
OpenIDM Installation Guide

MarkCraig
LanaFrost
PaulBryan
AndiEgloff

LaszloHordos
MatthiasTristl

,
, ,

Copyright © 2011-2013 ForgeRock AS

Abstract

Guide to installing and evaluating OpenIDM. The OpenIDM project offers flexible,
open source services for automating management of the identity life cycle.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock™ is the trademark of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING
THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO
NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute
the Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if
the fonts are renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software
without prior written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute
the modifications to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the
Font Software is furnished to do so, subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if
the fonts are renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from
Tavmjong Bah. For further information, contact: tavmjong @ free . fr.

Admonition graphics by Yannick Lung. Free for commerical use. Available at Freecns Cumulus.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://www.iconfinder.com/iconsets/freecns-cumulus

iii

Table of Contents
Preface .. v

1. Who Should Use this Guide ... v
2. Formatting Conventions ... vi
3. Accessing Documentation Online .. vi
4. Joining the Open Identity Platform Community vii

1. Installing OpenIDM Services ... 1
1.1. Before You Run OpenIDM .. 1
1.2. Installing and Running OpenIDM .. 1

2. First OpenIDM Sample .. 7
2.1. Before You Begin ... 7
2.2. About the Sample ... 8
2.3. Running Reconciliation ... 12
2.4. Viewing Users and Logs ... 13
2.5. Adding Users in a Resource ... 15
2.6. Adding Users Through REST .. 17

3. More OpenIDM Samples ... 19
3.1. Before You Begin .. 19
3.2. Sample 1 - XML File .. 20
3.3. Sample 2 - LDAP One Way ... 20
3.4. Sample 2b - LDAP Two Way ... 23
3.5. Sample 2c - Synchronizing LDAP Group Membership 25
3.6. Sample 2d - Synchronizing LDAP Groups .. 28
3.7. Sample 3 - Scripted SQL .. 30
3.8. Sample 4 - CSV File ... 33
3.9. Sample 5 - Synchronization of Two Resources 34
3.10. Sample 6 - LiveSync Between Two LDAP Servers 35
3.11. Sample 7 - Scripting a SCIM-like Schema 41
3.12. Sample 8 - Logging in Scripts ... 43
3.13. Sample 9 - Asynchronous Reconciliation Using Workflows 44

4. Installing a Repository For Production .. 47
5. Removing and Moving OpenIDM Software .. 55
OpenIDM Glossary .. 57
Index ... 59

iv

v

Preface

This guide shows you how to install core OpenIDM services for identity
management, provisioning, and compliance. Unless you are planning a
throwaway evaluation or test installation, read the Release Notes before you get
started.

1 Who Should Use this Guide
This guide is written for anyone installing OpenIDM to manage and to provision
identities, and to ensure compliance with identity management regulations.

This guide covers the install and removal (uninstall) procedures that you
theoretically perform only once per version. This guide aims to provide you with
at least some idea of what happens behind the scenes when you perform the
steps.

This guide also takes you through all of the samples provided with OpenIDM.

You do not need to be an OpenIDM wizard to learn something from this guide,
though a background in identity management and maintaining web application
software can help. You do need some background in managing services on your
operating systems and in your application servers. You can nevertheless get
started with this guide, and then learn more as you go along.

If you have a previous version of OpenIDM installed, see the Compatibility
section of the Release Notes before installing this version.

Formatting Conventions

vi

2 Formatting Conventions
Most examples in the documentation are created in GNU/Linux or Mac OS
X operating environments. If distinctions are necessary between operating
environments, examples are labeled with the operating environment name in
parentheses. To avoid repetition file system directory names are often given
only in UNIX format as in /path/to/server, even if the text applies to C:\path\to
\server as well.

Absolute path names usually begin with the placeholder /path/to/. This path
might translate to /opt/, C:\Program Files\, or somewhere else on your system.

Command line, terminal sessions are formatted as follows:

$ echo $JAVA_HOME
/path/to/jdk

Command output is sometimes formatted for narrower, more readable output
even though formatting parameters are not shown in the command. In the
following example, the query string parameter _prettyPrint=true is omitted and
some of the output is replaced with an ellipsis (...):

$ curl https://bjensen:hifalutin@opendj.example.com:8443/users/newuser
{
 "_rev" : "000000005b337348",
 "_id" : "newuser",
 ...
}

Program listings are formatted as follows:

class Test {
 public static void main(String [] args) {
 System.out.println("This is a program listing.");
 }
}

3 Accessing Documentation Online
Open Identity Platform core documentation, such as this document, aims to be
technically accurate and complete with respect to the software documented.

Core documentation therefore follows a three-phase review process designed to
eliminate errors:

Joining the Open Identity
Platform Community

vii

• Product managers and software architects review project documentation
design with respect to the readers' software lifecycle needs.

• Subject matter experts review proposed documentation changes for technical
accuracy and completeness with respect to the corresponding software.

• Quality experts validate implemented documentation changes for technical
accuracy, completeness in scope, and usability for the readership.

The review process helps to ensure that documentation published for a Open
Identity Platform release is technically accurate and complete.

Fully reviewed, published core documentation is available at https://
doc.openidentityplatform.org/. Use this documentation when working with a
Open Identity Platform release.

You can find pre-release draft documentation at the online community resource
center. Use this documentation when trying a nightly build.

4 Joining the Open Identity Platform Community
Visit the community resource center where you can find information about each
project, download nightly builds, browse the resource catalog, ask and answer
questions on the forums, find community events near you, and of course get the
source code as well.

https://doc.openidentityplatform.org/
https://doc.openidentityplatform.org/
https://github.com/OpenIdentityPlatform
https://github.com/OpenIdentityPlatform
https://github.com/OpenIdentityPlatform

viii

1

Chapter 1

Installing OpenIDM Services

This chapter covers the tasks required to install and start OpenIDM.

1.1 Before You Run OpenIDM
This section covers what you need to know before running OpenIDM.

1.1.1 Java Environment

OpenIDM requires Oracle Java SE 6 update 24 or later.

The equivalent version of OpenJDK should work for evaluation, too.

1.1.2 Application Container

OpenIDM services run in an OSGi container with an embedded Servlet container,
and an embedded noSQL database. By default the OSGi container is Apache
Felix. The default Servlet container is Jetty. For OpenIDM , the only supported
configuration is running the services in Apache Felix and Jetty.

1.2 Installing and Running OpenIDM
Follow the procedures in this section to install and run OpenIDM.

Installing and Running OpenIDM

2

Procedure 1.1. To Install OpenIDM Services

Follow these steps to install OpenIDM.

1. Make sure you have an appropriate version of Java installed.

$ java -version
java version "1.6.0_24"
Java(TM) SE Runtime Environment (build 1.6.0_24-b07-334)
Java HotSpot(TM) 64-Bit Server VM (build 19.1-b02-334, mixed mode)

Check the release notes for Java requirements in the chapter, Before You
Install OpenIDM Software.

2.
Download OpenIDM from one of the following locations:

• Enterprise Downloads has the latest stable, supported release of OpenIDM
and the other products in the ForgeRock identity stack.

• Builds includes the nightly build, the nightly experimental build, and the
OpenIDM agents. Note that this is the working version of the trunk and
should not be used in a production environment.

• Archives includes the stable builds for all previous releases of OpenIDM.

3. Unpack the contents of the .zip file into the install location.

$ cd /path/to
$ unzip ~/Downloads/openidm-.zip
...
 inflating: openidm/connectors/scriptedsql-connector-.jar
 inflating: openidm/bin/felix.jar
 inflating: openidm/bin/openidm.jar
$

4. (Optional) By default, OpenIDM listens for HTTP connections on port 8080.
To change the default port, edit openidm/conf/jetty.xml.

5.
Before running OpenIDM in production, replace the default OrientDB
repository provided for evaluation with a JDBC repository.

See the chapter on Installing a Repository For Production for details.

Procedure 1.2. To Start OpenIDM Services

Follow these steps to run OpenIDM interactively.

http://www.forgerock.com/download-stack/
http://forgerock.org/openidm.html
http://forgerock.org/openidm-archive.html

Installing and Running OpenIDM

3

To run OpenIDM as a background process, see Starting and Stopping OpenIDM
in the Integrator's Guide.

1. Start the Felix container, load all OpenIDM services, and start a command
shell to allow you to manage the container.

• Start OpenIDM (UNIX).

$./startup.sh
Using OPENIDM_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m
Using LOGGING_CONFIG:
 -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
Using boot properties at /path/to/openidm/conf/boot/boot.properties
OpenIDM version "" (revision: XXXX)
-> OpenIDM ready

• Start OpenIDM (Windows).

< cd \path\to\openidm
< startup.bat
"Using OPENIDM_HOME: \path\to\openidm"
"Using OPENIDM_OPTS: -Xmx1024m -Dfile.encoding=UTF-8"
"Using LOGGING_CONFIG:
 -Djava.util.logging.config.file=\path\to\openidm\conf\logging.properties"
Using boot properties at \path\to\openidm\conf\boot\boot.properties
OpenIDM version "" (revision: XXXX)
-> OpenIDM ready
->

At the resulting -> prompt, you can enter commands such as help for usage,
or ps to view the bundles installed. To see a list of all the OpenIDM core
services and their states, enter the following command.

