
OpenAM Installation Guide

MarkCraig
VanessaRichie

MikeJang

,
, ,

Copyright © 2011-2013 ForgeRock AS

Abstract

Guide showing you how to install OpenAM. OpenAM provides open source
Authentication, Authorization, Entitlement and Federation software.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock™ is the trademark of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING
THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO
NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute
the Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if
the fonts are renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software
without prior written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute
the modifications to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the
Font Software is furnished to do so, subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if
the fonts are renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from
Tavmjong Bah. For further information, contact: tavmjong @ free . fr.

Admonition graphics by Yannick Lung. Free for commerical use. Available at Freecns Cumulus.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://www.iconfinder.com/iconsets/freecns-cumulus

iii

Table of Contents
Preface .. v

1. Who Should Use this Guide ... v
2. Formatting Conventions .. v
3. Accessing Documentation Online .. vi
4. Joining the Open Identity Platform Community vii

1. Preparing For Installation ... 1
1.1. Preparing a Fully-Qualified Domain Name .. 1
1.2. Preparing a Java Environment .. 2
1.3. Setting Maximum File Descriptors .. 3
1.4. Preparing a Configuration Data Store ... 3
1.5. Preparing an Identity Repository .. 7
1.6. Obtaining OpenAM Software .. 9
1.7. Preparing Apache Tomcat ... 10
1.8. Preparing GlassFish .. 11
1.9. Preparing OpenAM & JBoss 4 or 5 ... 13
1.10. Preparing OpenAM & JBoss AS 7 / EAP 6 13
1.11. Preparing Jetty ... 18
1.12. Preparing Oracle WebLogic .. 18
1.13. Preparing IBM WebSphere ... 19

2. Installing OpenAM Core Services .. 21
3. Installing OpenAM Tools ... 37
4. Installing OpenAM Distributed Authentication ... 43
5. Customizing the OpenAM End User Pages .. 49

5.1. Updating the Classic UI ... 50
5.2. How OpenAM Looks Up UI Files .. 52
5.3. Configuring the XUI ... 55

6. Configuring the Core Token Service (CTS) .. 59
6.1. CTS Configuration Parameters ... 60
6.2. Preparing an OpenDJ Directory Service for CTS 62
6.3. CTS Access Control Instructions ... 64
6.4. CTS and OpenDJ Replication .. 65
6.5. CTS Deployment Scenario .. 66
6.6. Managing CTS Tokens .. 67
6.7. General Recommendations for CTS Configuration 68

7. Setting Up OpenAM Session Failover .. 71
8. Removing OpenAM Software ... 75
Index ... 77

iv

v

Preface

This guide shows you how to install core OpenAM services for access and
federation management. Unless you are planning a throwaway evaluation or test
installation, read the Release Notes before you get started.

1 Who Should Use this Guide
This guide is written for anyone installing OpenAM to manage and to federate
access to web applications and web based resources.

This guide covers the install, upgrade, and removal (a.k.a. uninstall) procedures
that you theoretically perform only once per version. This guide aims to provide
you with at least some idea of what happens behind the scenes when you perform
the steps.

You do not need to be an OpenAM wizard to learn something from this guide,
though a background in access management and maintaining web application
software can help. You do need some background in managing services on your
operating systems and in your application servers. You can nevertheless get
started with this guide, and then learn more as you go along.

2 Formatting Conventions
Most examples in the documentation are created in GNU/Linux or Mac OS
X operating environments. If distinctions are necessary between operating
environments, examples are labeled with the operating environment name in

Accessing Documentation Online

vi

parentheses. To avoid repetition file system directory names are often given
only in UNIX format as in /path/to/server, even if the text applies to C:\path\to
\server as well.

Absolute path names usually begin with the placeholder /path/to/. This path
might translate to /opt/, C:\Program Files\, or somewhere else on your system.

Command line, terminal sessions are formatted as follows:

$ echo $JAVA_HOME
/path/to/jdk

Command output is sometimes formatted for narrower, more readable output
even though formatting parameters are not shown in the command. In the
following example, the query string parameter _prettyPrint=true is omitted and
some of the output is replaced with an ellipsis (...):

$ curl https://bjensen:hifalutin@opendj.example.com:8443/users/newuser
{
 "_rev" : "000000005b337348",
 "_id" : "newuser",
 ...
}

Program listings are formatted as follows:

class Test {
 public static void main(String [] args) {
 System.out.println("This is a program listing.");
 }
}

3 Accessing Documentation Online
Open Identity Platform core documentation, such as this document, aims to be
technically accurate and complete with respect to the software documented.

Core documentation therefore follows a three-phase review process designed to
eliminate errors:

• Product managers and software architects review project documentation
design with respect to the readers' software lifecycle needs.

• Subject matter experts review proposed documentation changes for technical
accuracy and completeness with respect to the corresponding software.

Joining the Open Identity
Platform Community

vii

• Quality experts validate implemented documentation changes for technical
accuracy, completeness in scope, and usability for the readership.

The review process helps to ensure that documentation published for a Open
Identity Platform release is technically accurate and complete.

Fully reviewed, published core documentation is available at https://
doc.openidentityplatform.org/. Use this documentation when working with a
Open Identity Platform release.

You can find pre-release draft documentation at the online community resource
center. Use this documentation when trying a nightly build.

4 Joining the Open Identity Platform Community
Visit the community resource center where you can find information about each
project, download nightly builds, browse the resource catalog, ask and answer
questions on the forums, find community events near you, and of course get the
source code as well.

https://doc.openidentityplatform.org/
https://doc.openidentityplatform.org/
https://github.com/OpenIdentityPlatform
https://github.com/OpenIdentityPlatform
https://github.com/OpenIdentityPlatform

viii

1

Chapter 1

Preparing For Installation

This chapter covers prerequisites for installing OpenAM software, including how
to prepare your application server to run OpenAM, how to prepare directory
services to store configuration data, and how to prepare an identity repository to
handle OpenAM identities.

Note

If a Java Security Manager is enabled for your application
server, add permissions before installing OpenAM.

1.1 Preparing a Fully-Qualified Domain Name
OpenAM requires that you provide the fully-qualified domain name (FQDN)
when you configure it. Before you set up OpenAM, be sure that your system has
an FQDN such as openam.example.com. For evaluation purposes, you can give
your system an alias using the /etc/hosts file on UNIX systems or %SystemRoot%
\system32\drivers\etc\hosts on Windows. For deployment, make sure the FQDN
is properly assigned for example using DNS.

Do not use the localhost domain for OpenAM, not even for testing purposes.
OpenAM relies on browser cookies, which are returned based on domain name.

Preparing a Java Environment

2

Furthermore, use a domain name that contains at least 2 . (dot) characters, such
openam.example.com.

1.2 Preparing a Java Environment
OpenAM software depends on a Java runtime environment. Check the output of
java -version to make sure your the version is supported according to the Release
Notes section on Java Requirements.

1.2.1 Settings For Sun/Oracle Java Environments

When using a Sun or Oracle Java environment set at least the following options.

-server

Use -server rather than -client.

-XX:MaxPermSize=256m

Set the permanent generation size to 256 MB.

-Xmx1024m (minimum)

OpenAM requires at least a 1 GB heap. If you are including the embedded
OpenDJ directory, OpenAM requires at least a 2 GB heap, as 50% of that
space is allocated to OpenDJ. Higher volume and higher performance
deployments require additional heap space.

For additional JVM tuning recommendations, see Java Virtual Machine Settings.

1.2.2 Settings For IBM Java Environments

When using an IBM Java environment set at least the following options.

-DamCryptoDescriptor.provider=IBMJCE
-DamKeyGenDescriptor.provider=IBMJCE

Use the IBM Java Cryptography Extensions.

-Xmx1024m (minimum)

OpenAM requires at least a 1 GB heap. If you are including the embedded
OpenDJ directory, OpenAM requires at least a 2 GB heap, as 50% of that
space is allocated to OpenDJ. Higher volume and higher performance
deployments require additional heap space.

Setting Maximum File Descriptors

3

1.3 Setting Maximum File Descriptors
If you use the embedded OpenDJ directory, make sure OpenDJ has enough
file descriptors. OpenDJ needs to be able to open many files, especially when
handling many client connections. Linux systems in particular often set a limit of
1024 per user, which is too low for OpenDJ.

OpenDJ should have access to use at least 64K (65536) file descriptors. The
embedded OpenDJ directory runs inside the OpenAM process space. When
running OpenAM as user openam on a Linux system that uses /etc/security/
limits.conf to set user limits, you can set soft and hard limits by adding these
lines to the file.

openam soft nofile 65536
openam hard nofile 131072

$ ulimit -n
65536

The example above assumes the system has enough file descriptors overall. You
can verify the new soft limit the next time you log in as user openam with the
ulimit -n command.

You can check the Linux system overall maximum as follows.

$ cat /proc/sys/fs/file-max
204252

If the overall maximum is too low, you can increase it as follows.

1. As superuser, edit /etc/sysctl.conf to set the kernel parameter fs.file-max
to a higher maximum.

2. Run the sysctl -p command to reload the settings in /etc/sysctl.conf.

3. Read /proc/sys/fs/file-max again to confirm that it now corresponds to the
new maximum.

1.4 Preparing a Configuration Data Store
OpenAM stores configuration, session, and token data in an LDAP directory
service. This data is private to OpenAM. In other words, OpenAM controls this
data and other applications should access it, if necessary, only through OpenAM.

OpenAM ships with an embedded OpenDJ directory server that you can install as
part of the OpenAM configuration process. You can use the embedded directory

Preparing a
Configuration Data Store

4

server to simplify evaluation. By default OpenAM installs the embedded directory
alongside configuration settings under the $HOME of the user running OpenAM,
and runs the embedded directory in the same memory space as OpenAM. Before
deploying OpenAM in production, measure the impact of using the embedded
directory not only for relatively static configuration data, but also for volatile
session and token data. Your tests should subject OpenAM to the same load
patterns you expect in production. If it looks like a better choice to use an
external directory service, then use one of the supported external configuration
stores listed in the Release Notes, such as OpenDJ.

With the embedded OpenDJ directory and the default configuration settings,
OpenAM connects as directory super user, bypassing access control evaluation
because OpenAM manages the directory as its private store. Be aware that
failover and replication can not be controlled when using the embedded store.

OpenAM now supports the use of the Core Token Service (CTS), with tokens that
can be stored in the local or external directory store. For more information, see
the chapter on Configuring the Core Token Service.

With an external directory service, the directory administrator can require
OpenAM to connect with normal application credentials. In that case, the
directory administrator must grant OpenAM specific access.

Tip

If you are the directory administrator, and do not yet know
directory services very well, take some time to read the
documentation for your directory server, especially the
documentation covering directory schema and covering how to
configure access to directory data.

• OpenAM requires specific directory schema definitions for the object classes
and attribute types that describe its data. For the configuration store, the
directory administrator should let OpenAM update the directory schema at
configuration time.

These access rights are only required during configuration, and only if the
directory administrator does not add the OpenAM directory schema definitions
manually.

To grant the required access with OpenDJ for example, first add a global
access control instruction (ACI) permitting the OpenAM user to modify schema
definitions as in the following example where the OpenAM entry has DN
uid=openam,ou=admins,dc=example,dc=com.

Preparing a
Configuration Data Store

5

global-aci: (target = "ldap:///cn=schema")(targetattr = "attributeTypes ||
 objectClasses")(version 3.0;acl "Modify schema"; allow (write)(userdn = "
 ldap:///uid=openam,ou=admins,dc=example,dc=com");)

Also give the OpenAM user privileges to modify the schema and write to
subentries such as the schema entry. Set the following attributes on the
OpenAM user entry.

ds-privilege-name: subentry-write
ds-privilege-name: update-schema

See the OpenDJ documentation about Configuring Privileges & Access Control
for a more in-depth explanation of how access is configured for OpenDJ.

• When OpenAM connects to an external directory service to store its data, it
requires both read and write access.

