Q’_B HISILICON

Sensor Debugging Guide

Issue 02

Date 2017-12-20

Copyright © HiSilicon Technologies Co., Ltd. 2017. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of HiSilicon Technologies Co., Ltd.

Trademarks and Permissions

i)

, HISILICON | and other HiSilicon icons are trademarks of HiSilicon Technologies Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between HiSilicon and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees or
representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

HiSilicon Technologies Co., Ltd.

Address: Huawei Industrial Base
Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: http://www.hisilicon.com

Email: support@hisilicon.com

http://www.hisilicon.com
mailto:support@hisilicon.com

L Sensor Debugging Guide About This Document

About This Document

Purpose
This document is intended for programmers who need to connect different sensors. It provides
references for the interconnection procedure and precautions in the sensor interconnection

process. This guide includes the development procedure of the driver which is connected to a
new sensor and the adaptation of the new sensor in the software development kit (SDK).

Related Version

The following table lists the product version related to this document.

Product Name Version
Hi3516C V300
Hi3516E V100
Hi3519 V101
Hi3516A V200
Hi3559A V100
Hi3559C V100

Intended Audience

This document is intended for:

® Technical support engineers

® Software development engineers

Change History

Changes between document issues are cumulative. Therefore, the latest document issue
contains all changes made in previous issues.

HiSilicon Proprietary and Confidential Copyright .
Issue 02 (2017-12-20) © HiSilicon Technologies Co., Ltd. !

L Sensor Debugging Guide About This Document

Issue 02 (2017-12-20)

This issue is the second official release, which incorporates the following changes:

Section 1.4 is modified.

Issue 01 (2017-08-24)

This issue is the first official release.

HiSilicon Proprietary and Confidential Copyright ..
Issue 02 (2017-12-20) © HiSilicon Technologies Co., Ltd. "

{i

Sensor Debugging Guide Contents

Contents

1 Sensor Debugging Guide.......iiviniinriininininiiiniiinicisiisiisisiississssssssssssees 1
1.1 DEbUZZING PIOCESSeeutieutiiiiiieitieiteete ettt ettt ettt ettt st sttt et s bt e bttt e bt e e bt et sabesbeenbeembesbeenbeenaeeneenae 1
1.2 Material PrOParation........c.ccveeuieriieieeieeieeieetesteesteestestesseesseessesstesseesseessesssesseessesssesssen sessesseesesssesssesseensenssenses 2

1.2.1 Confirming Main Chip SPECITICALIONScevuieiieiieeiiereieieeieeiest ettt eete e seeesaeeaesee s seeesneeeeenes 2
1.2.2 SenSor Dat SHEETco.veiiiiiiiiiiiieieett ettt ettt ettt sttt ettt st nbe bt et et sbeenbeenreeas 2
1.2.3 INTHAlZAtION SEEHIES ...eevieeieeiieiietieieeeest ettt et et e ete st e teesbeesaessaesseesseessesssesssens seeesseenseensenseensesnsenns 2
1.3 TMAZE COLIECTON ...ttt eieeeiiete ettt ettt et e e e e et e st e b e eatesatesseenseenseeaee st anseeneeesee seeneeseenseensesneesseenseensesnes 2
1.3.1 Preparing HardWarecoccooeiriiiiiiiiieiieteeteet ettt sttt st st sbe s bt e st eatesbtenbeenteens 2
1.3.2 Completing the Initialization Sequence CONfigUIationc.ecvecierierierieesienieseesteese e seeseeeee s seeenns 2
1.3.3 SENSOT OULPUL ..ttt ettt ettt ettt ettt et e e st e e s at e e sabeesbte e b e e e bt e eabeeeabe e aeeabeesabeesaseesabeennneenns 3
1.4 ISP BaSIC FUNCHIOMS. ...ttt ettt ettt b e a e bt at et et e e e e b e sa e e be st e beebeebeeseeneenteneensenee 4
1.5 AE CONTIGUIALIONviiviiieieeiieieeteet et et ete et et e e eteseesse e seesaesseesseesseessesssesseasseasseassen sessesseensesssesssesseensenssennes 5
1.6 FUNCHION PEITECTION ...e.vtiiiiiieit ettt ettt sttt et e et e e e st e e st en s enee st enseensesneesseenseeneennes 7
1.7 Color Correction and NOiSe REAUCTIONcc.uiiiiiiiiriiiirie ittt sttt see b e 7
1.8 Picture QUAlity OPtMIZATION.eecvieieriiesieeteeiestesteestestesteeseesesseesseesseessessseseesseessesseensesesseensesssesseessesnsenses 7