-> scr list
 Id State Name
[12] [active] org.forgerock.openidm.endpoint
[13] [active] org.forgerock.openidm.endpoint
[14] [active] org.forgerock.openidm.endpoint
[15] [active] org.forgerock.openidm.endpoint
[16] [active] org.forgerock.openidm.endpoint
[17] [active] org.forgerock.openidm.endpoint
[23] [unsatisfied] org.forgerock.openidm.info
[27] [active] org.forgerock.openidm.provisioner.openicf.connectorinfoprovider
[35] [active] org.forgerock.openidm.ui.simple
[29] [active] org.forgerock.openidm.restlet
[3] [active] org.forgerock.openidm.repo.orientdb
[7] [active] org.forgerock.openidm.scope
[5] [active] org.forgerock.openidm.audit
[32] [active] org.forgerock.openidm.schedule
[2] [unsatisfied] org.forgerock.openidm.repo.jdbc
[31] [active] org.forgerock.openidm.workflow
[9] [active] org.forgerock.openidm.managed
[28] [active] org.forgerock.openidm.provisioner.openicf
[22] [active] org.forgerock.openidm.health
[26] [active] org.forgerock.openidm.provisioner
[0] [active] org.forgerock.openidm.config.starter

Installing and Running OpenIDM

4

[34] [active] org.forgerock.openidm.taskscanner
[20] [active] org.forgerock.openidm.external.rest
[6] [active] org.forgerock.openidm.router
[33] [active] org.forgerock.openidm.scheduler
[19] [unsatisfied] org.forgerock.openidm.external.email
[11] [active] org.forgerock.openidm.sync
[25] [active] org.forgerock.openidm.policy
[8] [active] org.forgerock.openidm.script
[10] [active] org.forgerock.openidm.recon
[4] [active] org.forgerock.openidm.http.contextregistrator
[1] [active] org.forgerock.openidm.config
[18] [active] org.forgerock.openidm.endpointservice
[30] [unsatisfied] org.forgerock.openidm.servletfilter
[24] [active] org.forgerock.openidm.infoservice
[21] [active] org.forgerock.openidm.authentication
->

A default startup does not include certain configurable services, which will
indicate an unsatisfied state until they are included in the configuration. As
you work through the sample configurations described later in this guide, you
will notice that these services are active.

2. Alternatively, you can manage the container and services from the Felix
administration console.

Use these hints to connect to the console.

• Default Console URL: http://localhost:8080/system/console

• Default user name: admin

• Default password: admin

Some basic hints on using the Felix administration console follow.

• Select the Components tab to see OpenIDM core services and their
respective states.

• Select the Shell tab to access the -> prompt.

• Select the System Information tab to stop or restart the container.

Procedure 1.3. To Get Started With the OpenIDM REST Interface

OpenIDM provides RESTful access to users in the OpenIDM repository. To
access the OpenIDM repository over REST, you can use a browser-based REST
client, such as the Simple REST Client for Chrome, or RESTClient for Firefox.
Alternatively you can use the curl command-line utility that is included with most
operating systems. For more information on curl, see http://curl.haxx.se/. If you
cannot locate the curl command on your system, you can download it from http://
curl.haxx.se/download.html.

http://localhost:8080/system/console
https://chrome.google.com/webstore/detail/simple-rest-client/fhjcajmcbmldlhcimfajhfbgofnpcjmb
https://addons.mozilla.org/en-US/firefox/addon/restclient/
http://curl.haxx.se/
http://curl.haxx.se/download.html
http://curl.haxx.se/download.html

Installing and Running OpenIDM

5

1. Access the following URL to get a JSON file including all users in the
OpenIDM repository.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 http://localhost:8080/openidm/managed/user/?_queryId=query-all-ids

When you first install OpenIDM with an empty repository, no users exist.

2. Create a user joe by sending a RESTful PUT.

The following curl commands create the user joe in the repository.

• Create joe (UNIX).

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request PUT
 --data '{
 "userName":"joe",
 "givenName":"joe",
 "familyName":"smith",
 "email":"joe@example.com",
 "phoneNumber":"555-123-1234",
 "password":"TestPassw0rd",
 "description":"My first user"
 }'
 http://localhost:8080/openidm/managed/user/joe

{"_id":"joe","_rev":"0"}

• Create joe (Windows).

C:\>curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request PUT
 --data "{
 \"userName\":\"joe\",
 \"givenName\":\"joe\",
 \"familyName\":\"smith\",
 \"email\":\"joe@example.com\",
 \"phoneNumber\":\"555-123-1234\",
 \"password\":\"TestPassw0rd\",
 \"description\":\"My first user\"
 }"
 http://localhost:8080/openidm/managed/user/joe

{"_id":"joe","_rev":"0"}

3. Fetch the newly created user from the repository with a RESTful GET.

Installing and Running OpenIDM

6

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 http://localhost:8080/openidm/managed/user/joe

{
 "stateProvince": "",
 "userName": "joe",
 "roles": "openidm-authorized",
 "givenName": "joe",
 "address2": "",
 "lastPasswordAttempt": "Wed Nov 28 2012 22:19:35 GMT+0200 (SAST)",
 "address1": "",
 "familyName": "smith",
 "passwordAttempts": "0",
 "_rev": "0",
 "_id": "joe",
 "country": "",
 "city": "",
 "lastPasswordSet": "",
 "postalCode": "",
 "phoneNumber": "555-123-1234",
 "email": "joe@example.com",
 "description": "My first user",
 "accountStatus": "active"
}

OpenIDM returns the JSON object all on one line. To format the JSON for
legibility, use a JSON parser, such as jq.

Notice that more attributes are returned for user joe than the attributes you
added in the previous step. The additional attributes are added by a script
named onCreate-user-set-default-fields.js that is triggered when a new
user is created. For more information, see Managed Object Configuration in
the Integrator's Guide.

Procedure 1.4. To Stop the OpenIDM Services

• You can stop OpenIDM Services from the -> prompt, or through the Felix
console.

• Either enter the shutdown command at the -> prompt.

-> shutdown
...
$

• Or click Stop on the System Information tab of the Felix console, by
default http://localhost:8080/system/console.

This stops the Servlet container as well, and the console is no longer
accessible.

http://stedolan.github.com/jq/
http://localhost:8080/system/console

7

Chapter 2

First OpenIDM Sample

This chapter provides an overview of the first sample and how it is configured.
To see a listing and an overview of the rest of the samples provided, see the
README found in openidm/samples and in the chapter More OpenIDM Samples.

2.1 Before You Begin
Install OpenIDM as described in the chapter on Installing OpenIDM Services.

OpenIDM comes with an internal noSQL database, OrientDB, for use as the
internal repository out of the box. This makes it easy to get started with
OpenIDM. OrientDB is not yet supported for production use, however, so use a
supported JDBC database when moving to production.

If you want to query the internal noSQL database, you can download OrientDB
(version) from http://code.google.com/p/orient/downloads/list. You will find the
shell console in the bin directory. Start OrientDB console using either console.sh
or console.bat, and then connect to the running OpenIDM with the connect
command.

$ /path/to/orientdb-/bin/console.sh
>
> connect remote:localhost/openidm admin admin

Connecting to database [remote:localhost/openidm] with user 'admin'...OK

>

http://code.google.com/p/orient/downloads/list

About the Sample

8

When you have connected to the database, you might find the following
commands useful.

info

Shows classes and records

select * from managed_user

Shows all users in the OpenIDM repository

select * from audit_activity

Shows all activity audit records

This table is created when there is some activity.

select * from audit_recon

Shows all reconciliation audit records

This table is created when you run reconciliation.

You can also use OrientDB Studio to query the default OrientDB repository.
After you have installed and started OpenIDM, point your browser to http://
localhost:2480/studio/. The default database is openidm and the default user
and password are admin and admin. Click Connect to connect to the repository.
For more information about OrientDB Studio, see the OrientDB Studio
documentation.

2.2 About the Sample
OpenIDM connects identity data objects held in external resources by mapping
one object to another. To connect to external resources, OpenIDM uses OpenICF
connectors, configured for use with the external resources.

When objects in one external resource change, OpenIDM determines how
the changes affect other objects, and can make the changes as necessary.
This sample demonstrates how OpenIDM does this by using reconciliation
and synchronization. OpenIDM reconciliation compares objects in one object
set to mapped objects in another object set. Reconciliation can work in write
mode, where OpenIDM writes changes to affected objects, or in report mode,
where OpenIDM reports on what changes would be written without making the
changes. OpenIDM synchronization reflects changes in objects to any mapped
objects, making changes as necessary to create or remove mapped objects and
links to associate them. For a more thorough explanation of reconciliation and
synchronization, see the section on Types of Synchronization in the Integrator's
Guide.

http://localhost:2480/studio/
http://localhost:2480/studio/
http://code.google.com/p/orient/wiki/OrientDB_Studio
http://code.google.com/p/orient/wiki/OrientDB_Studio
http://openicf.forgerock.org

About the Sample

9

This sample connects to an XML file that holds sample user data. The XML file is
configured as the authoritative source. In this sample, users are created in the
local repository to show you how you can manage local users through the REST
APIs. You can also use OpenIDM without storing managed objects for users in the
local repository, instead reconciling and synchronizing objects directly through
connectors to external resources.

Furthermore, this sample involves only one external resource. In practice, you
can connect as many resources as needed for your deployment.

Sample Configuration Files

You can find configuration files for the sample under the openidm/samples/
sample1/conf directory. As you review the sample, keep the following in mind.

1. You must start OpenIDM with the sample configuration ($./startup.sh -
p samples/sample1). For more information, see Section 2.3, “Running
Reconciliation”.

2. OpenIDM regularly scans for any scheduler configuration files in the conf
directory.

3. OpenIDM's reconciliation service reads the mappings and actions for the
source and target users from conf/sync.json.

4. Reconciliation runs, querying all users in the source, and then creating,
deleting, or modifying users in the local OpenIDM repository according to the
synchronization mappings.

5. OpenIDM writes all operations to the audit logs in both the internal database
and also the flat files in the openidm/audit directory.

The following configuration files play important roles in this sample.

samples/sample1/conf/provisioner.openicf-xml.json

This connector configuration file serves as the XML file resource. In this
sample, the connector instance acts as the authoritative source for users.
In the configuration file you can see that the xmlFilePath is set to samples/
sample1/data/xmlConnectorData.xml, which contains two users, in XML
format.