With OpenDJ for example, add following ACIs to the configuration base
Distinguished Name (DN) entry. Adjust them as necessary if the OpenAM user
DN differs from uid=openam,ou=admins,dc=example,dc=com.

aci: (targetattr="*")(version 3.0;acl "Allow entry search"; allow (
 search, read)(userdn = "ldap:///uid=openam,ou=admins,dc=example,dc=com");)
aci: (targetattr="*")(version 3.0;acl "Modify config entry"; allow (write)(
 userdn = "ldap:///uid=openam,ou=admins,dc=example,dc=com");)
aci: (targetcontrol="2.16.840.1.113730.3.4.3")(version 3.0;acl "Allow
 persistent search"; allow (search, read)(userdn = "ldap:///uid=openam
 ,ou=admins,dc=example,dc=com");)
aci: (version 3.0;acl "Add config entry"; allow (add)(userdn = "ldap:///
 uid=openam,ou=admins,dc=example,dc=com");)
aci: (version 3.0;acl "Delete config entry"; allow (delete)(userdn = "ldap:///
 uid=openam,ou=admins,dc=example,dc=com");)

In addition, the directory administrator should index the following attributes used
by OpenAM.

Table 1.1. Configuration Data Store Indexes

Attribute Indexes Required

coreTokenDate01 equality

coreTokenDate02 equality

coreTokenDate03 equality

coreTokenDate04 equality

coreTokenDate05 equality

http://docs.forgerock.org/en/opendj/2.6.0/admin-guide/index/chap-privileges-acis.html

Preparing a
Configuration Data Store

6

Attribute Indexes Required

coreTokenExpirationDate ordering

coreTokenInteger01 equality

coreTokenInteger02 equality

coreTokenInteger03 equality

coreTokenInteger04 equality

coreTokenInteger05 equality

coreTokenInteger06 equality

coreTokenInteger07 equality

coreTokenInteger08 equality

coreTokenInteger09 equality

coreTokenInteger10 equality

coreTokenString01 equality

coreTokenString02 equality

coreTokenString03 equality

coreTokenString04 equality

coreTokenString05 equality

coreTokenString06 equality

coreTokenString07 equality

coreTokenString08 equality

coreTokenString09 equality

coreTokenString10 equality

coreTokenString11 equality

coreTokenString12 equality

coreTokenString13 equality

Preparing an Identity Repository

7

Attribute Indexes Required

coreTokenString14 equality

coreTokenString15 equality

coreTokenUserId equality

iplanet-am-user-federation-info-
key

equality

sun-fm-saml2-nameid-infokey equality

sunxmlkeyvalue equality, substring

1.5 Preparing an Identity Repository
OpenAM stores user identity data in one or more identity repositories. In
many deployments OpenAM connects to existing LDAP directory services for
user identity data. OpenAM is designed therefore to share data in an identity
repository with other applications.

OpenAM ships with an embedded OpenDJ directory server that you can install
as part of the OpenAM configuration process. In deployments where you will
only ever have a few users to manage and do not need to share identity data with
other applications, you can use the embedded store as your identity repository
and avoid the additional overhead of maintaining a separate directory service. If
OpenAM will share identity data with other applications, or if you expect to have
lots of users, then connect OpenAM to an external identity repository. See the
Release Notes for a list of supported external identity repositories.

When OpenAM connects to an external identity repository, the administrator
must give OpenAM the following access rights.

• OpenAM requires specific directory schema definitions for the object classes
and attribute types that describe its data. The directory administrator can find
these definitions in the ldif directory found inside the full .zip delivery.

If the directory administrator chooses instead to have OpenAM update the
directory schema at configuration time, then the directory administrator must
grant OpenAM access.

To grant this access right with OpenDJ for example, first add a global ACI
permitting the OpenAM user to modify schema definitions as in the following
example where the OpenAM entry has DN uid=openam,ou=admins,dc=example,
dc=com.

Preparing an Identity Repository

8

global-aci: (target = "ldap:///cn=schema")(targetattr = "attributeTypes ||
 objectClasses")(version 3.0;acl "Modify schema"; allow (write)(userdn = "
 ldap:///uid=openam,ou=admins,dc=example,dc=com");)

Also give the OpenAM user privileges to modify the schema and write to
subentries such as the schema entry. Set the following attributes on the
OpenAM user entry.

ds-privilege-name: subentry-write
ds-privilege-name: update-schema

• Allow OpenAM to read directory schema.

With OpenDJ for example, keep the default "User-Visible Schema Operational
Attributes" global ACI.

• When OpenAM connects to an external identity repository, it requires access to
read and potentially to update data.

To grant the access rights with OpenDJ for example, add following ACIs to the
configuration base DN entry. Adjust them as necessary if the OpenAM user DN
differs from uid=openam,ou=admins,dc=example,dc=com.

aci: (targetattr="* || aci")(version 3.0;acl "Allow identity modification";
 allow (write)(userdn = "ldap:///uid=openam,ou=admins,dc=example,dc=com");)
aci: (targetattr!="userPassword||authPassword")(version 3.0;
 acl "Allow identity search"; allow (search, read)(userdn = "ldap:///
 uid=openam,ou=admins,dc=example,dc=com");)
aci: (targetcontrol="2.16.840.1.113730.3.4.3")(version 3.0;acl "Allow
 persistent search"; allow (search, read)(userdn = "ldap:///
 uid=openam,ou=admins,dc=example,dc=com");)
aci: (version 3.0;acl "Add identity"; allow (add)(userdn = "ldap:///
 uid=openam,ou=admins,dc=example,dc=com");)
aci: (version 3.0;acl "Delete identity"; allow (delete)(userdn = "ldap:///
 uid=openam,ou=admins,dc=example,dc=com");)

• Allow the OpenAM user to reset other users' passwords.

To grant this privilege in OpenDJ for example, set the following attribute on the
OpenAM user entry.

ds-privilege-name: password-reset

In addition for external directory services, the directory administrator should
index the following attributes used by OpenAM.

Obtaining OpenAM Software

9

Table 1.2. Identity Repository Indexes

Attribute Indexes Required

iplanet-am-user-federation-info-
key

equality

sun-fm-saml2-nameid-infokey equality

1.6 Obtaining OpenAM Software
Download OpenAM releases from one of the following locations:

• Enterprise Downloads has the latest stable version of OpenAM, including a
.zip file with all of the OpenAM components, the .war file, OpenAM tools,
the configurator, policy agents, OpenIG, and documentation. Make sure you
review the Software License and Subscription Agreement presented before you
download OpenAM files.

• Builds has the nightly build, including a .zip file with all of the OpenAM
components, the .war file, OpenAM tools, the configurator, policy agents, and
the .NET Fedlet. Be aware that this is the working version of the trunk and
should not be used in a production environment.

• Archives has old versions of OpenAM and policy agents. It includes the full .zip
file with all of the OpenAM components, the server .war file, OpenAM tools, the
configurator, policy agents, the WSS policy agents, and the .NET Fedlet for all
previous releases.

For each release of the OpenAM core services, you can download the entire
package as a .zip file, only the OpenAM .war file, or only the administrative tools
as a .zip archive. The Archives also have only the OpenAM source code used to
build the release.

After you download the .zip file, create a new openam folder, and unzip the .zip
file to access the content:

$ cd ~/Downloads
$ mkdir openam ; cd openam
$ unzip ~/Downloads/

When you unzip the archive of the entire package, you get ldif, license, and legal
directories in addition to the following files.

The OpenAM Java client SDK library

http://forgerock.com/download-stack/
http://forgerock.org/openam.html
http://forgerock.org/openam-archive.html

Preparing Apache Tomcat

10

The .zip file containing the Java client SDK command-line examples, and .jar
files needed to run the examples

The .war file containing Java client SDK examples in a web application

The IDP discovery .war file, deployed as a service to service providers that
must discover which identity provider corresponds to a SAML 2.0 request

For details, see Deploying the Identity Provider Discovery Service.

The .zip that contains the lightweight service provider implementations that
you can embed in your Java EE or ASP.NET applications to enable it to use
federated access management

The deployable .war file

The deployable .war file for distributed authentication

The deployable .war file when you want to deploy OpenAM server without the
OpenAM console

The .zip file that contains tools to manage OpenAM from the command line

The .zip file that contains tools to configure OpenAM from the command line

1.7 Preparing Apache Tomcat
OpenAM examples often use Apache Tomcat as the deployment container.
Tomcat is installed on openam.example.com, and listens on the default ports, with
no Java Security Manager enabled. The script /etc/init.d/tomcat manages the
service at system startup and shutdown. This script assumes you run OpenAM as
the user openam.

OpenAM core services require a minimum JVM heap size of 1 GB, and a
permanent generation size of 256 MB. If you are including the embedded
OpenDJ directory, OpenAM requires at least a 2 GB heap, as 50% of that space is
allocated to OpenDJ. See Section 1.2, “Preparing a Java Environment” for details.

Preparing GlassFish

11

#!/bin/sh
#
tomcat
#
chkconfig: 345 95 5
description: Manage Tomcat web application container
CATALINA_HOME="/path/to/tomcat"
export CATALINA_HOME
JAVA_HOME=/path/to/jdk
export JAVA_HOME
CATALINA_OPTS="-server -Xmx2048m -XX:MaxPermSize=256m"
export CATALINA_OPTS

case "${1}" in
start)
 /bin/su openam -c "${CATALINA_HOME}/bin/startup.sh"
 exit ${?}
 ;;
stop)
 /bin/su openam -c "${CATALINA_HOME}/bin/shutdown.sh"
 exit ${?}
 ;;
*)
 echo "Usage: $0 { start | stop }"
 exit 1
 ;;
esac

1.8 Preparing GlassFish
Before you deploy OpenAM, update the JVM options as described in Section 1.2,
“Preparing a Java Environment”. The settings are accessible in the administration
console under Application Server > JVM Settings > JVM Options for v2, or under
Configurations > server-config > JVM Settings > JVM Options for v3.

1.8.1 Preparing GlassFish v2

In addition to setting JVM options, after downloading the OpenAM server .war
file, edit the application configuration to make sure that classes from OpenAM
libraries are loaded before GlassFish bundled libraries.

1. Extract the OpenAM server .war file content to a working directory.

$ mkdir /tmp/openam ; cd /tmp/openam
$ jar -xf ~/Downloads/openam.war

2. Add a WEB-INF/sun-web.xml file to set class-loading delegation to false.

Preparing GlassFish v3

12

$ vi WEB-INF/sun-web.xml
$ cat WEB-INF/sun-web.xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Application Server 9.0 Servlet 2.5//EN"
 "http://www.sun.com/software/appserver/dtds/sun-web-app_2_5-0.dtd">
<sun-web-app error-url="">
 <class-loader delegate="false"/>
</sun-web-app>

3. Pack the updated .war file to deploy.

$ jar -cf ../openam.war *

4. Deploy the updated .war file in place of the server .war file delivered with the
release.

1.8.2 Preparing GlassFish v3

In addition to setting JVM options, remove the glassfish-full-profile and metro
packages to resolve library conflicts before you deploy OpenAM.

1. Stop GlassFish if it is running.

$ /path/to/glassfish3/bin/asadmin stop-domain domain1
Waiting for the domain to stop
Command stop-domain executed successfully.

2. Remove the packages by using the pkg command.

$ cd /path/to/glassfish3/bin/
./pkg uninstall glassfish-full-profile metro
PHASE ACTIONS
Removal Phase 56/56

3. Start GlassFish.

$ /path/to/glassfish3/bin/asadmin start-domain domain1
Waiting for domain1 to start ...
Successfully started the domain : domain1
domain Location: /path/to/glassfish3/glassfish/domains/domain1
Log File: /path/to/glassfish3/glassfish/domains/domain1/logs/server.log
Admin Port: 4848
Command start-domain executed successfully.

If the domain fails to start the first time you run the command, then run the
asadmin start-domain command again.

Preparing OpenAM & JBoss 4 or 5

13

1.9 Preparing OpenAM & JBoss 4 or 5
OpenAM must be able to store its configuration between restarts. If you plan
to deploy OpenAM as a single archive file, then unpack the .war, edit WEB-INF/
classes/bootstrap.properties to set the configuration.dir property to the
location where OpenAM has write access to store its configuration.