HiSilicon Proprietary and Confidential Copyright
Issue 02 (2017-12-20) © HiSilicon Technologies Co., Ltd. 111

{i

Sensor Debugging Guide Figures

Figures

Figure 1-1 Sensor debUZZING PrOCESS.coutruerutrteiiietetentertente ettt ettt st et see sttt saeeae et et esenten eetensensensens 1

HiSilicon Proprietary and Confidential Copyright

Issue 02 (2017-12-20) © HiSilicon Technologies Co., Ltd.

iv

h Sensor Debugging Guide

1 Sensor Debugging Guide

Sensor Debugiging Guide

1.1 Debugging Process

You can debug the sensor according to Figure 1-1.

Figure 1-1 Sensor debugging process

Prepare materials.

v

Collect images.

v

Complete basic ISP
functions.

v

Complete AE
configuration.

v

Perfect functions.

v

Correct colors and
reduce noises.

v
Optimize image
quality.

v

S

Issue 02 (2017-12-20)

HiSilicon Proprietary and Confidential Copyright
© HiSilicon Technologies Co., Ltd.

L Sensor Debugging Guide 1 Sensor Debugging Guide

1.2 Material Preparation
1.2.1 Confirming Main Chip Specifications

You need to check whether the main chip supports the master mode, linear or WDR interface
mode, and confirm the maximum input frequency.

1.2.2 Sensor Data Sheet

Confirm the interface mode for image transmission and the output frequency.
Confirm the exposure time and gain setting method, and frame rate modification method.

Confirm the preceding two items in WDR mode.

Confirm the synchronization code for the LVDS interface.

1.2.3 Initialization Settings

You need to obtain information about the sensor initialization settings. Generally, you need to
prepare at least two sequences, maximum resolution and standard resolution.

1.3 Image Collection
1.3.1 Preparing Hardware

You need to first check whether the sensor register can be written or read.

Test the read and write functions of the sensor register using i2¢_read/i2c_write or
ssp_read/ssp_write command.

The commands are integrated in the default file system and can be directly called.

1.3.2 Completing the Initialization Sequence Configuration

For configuring the initialization sequence, you are advised to see the sensor driver in the
SDK for rapid development. To facilitate the debugging, you need to eliminate the
interference from the AE configuration and frame rate configuration.

Step 1 Prepare the sensor driver.

® You can modify the driver of a sensor with similar specifications (master/slave, i2¢/spi,
wadr/linear) and try to compile a sensor library. For details, see xxx_cmos.c and
xxx_sensor_ctl.c files in the isp/sensor/hi35xx/xxxx directory.

® Modify the cmos_set_image mode function and change the values of u32MaxWidth
and u32MaxHeight in cmos_get_isp_default to make sure that the sensor resolution
and frame rate are set correctly.

® Modify the registers of sensor clock configuration, I*C/SPI pin multiplexing, VI clock,
and ISP clock in the load35xx script that loads the .ko file. During adaptation, you can
modify the sensors according to similar sensor specifications.

Step 2 Initialize the sensor sequence.

HiSilicon Proprietary and Confidential Copyright

Issue 02 (2017-12-20) © HiSilicon Technologies Co., Ltd.

L Sensor Debugging Guide 1 Sensor Debugging Guide

® Implement the void sensor_init() function. For details, see the sensor data sheet or the
sensor sequence provided by the sensor vendor.

® [nthe xxx_sensor_ctl.c, set the base address of the sensor register to sensor_i2c_addr.
The address bit width is sensor_addr_byte, and the bit width information of the sensor
is sensor_data_byte.

® Inthe xxx_cmos.c file, comment out all sensor_write_register. In the
cmos_get sns_regs_info function, set u32RegNum to 0. In this way, the AE does not
configure the sensor, and therefore the interference is eliminated.

——-End

1.3.3 Sensor Output

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

This section describes the entire channel output based on the sample file in the mpp directory.
The prerequisite is that the sensor sequence is complete. The operations mainly include the
configurations of MIPI, VI, ISP, and VPSS. To configure these modules, make simple
modifications based on the existing sensor configurations. If the integrated environment is
ready, directly configure parameters to start running. Take the startup script of the HiSilicon
PQ Tool as an example, the startup configuration file exists in the corresponding sensor
directory, and you only need to configure parameters correctly.

Compile the sensor to generate a new sensor library in the ISP directory after the initialization
configuration is completed. The paths of the new library are mpp/lib/libsns_xxx.a and
mpp/lib/ libsns_xxx.so.

Verify the new sensor based on the sample file in the mpp directory. In the
sample/Makefile.param file, add a SENSOR_TYPE for sensor compilation configuration,
and then add a corresponding libsns_xxx.a file.

Add the sensor type to the SAMPLE VI MODE E in sample_comm.h. Note that the sensor
type must be consistent with the newly added SENSOR_TYPE in the
sample/Makefile.param file. Then add the attributes such as Bayer pattern, frame rate, and
width and height information of the sensor type to the SAMPLE _COMM ISP _Init function
in sample_comm_isp.c.

Configure MIPI attributes. Add the MIPI attributes to SAMPLE _COMM_ VI _SetMipiAttr in
sample_comm_vi.c. For details about debugging MIPI/LVDS, see MIPI User Guide.

Configure VI attributes. Add VI attributes to SAMPLE COMM_ VI _StartDev in
sample_comm_vi.c.

Compile and run the corresponding application sample_vio. If everything goes smoothly, the
entire system is running. You can run the cat /proc/umap/isp or cat /proc/umap/hi-mipi
command to view information.

If the ISP is not interrupted, check whether the sensor input clock, output signals, and sensor
register configurations are normal. For operation details, see Hi35xx Professional HD IP
Camera SoC Data Sheet or Hi35xxVxxx ultra-HD Mobile Camera SoC Data Sheet.

If the MIPI, VI, and ISP are normal and image quality adjustment is required, transplant the
preceding configurations to the sensor configuration file corresponding to the PQTool (create
a new sensor directory in the config directory and make corresponding modifications based
on similar sensor configurations), and then view video on demand.

—End

Issue 02 (2017-12-20)

HiSilicon Proprietary and Confidential Copyright
© HiSilicon Technologies Co., Ltd.

L Sensor Debugging Guide 1 Sensor Debugging Guide

1.4 ISP Basic Functions

For details about the sensor in this section, see the sensor data sheet, or contact the sensor
manufacturer FAE.

For details about the structure, see the HiISP Development Reference.

The driver files are classified into xxx_cmos.c, xxx_cmos_ex.h, and xxx_sensor_ctl.c files
which are used to implement the ISP functions and initialize the sensor sequence, respectively.
The xxx_cmos_ex.h file stores the global variables of the defined driver file.

The driver files have three callback functions, which are the interfaces used by the sensor
drivers to register functions with the firmware. HI MPI_ISP_SensorRegCallBack(),
HI_MPI_AE_SensorRegCallBack(), and HI MPI_AWB_SensorRegCallBack() correspond to
the ISP, HiSilicon AE, and HiSilicon AWB, respectively.

Development Process

Precautions

The ISP basic functions are implemented in the following order:

1. cmos_set image mode(), cmos_set wdr mode()
2. sensor_global init()

3. sensor_init(), sensor_exit()

4

cmos_get isp_default(), cmos_get isp black level()

® cmos_set _image mode ()

This function is used to differentiate resolutions, and uses the global variable
gu8SensorlmageMode to transfer resolution mode.

Pay attention to the return value. The return value 0 indicates that the sensor needs to be
configured again and sensor_init() is called. The return value —1 indicates that the sensor
does not need to be configured again and no operation is performed.

® cmos_set wdr mode()

This function is used to differentiate WDR modes, and uses the global variable
genSensorMode to transfer the WDR mode.

Pay attention to the differences between gu32FullLinesStd and gu32FullLines.
gu32FullLinesStd indicates the total lines at the standard frame rate (generally 30 fps) in
the current resolution and WDR modes. gu32FullLines indicates the actual total lines.
Its value can be changed based on gu32FullLinesStd and frame rate caused by frame
rate reduction in other functions.

In different WDR modes, AE-related functions need to be modified, such as parameters
in the ISP default functions and initialization sequence.

® sensor _init()

You need to configure different sequences according to different resolutions and WDR
modes.

® gsensor exit()
For the implementation of the function, see the drivers of similar sensors.

® cmos_get isp default()

Issue 02 (2017-12-20)

HiSilicon Proprietary and Confidential Copyright
© HiSilicon Technologies Co., Ltd.

L Sensor Debugging Guide 1 Sensor Debugging Guide

This function is used to debug or correct parameters. You can change parameter values
during debugging and correction.

Note that parameters in different modules such as Gamma and DRC may vary in
different WDR modes. For details, see the HilSP Development Reference.

cmos_get isp_black level()
This function is used to configure the black level of the four RAW data channels.

A CAUTION

The black level of some sensors deviates with the change of the gain value. In this case, you
need to correct the corresponding black level values under different ISO values with the
cmos_get isp_black level() function.

sensor_global init()

This function is used for sensor initialization configuration, including the resolution,
WDR mode, default value of gu32FullLinesStd, initialization status value, and other
status values.

1.5 AE Configuration

After the AE configuration is completed, pictures are normal.

Development Process

The AE is configured in the following order:

M e

Precautions

cmos_get sns_regs_info()

cmos_get ae default(), cmos_again calc table(), cmos_dgain_calc_table()
cmos_get inttime max()

cmos_gains_update(), cmos_inttime update()

cmos_fps_set(), cmos_slow_framerate set()

cmos_get sns_regs_info()

This function is used to configure the sensors and ISP registers which need to ensure
synchronization, such as the exposure time, gains, and total lines. Although these
registers can be configured by directly calling sensor_write register(), the
synchronization cannot be guaranteed and flicker may occur. Therefore, these registers
must be configured using this function.

u8DelayFrmNum indicates register configuration delay. For example, gains of many
sensors take effect in the next frame, but the exposure time takes effect after the next
frame. Therefore, the gains need to be configured after a delay of one frame to make sure
that the gain and exposure time take effect simultaneously. In this case, the delay
function is needed. u8Cfg2ValidDelayMax is configured to control the synchronization
between the ISP and sensor. ISP includes parameters such as ISP Dgain and WDR

Issue 02 (2017-12-20)

HiSilicon Proprietary and Confidential Copyright
© HiSilicon Technologies Co., Ltd.

L Sensor Debugging Guide 1 Sensor Debugging Guide

exposure ratio. You can check the parameter correctness by checking the synchronization
status between the ISP Dgain and sensor gain. This parameter is used to control the
validity time and generally it is one greater than the maximum sensor register delay.

- bUpdate is used to determine whether to update the register. If no modification is
required, set it to false.

cmos_get ae_default()

- You need to change the parameter values based on the sensor. enAccuType indicates
the type of the calculation precision, usually AE ACCURACY_TABLE and
AE_ACCURACY_LINEAR. Due to the CPU calculation precision issue, the
AE_ACCURACY _DB can be used only when the precision is very low. In other
cases, AE_ ACCURACY _ TABLE is used.

- The linear mode indicates that the exposure time or gain increases linearly in fixed
steps. For example, the exposure time or gain is increased by a multiple of 0.325 each
step, or the exposure time is increased by 1 each step. The step is determined by
f32Accuracy.

- The table mode applies to gain. That is, the gain each step can reach can be obtained
through calculation in cmos_again_calc_table() or cmos_dgain_calc_table() function
in a table look-up manner. In this case, f32Accuracy is invalid.