For details on the OpenICF connector configuration files see Connecting to
External Resources in the Integrator's Guide.

samples/sample1/conf/schedule-reconcile_systemXmlAccounts_managedUser.json

The sample schedule configuration file defines a reconciliation job that, if
enabled by setting "enabled" : true, starts a reconciliation each minute for

About the Sample

10

the mapping named systemXmlAccounts_managedUser. The mapping is defined
in the configuration file, conf/sync.json.

{
 "enabled" : false,
 "type": "cron",
 "schedule": "30 0/1 * * * ?",
 "persisted" : true,
 "misfirePolicy" : "fireAndProceed",
 "invokeService": "org.forgerock.openidm.sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemXmlfileAccounts_managedUser"
 }
}

For information about the schedule configuration see Scheduling Tasks and
Events in the Integrator's Guide.

Apart from the scheduled reconciliation run, you can also start the
reconciliation run through the REST interface. The call to the REST interface
is an HTTP POST such as the following.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemXmlfileAccounts_managedUser"

samples/sample1/conf/sync.json

This sample configuration file defines the configuration for reconciliation
and synchronization. The systemXmlAccounts_managedUser is the mapping for
the reconciliation. This entry in conf/sync.json defines the synchronization
mappings between the XML file connector (source) and the local repository
(target).

{
 "mappings": [
 {
 "name": "systemXmlfileAccounts_managedUser",
 "source": "system/xmlfile/account",
 "target": "managed/user",
 "correlationQuery": {
 "type": "text/javascript",
 "source": "var query = {'_queryId' : 'for-userName',
 'uid' : source.name};query;"
 },
 "properties": [
 {
 "source": "_id",
 "target": "_id"
 },
 {
 "source": "description",

About the Sample

11

 "target": "description"
 },
 {
 "source": "firstname",
 "target": "givenName"
 },
 {
 "source": "email",
 "target": "email"
 },
 {
 "source": "lastname",
 "target": "familyName"
 },
 {
 "source": "name",
 "target": "userName"
 },
 {
 "source": "password",
 "target": "password"
 }
 {
 "source" : "mobileTelephoneNumber",
 "target" : "phoneNumber"
 },
 {
 "source" : "securityQuestion",
 "target" : "securityQuestion"
 },
 {
 "source" : "securityAnswer",
 "target" : "securityAnswer"
 },
 {
 "source" : "passPhrase",
 "target" : "passPhrase"
 },
 {
 "source" : "roles",
 "target" : "roles"
 }
],
 "policies": [
 {
 "situation": "CONFIRMED",
 "action": "UPDATE"
 },
 {
 "situation": "FOUND",
 "action": "IGNORE"
 },
 {
 "situation": "ABSENT",
 "action": "CREATE"
 },
 {
 "situation": "AMBIGUOUS",
 "action": "IGNORE"
 },
 {
 "situation": "MISSING",

Running Reconciliation

12

 "action": "IGNORE"
 },
 {
 "situation": "SOURCE_MISSING",
 "action": "IGNORE"
 },
 {
 "situation": "UNQUALIFIED",
 "action": "IGNORE"
 },
 {
 "situation": "UNASSIGNED",
 "action": "IGNORE"
 }
]
 }
]
}

Source and target paths that start with managed, such as managed/user, always
refer to objects in the local OpenIDM repository. Paths that start with system,
such as system/xmlfile/account, refer to connector objects, in this case the
XML file connector.

To filter objects from the resource for a particular target, you can use the
validTarget script in the mapping to ensure that only users who match
specified criteria are considered part of the reconciliation. You can use
an onCreate script in a mapping to set default values for a user created in
the target resource. For details on scripting see the Scripting Reference
appendix in the Integrator's Guide.

For more information about synchronization, reconciliation, and sync.json,
see Configuring Synchronization in the Integrator's Guide.

2.3 Running Reconciliation
Start OpenIDM with the configuration for sample 1.

$ cd /path/to/openidm
$./startup.sh -p samples/sample1

Reconcile the objects in the resources, either by setting
"enabled" : true in the schedule configuration file (conf/schedule-
reconcile_systemXmlAccounts_managedUser.json.json) and then waiting until the
scheduled reconciliation happens, or by using the REST interface, as follows:

Viewing Users and Logs

13

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemXmlfileAccounts_managedUser"

Successful reconciliation returns a reconciliation run ID, similar to the following:

{"_id":"2d87c817-3d00-4776-a705-7de2c65937d8"}

To see what happened, look at the CSV format log file, openidm/audit/recon.csv.

2.4 Viewing Users and Logs
After reconciliation runs, you can use the REST interface to display all users in
the local repository. Use a REST client to perform an HTTP GET on the following
URL: http://localhost:8080/openidm/managed/user/?_queryId=query-all-ids
with the headers "X-OpenIDM-Username: openidm-admin" and "X-OpenIDM-Password:
openidm-admin".

OpenIDM returns a JSON file. Depending on your browser, it can display the
JSON or download it as a file. Alternatively, you can use the following curl
command to get the JSON file.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/?_queryId=query-all-ids"

{
 "query-time-ms":1,
 "result":[
 {
 "_id":"joe",
 "_rev":"0"
 },{
 "_id":"bjensen",
 "_rev":"0"
 },{
 "_id":"scarter",
 "_rev":"0"
 }
],
 "conversion-time-ms":0
 }

If you created user joe as described previously in this guide, you see IDs for
three users. The second and third users, bjensen and scarter, were created
during the reconcililation. Now try a RESTful GET of user bjensen by appending

http://curl.haxx.se/

Viewing Users and Logs

14

the user ID to the managed user URL (http://localhost:8080/openidm/managed/
user/).

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/bjensen"

{
 "stateProvince": "",
 "userName": "bjensen@example.com",
 "roles": "openidm-authorized",
 "description": "Created By XML1",
 "givenName": "Barbara",
 "address2": "",
 "lastPasswordAttempt": "Mon Dec 17 2012 11:56:56 GMT+0200 (SAST)",
 "address1": "",
 "familyName": "Jensen",
 "passwordAttempts": "0",
 "_rev": "0",
 "_id": "bjensen",
 "securityQuestion": "1",
 "country": "",
 "city": "",
 "lastPasswordSet": "",
 "postalCode": "",
 "phoneNumber": "1234567",
 "email": "bjensen@example.com",
 "accountStatus": "active"
}

In the OrientDB console, connect to the database, and then query the users and
audit logs. The following shows edited excerpts from a console session querying
OrientDB. To make it easier to view the records, the first query only requests
three specific fields.

> connect remote:localhost/openidm admin admin
Connecting to database [remote:localhost/openidm] with user 'admin'...OK

> select familyName,email,description from managed_user

---+---------+--------------------+--------------------+--------------------
 #| RID |familyName |email |description
---+---------+--------------------+--------------------+--------------------
 0| #-2:0|smith |[1] |My first user
 1| #-2:1|Jensen |bjensen@example.com |Created By XML1
 2| #-2:2|Carter |scarter@example.com |Created By XML1
---+---------+--------------------+--------------------+--------------------

3 item(s) found. Query executed in 0.0040 sec(s).

> select * from audit_activity

---+---------+---------------+-------------------+-------------------------+...
 #| RID |rev |status |timestamp |...
---+---------+---------------+-------------------+-------------------------+...
 0| #-2:0|0 |SUCCESS |2012-10-26T12:05:50.923Z |...
 1| #-2:1|0 |SUCCESS |2012-10-26T12:05:50.966Z |...

Adding Users in a Resource

15

 2| #-2:2|0 |SUCCESS |2012-10-26T12:05:51.530Z |...
 3| #-2:3|0 |SUCCESS |2012-10-26T12:05:51.605Z |...
 ...
 18 item(s) found. Query executed in 0.0090 sec(s).

> select * from audit_recon

---+---------+--------------------+-----------+------------------------+---------...
 #| RID |reconId |status |timestamp |message ...
---+---------+--------------------+-----------+------------------------+---------...
 0| #22:0|48650107-66ef-48f...|SUCCESS |2012-10-26T12:05:50.701Z|Reconcili...
 1| #22:1|48650107-66ef-48f...|SUCCESS |2012-10-26T12:05:52.160Z|null ...
 2| #22:2|48650107-66ef-48f...|SUCCESS |2012-10-26T12:05:52.856Z|null ...
 3| #22:3|48650107-66ef-48f...|SUCCESS |2012-10-26T12:05:52.861Z|SOURCE_IG...
---+---------+--------------------+-----------+------------------------+---------...

4 item(s) found. Query executed in 0.0070 sec(s).

This information is also available in the CSV format audit logs located in the
openidm/audit directory.

$ ls /path/to/openidm/audit/
access.csv activity.csv recon.csv

2.5 Adding Users in a Resource
Add a user to the source connector XML data file to see reconciliation in action.
During the next reconciliation, OpenIDM finds the new user in the source
connector, and creates the user in the local repository. To add the user, copy the
following XML into openidm/samples/sample1/data/xmlConnectorData.xml.

<ri:__ACCOUNT__>
 <icf:__UID__>tmorris</icf:__UID__>
 <icf:__NAME__>tmorris@example.com</icf:__NAME__>
 <ri:password>TestPassw0rd#</ri:password>
 <ri:firstname>Toni</ri:firstname>
 <ri:lastname>Morris</ri:lastname>
 <ri:email>tmorris@example.com</ri:email>
 <ri:mobileTelephoneNumber>1234567</ri:mobileTelephoneNumber>
 <ri:securityQuestion>1</ri:securityQuestion>
 <ri:securityAnswer>Some security answer</ri:securityAnswer>
 <ri:roles>openidm-authorized</ri:roles>
 <icf:__DESCRIPTION__>Created By XML1</icf:__DESCRIPTION__>
 </ri:__ACCOUNT__>

Run reconciliation again, as described in the section on Running Reconciliation.
After reconciliation has run, query the local repository to see the new user
appear in the list of all users under http://localhost:8080/openidm/managed/user/
?_queryId=query-all-ids.