$ mkdir openam
$ cd openam
$ jar -xf ~/Downloads/openam/
$ vi WEB-INF/classes/bootstrap.properties
$ grep ^config WEB-INF/classes/bootstrap.properties
configuration.dir=/home/jboss-user/openam

Also, OpenAM .jar libraries that conflict with JBoss libraries must be loaded
first. Add a WEB-INF/jboss-web.xml to ensure this happens. (If you deploy the
exploded .war, you also need to add this file.)

$ vi WEB-INF/jboss-web.xml
$ cat WEB-INF/jboss-web.xml

<!DOCTYPE jboss-web PUBLIC
 "-//JBoss//DTD Web Application 5.0//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd">
<jboss-web>
 <class-loading java2ClassLoadingCompliance='true'>
 <loader-repository>
 jbia.loader:loader=opensso
 <loader-repository-config>java2ParentDelegaton=true</loader-repository-config>
 </loader-repository>
 </class-loading>
</jboss-web>

Repack the .war file that you can then deploy.

$ jar -cf ../openam.war *

Before you deploy OpenAM, update the JVM options as described in Section 1.2,
“Preparing a Java Environment”.

1.10 Preparing OpenAM & JBoss AS 7 / EAP 6
Some preparation is required to deploy OpenAM on JBoss AS 7 / EAP 6.

The following instructions provide guidance for both standalone and domain
deployments. OpenAM must be able to store its configuration between restarts.
The procedures listed here are workarounds for JBoss AS 7.1.2 / 7.1.3, and the
corresponding versions of JBoss EAP (6.0.0, 6.0.1). Workarounds are also needed

Preparing OpenAM
& JBoss AS 7 / EAP 6

14

for JBoss EAP 6.1.0/6.1.1. To identify the versions of JBoss EAP that have been
built from JBoss AS, see the following article on JBoss Enterprise Application
Platform Component Details.

Once JBoss has been configured, you can then prepare OpenAM for deployment,
by making a few changes to the contents of the OpenAM .war archive.

• Procedure 1.1, “To Prepare JBoss AS 7.1.0 / 7.1.1”

• Procedure 1.2, “Alternative Method: To Prepare JBoss EAP 6.0.0 and 6.0.1”

• Procedure 1.3, “To Prepare JBoss EAP 6.1.0 and 6.1.1”

• Procedure 1.4, “To Prepare JBoss for OpenAM”

• Procedure 1.5, “To Prepare OpenAM for JBoss”

Procedure 1.1. To Prepare JBoss AS 7.1.0 / 7.1.1

For JBoss AS 7.1.0 / 7.1.1, you need to make changes to the module.xml file in
the /path/to/jboss/modules/sun/jdk/main directory, as well as changes to a
configuration file associated with JBoss standalone or domain modes.

1. Stop JBoss

2. Update the module.xml file associated with the container. You can find this file
a directory such as /path/to/jboss/modules/sun/jdk/main.

3. In the same module.xml file, add the Sun x509 security module path (sun/
security/x509).

The following example shows an excerpt of the revised file for JBoss AS 7.1.0.

<path name="com/sun/security/auth"/>
<path name="com/sun/security/auth/login"/>
<path name="com/sun/security/auth/module"/>
<path name ="sun/security/x509"/> <!-- path added here -->
<path name="sun/misc"/>

4. When using ssoadm or the distributed authentication service (DAS), also add
the following path to the aforementioned module.xml file.

<path name="com/sun/org/apache/xerces/internal/dom" />

5. Disable modules that conflict with OpenAM REST libraries. All jaxrs
references need to be removed from the configuration. The file that you
modify depends on whether you are running JBoss in standalone or domain
mode.

https://access.redhat.com/site/articles/112673
https://access.redhat.com/site/articles/112673

Preparing OpenAM
& JBoss AS 7 / EAP 6

15

• The following example is based on JBoss 7.1.0 standalone mode.
Remember to remove all subsystems and extension tags associated with
urn:jboss:domain:jaxrs:1.0.

$ vi /path/to/jboss/standalone/configuration/standalone.xml
<extension module="org.jboss.as.ejb3"/>
- <extension module="org.jboss.as.jaxrs"/>
....
- <subsystem xmlns="urn:jboss:domain:jaxrs:1.0"/>
<subsystem xmlns="urn:jboss:domain:jca:1.1">

• The following example is based on JBoss 7.1.0 for a managed domain.

$ vi /path/to/jboss7/domain/configuration/domain.xml
<extension module="org.jboss.as.ejb3"/>
- <extension module="org.jboss.as.jaxrs"/>
....
- <subsystem xmlns="urn:jboss:domain:jaxrs:1.0"/>
<subsystem xmlns="urn:jboss:domain:jca:1.1">

6. In either the standalone.xml or domain.xml files, you will also need to delete
org.jboss.as.webservices references. Depending on the file, this includes one
or more groups of subsystem lines such as:

<subsystem xmlns="urn:jboss:domain:webservices:1.1"/>
....
</subsystem>

7. You are now ready to prepare OpenAM as described in Procedure 1.5, “To
Prepare OpenAM for JBoss”.

Procedure 1.2. Alternative Method: To Prepare JBoss EAP 6.0.0 and 6.0.1

JBoss EAP 6.0.0 and 6.0.1 are built from JBoss AS 7.1.2 and 7.1.3, respectively.
The same techniques described in the Procedure 1.1, “To Prepare JBoss AS
7.1.0 / 7.1.1” section work here as well. One alternative method is available, as
described in this section.

1. Stop JBoss.

2. Update the openam.war before deploying OpenAM.

1. Create a temporary directory and expand the openam.war.

 $ mkdir /tmp/openam ; cd /tmp/openam
 $ jar xvf /path/to/

2. Create a new jboss-deployment-structure.xml file in the WEB-INF
subdirectory so that it appears as follows, and save the change.

Preparing OpenAM
& JBoss AS 7 / EAP 6

16

$ vi WEB-INF/jboss-deployment-structure.xml

<?xml version="1.0" encoding="UTF-8"?>
 <jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
 <deployment>
 <exclusions>
 <module name="sun.jdk" />
 </exclusions>
 <exclude-subsystems>
 <subsystem name="jaxrs" />
 <subsystem name="webservices" />
 </exclude-subsystems>
 <dependencies>
 <module name="sun.jdk" >
 <imports>
 <exclude-set>
<path name="com/sun/org/apache/xml/internal/security/transforms/implementations"/>
 </exclude-set>
 </imports>
 </module>
 <system>
 <paths>
 <path name="sun/security/x509" />
 <path name="com/sun/org/apache/xpath/internal" />
 <path name="com/sun/org/apache/xerces/internal/dom" />
 <path name="com/sun/org/apache/xml/internal/utils" />
 </paths>
 </system>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

3. Rebuild the openam.war file.

$ jar cvf ../openam.war *

3. You will want to make at least one more change to the openam.war file before
deployment, as described in Procedure 1.5, “To Prepare OpenAM for JBoss”.

4. You do not need to make any of the other changes to XML files described in
this section. As JBoss EAP 6.0.0 and 6.0.1 was built from JBoss AS 7.1.2 and
AS 7.1.3, respectively, this procedure may also work on those versions of
JBoss.

Procedure 1.3. To Prepare JBoss EAP 6.1.0 and 6.1.1

1. For JBoss EAP 6.1.0 / 6.1.1, follow Step 5 and Step 6 from Procedure 1.1, “To
Prepare JBoss AS 7.1.0 / 7.1.1”.

2. However, you still need to review Procedure 1.4, “To Prepare JBoss for
OpenAM” and Procedure 1.5, “To Prepare OpenAM for JBoss” to make sure
the JVM and directories are configured appropriately.

Preparing OpenAM
& JBoss AS 7 / EAP 6

17

Procedure 1.4. To Prepare JBoss for OpenAM

The default JBoss settings for JVM do not give sufficient memory to OpenAM.
This procedure documents one method that you can use to modify JBoss. Other
methods described in JBoss Main Documentation Page.

1. Stop JBoss.

2. Open an appropriate JBoss configuration file. This procedure describes the
use of the standalone.conf file in the /path/to/jboss/bin directory for JBoss
in standalone mode.

3. Check the JVM settings associated with JAVA_OPTS. For JBoss AS 7.1.0 and
AS 7.1.1, you should change the JVM heap size to -Xmx1024m. The default JVM
heap size and permanent generation settings for later versions of JBoss may
already exceed recommended values (-Xmx1024m, -XX:MaxPermSize=256m).
If you are using the embedded version of OpenDJ, the minimum heap size
may be higher. For details on the JVM options to use, see Section 1.2,
“Preparing a Java Environment”.

4. Set the following JVM JAVA_OPTS setting in the same file.

-Dorg.apache.tomcat.util.http.ServerCookie.ALWAYS_ADD_EXPIRES=true

Make sure that headers include the Expires attribute rather than only Max-
Age, as some versions of Internet Explorer do not support Max-Age.

5. Now deploy the openam.war file into the appropriate JBoss deployment
directory. The directory varies depending on whether you are running in
standalone or domain mode.

6. You do not need to make any of the other changes to XML files described in
this section. As JBoss EAP 6.0.0 and 6.0.1 was built from JBoss AS 7.1.2 and
AS 7.1.3, respectively, this procedure may also work on those versions of
JBoss.

Procedure 1.5. To Prepare OpenAM for JBoss

To take full advantage of JBoss with OpenAM, you should make a couple
of changes to the OpenAM war file. One problem is that JBoss will deploy
applications from different temporary directories every time you restart the
container, which would require reconfiguring OpenAM. To avoid this issue, take
the following steps:

1. If you have not already done so, create a temporary directory and expand the
openam.war.

http://www.jboss.org/jbossas/docs

Preparing Jetty

18

 $ cd /tmp
$ mkdir /tmp/openam ; cd /tmp/openam
$ jar xvf ~/Downloads/

2. Update the # configuration.dir= line in the bootstrap.properties file so that
it appears as follows, and save the change.

$ vi WEB-INF/classes/bootstrap.properties
This property should also be used when the system user that
is running the web/application server process does not have
a home directory. i.e. System.getProperty("user.home") returns
null.

configuration.dir=$HOME/openamJboss

3. Rebuild the openam.war file.

$ jar cvf ../openam.war *

1.11 Preparing Jetty
When you deploy OpenAM, make sure you start Jetty with enough memory.

$ cd /path/to/jetty
$ java -server -Xmx1024m -XX:MaxPermSize=256m -jar start.jar

If you are using the embedded version of OpenDJ, the required JVM memory may
be higher. For details on the JVM options to use, see Section 1.2, “Preparing a
Java Environment”.

1.12 Preparing Oracle WebLogic
Before you deploy OpenAM, update the JVM options as described in Section 1.2,
“Preparing a Java Environment”.

In addition, edit the WebLogic domain configuration to allow basic authentication
credentials to be passed back to OpenAM.

By default WebLogic attempts to resolve authentication credentials itself. When
you change the WebLogic domain configuration, you make sure that OpenAM
OAuth 2.0 providers receive basic authentication credentials for OAuth 2.0 grants
that rely on basic authentication.

1. Stop WebLogic server.

Preparing IBM WebSphere

19

2. Edit the WebLogic domain configuration, /path/to/wlsdomain/config/
config.xml, setting <enforce-valid-basic-auth-credentials> to false in the
<security-configuration element.

 <security-configuration>
 <enforce-valid-basic-auth-credentials>false</enforce-valid-basic-auth-credentials>
 </security-configuration>

3. Start WebLogic server.

When deploying OpenAM on WebLogic 11g (version 10.3.x), use the SOAP
with Attachments API for Java (SAAJ) implementation from the Java Runtime
Environment, rather than the WebLogic implementation. The WebLogic
implementation can cause OpenAM to throw exceptions with the message java.
lang.UnsupportedOperationException: This class does not support SAAJ 1.1,
and to fail to authenticate users in some cases. No change is necessary when
deploying OpenAM on WebLogic 12c.

To use the Sun/Oracle Java SAAJ implementation, edit the WebLogic start
up script for the domain where OpenAM runs, such as /path/to/weblogic/
user_projects/domains/wlsdomain/bin/startWebLogic.sh. Change the following
line:

${DOMAIN_HOME}/bin/startWebLogic.sh $*

To set the javax.xml.soap.MessageFactory property:

${DOMAIN_HOME}/bin/startWebLogic.sh \
-Djavax.xml.soap.MessageFactory=\
com.sun.xml.internal.messaging.saaj.soap.ver1_1.SOAPMessageFactory1_1Impl $*

Restart WebLogic for the change to take effect.

1.13 Preparing IBM WebSphere
Before you deploy OpenAM, use the Administrator console to update JVM options
as described in Section 1.2, “Preparing a Java Environment”.

In addition, configure WebSphere to load classes from OpenAM bundled libraries
before loading classes from libraries delivered with WebSphere. The following
steps must be completed after you deploy OpenAM into WebSphere.

1. In WebSphere administration console, browse to Application > Application
Type > WebSphere enterprise applications > OpenAM Name > Class loading and
update detection.

Preparing IBM WebSphere

20

2. Set Class loader order > Classes loaded with local class loader first (parent
last).

3. Set WAR class loader policy > Single class loader for application.

4. Save your work.

Furthermore when using IBM Java, add the JAXP Reference Implementation .jar
into the OpenAM .war file before deploying the .war into WebSphere as this
required library is missing otherwise.

1. Unpack the OpenAM .war file.

$ mkdir /tmp/openam
$ cd /tmp/openam/
$ jar -xf ~/Downloads/openam/

2. Add the JAXP Reference Implementation .jar in WEB-INF/lib/.

$ wget http://repo1.maven.org/maven2/com/sun/xml/parsers/jaxp-ri/1.4.5/jaxp-ri-1.4.5.jar
$ mv jaxp-ri-1.4.5.jar WEB-INF/lib/

3. Pack up the OpenAM .war file to deploy in WebSphere.

$ jar -cf ../openam.war *

4. Deploy the new .war file.

In this case the .war file to deploy is /tmp/openam.war.

21

Chapter 2

Installing OpenAM Core Services

This chapter covers tasks required for a full install of OpenAM server with or
without OpenAM Console.

This chapter does not cover installation for enforcing policies on resource
servers. To manage access to resources on other servers, you can use OpenIG or
OpenAM policy agents.

OpenIG is a high-performance reverse proxy server with specialized session
management and credential replay functionality. It can function as a standards-
based policy enforcement point.

OpenAM policy agents provide policy enforcement on supported web servers
and Java EE containers, and are tightly integrated with OpenAM. See the
OpenAM Web Policy Agent Installation Guide, or OpenAM Java EE Policy
Agent Installation Guide for instructions on installing OpenAM policy agents in
supported web servers and Java EE application containers.

Table 2.1. Deciding How To Install OpenAM

If you want to... Then see...

Install quickly for evaluation using default
settings

Procedure 2.1, “To Deploy OpenAM” and
Procedure 2.2, “To Configure OpenAM
With Defaults”

http://openig.forgerock.org/

22

If you want to... Then see...
Alternatively, follow the full example in the
Getting Started guide.

Install OpenAM server and console,
choosing settings

Procedure 2.1, “To Deploy OpenAM” and
Procedure 2.4, “To Configure OpenAM”

Erase the configuration and start over Procedure 2.3, “To Delete an OpenAM
Configuration Before Redeploying”

Add an OpenAM server to a site Procedure 2.1, “To Deploy OpenAM”, and
Procedure 2.5, “To Add a Server to a Site”

Install OpenAM server only (no console) Table 2.2, “Determine Which War File
to Deploy”, Procedure 2.1, “To Deploy
OpenAM”, and Procedure 2.6, “To Deploy
OpenAM Core Server (No Console)”

Install ssoadm for CLI configuration Installing OpenAM Tools, or OpenAM
ssoadm.jsp in the Administration Guide

Perform a command-line install To Set Up Configuration Tools

Install OpenAM in your DMZ Installing OpenAM Distributed
Authentication

Skin OpenAM for your organization Customizing the OpenAM End User Pages

Uninstall OpenAM Removing OpenAM Software

Select the .war file based on the type of deployment you need, as defined in the
following table.

Table 2.2. Determine Which War File to Deploy

If you want to... Use...

Install an OpenAM server including
OpenAM Console

Install OpenAM server without OpenAM
Console

Install OpenAM distributed authentication
UI

23

Procedure 2.1. To Deploy OpenAM

The file contains OpenAM server with OpenAM Console. How you deploy
the .war file depends on your web application container.

1. Deploy the .war file on your container.

For example, copy the file to deploy on Apache Tomcat.

$ cp /path/to/tomcat/webapps/openam.war

You change the file name to openam.war when deploying in Tomcat so that the
deployment URI is /openam.

It can take several seconds for OpenAM to be deployed in your container.

2. Browse to the initial configuration screen, for example at http://openam.
example.com:8080/openam.

Procedure 2.2. To Configure OpenAM With Defaults

The default configuration option configures the embedded OpenDJ server using
default ports—if the ports are already in use, OpenAM uses free ports—as both
configuration store and identity store.

The default configuration sets the cookie domain based on the fully qualified
domain name of the system. For an FQDN openam.example.com, the cookie domain
is set to .example.com.

Configuration settings are saved to the home directory of the user running the
web application container in a directory named after the deployment URI. In
other words if OpenAM is deployed under /openam, then the configuration is
saved under $HOME/openam/.

24

1. In the initial configuration screen, click Create Default Configuration under
Default Configuration.

2. Provide different passwords for the default OpenAM administrator, amadmin,
and default Policy Agent users.

3. When the configuration completes, click Proceed to Login, and then login as
the OpenAM administrator with the first of the two passwords you provided.

After successful login, OpenAM redirects you to OpenAM Console.

25

Procedure 2.3. To Delete an OpenAM Configuration Before Redeploying

If you are unhappy with your configuration and want to start over from the
beginning, follow these steps.

1. Stop the OpenAM web application to clear the configuration held in memory.

The following example shuts down Tomcat for example.

$ /path/to/tomcat/bin/shutdown.sh
Password:
Using CATALINA_BASE: /path/to/tomcat
Using CATALINA_HOME: /path/to/tomcat
Using CATALINA_TMPDIR: /path/to/tomcat/temp
Using JRE_HOME: /path/to/jdk/jre
Using CLASSPATH:
 /path/to/tomcat/bin/bootstrap.jar:/path/to/tomcat/bin/tomcat-juli.jar

2. Delete OpenAM configuration files, by default under the $HOME of the user
running the web application container.

$ rm -rf $HOME/openam $HOME/.openamcfg

When using the internal OpenAM configuration store, this step deletes the
embedded directory server and all of its contents. This is why you stop the
application server before removing the configuration.

If you use an external configuration store, also delete the entries under the
configured OpenAM suffix (by default).

26

3. Restart the OpenAM web application.

The following example starts the Tomcat container.

$ /path/to/tomcat/bin/startup.sh
Password:
Using CATALINA_BASE: /path/to/tomcat
Using CATALINA_HOME: /path/to/tomcat
Using CATALINA_TMPDIR: /path/to/tomcat/temp
Using JRE_HOME: /path/to/jdk/jre
Using CLASSPATH:
 /path/to/tomcat/bin/bootstrap.jar:/path/to/tomcat/bin/tomcat-juli.jar

Procedure 2.4. To Configure OpenAM

1. In the initial configuration screen, click Create New Configuration under
Custom Configuration.

2. Provide a password having at least 8 characters for the OpenAM
Administrator, amadmin.

27

3. Make sure the server settings are valid for your configuration.

Server URL

Provide a valid URL to the base of your OpenAM web container, including
a fully qualified domain name (FQDN).

In a test environment, you can fake the FQDN by adding it to your /etc/
hosts as an alias. The following excerpt shows lines from the /etc/hosts
file on a Linux system where OpenAM is installed.

127.0.0.1 localhost.localdomain localhost
::1 localhost6.localdomain6 localhost6
127.0.1.1 openam openam.example.com

Cookie Domain

Starts with a dot (.).

28

Platform Locale

Supported locales include en_US (English), de (German), es (Spanish),
fr (French), ja (Japanese), ko (Korean), zh_CN (Simplified Chinese), and
zh_TW (Traditional Chinese).

Configuration Directory

Location on server for OpenAM configuration files. OpenAM must be able
to write to this directory.

4. In the Configuration Store screen, you can accept the defaults to allow
OpenAM to store configuration data in an embedded directory. The
embedded directory can be configured separately to replicate data for high
availability if necessary.

You can also add this OpenAM installation to an existing deployment,
providing the URL of the site. See Procedure 2.5, “To Add a Server to a Site”
for details.

29

Alternatively, if you already manage an OpenDJ or DSEE deployment, you
can choose to store OpenAM configuration data in your existing directory
service. You must, however, create the suffix to store configuration data on
the directory server before you configure OpenAM. OpenAM does not create
the suffix when you use an external configuration store.

When you create a new OpenAM custom configuration that uses an external
LDAP directory server for the configuration data store, you must use a root
suffix DN with at least two domain components, such as dc=example,dc=com.

5. In the User Store screen, you configure where OpenAM looks for user
identities.

OpenAM must have write access to the directory service you choose, as it
adds to the directory schema needed to allow OpenAM to manage access for
users in the user store.

30

User Data Store Type

If you have a directory service already provisioned with users in a
supported user data store, then select that type of directory from the
options available.

SSL/TLS Enabled

To use a secure connection, check this box, then make sure the Port you
define corresponds to the port on which the directory listens for StartTLS
or SSL connections. When using this option you also need to make sure
the trust store used by the JVM running OpenAM has the necessary
certificates installed.

Directory Name

FQDN for the host housing the directory service

Port

LDAP directory port. The default for LDAP and LDAP with StartTLS to
protect the connection is port 389. The default for LDAP over SSL is port
636. Your directory service might use a different port.

Root Suffix

Base distinguished name (DN) where user data are stored

Login ID

Directory administrator user DN. The administrator must be capable of
updating schema and user data.

Password

Password for the directory administrator user

6. In the Site Configuration screen, you can set up OpenAM as part of a site
where the load is balanced across multiple OpenAM servers.

If you have a site configuration with a load balancer, you can enable session
high availability persistence and failover. OpenAM then stores sessions
across server restarts, so that users do not have to login again.

If you then add additional servers to this OpenAM site, OpenAM performs
session failover, storing session data in a directory service that is shared
by different OpenAM servers. The shared storage means that if an OpenAM
server fails, other OpenAM servers in the site have access to the user's

31

session data and can serve requests about that user. As a result the user does
not have to log in again. If session failover is important for your deployment,
also follow the instructions in Setting Up OpenAM Session Failover.

It is possible to set up a site after initial installation and configuration. Doing
so is described in the chapter on Setting Up OpenAM Session Failover.

7. In the Agent Information screen, provide a password having at least 8
characters to be used by policy agents to connect to OpenAM.

32

8. Check the summary screen, and if necessary click Previous to return to
earlier screens if necessary to fix configuration errors.

33

After you click Create Configuration in the summary screen, configuration
proceeds, logging progress that you can read in your browser and later in the
installation log. The process ends, and OpenAM shows the Proceed to Login
prompt.

9. When the configuration completes, click Proceed to Login, and then login as
the OpenAM administrator, amadmin.

34

After login, OpenAM redirects you to the OpenAM Console page.

You can also access OpenAM Console by browsing to the Console URL, such
as http://openam.example.com:8080/openam/console.

10. Restrict permissions to the configuration directory (by default $HOME/openam,
where $HOME corresponds to the user who runs the web container). Prevent
other users from accessing files in the configuration directory.

35

Procedure 2.5. To Add a Server to a Site

High availability requires redundant servers in case of failure. With OpenAM, you
configure an OpenAM site with multiple servers in a pool behind a load balancing
service the exposes a single URL as an entry point to the site.

Follow these steps to configure a server to belong to an existing site.

1. In the initial configuration screen, under Custom Configuration click Create
New Configuration.

2. In the first screen, enter the same password entered for the OpenAM
Administrator, amadmin, when you configured the first server in the site.

3. Configure server settings as required.

The cookie domain should be identical to that of the first server in the site.

4. In the configuration store screen, select Add to Existing Deployment, and
enter as the Server URL the URL of the first OpenAM server in the site.

The directory used to store configuration data should belong to the same
directory service used for this purpose by other OpenAM servers in the site.
If you use the embedded OpenDJ directory server, for example, you can have
the configurator set up data replication with embedded directory servers
used by other servers in the site.

Settings for the user store are then shared with the existing server, so the
corresponding wizard screen is skipped.

5. In the site configuration screen, select Yes and enter the same site
configuration details as you did for the first server in the site.

Settings for agent information are also shared with the existing server, so the
corresponding wizard screen is skipped.

6. In the summary screen, verify the settings you chose, and then click Create
Configuration.

7. When the configuration process finishes, click Proceed to Login, and then
login as the OpenAM administrator to access OpenAM Console.

Procedure 2.6. To Deploy OpenAM Core Server (No Console)

You can deploy OpenAM server without OpenAM console by performing the
following steps.

1. Deploy the file in your container.

36

For example, copy the file to deploy on Apache Tomcat.

$ cp /path/to/tomcat/webapps/coreonly.war

2. Browse to the configuration application, such as http://openam.example.
com:8080/coreonly/, and configure OpenAM core services as in Procedure 2.4,
“To Configure OpenAM”.

3. After configuration, restrict permissions to the configuration directory, such
as $HOME/coreonly/ where $HOME corresponds to the user who runs the web
container. Prevent other users from accessing files in the configuration
directory.

37

Chapter 3

Installing OpenAM Tools

OpenAM tools are found in .zip files where you unpacked the archive of the
entire package, such as ~/Downloads/openam.

Administration tools: ampassword, ssoadm and amverifyarchive

See Procedure 3.1, “To Set Up Administration Tools”.

Configuration and upgrade tools, alternatives to using the GUI configuration
wizard

See Procedure 3.2, “To Set Up Configuration Tools”.

Procedure 3.1. To Set Up Administration Tools

1. Make sure OpenAM is installed and running before proceeding.

2. Make sure the JAVA_HOME environment variable is properly set.

$ echo $JAVA_HOME
/path/to/jdk

3. Create a file system directory to unpack the tools.

$ mkdir -p /path/to/openam-tools/admin

38

4. Unpack the tools.

$ cd /path/to/openam-tools/admin
$ unzip ~/Downloads/openam/

5. (Optional) If you use IBM Java, add -D"amCryptoDescriptor.provider=IBMJCE"
and -D"amKeyGenDescriptor.provider=IBMJCE" options to the setup or setup.bat
script before you install the tools.

The options should be set for the java command at the end of the script.

$ tail setup
CLASSPATH="$CLASSPATH:resources"

$JAVA_HOME/bin/java -D"load.config=yes" -D"help.print=$help_print" \
 -D"path.AMConfig=$path_AMConfig" \
 -D"path.debug=$path_debug" \
 -D"path.log=$path_log" \
 -D"amCryptoDescriptor.provider=IBMJCE" \
 -D"amKeyGenDescriptor.provider=IBMJCE" \
 -cp "$CLASSPATH" \
 com.sun.identity.tools.bundles.Main

6. Run the setup utility (setup.bat on Windows), providing the path to the
directory where OpenAM configuration files are located, and where you want
debug and log information to be located.

$./setup
Path to config files of OpenAM server [/home/mark/openam]:
Debug Directory [/path/to/openam-tools/admin/debug]:
Log Directory [/path/to/openam-tools/admin/log]:
The scripts are properly setup under directory:
 /path/to/openam-tools/admin/openam
Debug directory is /path/to/openam-tools/admin/debug.
Log directory is /path/to/openam-tools/admin/log.
The version of this tools.zip is: version and date
The version of your server instance is: OpenAM version and date

After setup, the tools are located under a directory named after the instance
of OpenAM.

$ ls openam/bin/
ampassword amverifyarchive ssoadm

On Windows, these files are .bat scripts.

7. (Optional) If you use IBM Java, add -D"amCryptoDescriptor.provider=IBMJCE"
and -D"amKeyGenDescriptor.provider=IBMJCE" options to the ssoadm or
ssoadm.bat script before using the script.

The options should be set before the call to com.sun.identity.cli.
CommandManager at the end of the script.

39

$ tail -3 /path/to/openam-tools/admin/openam/bin/ssoadm
 -D"amCryptoDescriptor.provider=IBMJCE" \
 -D"amKeyGenDescriptor.provider=IBMJCE" \
 com.sun.identity.cli.CommandManager "$@"

8. Check that ssoadm works properly.

$ echo password > /tmp/pwd.txt
$ chmod 400 /tmp/pwd.txt
$ cd /path/to/openam-tools/admin/openam/bin/
$./ssoadm list-servers -u amadmin -f /tmp/pwd.txt

http://openam.example.com:8080/openam

The ssoadm commands can also be run from ssoadm.jsp in OpenAM, for
example at http://openam.example.com:8080/openam/ssoadm.jsp, once the page
has been enabled as described in the section on OpenAM ssoadm.jsp in the
Administration Guide.

Not all of the sub-commands available through the ssoadm command are
available on the ssoadm.jsp web page.

9. (Optional) If you connect to OpenAM over SSL (HTTPS), the ssoadm by
default tries to trust the certificate based on the CA certificates in the Java
cacerts truststore. This might not work for your deployment.

If the SSL certificate configured for the container where you deployed
OpenAM was not signed by a recognized CA then the SSL connection process
fails. For example, if you used a self-signed certificate as described in the
Administration Guide procedure, To Set Up OpenAM With HTTPS on Tomcat,
then the ssoadm command cannot trust that certificate by default. To allow
the ssoadm command to trust the certificate, edit the ssoadm (ssoadm.bat on
Windows) script as follows.

Add two additional options to the java command in the script to identify the
proper trust store and trust store password, depending on how you set up
SSL. The following example points to the key store in which Tomcat holds
the self-signed certificate that it presents when establishing an HTTPS
connection.

-D"javax.net.ssl.trustStore=/path/to/tomcat/conf/keystore.jks"
 -D"javax.net.ssl.trustStorePassword=changeit"

If the ssoadm command cannot access the server key store in this way, set up
your own trust store and import the server certificate using the Java keytool
command.

40

10. If you have deployed OpenAM in a site configuration, edit the ssoadm
(ssoadm.bat on Windows) script to map the site URL to the OpenAM server
URL.

To do this, set a com.iplanet.am.naming.map.site.to.server system property
option of the java command in the script. The option takes the following form.

-D"com.iplanet.am.naming.map.site.to.server=lb-url=openam-url[,
 other-lb-url=openam-url ...]"

The property maps each lb-url key to an openam-url value, where lb-url is
the URL to a site load balancer and openam-url is the URL to the OpenAM
server against which you set up the ssoadm command.

The ssoadm command is dependent on the OpenAM server against which you
set it up, so always map site load balancer URLs to that server's openam-url.

For example, if your site is behind https://lb.example.com:443/openam,
and the OpenAM server against which you set up the ssoadm is at http://
openam.example.com:8080/openam, then add the following property to the java
command (all on one line without spaces).

-D"com.iplanet.am.naming.map.site.to.server=
 https://lb.example.com:443/openam=http://openam.example.com:8080/openam"

Repeat this step for each OpenAM server in your site configuration. You can
install all your instances of ssoadm on the same host, but in each case the
command should manage only one OpenAM server.

Procedure 3.2. To Set Up Configuration Tools

1. Make sure the JAVA_HOME environment variable is properly set.

$ echo $JAVA_HOME
/path/to/jdk

2. Unpack the tools from where you unzipped OpenAM.

$ cd /path/to/openam-tools/config
$ unzip ~/Downloads/openam/
Archive: ~/Downloads/openam/
 inflating: README
 inflating: sampleconfiguration
 inflating: sampleupgrade
 extracting:
 extracting:
 inflating: license.txt

41

Set up configuration files based on the sampleconfiguration example, and
then apply the configuration to a deployed OpenAM .war file using the
following command.

$ java -jar -f config.file

The config.file is set up by default to use the embedded data store with
OpenAM installed on server1.example.com. You must edit the file before using
it, as described in the OpenAM Reference for configurator.jar.

42

43

Chapter 4

Installing OpenAM Distributed
Authentication

You can minimize the exposure of OpenAM to the Internet. It is a relatively
standard practice to protect an enterprise network with a pair of firewalls.
Systems that require external access are placed between the firewalls in a
semi-secure area known as a demilitarized zone (DMZ). You can deploy a small
subset of OpenAM as the login interface in a DMZ. That subset is known as the
distributed authentication service (DAS). Logins through the DAS are forwarded
through the internal firewall to the OpenAM core server. For more information
see the OpenAM Administration Guide section on Protecting Network Access.

To deploy the DAS securely, select a system in your DMZ. Then take the
following general steps:

1. Make sure the cookie domain for the DAS is configured in OpenAM under
Configuration > System > Platform.

2. Make sure the realms used have a Realm/DNS alias for the DAS configured in
OpenAM under Access Control > Realm Name > General.

3. Deploy the file into your web application container.

How you deploy the DAS .war file depends on your web application container.
The procedure in this section shows how to deploy on Apache Tomcat.

4. Configure the DAS UI to access OpenAM core services.

44

5. Configure your firewall to allow end user access to the DAS.

Firewall configuration is not described here.

Important

The DAS relies on the classic OpenAM UI. If you customize
the end user pages, follow the procedures for the classic UI
described in Customizing the OpenAM End User Pages.

Procedure 4.1. To Deploy the DAS on Tomcat

1. Copy the file into the webapps/ directory.

cp ~/Downloads/openam/
 /path/to/tomcat/webapps

2. Check that you see the initial DAS configuration screen in your browser.

Procedure 4.2. To Configure the DAS

1. Configure the DAS using the agent profile to connect to OpenAM.

45

Most DAS configuration choices require no clarification. Hints for equivocal
parameters follow.

Debug Level

Default is error. Other options include error, warning, message, and off.

Encryption Key

Do not change the password encryption key.

Application User Name

The DAS uses this identity, such as UrlAccessAgent, to authenticate to
OpenAM.

46

Application User Password

The DAS uses this password to authenticate to OpenAM.

2. Login through the DAS to access OpenAM services.

For testing, you can login as user demo, password changeit.

When the /openam/idm/EndUser page is inside the firewall, and therefore not
visible to users outside, redirect the browser after successful login to a page
that exists. One way to do this is to use the goto parameter in the URL.

https://das.example.com/das/UI/Login?goto=absolute-successful-redirect-URL

On successful login, your browser stores an AMDistAuthConfig cookie that
identifies the DAS.

3. Restrict permissions to the configuration for the DAS under the $HOME/
FAMDistAuth directory of the user who runs the web container where you
deployed the service.

The configuration file name ends in AMDistAuthConfig.properties.

If you deploy multiple DAS servers, you can configure them to forward
requests to each other based on the AMDistAuthConfig cookie by setting
the com.sun.identity.distauth.cluster property in this file. The following
example lines are wrapped to fit on the page, but you put the entire property
on a single line in the configuration file.

com.sun.identity.distauth.cluster=
 http://das.example.com:8080/das/UI/Login,
 http://das2.example.com:8080/das/UI/Login

47

4. If your deployment includes multiple OpenAM servers, then edit the DAS
configuration file, $HOME/FAMDistAuth/*AmDistAuthConfig.properties, to
include X-Forwarded-For in the list of openam.retained.http.request.headers.

Example: openam.retained.http.request.headers=X-DSAMEVersion,X-
Forwarded-For

This ensures the authoritative OpenAM authentication server gets the client
IP address in this header of the forwarded HTTP request. You can also add
the header to the list for the openam.retained.http.headers property to have
OpenAM copy the header to the response.