The calculation order of HiSilicon AE is exposure time, Again, Dgain, and ISP Dgain by
default. You can adjust the order by setting AE Route or AE RouteEx.

cmos_again_calc_table(), cmos_dgain_calc_table()

The input and output of the two functions are the same and the two functions correspond
to the table mode of the Again and Dgain, respectively. The following takes Again as an
example:

- pu32AgainLin is used as the input and output simultaneously. When it is used as the
input, it is the expected gain calculated by AE and 1024 indicates one multiple. In this
function, you need to find the maximum gain that can be implemented by the sensor
and is smaller than pu32AgainLin. Re-assign this value to pu32AgainLin as the AE
output.

- pu32AgainDb is used as the output. It is not used for calculation in the AE and just
acts as the input of cmos_gains_update(). It is used to transfer the sensor register
value of the current gain.

For example, the sensor gain is increased by 0.3 dB. If the sensor register value starts
from 0 and is increased by 1 each time, the corresponding gains are 0 dB, 0.3 dB, 0.6 dB,
0.9 dB....

Calculate a look-up table which converts the dB into linear multiple in offline mode, and
the corresponding values are 1024, 1060, 1097, 1136....

Compare the input gain with the gain in the look-up table in the function. If the input is
1082, the maximum gain in the table is 1060 and the returned value 1060 is the actual
valid gain.

cmos_get inttime max()

This function takes effect only in xtol WDR mode, and is used to calculate the
maximum exposure time in different exposure ratios.

The function is needed in row combination mode only. In the row combination mode, the
sum of the long exposure time and short exposure time should be less than the length of
one frame. Therefore, the maximum exposure time varies under different exposure ratios,
and needs to be re-calculated.

cmos_gains_update(), cmos_inttime update()

Issue 02 (2017-12-20)

HiSilicon Proprietary and Confidential Copyright
© HiSilicon Technologies Co., Ltd.

L Sensor Debugging Guide 1 Sensor Debugging Guide

The two functions are used to configure the sensor register according to the input Again,
Dgain, or exposure time. When the table precision mode is used, the input parameters
correspond to pu32AgainDb and pu32DgainDb which are returned in
cmos_again_calc_table() or cmos_dgain calc_table().

When the linear precision mode is used, the input parameters are the valid gains and
exposure time divided by f32Accuracy. For example, if f32Accuracy is 0.0078125 and
the actual valid gain is 1.5 multiple, the input value is 192 (1.5/0.0078125).

In xtol WDR mode, you need to configure the exposure time of each long frame and
each short frame. cmos_inttime update() will be called for X times and the exposure
time of different frames will be input. The exposure time of the short frame will be input
first.

® cmos_fps_set(), cmos_slow_framerate set()

cmos_fps_set() is the manual configuration function for frame rates. You need to
configure the sensor register based on the input frame rate, implement the function of
changing sensor frame rate, and return the actual frame rate and the maximum number of
exposure lines.

cmos_slow_framerate set() is the automatic configuration function for frame rate
reduction. You need to configure the sensor register based on the actual required number
of exposure lines, implement the function of sensor frame rate reduction, and return the
actual number of exposure lines.

1.6 Function Perfection

You need to perfect all other functions and ensure that all functions are normal.

Because synchronization errors easily occur in AE, you need to pay special attention to the
verification of synchronization.

1.7 Color Correction and Noise Reduction

You can correct sensor parameters according to the HiSilicon PQ Tools User Guide.

1.8 Picture Quality Optimization

You can optimize the picture quality according to the ISP Tuning Guide.

HiSilicon Proprietary and Confidential Copyright

Issue 02 (2017-12-20) © HiSilicon Technologies Co., Ltd.

	Title Page
	About This Document
	Contents
	Figures
	1 Sensor Debugging Guide
	1.1 Debugging Process
	1.2 Material Preparation
	1.2.1 Confirming Main Chip Specifications
	1.2.2 Sensor Data Sheet
	1.2.3 Initialization Settings

	1.3 Image Collection
	1.3.1 Preparing Hardware
	1.3.2 Completing the Initialization Sequence Configuration
	1.3.3 Sensor Output

	1.4 ISP Basic Functions
	Development Process
	Precautions

	1.5 AE Configuration
	Development Process
	Precautions

	1.6 Function Perfection
	1.7 Color Correction and Noise Reduction
	1.8 Picture Quality Optimization