Adding Users in a Resource

16

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 http://localhost:8080/openidm/managed/user/?_queryId=query-all-ids

{
 "query-time-ms":1,
 "result":[{
 "_id":"joe",
 "_rev":"0"
 },{
 "_id":"bjensen",
 "_rev":"0"
 },{
 "_id":"scarter",
 "_rev":"0"
 },{
 "_id":"tmorris",
 "_rev":"0"
 }],
 "conversion-time-ms":0
 }

Also look at the reconciliation audit log, openidm/audit/recon.csv to see what took
place during reconciliation. This formatted excerpt from the log covers the two
reconciliation runs done in this sample.

"_id", "action",...,"reconId","situation","sourceObjectId", "targetObjectId","timestamp";
"7e...","CREATE",...,"486...", "ABSENT", "system/xmlfile/account/bjensen","managed/user/bjensen",...;
"1a...","CREATE",...,"486...", "ABSENT", "system/xmlfile/account/scarter","managed/user/scarter",...;
"47...","IGNORE",...,"486...", "UNQUALIFIED","" ,..., "managed/user/joe",...;
"33...","UPDATE",...,"aa9...", "CONFIRMED","system/xmlfile/account/bjensen","managed/user/bjensen",...;
"1d...","UPDATE",...,"aa9...", "CONFIRMED","system/xmlfile/account/scarter","managed/user/scarter",...;
"0e...","CREATE",...,"aa9...", "ABSENT", "system/xmlfile/account/tmorris","managed/user/tmorris",...;
"23...","IGNORE",...,"aa9...", "UNQUALIFIED","",..., "managed/user/joe",...;

The important fields in the audit log are the action, the situation, the source
sourceObjectId, and the target targetObjectId. For each object in the source,
reconciliation results in a situation that leads to an action on the target.

In the first reconciliation run (the abbreviated reconID is shown as 486...), the
source object does not exist in the target, resulting in an ABSENT situation and
an action to CREATE the object in the target. The object created earlier in the
target does not exist in the source, and so is IGNORED.

In the second reconciliation run (the abbreviated reconID is shown as aa9...),
after you added a user to the source XML, OpenIDM performs an UPDATE on
the user objects bjensen and scarter that already exist in the target, in this case
changing the internal ID. OpenIDM performs a CREATE on the target for the new
user (tmorris).

Adding Users Through REST

17

You configure the action that OpenIDM takes based on an object's situation in
the configuration file, conf/sync.json. For the list of all possible situations and
actions, see the Configuring Synchronization chapter in the Integrator's Guide.

For details on auditing, see the Using Audit Logs chapter in the Integrator's
Guide.

2.6 Adding Users Through REST
You can also add users directly to the local repository through the REST
interface. The following example adds a user named James Berg.

Create james (UNIX).

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request PUT
 --data '{
 "userName":"jberg",
 "familyName":"Berg",
 "givenName":"James",
 "email":"jberg@example.com",
 "phoneNumber":"5556787",
 "description":"Created by OpenIDM REST.",
 "password":"MyPassw0rd"
 }'
 "http://localhost:8080/openidm/managed/user/jberg"

{"_id":"jberg","_rev":"0"}

Create james (Windows).

C:\>curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request PUT
 --data "{
 \"userName\":\"jberg\",
 \"familyName\":\"Berg\",
 \"givenName\":\"James\",
 \"email\":\"jberg@example.com\",
 \"phoneNumber\":\"5556787\",
 \"description\":\"Created by OpenIDM REST.\",
 \"password\":\"MyPassw0rd\"
 }"
 "http://localhost:8080/openidm/managed/user/jberg"

{"_id":"jberg","_rev":"0"}

OpenIDM creates the new user in the repository. If you configure a mapping to
apply changes from the local repository to the XML file connector as a target,
OpenIDM then updates the XML file to add the new user.

18

19

Chapter 3

More OpenIDM Samples

The current distribution of OpenIDM comes with a variety of samples in openidm/
samples/. Sample 1 is described in First OpenIDM Sample. This chapter describes
the remaining OpenIDM samples.

3.1 Before You Begin
Install OpenIDM, as described in Installing OpenIDM Services.

OpenIDM comes with an internal noSQL database, OrientDB, for use as the
internal repository out of the box. This makes it easy to get started with
OpenIDM. OrientDB is not yet supported for production use, however, so use a
supported JDBC database when moving to production.

3.1.1 Installing the Samples
Each sample folder in openidm/samples/ contains a list of sub folders, such as
conf/ and script/, depending on which files you need to run the sample. The
easiest way to configure a new installation for one of the samples is to use the -p
option of the startup command to point to the directory whose configuration you
want to use. Some, but not all samples require additional software, such as an
external LDAP server or database.

When you move from one sample to the next, bear in mind that you are changing
the OpenIDM configuration. For information on how configuration changes work,
see Changing the Configuration in the Integrator's Guide.

Preparing OpenIDM

20

3.1.2 Preparing OpenIDM

Install an instance of OpenIDM specifically to try the samples. That way you can
experiment as much as you like, and discard the result if you are not satisfied.

Shut down OpenIDM, and delete the openidm/felix-cache directory before you try
a new sample.

$ rm -rf /path/to/openidm/felix-cache

3.2 Sample 1 - XML File
Sample 1 is described in the chapter, First OpenIDM Sample.

3.3 Sample 2 - LDAP One Way
Sample 2 resembles the first sample, but in sample 2 OpenIDM is connected to a
local LDAP server. The sample has been tested with OpenDJ , but it should work
with any LDAPv3 compliant server.

Sample 2 demonstrates how OpenIDM can pick up new or changed objects from
an external resource. The sample contains only one mapping, from the external
LDAP server resource to the OpenIDM repository. The sample therefore does
not push any changes made to OpenIDM managed user objects out to the LDAP
server.

3.3.1 LDAP Server Configuration

Sample 2 expects the following configuration for the external LDAP server:

• The LDAP server runs on the local host.

• The LDAP server listens on port 1389.

• A user with DN cn=Directory Manager and password password has read access to
the LDAP server.

• User objects are stored on the LDAP server under base DN ou=People,
dc=example,dc=com.

• User objects have the object class inetOrgPerson.

• User objects have the following attributes:

http://www.forgerock.org/opendj.html

LDAP Server Configuration

21

• uid

• sn

• cn

• givenName

• mail

• description

An example user object follows.

dn: uid=jdoe,ou=People,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: top
givenName: John
uid: jdoe
cn: John Doe
telephoneNumber: 12345
sn: Doe
mail: jdoe@example.com
description: Created by OpenIDM

Prepare the LDAP server by creating a base suffix of dc=example,dc=com, and
importing these objects from samples/sample2/data/Example.ldif.

Install the Sample

22

dn: dc=com
objectClass: domain
objectClass: top
dc: com

dn: dc=example,dc=com
objectClass: domain
objectClass: top
dc: example

dn: ou=People,dc=example,dc=com
ou: people
description: people
objectclass: organizationalunit

dn: uid=jdoe,ou=People,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: top
givenName: John
uid: jdoe
cn: John Doe
telephoneNumber: 12345
sn: Doe
mail: jdoe@example.com
description: Created for OpenIDM

3.3.2 Install the Sample

Prepare OpenIDM as described in Section 3.1.2, “Preparing OpenIDM”, then
start OpenIDM with the configuration for sample 2.

$ cd /path/to/openidm
$./startup.sh -p samples/sample2

3.3.3 Running the Sample

Run reconciliation over the REST interface.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemLdapAccounts_managedUser"

Successful reconciliation returns an "_id" object.

With the configuration of sample 2, OpenIDM creates user objects from LDAP in
OpenIDM, assigning the new objects random unique IDs. To list user objects by
ID, run a query over the REST interface.

Sample 2b - LDAP Two Way

23

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/?_queryId=query-all-ids"

The resulting JSON object should look something like this, but all on one line.

{
 "query-time-ms": 1,
 "result": [
 {
 "_id": "56f0fb7e-3837-464d-b9ec-9d3b6af665c3",
 "_rev": "0"
 }
],
 "conversion-time-ms": 0
 }

To retrieve the user, get the object by ID.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/56f0fb7e-3837-464d-b9ec-9d3b6af665c3"

Read openidm/samples/sample2/conf/sync.json and openidm/samples/sample2/
conf/provisioner.openicf-ldap.json to understand the layout of the user object
in the repository.

3.4 Sample 2b - LDAP Two Way
Like sample 2, sample 2b also connects to an external LDAP server.

Unlike sample 2, however, sample 2b has two mappings configured, one from
the LDAP server to the OpenIDM repository, and the other from the OpenIDM
repository to the LDAP server.

3.4.1 External LDAP Configuration

Configure the LDAP server as for sample 2, Section 3.3.1, “LDAP Server
Configuration”. The LDAP user must have write access to create users from
OpenIDM on the LDAP server.

Install the Sample

24

3.4.2 Install the Sample
Prepare OpenIDM as described in Section 3.1.2, “Preparing OpenIDM”, then
start OpenIDM with the configuration for sample 2b.

$ cd /path/to/openidm
$./startup.sh -p samples/sample2b

3.4.3 Running the Sample
Run reconciliation over the REST interface.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemLdapAccounts_managedUser"

Successful reconciliation returns an "_id" object.

With the configuration of sample 2b, OpenIDM creates user objects from LDAP in
OpenIDM, assigning the new objects random unique IDs. To list user objects by
ID, run a query over the REST interface.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/?_queryId=query-all-ids"

The resulting JSON object should look something like this, but all on one line.

{
 "query-time-ms": 1,
 "result": [
 {
 "_id": "56f0fb7e-3837-464d-b9ec-9d3b6af665c3",
 "_rev": "0"
 }
],
 "conversion-time-ms": 0
 }

To retrieve the user, get the object by ID.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/56f0fb7e-3837-464d-b9ec-9d3b6af665c3"

Sample 2c - Synchronizing
LDAP Group Membership

25

Test the second mapping by creating a user in the OpenIDM repository. On
UNIX:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --data '{"email":"fdoe@example.com","familyName":"Doe","userName":"fdoe",
 "givenName":"Felicitas","displayName":"Felicitas Doe"}'
 --request PUT
 "http://localhost:8080/openidm/managed/user/fdoe"

On Windows:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request PUT
 --data "{\"email\":\"fdoe@example.com\",\"familyName\":\"Doe\", \"userName\":\"fdoe\",
 \"givenName\":\"Felicitas\",\"displayName\":\"Felicitas Doe\"}"
 "http://localhost:8080/openidm/managed/user/fdoe"

Run reconciliation again to create the new user in the LDAP directory.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemLdapAccounts_managedUser"

Test that the reconciliation has been successful by locating the new user in the
LDAP directory.

$ /path/to/OpenDJ/bin/ldapsearch
 --bindDN "cn=Directory Manager"
 --bindPassword password
 --hostname localhost
 --port 1389
 --baseDN "dc=example,dc=com"
 "uid=fdoe"
dn: uid=fdoe,ou=People,dc=example,dc=com
mail: fdoe@example.com
givenName: Felicitas
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: top
uid: fdoe
cn: Felicitas Doe
sn: Doe

3.5 Sample 2c - Synchronizing LDAP Group
Membership

External LDAP Configuration

26

Like sample 2b, sample 2c also connects to an external LDAP server. The only
difference is that in sample 2c, LDAP Group Memberships are synchronized.

3.5.1 External LDAP Configuration

Configure the LDAP server as for sample 2, Section 3.3.1, “LDAP Server
Configuration”. The LDAP user must have write access to create users from
OpenIDM on the LDAP server.

In addition, two LDAP Groups should be created, which can be found in the LDIF
file: openidm/samples/sample2c/data/Example.ldif:

dn: ou=Groups,dc=example,dc=com
ou: Groups
objectClass: organizationalUnit
objectClass: top

dn: cn=openidm,ou=Groups,dc=example,dc=com
uniqueMember: uid=jdoe,ou=People,dc=example,dc=com
cn: openidm
objectClass: groupOfUniqueNames
objectClass: top

dn: cn=openidm2,ou=Groups,dc=example,dc=com
cn: openidm2
objectClass: groupOfUniqueNames
objectClass: top

The user with dn uid=jdoe,ou=People,dc=example,dc=com is also imported with the
Example.ldif file.

3.5.2 Install the Sample

Prepare OpenIDM as described in Section 3.1.2, “Preparing OpenIDM”, then
start OpenIDM with the configuration for sample 2c.

$ cd /path/to/openidm
$./startup.sh -p samples/sample2c

3.5.3 Running the Sample

Run reconciliation over the REST interface.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemLdapAccounts_managedUser"

Running the Sample

27

Successful reconciliation returns an "_id" object.

With the configuration of sample 2c, OpenIDM creates user objects from LDAP in
OpenIDM, assigning the new objects random unique IDs. To list user objects by
ID, run a query over the REST interface.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/?_queryId=query-all-ids"

The resulting JSON object should look something like this, but all on one line.

{
 "query-time-ms": 1,
 "result": [
 {
 "_id": "56f0fb7e-3837-464d-b9ec-9d3b6af665c3",
 "_rev": "0"
 }
],
 "conversion-time-ms": 0
 }

To retrieve the user, get the object by ID.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/56f0fb7e-3837-464d-b9ec-9d3b6af665c3"

Your user's object should contain a property like:

"ldapGroups":["cn=openidm,ou=Groups,dc=example,dc=com"]

Now change the user on the OpdenIDM side with the following REST call (on
UNIX):

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 -d '[{"replace":"ldapGroups","value": ["cn=openidm2,ou=Groups,dc=example,dc=com"]}]'
 "http://localhost:8080/openidm/managed/user
 ?_action=patch&_queryId=for-userName&uid=jdoe"

On Windows, you might need to escape certain characters, so your REST call will
look like this:

Sample 2d - Synchronizing
LDAP Groups

28

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 -d "[{\"replace\":\"ldapGroups\",\"value\": [\"cn=openidm2,ou=Groups,dc=example,dc=com\"]}]"
 "http://localhost:8080/openidm/managed/user
 ?_action=patch&_queryId=for-userName&uid=jdoe"

This will change the user's ldapGroups property in OpenIDM
from "cn=openidm,ou=Groups,dc=example,dc=com" to
"cn=openidm2,ou=Groups,dc=example,dc=com" and, as a result, the user will be
removed from the one LDAP group and added to the other LDAP group on
OpenDJ.

By default, automatic synchronization is enabled. This means that when you
update a managed object, any mappings defined in the sync.json file are
automatically executed to update the target system. For more information, see
Synchronization Mappings File in the Integrator's Guide.

3.6 Sample 2d - Synchronizing LDAP Groups
Sample 2d also connects to an external LDAP server. This sample focuses on
LDAP Group synchronization.

3.6.1 External LDAP Configuration

Configure the LDAP server as for sample 2, Section 3.3.1, “LDAP Server
Configuration”. The LDAP user must have write access to create users from
OpenIDM on the LDAP server.

In addition, two LDAP Groups should be created, which can be found in the LDIF
file: openidm/samples/sample2d/data/Example.ldif (if they have not already been
added through sample 2c):

Install the Sample

29

dn: ou=Groups,dc=example,dc=com
ou: Groups
objectClass: organizationalUnit
objectClass: top

dn: cn=openidm,ou=Groups,dc=example,dc=com
uniqueMember: uid=jdoe,ou=People,dc=example,dc=com
cn: openidm
objectClass: groupOfUniqueNames
objectClass: top

dn: cn=openidm2,ou=Groups,dc=example,dc=com
uniqueMember: uid=jdoe,ou=People,dc=example,dc=com
cn: openidm2
objectClass: groupOfUniqueNames
objectClass: top

The user with dn uid=jdoe,ou=People,dc=example,dc=com is also imported with the
Example.ldif file.

3.6.2 Install the Sample

Prepare OpenIDM as described in Section 3.1.2, “Preparing OpenIDM”, then
start OpenIDM with the configuration for sample 2d.

$ cd /path/to/openidm
$./startup.sh -p samples/sample2d

3.6.3 Running the Sample

Run reconciliation for the groups mapping over the REST interface.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemLdapGroups_managedGroup"

Successful reconciliation returns an "_id" object.

With the configuration of sample 2d, OpenIDM creates group objects from LDAP
in OpenIDM. To list group objects by ID, run a query over the REST interface.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/group/?_queryId=query-all-ids"

Sample 3 - Scripted SQL

30

The resulting JSON object should look something like this, but all on one line.

{
 "query-time-ms":1,
 "result":[
 {
 "_id":"3c704429-aacd-4995-816a-fac33451c642"
 },
 {
 "_id":"b0982152-5099-4358-bdd1-45a39ebe0d77"
 }
]
}

To retrieve a group, get the object by ID.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/group/b0982152-5099-4358-bdd1-45a39ebe0d77"

Your group's object should be similar to the following:

{
 "_rev":"0",
 "dn":"cn=openidm,ou=Groups,dc=example,dc=com",
 "_id":"b0982152-5099-4358-bdd1-45a39ebe0d77",
 "description":[],
 "uniqueMember":["uid=jdoe,ou=People,dc=example,dc=com",],
 "name":["openidm"]
}

3.7 Sample 3 - Scripted SQL
Sample 3 shows an example configuration for the Scripted SQL connector. The
Scripted SQL connector communicates with the database through configurable
SQL scripts. Each operation, like create or delete, is represented by its own
script.

Prepare a fresh installation of OpenIDM before trying this sample.

3.7.1 External Configuration

In this example OpenIDM communicates with an external MySQL database
server.

The sample expects the following configuration for MySQL:

Install the Sample

31

• The database is available on the local host.

• The database listens on port 3306.

• You can connect over the network to the database with user root and password
password.

• MySQL serves a database called HRDB with a table called Users.

• The database schema is as described in the data definition language file,
openidm/samples/sample3/data/sample_HR_DB.mysql. Import the file into MySQL
before running the sample.

$./bin/mysql -u root -p < /path/to/openidm/samples/sample3/data/sample_HR_DB.mysql
Enter password:
$

Make sure MySQL is running.

3.7.2 Install the Sample
• Prepare OpenIDM as described in Section 3.1.2, “Preparing OpenIDM”.

• OpenIDM requires a MySQL driver, the MySQL Connector/J. Download MySQL
Connector/J, version 5.1 or later. Unpack the delivery and copy the .jar into the
openidm/bundle directory.

$ cp mysql-connector-java-version-bin.jar /path/to/openidm/bundle/

• In openidm/samples/sample3/conf/provisioner.openicf-scriptedsql.json, edit
the paths to the scripts (starting with /opt/openidm/) to match your installation.

• Start OpenIDM with the configuration for sample 3.

$ cd /path/to/openidm
$./startup.sh -p samples/sample3

If the configuration of the external database is correct, then OpenIDM should
show five users during startup, for example:

./startup.sh -p samples/sample3
Using OPENIDM_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m
Using LOGGING_CONFIG: -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
Using boot properties at /path/to/openidm/conf/boot/boot.properties
OpenIDM version "" (revision: XXXX)
bob
rowley
louis
john
jdoe

Run the Sample

32

The check method, executed for each connected resource, executes a select *
from Users statement.

3.7.3 Run the Sample

The sample 3 sync.json configuration file contains a mapping to reconcile
OpenIDM and the external database. Run the reconciliation with the following
command.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemHrdb_managedUser"

Reconciliation creates the five users from the database in the OpenIDM
repository. Check the result with the following command.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/?_queryId=query-all-ids"

The result should resemble the following JSON object.

{
 "conversion-time-ms": 0,
 "result": [
 {
 "_rev": "0",
 "_id": "8366a23d-f6cf-46df-9746-469bf45aafcd"
 },
 {
 "_rev": "0",
 "_id": "3f90933b-9397-4897-84d0-03ed8d99f61e"
 },
 {
 "_rev": "0",
 "_id": "8fbf759d-bebc-42ed-b321-b69487b4470f"
 },
 {
 "_rev": "0",
 "_id": "9592de42-a8ef-4db3-9c6c-7d191e39b084"
 },
 {
 "_rev": "0",
 "_id": "fd962b71-752a-444b-8492-35bff57bec69"
 }
],
 "query-time-ms": 1
}

Sample 4 - CSV File

33

To view the JSON for one of the users, get the user by the value of the _id.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/8366a23d-f6cf-46df-9746-469bf45aafcd"

3.8 Sample 4 - CSV File
Sample 4 deals with a comma-separated value file as the external resource.
The file name is part of the sample configuration. Therefore you do not need to
manage any other external resources.

3.8.1 Install the Sample

No external configuration is required for this sample. Prepare OpenIDM as
described in Section 3.1.2, “Preparing OpenIDM”, then start up OpenIDM with
the configuration of sample 4.

$ cd /path/to/openidm
$./startup.sh -p samples/sample4

3.8.2 Run the Sample

The sample4/data/hr.csv file contains two example users. The first line of the
file sets the attribute names. Running reconciliation creates two users in the
OpenIDM repository

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemHrAccounts_managedUser"

Check the results of reconciliation with the following command.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/?_queryId=query-all-ids"

The result should resemble the following JSON object, but all on one line.

Sample 5 - Synchronization
of Two Resources

34

{
 "query-time-ms": 1,
 "result": [
 {
 "_id": "VDART",
 "_rev": "0"
 },
 {
 "_id": "DDOE",
 "_rev": "0"
 }
],
 "conversion-time-ms": 0
 }

To view the JSON for one of the users, get the user by the value of the _id.

$ curl
 --header "X-OpenIDM-Username-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/DDOE"

{
 "password": "Z29vZA==",
 "employeeNumber": "123456",
 "givenName": "Darth",
 "userName": "DDOE",
 "familyName": "Doe",
 "email": "doe@forgerock.org",
 "_rev": "0",
 "_id": "DDOE"
}

3.9 Sample 5 - Synchronization of Two Resources
Sample 5 demonstrates the flow of data from one external resource to another.
The resources are called LDAP and AD, but in the sample both directory-like
resources are simulated with XML files.

3.9.1 Install the Sample

No external configuration is required for this sample. Prepare OpenIDM as
described in Section 3.1.2, “Preparing OpenIDM”, then start up OpenIDM with
the configuration of sample 5.

$ cd /path/to/openidm
$./startup.sh -p samples/sample5

Run the Sample

35

The XML files that are used are located in the openidm/samples/sample5/data/
folder. When you start OpenIDM with the sample 5 configuration, it creates
xml_AD_Data.xml, which does not contain users until you run reconciliation.

3.9.2 Run the Sample

Run reconciliation between OpenIDM and the pseudo-LDAP resource.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemLdapAccounts_managedUser"

This command creates a user in the repository and also in the pseudo AD
resource, represented by the samples/sample5/data/xml_AD_Data.xml file.

3.10 Sample 6 - LiveSync Between Two LDAP Servers
Sample 6 resembles sample 5, but sample 6 uses two real LDAP connections. The
default sample configuration assumes two LDAP server instances running on the
local host, but listening on different LDAP ports.

To simplify setup, you can configure both provisioners to point to the same LDAP
server, and only use different base DNs, so you can simulate use of two directory
servers with a single OpenDJ server, for example.

Sample 6 picks up new and changed users from the LDAP suffix, ou=people,
dc=example,dc=com, and sends updates to the "Active Directory" suffix ou=people,
o=ad. To keep the example relatively simple, no configuration is provided for the
flow from AD to LDAP.

3.10.1 External Configuration

Out of the box, the sample provisioners are configured to use two independent
LDAP servers, one listening on port 1389 and one on port 4389.

To simplify your setup, you can change the sample to connect to a single LDAP
server representing both external resources by using the same port numbers
in both provisioner .json files. For example, change conf/provisioner.openicf-
ad.json so that the port number line reads "port" : 1389.

http://www.forgerock.org/opendj.html

External Configuration

36

3.10.1.1 Prepare OpenDJ For LiveSync

With LiveSync, OpenIDM detects changes in an external resource as they
happen. OpenIDM detects changes in OpenDJ by reading the External Change
Log (ECL). The ECL is presented as an LDAP subtree with base DN cn=changelog.
Each change is represented as an entry in the subtree. Each change entry
remains in the subtree until the log is purged (by default every three days).

You turn on the external change log in OpenDJ by enabling replication. OpenDJ
provides the change log even if it does not, in fact, replicate data to another
OpenDJ server. Note that OpenDJ will log, in this case, harmless error messages
if replication is enabled without a connection to another replica.

To enable replication without another server, set up replication when you install
OpenDJ.

3.10.1.2 LDAP Configuration

Sample 6 provides the configuration for two external LDAP servers, set up as
follows.

• Both LDAP servers run on the local host.

• The LDAP server "LDAP" listens on port 1389.

External Configuration

37

• The LDAP server "AD" listens on port 4389. (If you want to use a single LDAP
server instance, change this to 1389.)

• Both LDAP servers have a user with DN cn=Directory Manager and password
password who can read and write to the data and read the change log.

• User objects are stored under:

• Base DN ou=people,o=ad for the connector called "AD".

• Base DN ou=people,dc=example,dc=com for the connector called "LDAP".

• User objects have the object class inetOrgPerson.

• User objects have the following attributes:

• uid

• sn

• cn

• givenName

• mail

• description

The LDIF representation of an example user is as follows.

dn: uid=jdoe,ou=People,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: top
givenName: John
uid: jdoe
cn: John Doe
telephoneNumber: 12345
sn: Doe
mail: ddoe@example.com
description: Created by OpenIDM

Prepare the LDAP servers by creating the base DN dc=example,dc=com on the first
server and o=AD on the second server, and then importing the following objects.

For the "LDAP" directory, import samples/sample6/data/Example.ldif.

Install the Sample

38

dn: dc=com
objectClass: domain
objectClass: top
dc: com

dn: dc=example,dc=com
objectClass: domain
objectClass: top
dc: example

dn: ou=People,dc=example,dc=com
ou: people
description: people
objectclass: organizationalunit

dn: uid=jdoe,ou=People,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: top
givenName: John
uid: jdoe
cn: John Doe
telephoneNumber: 12345
sn: Doe
mail: jdoe@example.com
description: Created for OpenIDM

For the "AD" directory import samples/sample6/data/AD.ldif.

dn: o=AD
objectClass: domain
objectClass: top
dc: organization

dn: ou=People,o=AD
ou: people
description: people
objectclass: organizationalunit

3.10.2 Install the Sample

Prepare OpenIDM as described in Section 3.1.2, “Preparing OpenIDM”, then
start OpenIDM with the configuration for sample 6.

$ cd /path/to/openidm
$./startup.sh -p samples/sample6

3.10.3 Running the Sample

The following sections show how to run the sample once off, with reconciliation,
and continuously with LiveSync.

Running the Sample

39

3.10.3.1 Using Reconciliation

Start up OpenIDM, and then run reconciliation over the REST interface.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemLdapAccounts_managedUser"

The result of a successful reconciliation is an _id object.

{"_id":"9ece3807-08c3-4ec6-87fb-a6a2d0c71cee"}

With the configuration for sample 6, OpenIDM creates user objects from LDAP in
the internal repository, and also in the target AD suffix.

After reconciliation, list all users in the repository.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/?_queryId=query-all-ids"

The result should resemble the following JSON object.

{
 "conversion-time-ms": 0,
 "result": [
 {
 "_rev": "0",
 "_id": "b6b76e9c-d534-4d0a-ac81-87153169a223"
 }
],
 "query-time-ms": 0
}

To read the user object, use the _id value.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/b6b76e9c-d534-4d0a-ac81-87153169a223"

The result should resemble the following JSON object, though all on one line.

Running the Sample

40

{
 "displayName": "John Doe",
 "givenName": "John",
 "userName": "jdoe",
 "familyName": "Doe",
 "description": "Created for OpenIDM",
 "email": "jdoe@example.com",
 "_rev": "0",
 "_id": "b6b76e9c-d534-4d0a-ac81-87153169a223"
}

You can also view users created in the AD suffix with the following ldapsearch
command:

$ /path/to/OpenDJ/bin/ldapsearch
 --bindDN "cn=Directory Manager"
 --bindPassword password
 --hostname `hostname`
 --port 4389
 --baseDN o=AD
 "(uid=*)"

dn: uid=jdoe,ou=people,o=ad
objectClass: person
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: top
givenName: John
description: Created for OpenIDM
uid: jdoe
cn: John Doe
sn: Doe
mail: jdoe@example.com

3.10.3.2 Using LiveSync

You can start reconciliation by using a schedule configuration or by using the
REST interface directly. However, you must start LiveSync by using a schedule.
The sample comes with the following schedule configuration file for LiveSync in
samples/sample6/conf/schedule-activeSynchroniser_systemLdapAccount.json.

{
 "enabled" : false,
 "type" : "cron",
 "schedule" : "0/15 * * * * ?",
 "invokeService" : "provisioner",
 "invokeContext" : {
 "action" : "liveSync",
 "source" : "system/ldap/account"
 },
 "invokeLogLevel" : "debug"
}

Sample 7 - Scripting
a SCIM-like Schema

41

LiveSync is disabled by default. Activate LiveSync by editing the file, schedule-
activeSynchroniser_systemLdapAccount.json, to change the "enabled" property
value to true. With LiveSync enabled, you can add and change LDAP users,
and see the changes in AD as OpenIDM flows the data between resources
dynamically.

3.11 Sample 7 - Scripting a SCIM-like Schema
Sample 7 demonstrates how you can use OpenIDM to expose user data with a
SCIM-like schema. The sample uses the XML file connector to read in attributes
from external accounts and construct a JSON object for users stored in the
OpenIDM repository. For more information about SCIM schema, see System for
Cross-Domain Identity Management: Core Schema 1.1.

3.11.1 Install the Sample
Prepare OpenIDM as described in Section 3.1.2, “Preparing OpenIDM”, then
start OpenIDM with the configuration for sample 7.

$ cd /path/to/openidm
$./startup.sh -p samples/sample7

3.11.2 Running the Sample
Run a reconciliation to pull the user from samples/sample7/data/
xmlConnectorData.xml into the OpenIDM internal repository.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemXmlfileAccounts_managedUser"

Reconciliation creates a user object in the repository. Retrieve the user from the
repository.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/DDOE1"

The user object has the following JSON representation.

{
 "groups": [
 {

http://www.simplecloud.info/specs/draft-scim-core-schema-01.html
http://www.simplecloud.info/specs/draft-scim-core-schema-01.html

Running the Sample

42

 "display": "US Employees",
 "value": "usemploys"
 },
 {
 "display": "EU Employees",
 "value": "euemploys"
 }
],
 "addresses": [
 {
 "country": "USA",
 "type": "work",
 "locality": "Hollywood",
 "primary": "true",
 "postalCode": "91608",
 "formatted": "100 Universal City Plaza\nHollywood, CA 91608 USA",
 "region": "CA",
 "streetAddress": "100 Universal City Plaza"
 },
 {
 "country": "USA",
 "type": "home",
 "locality": "Hollywood",
 "primary": "false",
 "postalCode": "91622",
 "formatted": "222 Universal City Plaza\nHollywood, CA 91622 USA",
 "region": "CA",
 "streetAddress": "222 Universal City Plaza"
 }
],
 "displayName": "John Doe",
 "userName": "DDOE1",
 "name": {
 "honorificPrefix": "Dr.",
 "honorificSuffix": "III",
 "givenName": "John",
 "formatted": "Dr. John H Doe III",
 "middleName": "Hias",
 "familyName": "Doe"
 },
 "externalId": "DDOE1",
 "emails": [
 {
 "primary": true,
 "value": "hallo@example.com",
 "type": "work"
 },
 {
 "type": "home",
 "value": "jdoe@forgerock.com"
 }
],
 "phoneNumbers": [
 {
 "type": "work",
 "value": "1234567"
 },
 {
 "type": "home",
 "value": "1234568"
 }
],

Sample 8 - Logging in Scripts

43

 "locale": null,
 "ims": [
 {
 "type": "aim",
 "value": "jonyOnAim"
 },
 {
 "type": "skype",
 "value": "skyperHiasl"
 }
],
 "schemas": "['urn:scim:schemas:core:1.0']",
 "_rev": "0",
 "_id": "DDOE1",
 "preferredLanguage": "en_US",
 "meta": {
 "lastModified": "Tue Dec 04 2012 17:22:56 GMT+0200 (SAST)"
 },
 "userType": "permanent",
 "photos": [
 {
 "type": "photo",
 "value": "https://photos.example.com/profilephoto/72930000000Ccne/F"
 },
 {
 "type": "thumbnail",
 "value": "https://photos.example.com/profilephoto/72930000000Ccne/T"
 }
],
 "title": "Mr.Univers",
 "timezone": "America/Denver",
 "profileUrl": "https://login.example.com/DDOE1",
 "nickName": "Jonny"
}

The sample scripts (samples/sample7/script/setScim*.js) transform the user data
from the resource into the JSON object layout required by SCIM schema.

3.12 Sample 8 - Logging in Scripts
OpenIDM provides a logger object with debug(), error(), info(), trace(), and
warn() functions that you can use to log messages to the OpenIDM console from
your scripts.

3.12.1 Install the Sample

Prepare OpenIDM as described in Section 3.1.2, “Preparing OpenIDM”, then
start OpenIDM with the configuration for sample 8.

$ cd /path/to/openidm
$./startup.sh -p samples/sample8

The scripts under samples/sample8/script/ show brief log message examples.

Running the Sample

44

3.12.2 Running the Sample

Run reconciliation over the REST interface.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemXmlfileAccounts_managedUser"

Successful reconciliation returns an "_id" object.

Notice the log messages displayed on the OpenIDM (Felix) console. The following
example omits timestamps and so forth to show only the message strings.

->
...Case no Source: the source object contains: = null
...Case emptySource: the source object contains: = {__UID__=1, email=[mail1@...
...Case sourceDescription: the source object contains: = Created By XML1
...Case onCreate: the source object contains: = {__UID__=1, email=[mail1@...
...Case result: the source object contains: = {UNQUALIFIED={count=0, ids=[]},...

3.13 Sample 9 - Asynchronous Reconciliation Using
Workflows
Sample 9 demonstrates asynchronous reconciliation using workflows.
Reconciliation generates an approval request for each ABSENT user. The
configuration for this action is defined in the conf/sync.json file, which specifies
that an ABSENT condition should launch the managedUserApproval workflow:

...
 {
 "situation" : "ABSENT",
 "action" : {
 "workflowName" : "managedUserApproval",
 "type" : "text/javascript",
 "file" : "bin/defaults/script/workflow/workflow.js"
 }
 },
 ...

When the request is approved by an administrator, the absent users are created
by an asynchronous reconciliation process.

Prepare a fresh installation of OpenIDM before trying this sample.

Install the Sample

45

3.13.1 Install the Sample

Prepare OpenIDM as described in Section 3.1.2, “Preparing OpenIDM”, then
start OpenIDM with the configuration for sample 9.

$ cd /path/to/openidm
$./startup.sh -p samples/sample9

3.13.2 Running the Sample

1. Run reconciliation over the REST interface.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemXmlfileAccounts_managedUser"

Successful reconciliation returns an "_id" object.

The reconciliation starts an approval workflow for each ABSENT user. These
approval workflows (named managedUserApproval) wait for the request to be
approved by an administrator.

2. Query the invoked workflow task instances over REST.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/workflow/taskinstance?_queryId=query-all-ids"

The request returns a workflow process ID.

{
 "result": [
 {
 "name": "Evaluate request",
 "_id": "13"
 }
]
}

3. Approve the requests over REST, by setting the "requestApproved" parameter
for the specified task instance to "true".

On UNIX:

Running the Sample

46

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 --data '{"requestApproved": "true"}'
 "http://localhost:8080/openidm/workflow/taskinstance/13
 ?_action=complete"

On Windows:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 --data "{\"requestApproved\": \"true\"}"
 "http://localhost:8080/openidm/workflow/taskinstance/13
 ?_action=complete"

A successful call returns the following:

{"Task action performed":"complete"}

4. Once the request has been approved, an asynchronous reconciliation
operation runs, which creates the users whose accounts were approved in the
previous step.

List the users that were created by the asynchronous reconciliation.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user?_queryId=query-all-ids"

One user is returned.

 {
 "conversion-time-ms": 0,
 "result": [
 {
 "_rev": "0",
 "_id": "1"
 }
],
 "query-time-ms": 1
}

47

Chapter 4

Installing a Repository For Production

By default, OpenIDM uses OrientDB for its internal repository so that you do not
have to install a database in order to evaluate OpenIDM. Before using OpenIDM
in production, however, you must replace OrientDB with a supported repository.

OpenIDM supports the use of MySQL and MS SQL as an internal repository. For
details of the supported versions, see Before You Install OpenIDM Software in
the Release Notes.

Procedure 4.1. To Set Up OpenIDM With MySQL

After you have installed MySQL on the local host and before starting OpenIDM
for the first time, set up OpenIDM to use the new repository, as described in the
following sections.

1. Download MySQL Connector/J, version 5.1 or later from the MySQL website.
Unpack the delivery, and copy the .jar into the openidm/bundle directory.

$ cp mysql-connector-java-version-bin.jar /path/to/openidm/bundle/

2. Make sure that OpenIDM is stopped.

$ cd /path/to/openidm/
$./shutdown.sh
OpenIDM is not running, not stopping.

3. Remove openidm/conf/repo.orientdb.json.

http://dev.mysql.com/downloads/mysql/

48

$ cd /path/to/openidm/conf/
$ rm repo.orientdb.json

4. Copy openidm/samples/misc/repo.jdbc.json to the openidm/conf directory.

$ cd /path/to/openidm/conf
$ cp ../samples/misc/repo.jdbc.json .

5.
Import the data definition language script for OpenIDM into MySQL.

$./bin/mysql -u root -p < /path/to/openidm/db/scripts/mysql/openidm.sql
Enter password:
$

This step creates an openidm database for use as the internal repository, and
a user openidm with password openidm who has all the required privileges to
update the database.