5. Some application servers such as JBoss 7 mount the content of the
deployed .war file in a temporary location that can change on restart. To
make sure that the DAS can find its bootstrap configuration in this case,
specify the path to the bootstrap configuration file as a Java runtime option
for the DAS, as in the following example. The property to set is openam.das.
bootstrap.file.

-Dopenam.das.bootstrap.file=/home/openam/FAMDistAuth/AMDistAuthConfig.properties

You must make sure that the value of the option corresponds to the path to
the correct AMDistAuthConfig.properties file.

48

49

Chapter 5

Customizing the OpenAM End User
Pages

When you deploy OpenAM to protect your web-based applications, users can be
redirected to OpenAM pages for login and logout. ForgeRock provides pages
localized for English, French, German, Spanish, Japanese, Korean, Simplified
Chinese, and Traditional Chinese, but you might require additional language
support for your organization.

Also, by default the end user pages have ForgeRock styling and branding. You
likely want to change at least the images to reflect your organization. You might
want to have different page customizations for different realms as well. This
chapter address how to get started customizing OpenAM end user pages for your
organizations and supported locales.

Note

There is an evolving alternative UI available for OpenAM,
known informally as the XUI. You can enable XUI in OpenAM
Console under Configuration > Authentication > Core > Global
Attributes, by selecting XUI Interface Enabled and saving your
work. See Section 5.3, “Configuring the XUI” for more.

Updating the Classic UI

50

To customize the classic UI, first you copy the pages to customize to the proper
location, and then you customize the files themselves.

Note

Case mismatch can cause failures in the UI lookup for some
systems. To ensure lookup success and for consistency, use
lowercase names for your customized directories. All of the
default directories are already lowercase.

Classic UI images described in this chapter are located in /path/to/tomcat/
webapps/openam/images/, and CSS in /path/to/tomcat/webapps/openam/css/. If you
choose to modify images for your deployment, you can maintain the sizes to avoid
having to customize page layout extensively.

5.1 Updating the Classic UI
When developing with a web container that deploys OpenAM in a temporary
location, such as JBoss or Jetty, restarting the container can overwrite your
changes with the deployable .war content. For those web containers, you should
also prepare a deployable .war containing your changes, and redeploy that file to
check your work.

Tip

For production deployment you must package your changes
in a custom OpenAM deployable .war file. To create a
deployable .war, unpack the OpenAM .war file from ~/
Downloads/openam into a staging directory, apply your changes in
the staging directory, and use the jar command to prepare the
deployable .war.

The procedures below describe how to update a deployed version of OpenAM, so
that you can see your changes without redeploying the application. This approach
works for development as long as your web container does not overwrite
changes.

• Procedure 5.1, “To Copy the Pages to Customize For the Top-Level Realm”

• Procedure 5.2, “To Copy the Pages to Customize For Another Realm”

Updating the Classic UI

51

• Procedure 5.3, “To Customize Files You Copied”

Procedure 5.1. To Copy the Pages to Customize For the Top-Level Realm

Rather than changing the default pages, customize your own copy.

1. Change to the config/auth directory where you deployed OpenAM.

$ cd /path/to/tomcat/webapps/openam/config/auth

2. Copy the default files and optionally the localized files to suffix[_locale]/
html, where suffix is the value of the RDN of the configuration suffix, such as
openam if you use the default configuration suffix , and the optional locale is,
for example, jp for Japanese, or zh_CN for Simplified Chinese.

The following example copies the files for the Top-Level Realm (/) for a
custom French locale.

$ mkdir -p openam/html
$ cp -r default/* openam/html
$ mkdir -p openam_fr/html
$ cp -r default_fr/* openam_fr/html

See How OpenAM Looks Up UI files for details.

Procedure 5.2. To Copy the Pages to Customize For Another Realm

As for the top-level realm, customize your own copy rather than the default
pages.

1. Change to the config/auth directory where you deployed OpenAM.

$ cd /path/to/tomcat/webapps/openam/config/auth

2. Depending on which locale you want to customize, copy the default files and
optionally the localized files to suffix[_locale]/services/realm/html, where
suffix is the value of the RDN of the configuration suffix, which is openam if
you use the default configuration suffix .

The following example copies the files for a custom French locale and a realm
named ventes.

$ mkdir -p openam/html/ventes/html
$ cp -r default/* openam/services/ventes/html
$ mkdir -p openam_fr/services/ventes/html
$ cp -r default_fr/* openam_fr/services/ventes/html

How OpenAM Looks Up UI Files

52

Procedure 5.3. To Customize Files You Copied

The .jsp files from the default/ directory reference the images used in the
OpenAM pages, and retrieve localized text from the .xml files. Thus you
customize appearance through the .jsp files, being careful not to change the
functionality itself. You customize the localized text through the .xml files.

1. Modify appearance if you must by editing the .jsp, image, and CSS files
without changing any of the JSP tags that govern how the pages work.

2. Modify the localized text, using UTF-8 without escaped characters, by
changing only the original text strings in the .xml files.

For example, to change the text in the default OpenAM login screen in the
top-level realm for the French locale, edit openam_fr/html/DataStore.xml.

3. If necessary, restart OpenAM or the web container to test the changes you
have made.

The following screen shot shows a customized French login page where
the string Nom d'utilisateur has been replaced with the string Votre
identifiant, and the string Mot de passe has been replaced with the string
Votre mot de passe in openam_fr/html/DataStore.xml.

5.2 How OpenAM Looks Up UI Files
This section provides a more complete description of how OpenAM looks up UI
files.

OpenAM uses the following information to look up the UI files.

How OpenAM Looks Up UI Files

53

Configuration suffix RDN

When you set up the OpenAM to store its configuration in a directory server,
you provide the distinguished name of the configuration suffix, by default ,
therefore, the relative distinguished name attribute value is openam.

Client (browser) locale language

The client can specify a locale, which can consist of both a language and a
territory, such as en_GB for British English. The language in this case is en.

Client (browser) locale territory

If the client local is en_GB, then the territory in this case is GB.

Platform locale language

The platform locale, defined for the platform where OpenAM runs, can also
consist of both a language and a territory, such as hu_HU. In this example the
platform locale language is hu for Hungarian.

Platform locale territory

If the platform locale is hu_HU, the platform locale territory is HU for Hungary.

Realm

Realms can be nested. OpenAM uses the nesting as necessary to look for files
specific to a sub-realm before looking in the parent realm.

For all realms below the top level realm, OpenAM adds a services directory
before the realm to the search path.

Client name

Client names identify the type of client. The default, html, is the only client
name used unless client detection mode is enabled. When client detection
mode is enabled, the client name can be different for mobile clients, for
example.

File name

File names are not themselves localized. Thus Login.jsp has the same name
for all locales, for example.

OpenAM tries first to find the most specific file for the realm and local requested,
gradually falling back on less specific alternatives, then on other locales. The first
and most specific location as follows.

How OpenAM Looks Up UI Files

54

suffix_client-locale-language_client-locale-territory/services/realm/client-name/file-name

Example 5.1. UI File Lookup

OpenAM looks up Login.jsp in the following order for a realm named realm, with
the browser requesting en_GB locale, the platform locale being hu_HU, and the
configuration suffix named o=openam. The client name used in this example is the
generic client name html.

openam_en_GB/services/realm/html/Login.jsp
openam_en_GB/services/realm/Login.jsp
openam_en_GB/services/html/Login.jsp
openam_en_GB/services/Login.jsp
openam_en_GB/html/Login.jsp
openam_en_GB/Login.jsp
openam_en/services/realm/html/Login.jsp
openam_en/services/realm/Login.jsp
openam_en/services/html/Login.jsp
openam_en/services/Login.jsp
openam_en/html/Login.jsp
openam_en/Login.jsp
openam_hu_HU/services/realm/html/Login.jsp
openam_hu_HU/services/realm/Login.jsp
openam_hu_HU/services/html/Login.jsp
openam_hu_HU/services/Login.jsp
openam_hu_HU/html/Login.jsp
openam_hu_HU/Login.jsp
openam_hu/services/realm/html/Login.jsp
openam_hu/services/realm/Login.jsp
openam_hu/services/html/Login.jsp
openam_hu/services/Login.jsp
openam_hu/html/Login.jsp
openam_hu/Login.jsp
openam/services/realm/html/Login.jsp
openam/services/realm/Login.jsp
openam/services/html/Login.jsp
openam/services/Login.jsp
openam/html/Login.jsp
openam/Login.jsp
default_en_GB/services/realm/html/Login.jsp
default_en_GB/services/realm/Login.jsp
default_en_GB/services/html/Login.jsp
default_en_GB/services/Login.jsp
default_en_GB/html/Login.jsp
default_en_GB/Login.jsp
default_en/services/realm/html/Login.jsp
default_en/services/realm/Login.jsp
default_en/services/html/Login.jsp
default_en/services/Login.jsp
default_en/html/Login.jsp
default_en/Login.jsp
default_hu_HU/services/realm/html/Login.jsp
default_hu_HU/services/realm/Login.jsp
default_hu_HU/services/html/Login.jsp
default_hu_HU/services/Login.jsp
default_hu_HU/html/Login.jsp
default_hu_HU/Login.jsp
default_hu/services/realm/html/Login.jsp
default_hu/services/realm/Login.jsp

Configuring the XUI

55

default_hu/services/html/Login.jsp
default_hu/services/Login.jsp
default_hu/html/Login.jsp
default_hu/Login.jsp
default/services/realm/html/Login.jsp
default/services/realm/Login.jsp
default/services/html/Login.jsp
default/services/Login.jsp
default/html/Login.jsp
default/Login.jsp

5.3 Configuring the XUI
XUI is a new, still evolving UI for OpenAM, based on the Backbone.js JavaScript
Model-View-Controller (MVC) framework, Handlebars.js for templating the
"View" in the MVC framework, Underscore.js for the JavaScript-related utility
functions, and a programmable LESS CSS, working with the OpenAM REST API.

Interface Stability: Internal (not supported)

XUI is not supported for production use.

The main XUI configuration file is based on LESS CSS; for more information,
see LESS, the Dynamic Stylesheet Language. If desired, you can incorporate
additional LESS CSS features in the XUI, above and beyond what is shown in the
themeConfig.json file described in this section.

If you want to test the XUI, the first step is to enable it on the login screen.
To do so, login to the OpenAM console as the administrator, and browse to
Configuration > Authentication > Core > XUI Interface > Enabled. The next time
you start OpenAM, you will see the following screen:

The look and feel of this login screen and user profile page are defined by the
main XUI configuration file, themeConfig.json. You can find this file in the /path/
to/openam/webapps/XUI directory.

http://lesscss.org/

Configuring the XUI

56

You can customize the settings in the themeConfig.json file. For more information
on each parameter in this file, see the Reference Guide chapter on XUI
Configuration Parameters.

If desired, you can create themes for different realms. This assumes that you
have already configured a realm named realm1. For more information, see
Configuring Realms in the OpenAM Administration Guide.

Now to create a theme for the second realm, open the themeConfig.json file in
a text editor. Make a copy of all lines between the left curly bracket { after the
themes parameter, and the corresponding right curly bracket } towards the end of
the file.

{
 "themes": [
 {
 "name": "default",
 "path": "",
 "realms": [".*"],
 "regex": true,

 . . .

 "footer": {
 "mailto": "info@forgerock.com",
 "phone": "+47 2150108"
 }
 }
 }
]
}

For a new realm named realm1, the revised themeConfig.json file should look
similar to:

{
 "themes": [
 {
 "name": "default",
 "path": "",
 "realms": [".*"],
 "regex"" true,

 . . .

 "footer": {
 "mailto": "info@forgerock.com",
 "phone": "+47 2150108"
 }
 }
 },
 {
 "name": "realm1",
 "path": "path/to/realm1/",
 "realms": ["realm1.*"],
 "regex": true,

Configuring the XUI

57

 . . .

 "footer": {
 "mailto": "info@example.com",
 "phone": "+1 555 555 5555"
 }
 }
 }
]
}

Be careful with the syntax. Do not forget the comma between realms. If in doubt
about your JSON syntax, refer to a validation tool such as The JSON Validator.

