweight
• For experts only



20040914Page 18

Next Steps

1. integrate with a front end (the Iceni one?)
2. integrate with a resource manager
3. incorporate feedback/experience
4. work on trouble areas: callbacks, faults, security, 

logging
5. implementation: XML-CDL support as it evolves



20040914Page 19

product placements:


