

Sensor Debugging Guide

Issue 02

Date 2017-12-20

Copyright © HiSilicon Technologies Co., Ltd. 2017. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior

written consent of HiSilicon Technologies Co., Ltd.

Trademarks and Permissions

, , and other HiSilicon icons are trademarks of HiSilicon Technologies Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of their respective

holders.

Notice

The purchased products, services and features are stipulated by the contract made between HiSilicon and

the customer. All or part of the products, services and features described in this document may not be

within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,

information, and recommendations in this document are provided "AS IS" without warranties, guarantees or

representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the

preparation of this document to ensure accuracy of the contents, but all statements, information, and

recommendations in this document do not constitute a warranty of any kind, express or implied.

HiSilicon Technologies Co., Ltd.

Address: Huawei Industrial Base

Bantian, Longgang

Shenzhen 518129

People's Republic of China

Website: http://www.hisilicon.com

Email: support@hisilicon.com

http://www.hisilicon.com
mailto:support@hisilicon.com

 Sensor Debugging Guide About This Document

Issue 02 (2017-12-20)
HiSilicon Proprietary and Confidential Copyright

© HiSilicon Technologies Co., Ltd.
i

About This Document

Purpose

This document is intended for programmers who need to connect different sensors. It provides

references for the interconnection procedure and precautions in the sensor interconnection

process. This guide includes the development procedure of the driver which is connected to a

new sensor and the adaptation of the new sensor in the software development kit (SDK).

Related Version

The following table lists the product version related to this document.

Product Name Version

Hi3516C V300

Hi3516E V100

Hi3519 V101

Hi3516A V200

Hi3559A V100

Hi3559C V100

Intended Audience

This document is intended for:

� Technical support engineers

� Software development engineers

Change History

Changes between document issues are cumulative. Therefore, the latest document issue

contains all changes made in previous issues.

 Sensor Debugging Guide About This Document

Issue 02 (2017-12-20)
HiSilicon Proprietary and Confidential Copyright

© HiSilicon Technologies Co., Ltd.
ii

Issue 02 (2017-12-20)

This issue is the second official release, which incorporates the following changes:

Section 1.4 is modified.

Issue 01 (2017-08-24)

This issue is the first official release.

Sensor Debugging Guide Contents

Issue 02 (2017-12-20)
HiSilicon Proprietary and Confidential Copyright

© HiSilicon Technologies Co., Ltd.
iii

Contents

1 Sensor Debugging Guide .. 1

1.1 Debugging Process ... 1

1.2 Material Preparation ... 2

1.2.1 Confirming Main Chip Specifications .. 2

1.2.2 Sensor Data Sheet ... 2

1.2.3 Initialization Settings .. 2

1.3 Image Collection .. 2

1.3.1 Preparing Hardware .. 2

1.3.2 Completing the Initialization Sequence Configuration ... 2

1.3.3 Sensor Output ... 3

1.4 ISP Basic Functions .. 4

1.5 AE Configuration ... 5

1.6 Function Perfection .. 7

1.7 Color Correction and Noise Reduction .. 7

1.8 Picture Quality Optimization.. 7

Sensor Debugging Guide Figures

Issue 02 (2017-12-20)
HiSilicon Proprietary and Confidential Copyright

© HiSilicon Technologies Co., Ltd.
iv

Figures

Figure 1-1 Sensor debugging process .. 1

 Sensor Debugging Guide 1 Sensor Debugging Guide

Issue 02 (2017-12-20)
HiSilicon Proprietary and Confidential Copyright

© HiSilicon Technologies Co., Ltd.
1

1 Sensor Debugging Guide

1.1 Debugging Process

You can debug the sensor according to Figure 1-1.

Figure 1-1 Sensor debugging process

 Sensor Debugging Guide 1 Sensor Debugging Guide

Issue 02 (2017-12-20)
HiSilicon Proprietary and Confidential Copyright

© HiSilicon Technologies Co., Ltd.
2

1.2 Material Preparation

1.2.1 Confirming Main Chip Specifications

You need to check whether the main chip supports the master mode, linear or WDR interface

mode, and confirm the maximum input frequency.

1.2.2 Sensor Data Sheet

� Confirm the interface mode for image transmission and the output frequency.

� Confirm the exposure time and gain setting method, and frame rate modification method.

� Confirm the preceding two items in WDR mode.

� Confirm the synchronization code for the LVDS interface.

1.2.3 Initialization Settings

You need to obtain information about the sensor initialization settings. Generally, you need to

prepare at least two sequences, maximum resolution and standard resolution.

1.3 Image Collection

1.3.1 Preparing Hardware

You need to first check whether the sensor register can be written or read.

Test the read and write functions of the sensor register using i2c_read/i2c_write or

ssp_read/ssp_write command.

The commands are integrated in the default file system and can be directly called.

1.3.2 Completing the Initialization Sequence Configuration

For configuring the initialization sequence, you are advised to see the sensor driver in the

SDK for rapid development. To facilitate the debugging, you need to eliminate the

interference from the AE configuration and frame rate configuration.

Step 1 Prepare the sensor driver.

� You can modify the driver of a sensor with similar specifications (master/slave, i2c/spi,

wdr/linear) and try to compile a sensor library. For details, see xxx_cmos.c and

xxx_sensor_ctl.c files in the isp/sensor/hi35xx/xxxx directory.

� Modify the cmos_set_image_mode function and change the values of u32MaxWidth

and u32MaxHeight in cmos_get_isp_default to make sure that the sensor resolution

and frame rate are set correctly.

� Modify the registers of sensor clock configuration, I
2
C/SPI pin multiplexing, VI clock,

and ISP clock in the load35xx script that loads the .ko file. During adaptation, you can

modify the sensors according to similar sensor specifications.

Step 2 Initialize the sensor sequence.

 Sensor Debugging Guide 1 Sensor Debugging Guide

Issue 02 (2017-12-20)
HiSilicon Proprietary and Confidential Copyright

© HiSilicon Technologies Co., Ltd.
3

� Implement the void sensor_init() function. For details, see the sensor data sheet or the

sensor sequence provided by the sensor vendor.

� In the xxx_sensor_ctl.c, set the base address of the sensor register to sensor_i2c_addr.

The address bit width is sensor_addr_byte, and the bit width information of the sensor

is sensor_data_byte.

� In the xxx_cmos.c file, comment out all sensor_write_register. In the

cmos_get_sns_regs_info function, set u32RegNum to 0. In this way, the AE does not

configure the sensor, and therefore the interference is eliminated.

----End

1.3.3 Sensor Output

This section describes the entire channel output based on the sample file in the mpp directory.

The prerequisite is that the sensor sequence is complete. The operations mainly include the

configurations of MIPI, VI, ISP, and VPSS. To configure these modules, make simple

modifications based on the existing sensor configurations. If the integrated environment is

ready, directly configure parameters to start running. Take the startup script of the HiSilicon

PQ Tool as an example, the startup configuration file exists in the corresponding sensor

directory, and you only need to configure parameters correctly.

Step 1 Compile the sensor to generate a new sensor library in the ISP directory after the initialization
configuration is completed. The paths of the new library are mpp/lib/libsns_xxx.a and

mpp/lib/ libsns_xxx.so.

Step 2 Verify the new sensor based on the sample file in the mpp directory. In the

sample/Makefile.param file, add a SENSOR_TYPE for sensor compilation configuration,

and then add a corresponding libsns_xxx.a file.

Step 3 Add the sensor type to the SAMPLE_VI_MODE_E in sample_comm.h. Note that the sensor

type must be consistent with the newly added SENSOR_TYPE in the

sample/Makefile.param file. Then add the attributes such as Bayer pattern, frame rate, and

width and height information of the sensor type to the SAMPLE_COMM_ISP_Init function

in sample_comm_isp.c.

Step 4 Configure MIPI attributes. Add the MIPI attributes to SAMPLE_COMM_VI_SetMipiAttr in

sample_comm_vi.c. For details about debugging MIPI/LVDS, see MIPI User Guide.

Step 5 Configure VI attributes. Add VI attributes to SAMPLE_COMM_VI_StartDev in

sample_comm_vi.c.

Step 6 Compile and run the corresponding application sample_vio. If everything goes smoothly, the

entire system is running. You can run the cat /proc/umap/isp or cat /proc/umap/hi-mipi

command to view information.

Step 7 If the ISP is not interrupted, check whether the sensor input clock, output signals, and sensor
register configurations are normal. For operation details, see Hi35xx Professional HD IP

Camera SoC Data Sheet or Hi35xxVxxx ultra-HD Mobile Camera SoC Data Sheet.

Step 8 If the MIPI, VI, and ISP are normal and image quality adjustment is required, transplant the

preceding configurations to the sensor configuration file corresponding to the PQTool (create

a new sensor directory in the config directory and make corresponding modifications based

on similar sensor configurations), and then view video on demand.

----End

 Sensor Debugging Guide 1 Sensor Debugging Guide

Issue 02 (2017-12-20)
HiSilicon Proprietary and Confidential Copyright

© HiSilicon Technologies Co., Ltd.
4

1.4 ISP Basic Functions

For details about the sensor in this section, see the sensor data sheet, or contact the sensor

manufacturer FAE.

For details about the structure, see the HiISP Development Reference.

The driver files are classified into xxx_cmos.c, xxx_cmos_ex.h, and xxx_sensor_ctl.c files

which are used to implement the ISP functions and initialize the sensor sequence, respectively.