If you want to keep a parameter used in the default realm, just delete it from the
later realm. Except for the following parameters, realm parameters inherit values
from the default: name, path, realms, and regex.

When configuring new or revised parameters, keep the following tips in mind:

• The path to the directory with custom realm settings require a trailing forward
slash /.

• Logos may require custom height and width parameters.

• Each of the lessVars parameters are based on variables defined in files in the /
path/to/webapps/openam/XUI/css/user directory.

• After making changes, use available tools to make sure the file uses correct
JSON syntax.

• Each realm after the default requires at least the name, path, realms, and regex
parameters.

When testing different options, make sure to clear the browser cache on a
regular basis. Otherwise, changes that you have made may not be shown in your
browser.

http://jsonlint.com

58

59

Chapter 6

Configuring the Core Token Service
(CTS)

The Core Token Service (CTS) provides persistent and highly available token
storage for a several components within OpenAM, including sessions, as well as
OAuth 2.0 and SAML 2.0 tokens. The CTS is set up in a generalized token storage
format. That format is always used for OAuth 2.0 tokens. If so configured, it is
also used to ensure persistence of session and SAML 2.0 tokens.

The CTS relies on OpenDJ to store and replicate tokens. No other directory
service is supported for CTS. By default, the CTS uses the same embedded or
external directory service as is configured for OpenAM's configuration data store.

CTS tokens may change frequently. Other data stored in an OpenDJ server is
considerably more static. The relative performance tuning requirements are quite
different. If your deployment is large, that may justify going beyond the default
configuration. Nevertheless, it is easier to configure CTS if you can stick with the
OpenDJ server embedded in an OpenAM installation.

If you use the OpenDJ service embedded within OpenAM, CTS schema is
automatically included. You can choose, however, to manage CTS data in an
external instance of OpenDJ.

If you choose to set up CTS in an external instance of OpenDJ, you will have to
install OpenDJ separately. For more information, see the OpenDJ Installation
Guide.

http://docs.forgerock.org/en/opendj/2.6.0/install-guide/
http://docs.forgerock.org/en/opendj/2.6.0/install-guide/

CTS Configuration Parameters

60

Once you have installed OpenDJ on an external server, you can set up schema
definitions, specify tokens in a valid LDAP format, configure indexes to allow
OpenAM to retrieve tokens, and quite possibly Access Control Instructions (ACIs)
to give an appropriate user Create, Read, Update, and Delete (CRUD) privileges.
But first, you should configure basic parameters for the CTS token data store in
the OpenAM console.

6.1 CTS Configuration Parameters
If you want to reconfigure an existing implementation of CTS, be prepared. Any
reconfiguration will orphan any tokens that are currently stored. To keep this
from happening, disable client access to OpenAM before making any changes.
Any changes require a server restart to put them into effect.

To access the main CTS configuration page from the console, select
Configuration > Servers and Sites > Default Server Settings > CTS. The
options that appear in the screenshot that follows are detailed in the Reference
document. You can set a root suffix for CTS tokens in either the configuration
store or an external token store.

If you select Default Token Store, OpenAM will use the embedded configuration
store for CTS tokens.

Note

If desired, you could make these changes from the command
line with variations on the ssoadm update-server-cfg command,
as described in the OpenAM Reference document.

CTS Configuration Parameters

61

Possible options have been entered in the figure. If the External Token Store is
selected, entries are required in all text boxes. The options shown in the figure
are:

• Root Suffix

ou=ctsData,dc=openam,dc=example,dc=com

When you configure a new OpenDJ suffix for the CTS, also consider creating a
dedicated OpenDJ backend for the suffix. This allows you to manage CTS data
separately from less volatile data.

• SSL/TLS Enabled

disabled

• Directory Name

opendj-cts.example.org

Preparing an OpenDJ
Directory Service for CTS

62

• Port

389

• Login Id

uid=openam,ou=admins,dc=example,dc=com

This is the DN of a user with administrative access to CTS data. The value
here corresponds to the DN used in the examples in Section 6.3, “CTS Access
Control Instructions”. You can bypass access control by binding with a root DN
such as cn=Directory Manager.

• Password

• Max Connections

20 (arbitrary number)

• Heartbeat

10 (default, in seconds)

Navigate to Configuration > Servers and Sites > Default Server Settings > CTS.
Any options that you change under this tab are inherited as defaults by individual
servers. To confirm, make a change, and then navigate to Configuration >
Servers and Sites > [Server Name] > CTS.

6.2 Preparing an OpenDJ Directory Service for CTS
OpenAM stores volatile CTS token data in an instance of OpenDJ. To make that
possible, OpenDJ needs the associated configuration store indexes, which allow
OpenAM to search CTS token data in an efficient manner.

Different schema files are available in the OpenAM WEB-INF/template/ldif/sfha
directory. If you install OpenAM with the embedded version of OpenDJ, the
schema from the cts-add-schema.ldif, cts-container.ldif, and cts-indicies.ldif
files are installed. If you upgrade to OpenAM from a previous version with
embedded OpenDJ, the schema from the 99-cts-add-schema-backport.ldif file is
incorporated in your upgrade.

However, if you are configuring an external OpenDJ CTS server, you must
add schema manually. You must also configure the indexes in the table shown
below. To do so, you can use the dsconfig command depicted in the OpenDJ
Administration Guide chapter on Configuring a Standard Index.

http://docs.forgerock.org/en/opendj/2.6.0/admin-guide/#configure-indexes

Preparing an OpenDJ
Directory Service for CTS

63

After creating indexes for the external OpenDJ CTS server, rebuild the indexes
with the rebuild-index command described in the OpenDJ Administration Guide
chapter on Rebuilding Indexes.

Table 6.1. CTS Data Store Indexes

Attribute Indexes Required

coreTokenDate01 equality

coreTokenDate02 equality

coreTokenDate03 equality

coreTokenDate04 equality

coreTokenDate05 equality

coreTokenExpirationDate ordering

coreTokenInteger01 equality

coreTokenInteger02 equality

coreTokenInteger03 equality

coreTokenInteger04 equality

coreTokenInteger05 equality

coreTokenInteger06 equality

coreTokenInteger07 equality

coreTokenInteger08 equality

coreTokenInteger09 equality

coreTokenInteger10 equality

coreTokenString01 equality

coreTokenString02 equality

coreTokenString03 equality

coreTokenString04 equality

coreTokenString05 equality

http://docs.forgerock.org/en/opendj/2.6.0/admin-guide/#rebuild-index

CTS Access Control Instructions

64

Attribute Indexes Required

coreTokenString06 equality

coreTokenString07 equality

coreTokenString08 equality

coreTokenString09 equality

coreTokenString10 equality

coreTokenString11 equality

coreTokenString12 equality

coreTokenString13 equality

coreTokenString14 equality

coreTokenString15 equality

coreTokenUserId equality

6.3 CTS Access Control Instructions
If you bind to the OpenDJ CTS server as a root DN user, such cn=Directory
Manager, you can skip this section.

If you bind as a regular administrative user, you must give the user appropriate
access to the CTS data. Give the regular administrative user access to add,
delete, modify, read, and search CTS data, by setting access control instructions
on the Root Suffix entry for CTS data. The user in examples shown here has DN
uid=openam,ou=admins,dc=example,dc=com.

aci: (version 3.0;acl "Add config entry"; allow (add)(userdn = "ldap:///
 uid=openam,ou=admins,dc=example,dc=com");)
aci: (targetattr="*")(version 3.0;acl "Allow entry search"; allow (
 search, read)(userdn = "ldap:///uid=openam,ou=admins,dc=example,dc=com");)
aci: (targetattr="*")(version 3.0;acl "Modify entries"; allow (write)(
 userdn = "ldap:///uid=openam,ou=admins,dc=example,dc=com");)
aci: (version 3.0;acl "Delete entries"; allow (delete)(userdn = "ldap:///
 uid=openam,ou=admins,dc=example,dc=com");)
aci: (targetcontrol="2.16.840.1.113730.3.4.3")(version 3.0;acl "Allow
 persistent search"; allow (search, read)(userdn = "ldap:///uid=openam,
 ou=admins,dc=example,dc=com");)

CTS and OpenDJ Replication

65

For detailed information on ACIs, with examples showing how you can use the
dsconfig, as well as various ldap* commands to configure them, see the OpenDJ
chapter on Configuring Privileges & Access Control.

6.4 CTS and OpenDJ Replication
Replication in this context is the process of copying updates between directory
servers to help all servers converge to identical copies of directory, token, and
session / SAML 2.0 / OAuth 2.0 data. OpenDJ uses advanced data replication
methods to ensure that directory services remain available in the event of a
server crash or network interruption.

The historical information needed to resolve the latest changes is periodically
purged to avoid growing to unmanageable sizes. The age at which the
information is purged is known as the replication-purge-delay.

With CTS, the default replication-purge-delay for OpenDJ is 3 days. Unless you
have configured a separate OpenDJ server for CTS data, you may have to balance
the needs for backups, the requirements for replication, disk space, and different
useful lifetimes for CTS tokens and other OpenDJ data. So adjustments may be
required. One way to set a new period for replication-purge-delay of n hours is
with the following command:

$ dsconfig
set-replication-server-prop
--port 4444
--hostname opendj-cts.example.org
--bindDN "cn=Directory Manager"
--bindPassword password
--provider-name "Multimaster Synchronization"
--set replication-purge-delay:nh
--no-prompt
--trustStorePath /path/to/truststore

At this point, you need to understand whether CTS data backups are important
in your deployment. Session, SAML 2.0, and OAuth 2.0 token data is often short-
lived. In some deployments, the "worst-case" scenario is that users have to log in
again.

If CTS data backups are important in your deployment, be warned. OpenDJ
backups that are older than the replication-purge-delay are useless and must
be discarded. You can use the OpenDJ backup to schedule backups. For example,
the following command uses crontab format to configure daily backups for a
hypothetical Base DN of ctsData at x minutes after every hour:

http://docs.forgerock.org/en/opendj/2.6.0/admin-guide/#chap-privileges-acis

CTS Deployment Scenario

66

 $ backup
--port 4444
--bindDN "cn="Directory Manager"
--bindPassword password
--backendID ctsData
--backupDirectory /path/to/opendj/backup
--recurringTask "x * * * *"
--completionNotify backupadmin@example.com
--errorNotify backupadmin@example.com

While you may choose to adjust the time periods associated with replication-
purge-delay and backups, be sure that backups are performed more frequently.
Otherwise, change log records that are required to restore data may be lost.

6.5 CTS Deployment Scenario
When properly configured, CTS can help your deployment avoid single points of
failure (SPOF). Session and SAML 2.0 tokens which are normally stored only in
the memory of a single server are also written to the CTS as a secondary token
store. If the OpenAM instance that owns the session or SAML 2.0 token fails, a
second instance of OpenAM can allow access to the session or token. To reduce
the impact of any given failure, consider the following options:

• Start your implementation, if possible, with the CTS options available with the
OpenDJ instance embedded in OpenAM. You can still set up a different backend
on the embedded OpenDJ server. If the embedded OpenDJ server can handle
your requirements, it will simplify implementation of CTS.

• Isolate the user, configuration, and session stores from OpenAM in separate
external OpenDJ servers.

• Configure multiple directory stores for CTS, set up with load balancer(s).

• Add separate servers for data store replication. For more information on how
this is done with OpenDJ, see the OpenDJ documentation on Stand-alone
Replication Servers.

• Set up redundancy in the load balancer connections between OpenAM and the
external data store.

Deployment is easier if your requirements can be handled by the embedded
instance of OpenDJ. But that may not be a viable for all situations. A relatively
simplified method for configuring a more complex CTS deployment is depicted
here:

http://docs.forgerock.org/en/opendj/2.6.0/admin-guide/#repl-dedicated-servers
http://docs.forgerock.org/en/opendj/2.6.0/admin-guide/#repl-dedicated-servers

Managing CTS Tokens

67

For clarity, the diagram does not include options that may be appropriate for a
production deployment such as firewalls and OpenAM agents. It also does not
include options required for multiple data centers.

6.6 Managing CTS Tokens
There are five properties associated with token encryption, compression, and
token cleanup frequency. The three that are associated with encryption and
compression are disabled by default. The properties are as follows:

• com.sun.identity.session.repository.enableEncryption

Supports encryption of CTS tokens.

• com.sun.identity.session.repository.enableCompression

Enables GZip-based compression of CTS tokens.

• com.sun.identity.session.repository.enableAttributeCompression

Supports compression over and above the GZip-based compression of CTS
tokens.

• com.sun.identity.session.repository.cleanupRunPeriod

Specifies a minimum CTS token lifetime. If there is no activity in the specified
time period, the token is erased. Default: 300 seconds.

• com.sun.identity.session.repository.healthCheckRunPeriod

General Recommendations
for CTS Configuration

68

Sets a period of time when requests are sent to make sure the current instance
of OpenAM is running. Default: 60 seconds.

To enable the encryption / compression options, navigate to Configuration
> Servers and Sites > Default Server Settings > Advanced. In the Advanced
Properties window, you should see these entries in the Property Name column
with the corresponding value in the Property Value column. To enable them,
change false to true in the Property Value column associated with the desired
property, and click Save.

Note

If you are using SFO, or if you are using an external CTS
directory, be consistent with these options. If you want to enable
compression or encryption, you should enable all three on every
instance of OpenAM within a deployment or replication group:
com.sun.identity.session.repository.enableEncryption, com.
sun.identity.session.repository.enableCompression, and com.
sun.identity.session.repository.enableAttributeCompression.

6.7 General Recommendations for CTS Configuration
When configuring CTS, start with the OpenDJ server embedded with an
installation of OpenAM. As it already has required CTS indexes included, that
simplifies your tasks.

If you are deploying on a single site, and want CTS replication limited to that site,
the default configuration store may be sufficient for your particular needs. If your
needs go beyond a higher-level performance threshold, you may want to move
the CTS token storage to one or more dedicated systems. Alternatively, if you
need global replication of session, SAML 2.0, and OAuth 2.0 tokens, that would
also justify a move to dedicated systems as it can help to have that extra level of
control over how much replication is taking place.

CTS generally cause much more replication traffic than less volatile configuration
data. Therefore, in high volume deployments you can move CTS data to
dedicated, properly sized directory servers to improve performance. In addition,
token compression as discussed in Section 6.6, “Managing CTS Tokens”,
is disabled by default. When enabled, token compression can reduce load
requirements on the network connection between data stores.

General Recommendations
for CTS Configuration

69

While not recommended for high volume deployments, it is possible to use CTS in
production within the default internal OpenDJ configuration store. That assumes
a small scale deployment with a relatively simple topology.

The CTS is configured to work with a single OpenDJ directory server. That is a
potential SPOF. To address that issue, set up a load balancer between OpenAM
and the OpenDJ directory service used for the CTS. Redundant load balancers are
preferred. If one instance of OpenDJ fails, the load balancer would redirect CTS
requests to another instance of OpenDJ with a copy of the CTS tokens.

Once configured, the OpenDJ directory service replicates CTS data transmitted
from OpenAM servers to connected OpenDJ servers. The amount of replication
traffic can be significant, especially if replication proceeds over a WAN. You can
limit this replication traffic by separating OpenDJ instances into directory and
replication servers.

70

71

Chapter 7

Setting Up OpenAM Session Failover

This chapter covers setting up SFO when using multiple instances of OpenAM
in a site configuration for high availability. The basic idea followed here is that
you configure load balancing to be sticky, based on the value of an OpenAM
cookie, amlbcookie, different for each OpenAM server. Should that server become
unavailable, the load balancer fails client requests over to another OpenAM
server. The other OpenAM server must then fail over the user session associated
with the client.

SFO relies on a shared, highly available Core Token Service (CTS) to store user
session data. The service is shared with other OpenAM servers in the same
OpenAM site. When the OpenAM server where a user authenticated goes down,
other servers in the site read user session information from the CTS, so the user
with a valid session does not have to login again. When the original OpenAM
server becomes available again, it can also read session information from the
CTS, and can carry on serving users with active sessions.

This chapter includes these procedures.

• Procedure 7.1, “To Configure a Site with a First OpenAM Server”

• Procedure 7.2, “To Configure Site Load Balancing”

• Procedure 7.3, “To Configure Session Failover After Installation”

72

Procedure 7.1. To Configure a Site with a First OpenAM Server

Before you set up SFO, first configure OpenAM in a site configuration with a
load balancer as the entry point to the site. The most expedient way to configure
the site is to set it up during the initial OpenAM configuration. However, you
may already have a working instance before realizing that multiple instances are
necessary. The following steps walk you through setting up the site configuration
for the first OpenAM server.

Once you have set up a site for the first OpenAM server, see To Add a Server to a
Site for instructions on configuring subsequent servers in the site.

1. Login to OpenAM Console as amadmin, and then browse to Configuration >
Servers and Sites > Sites.

2. Click New, and on the New Site page enter the site name, and set the
Primary URL to the load balancer URL that is the entry point for the site,
such as https://lb.example.com/openam.

The site URL is the URL to the load balancer in front of your OpenAM servers
in the site. For example, if your load balancer listens for HTTPS on host lb.
example.com and port 443, with OpenAM under /openam, then your site URL is
https://lb.example.com/openam.

3. Click Save to keep the site configuration.

4. Under Configuration > Servers and Sites > Server, click the link to the
server configuration.

5. On the server configuration General tab page, set the Parent Site to the name
of the site you just created, and then click Save to keep your changes.

At this point the server is part of the site you have configured.

Procedure 7.2. To Configure Site Load Balancing

If you did not set up the site during initial configuration, first follow the
instructions in Procedure 7.1, “To Configure a Site with a First OpenAM Server”,
and then follow all the steps below.

1. For each OpenAM server in the site, select Configuration > Servers and Sites
> Servers > Server Name, and then set Parent Site to the site you created
before saving your work.

2. In an OpenAM site, the server that authenticated a user is the server that
continues to manage that user's session, unless the server is no longer

73

available. Therefore, you should use sticky load balancing. To do so,
configure your load balancer to inspect the value of the amlbcookie so that it
can determine which OpenAM server should receive the client request.

As your load balancer depends on the amlbcookie value, on each OpenAM
server console in the site, select Configuration > Servers and Sites > Servers
> Server Name > Advanced, makes sure that com.iplanet.am.lbcookie.value
is unique. By default the value of the amlbcookie is set to the server ID for the
OpenAM instance.

Note

When using SSL, the approach requires that you either
terminate SSL on the load balancer and re-encrypt traffic
from the load balancer to the OpenAM servers.

If you must change amlbcookie values to make them unique, then your
changes take effect after you restart the OpenAM server. (To check, login to
the console and check the cookie value in your browser.)

3. Restart each OpenAM server or the web containers where the OpenAM
servers run so that all configuration changes take effect.

Procedure 7.3. To Configure Session Failover After Installation

Session failover requires a site configuration with one or more servers and
OpenDJ as a configuration store (embedded or external).

If you did not configure session persistence and availability during initial
configuration, first complete the steps in Procedure 7.2, “To Configure Site Load
Balancing”, and then follow these steps.

1. In the OpenAM console for one of the servers in the site, under Configuration
> Global, click Session.

2. Under Secondary Configuration Instance, click New.

If the server is not part of a site, or if you are not using OpenDJ server, the
New button is grayed out.

3. In the Add Sub Configuration page, check that the Name is set to the name of
the site.

4. Activate the Session Persistence and High Availability Failover Enabled
option.

74

5. Click Add to save your work.

75

Chapter 8

Removing OpenAM Software

This chapter shows you how to uninstall OpenAM core software. See the OpenAM
Web Policy Agent Installation Guide or OpenAM Java EE Policy Agent Installation
Guide for instructions on removing OpenAM agents.

Procedure 8.1. To Remove OpenAM Core Software

After you have deployed and configured OpenAM core services, you have at least
two, perhaps three or four, locations where OpenAM files are stored on your
system.

You remove the internal OpenAM configuration store when you follow the
procedure below. If you used an external configuration store, you can remove
OpenAM configuration data after removing all the software.

1. Shut down the web application container in which you deployed OpenAM.

$ /etc/init.d/tomcat stop
Password:
Using CATALINA_BASE: /path/to/tomcat
Using CATALINA_HOME: /path/to/tomcat
Using CATALINA_TMPDIR: /path/to/tomcat/temp
Using JRE_HOME: /path/to/jdk/jre
Using CLASSPATH: /path/to/tomcat/bin/bootstrap.jar:
 /path/to/tomcat/bin/tomcat-juli.jar

2. Unconfigure OpenAM by removing configuration files found in the $HOME
directory of the user running the web application container.

76

For a full install of OpenAM core services, configuration files include the
following.

• The configuration directory, by default $HOME/openam. If you did not use the
default configuration location, then check in the OpenAM console under
Configuration > Servers and Sites > Server Name > General > System >
Base installation directory.

• The hidden file that points to the configuration directory.

For example, if you are using Apache Tomcat as the web container, this file
could be $HOME/.openamcfg/AMConfig_path_to_tomcat_webapps_openam_ OR
$HOME/.openssocfg/AMConfig_path_to_tomcat_webapps_openam_.

$ rm -rf $HOME/openam $HOME/.openamcfg

or

$ rm -rf $HOME/openam $HOME/.openssocfg

Note

At this point, you can restart the web container and
configure OpenAM anew if you only want to start over
with a clean configuration rather than removing OpenAM
completely.

If you used an external configuration store you must also remove the
configuration manually from your external directory server. The default base
DN for the OpenAM configuration is .

3. Undeploy the OpenAM web application.

For example, if you are using Apache Tomcat as the web container, remove
the .war file and expanded web application from the container.

$ cd /path/to/tomcat/webapps/
$ rm -rf openam.war openam/

77

Index

C
Core Token Service, 59
Custom end user pages, 49

D
Directory service requirements, 3, 3, 7
Downloading OpenAM, 9

I
Installing

Behind the firewall, 43
Full install, 21
Interactive configuration, 26
Load Balancer, 71
No console, 21
Session failover, 71
Silent configuration, 40
Starting over, 25
Tools (ssoadm, etc.), 37

J
Java requirements, 2

P
Prerequisites, 1

U
Uninstalling, 75

78

	OpenAM Installation Guide
	Table of Contents
	Preface
	1. Who Should Use this Guide
	2. Formatting Conventions
	3. Accessing Documentation Online
	4. Joining the Open Identity Platform Community

	1 Preparing For Installation
	1.1. Preparing a Fully-Qualified Domain Name
	1.2. Preparing a Java Environment
	1.2.1. Settings For Sun/Oracle Java Environments
	1.2.2. Settings For IBM Java Environments

	1.3. Setting Maximum File Descriptors
	1.4. Preparing a Configuration Data Store
	1.5. Preparing an Identity Repository
	1.6. Obtaining OpenAM Software
	1.7. Preparing Apache Tomcat
	1.8. Preparing GlassFish
	1.8.1. Preparing GlassFish v2
	1.8.2. Preparing GlassFish v3

	1.9. Preparing OpenAM & JBoss 4 or 5
	1.10. Preparing OpenAM & JBoss AS 7 / EAP 6
	1.11. Preparing Jetty
	1.12. Preparing Oracle WebLogic
	1.13. Preparing IBM WebSphere

	2 Installing OpenAM Core Services
	3 Installing OpenAM Tools
	4 Installing OpenAM Distributed Authentication
	5 Customizing the OpenAM End User Pages
	5.1. Updating the Classic UI
	5.2. How OpenAM Looks Up UI Files
	5.3. Configuring the XUI

	6 Configuring the Core Token Service (CTS)
	6.1. CTS Configuration Parameters
	6.2. Preparing an OpenDJ Directory Service for CTS
	6.3. CTS Access Control Instructions
	6.4. CTS and OpenDJ Replication
	6.5. CTS Deployment Scenario
	6.6. Managing CTS Tokens
	6.7. General Recommendations for CTS Configuration

	7 Setting Up OpenAM Session Failover
	8 Removing OpenAM Software
	Index