The xxx_cmos_ex.h file stores the global variables of the defined driver file.

The driver files have three callback functions, which are the interfaces used by the sensor

drivers to register functions with the firmware. HI_MPI_ISP_SensorRegCallBack(),

HI_MPI_AE_SensorRegCallBack(), and HI_MPI_AWB_SensorRegCallBack() correspond to

the ISP, HiSilicon AE, and HiSilicon AWB, respectively.

Development Process

The ISP basic functions are implemented in the following order:

1. cmos_set_image_mode(), cmos_set_wdr_mode()

2. sensor_global_init()

3. sensor_init(), sensor_exit()

4. cmos_get_isp_default(), cmos_get_isp_black_level()

Precautions

� cmos_set_image_mode ()

This function is used to differentiate resolutions, and uses the global variable

gu8SensorImageMode to transfer resolution mode.

Pay attention to the return value. The return value 0 indicates that the sensor needs to be

configured again and sensor_init() is called. The return value –1 indicates that the sensor

does not need to be configured again and no operation is performed.

� cmos_set_wdr_mode()

This function is used to differentiate WDR modes, and uses the global variable

genSensorMode to transfer the WDR mode.

Pay attention to the differences between gu32FullLinesStd and gu32FullLines.

gu32FullLinesStd indicates the total lines at the standard frame rate (generally 30 fps) in

the current resolution and WDR modes. gu32FullLines indicates the actual total lines.

Its value can be changed based on gu32FullLinesStd and frame rate caused by frame

rate reduction in other functions.

In different WDR modes, AE-related functions need to be modified, such as parameters

in the ISP default functions and initialization sequence.

� sensor_init()

You need to configure different sequences according to different resolutions and WDR

modes.

� sensor_exit()

For the implementation of the function, see the drivers of similar sensors.

� cmos_get_isp_default()

 Sensor Debugging Guide 1 Sensor Debugging Guide

Issue 02 (2017-12-20)
HiSilicon Proprietary and Confidential Copyright

© HiSilicon Technologies Co., Ltd.
5

This function is used to debug or correct parameters. You can change parameter values

during debugging and correction.

Note that parameters in different modules such as Gamma and DRC may vary in

different WDR modes. For details, see the HiISP Development Reference.

� cmos_get_isp_black_level()

This function is used to configure the black level of the four RAW data channels.

The black level of some sensors deviates with the change of the gain value. In this case, you

need to correct the corresponding black level values under different ISO values with the

cmos_get_isp_black_level() function.

� sensor_global_init()

This function is used for sensor initialization configuration, including the resolution,

WDR mode, default value of gu32FullLinesStd, initialization status value, and other

status values.

1.5 AE Configuration

After the AE configuration is completed, pictures are normal.

Development Process

The AE is configured in the following order:

1. cmos_get_sns_regs_info()

2. cmos_get_ae_default(), cmos_again_calc_table(), cmos_dgain_calc_table()

3. cmos_get_inttime_max()

4. cmos_gains_update(), cmos_inttime_update()

5. cmos_fps_set(), cmos_slow_framerate_set()

Precautions

� cmos_get_sns_regs_info()

This function is used to configure the sensors and ISP registers which need to ensure

synchronization, such as the exposure time, gains, and total lines. Although these

registers can be configured by directly calling sensor_write_register(), the

synchronization cannot be guaranteed and flicker may occur. Therefore, these registers

must be configured using this function.

u8DelayFrmNum indicates register configuration delay. For example, gains of many

sensors take effect in the next frame, but the exposure time takes effect after the next

frame. Therefore, the gains need to be configured after a delay of one frame to make sure

that the gain and exposure time take effect simultaneously. In this case, the delay

function is needed. u8Cfg2ValidDelayMax is configured to control the synchronization

between the ISP and sensor. ISP includes parameters such as ISP Dgain and WDR

 Sensor Debugging Guide 1 Sensor Debugging Guide

Issue 02 (2017-12-20)
HiSilicon Proprietary and Confidential Copyright

© HiSilicon Technologies Co., Ltd.
6

exposure ratio. You can check the parameter correctness by checking the synchronization

status between the ISP Dgain and sensor gain. This parameter is used to control the

validity time and generally it is one greater than the maximum sensor register delay.

− bUpdate is used to determine whether to update the register. If no modification is

required, set it to false.

� cmos_get_ae_default()

− You need to change the parameter values based on the sensor. enAccuType indicates

the type of the calculation precision, usually AE_ACCURACY_TABLE and

AE_ACCURACY_LINEAR. Due to the CPU calculation precision issue, the

AE_ACCURACY_DB can be used only when the precision is very low. In other

cases, AE_ACCURACY_TABLE is used.

− The linear mode indicates that the exposure time or gain increases linearly in fixed

steps. For example, the exposure time or gain is increased by a multiple of 0.325 each

step, or the exposure time is increased by 1 each step. The step is determined by

f32Accuracy.

− The table mode applies to gain. That is, the gain each step can reach can be obtained

through calculation in cmos_again_calc_table() or cmos_dgain_calc_table() function

in a table look-up manner. In this case, f32Accuracy is invalid.

The calculation order of HiSilicon AE is exposure time, Again, Dgain, and ISP Dgain by

default. You can adjust the order by setting AE Route or AE RouteEx.

� cmos_again_calc_table(), cmos_dgain_calc_table()

The input and output of the two functions are the same and the two functions correspond

to the table mode of the Again and Dgain, respectively. The following takes Again as an

example:

− pu32AgainLin is used as the input and output simultaneously. When it is used as the

input, it is the expected gain calculated by AE and 1024 indicates one multiple. In this

function, you need to find the maximum gain that can be implemented by the sensor

and is smaller than pu32AgainLin. Re-assign this value to pu32AgainLin as the AE

output.

− pu32AgainDb is used as the output. It is not used for calculation in the AE and just

acts as the input of cmos_gains_update(). It is used to transfer the sensor register

value of the current gain.

For example, the sensor gain is increased by 0.3 dB. If the sensor register value starts

from 0 and is increased by 1 each time, the corresponding gains are 0 dB, 0.3 dB, 0.6 dB,

0.9 dB....

Calculate a look-up table which converts the dB into linear multiple in offline mode, and

the corresponding values are 1024, 1060, 1097, 1136….

Compare the input gain with the gain in the look-up table in the function. If the input is

1082, the maximum gain in the table is 1060 and the returned value 1060 is the actual

valid gain.

� cmos_get_inttime_max()

This function takes effect only in xto1 WDR mode, and is used to calculate the

maximum exposure time in different exposure ratios.

The function is needed in row combination mode only. In the row combination mode, the

sum of the long exposure time and short exposure time should be less than the length of

one frame. Therefore, the maximum exposure time varies under different exposure ratios,

and needs to be re-calculated.

� cmos_gains_update(), cmos_inttime_update()

 Sensor Debugging Guide 1 Sensor Debugging Guide

Issue 02 (2017-12-20)
HiSilicon Proprietary and Confidential Copyright

© HiSilicon Technologies Co., Ltd.
7

The two functions are used to configure the sensor register according to the input Again,

Dgain, or exposure time. When the table precision mode is used, the input parameters

correspond to pu32AgainDb and pu32DgainDb which are returned in

cmos_again_calc_table() or cmos_dgain_calc_table().

When the linear precision mode is used, the input parameters are the valid gains and

exposure time divided by f32Accuracy. For example, if f32Accuracy is 0.0078125 and

the actual valid gain is 1.5 multiple, the input value is 192 (1.5/0.0078125).

In xto1 WDR mode, you need to configure the exposure time of each long frame and

each short frame. cmos_inttime_update() will be called for X times and the exposure

time of different frames will be input. The exposure time of the short frame will be input

first.

� cmos_fps_set(), cmos_slow_framerate_set()

cmos_fps_set() is the manual configuration function for frame rates. You need to

configure the sensor register based on the input frame rate, implement the function of

changing sensor frame rate, and return the actual frame rate and the maximum number of

exposure lines.

cmos_slow_framerate_set() is the automatic configuration function for frame rate

reduction. You need to configure the sensor register based on the actual required number

of exposure lines, implement the function of sensor frame rate reduction, and return the

actual number of exposure lines.

1.6 Function Perfection

You need to perfect all other functions and ensure that all functions are normal.

Because synchronization errors easily occur in AE, you need to pay special attention to the

verification of synchronization.

1.7 Color Correction and Noise Reduction

You can correct sensor parameters according to the HiSilicon PQ Tools User Guide.

1.8 Picture Quality Optimization

You can optimize the picture quality according to the ISP Tuning Guide.

	Title Page
	About This Document
	Contents
	Figures
	1 Sensor Debugging Guide
	1.1 Debugging Process
	1.2 Material Preparation
	1.2.1 Confirming Main Chip Specifications
	1.2.2 Sensor Data Sheet
	1.2.3 Initialization Settings

	1.3 Image Collection
	1.3.1 Preparing Hardware
	1.3.2 Completing the Initialization Sequence Configuration
	1.3.3 Sensor Output

	1.4 ISP Basic Functions
	Development Process
	Precautions

	1.5 AE Configuration
	Development Process
	Precautions

	1.6 Function Perfection
	1.7 Color Correction and Noise Reduction
	1.8 Picture Quality Optimization