$ cd /path/to/mysql
$./bin/mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 18
Server version: 5.5.19 MySQL Community Server (GPL)
...
mysql> use openidm;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> show tables;
+---------------------------+
| Tables_in_openidm |
+---------------------------+
| auditaccess |
| auditactivity |
| auditrecon |
| configobjectproperties |
| configobjects |
| genericobjectproperties |
| genericobjects |
| internaluser |
| links |
| managedobjectproperties |
| managedobjects |
| objecttypes |
| schedulerobjectproperties |
| schedulerobjects |
| uinotification |
+---------------------------+
17 rows in set (0.00 sec)

The table names are similar to those used with OrientDB.

49

6. Update openidm/conf/repo.jdbc.json as necessary, to reflect your MySQL
deployment.

"connection" : {
 "dbType" : "MYSQL",
 "jndiName" : "",
 "driverClass" : "com.mysql.jdbc.Driver",
 "jdbcUrl" : "jdbc:mysql://localhost:3306/openidm",
 "username" : "openidm",
 "password" : "openidm",
 "defaultCatalog" : "openidm",
 "maxBatchSize" : 100,
 "maxTxRetry" : 5,
 "enableConnectionPool" : true
},

When you have set up MySQL for use as the OpenIDM internal repository, start
OpenIDM to check that the setup has been successful. After startup, you should
see that repo.jdbc is active, whereas repo.orientdb is unsatisfied.

$ cd /path/to/openidm
 $./startup.sh
 Using OPENIDM_HOME: /path/to/openidm
 Using OPENIDM_OPTS: -Xmx1024m
 Using LOGGING_CONFIG:
 -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
 Using boot properties at /path/to/openidm/conf/boot/boot.properties
 -> scr list
 Id State Name
 [19] [active] org.forgerock.openidm.config.starter
 [23] [active] org.forgerock.openidm.taskscanner
 [8] [active] org.forgerock.openidm.external.rest
 [12] [active] org.forgerock.openidm.provisioner.openicf.connectorinfoprovider
 [15] [active] org.forgerock.openidm.ui.simple
 [1] [active] org.forgerock.openidm.router
 [22] [active] org.forgerock.openidm.scheduler
 [14] [active] org.forgerock.openidm.restlet
 [7] [unsatisfied] org.forgerock.openidm.external.email
 [18] [unsatisfied] org.forgerock.openidm.repo.orientdb
 [6] [active] org.forgerock.openidm.sync
 [3] [active] org.forgerock.openidm.script
 [5] [active] org.forgerock.openidm.recon
 [2] [active] org.forgerock.openidm.scope
 [10] [active] org.forgerock.openidm.http.contextregistrator
 [20] [active] org.forgerock.openidm.config
 [0] [active] org.forgerock.openidm.audit
 [21] [active] org.forgerock.openidm.schedule
 [17] [active] org.forgerock.openidm.repo.jdbc
 [16] [active] org.forgerock.openidm.workflow
 [13] [active] org.forgerock.openidm.provisioner.openicf
 [4] [active] org.forgerock.openidm.managed
 [9] [active] org.forgerock.openidm.authentication
 [11] [active] org.forgerock.openidm.provisioner

50

Procedure 4.2. To Set Up OpenIDM With MS SQL

These instructions are specific to MS SQL Server 2008 R2 Express running on a
local Windows XP system. Adapt the instructions for your environment.

When you install MS SQL Server, note that OpenIDM has the following specific
configuration requirements:

• OpenIDM requires SQL Server authentication. During the MS SQL Server
installation, make sure that you select SQL Server authentication and not just
Windows authentication.

• During the Feature Selection installation step, make sure that at least SQL
Server Replication, Full Text Search, and Management Tools - Basic are
selected.

These instructions require SQL Management Studio so make sure that you
include Management Tools in the installation.

• TCP/IP must be enabled and configured for the correct IP address and port. To
configure TCP/IP, follow these steps:

1. Click Start > All Programs > MS SQL Server 2008 R2 > Configuration
Tools > SQL Server Configuration Manager

2. Expand the SQL Server Network Configuration item and select "Protocols
for SQLEXPRESS"

3. Double click TCP/IP and select Enabled > Yes

4. Select the IP Adresses tab and set the addresses and ports on which the
server will listen.

For this sample procedure, scroll down to IPAll and set TCP Dynamic Ports
to 1433 (the default port for MS SQL).

5. Click Apply, then OK.

6. Restart MS SQL Server for the configuration changes to take effect. To
restart the server, select SQL Server Services in the left pane, double click
SQL Server (SQLEXPRESS) and click Restart.

7. If you have a firewall enabled, ensure that the port you configured in the
previous step is open for OpenIDM to access MS SQL.

After you have installed MS SQL on the local host, install OpenIDM, if you have
not already done so, but do not start the OpenIDM instance. Import the data

51

definition and set up OpenIDM to use the new repository, as described in the
following steps.

1. Use SQL Management Studio to import the data definition language script
for OpenIDM into MS SQL.

a. Click Start > All Programs > MS SQL Server 2008 R2 > SQL Server
Management Studio

b. On the Connect to Server panel, select SQL Server Authentication from
the Authentication drop down list and log in as the current user (for
example, Administrator).

c. Select File > Open > File and navigate to the OpenIDM data definition
language script (path\to\openidm\db\scripts\mssql\openidm.sql). Click
Open to open the file.

d. Click Execute to run the script.

2. This step creates an openidm database for use as the internal repository, and
a user openidm with password Passw0rd who has all the required privileges
to update the database. You might need to refresh the view in SQL Server
Management Studio to see the openidm database in the Object Explorer.

Expand Databases > openidm > Tables. You should see the following tables
in the openidm database:

52

The table names are similar to those used with OrientDB.

3. OpenIDM requires an MS SQL driver that must be created from two separate
jar files. Create the driver as follows.

a. Download the JDBC Driver 4.0 for SQL Server
(sqljdbc_4.0.2206.100_enu.tar.gz) from Microsoft's download site. The
precise URL may vary, depending on your location.

Extract the executable Java archive file (sqljdbc4.jar) from the zip file,
using 7-zip or an equivalent file management application.

Copy the file to openidm\db\scripts\mssql.

b. Download the bnd Java archive file (biz.aQute.bnd.jar) that enables
you to create OSGi bundles. The file can be downloaded from http://
dl.dropbox.com/u/2590603/bnd/biz.aQute.bnd.jar. For more information
about bnd, see http://www.aqute.biz/Bnd/Bnd.

Copy the file to openidm\db\scripts\mssql.

c. Your openidm\db\scripts\mssql directory should now contain the
following files:

.\> ls \path\to\openidm\db\scripts\mssql
 biz.aQute.bnd.jar openidm.sql sqljdbc4.bnd sqljdbc4.jar

d. Bundle the two jar files together with the following command:

C:\> cd \path\to\openidm\db\scripts\mssql
./> java -jar biz.aQute.bnd.jar wrap -properties sqljdbc4.bnd sqljdbc4.jar

This step creates a single .bar file, named sqljdbc4.bar.

e. Rename the sqljdbc4.bar file to sqljdbc4-osgi.jar and copy it to the
openidm\bundle directory.

./> mv sqljdbc4.bar sqljdbc4-osgi.jar

./> cp sqljdbc4-osgi.jar \path\to\openidm\bundle

4. Remove the default OrientDB repository configuration file (openidm\conf
\repo.orientdb.json) from the configuration directory.

C:\> cd \path\to\openidm\conf\
.\> del repo.orientdb.json

5. Copy the repository configuration file for MS SQL (openidm\samples\misc
\repo.jdbc.json) to the configuration directory.

http://www.microsoft.com/en-us/download/details.aspx?id=11774
http://dl.dropbox.com/u/2590603/bnd/biz.aQute.bnd.jar
http://dl.dropbox.com/u/2590603/bnd/biz.aQute.bnd.jar
http://www.aqute.biz/Bnd/Bnd

53

C:\> cd \path\to\openidm\conf\
.\> cp ..\samples\misc\repo.jdbc-mssql.json .

6. Rename the MS SQL repository configuration file to repo.jdbc.json.

.\> mv repo.jdbc-mssql.json repo.jdbc.json

7. Update openidm\conf\repo.jdbc.json as necessary, to reflect your MS SQL
deployment.

{
 "connection" : {
 "dbType" : "SQLSERVER",
 "jndiName" : "",
 "driverClass" : "com.microsoft.sqlserver.jdbc.SQLServerDriver",
 "jdbcUrl" : "jdbc:sqlserver://localhost:1433;instanceName=default;databaseName=openidm;applicationName=OpenIDM",
 "username" : "openidm",
 "password" : "Passw0rd",
 "defaultCatalog" : "openidm",
 "maxBatchSize" : 100,
 "maxTxRetry" : 5,
 "enableConnectionPool" : true
 },
...

Specifically, check that the port matches what you have configured in MS
SQL.

When you have completed the preceding steps, start OpenIDM to check that the
setup has been successful. After startup, you should see that repo.jdbc is active,
whereas repo.orientdb is unsatisfied.

C:> cd \path\to\openidm
 ./> startup.bat
 "Using OPENIDM_HOME: \path\to\openidm"
 "Using OPENIDM_OPTS: -Xmx1024m"
 "Using LOGGING_CONFIG:
 -Djava.util.logging.config.file=\path\to\openidm\conf\logging.properties"
 Using boot properties at \path\to\openidm\conf\boot\boot.properties
 -> scr list
 Id State Name
 [19] [active] org.forgerock.openidm.config.starter
 [23] [active] org.forgerock.openidm.taskscanner
 [8] [active] org.forgerock.openidm.external.rest
 [12] [active] org.forgerock.openidm.provisioner.openicf.connectorinfoprovider
 [15] [active] org.forgerock.openidm.ui.simple
 [1] [active] org.forgerock.openidm.router
 [22] [active] org.forgerock.openidm.scheduler
 [14] [active] org.forgerock.openidm.restlet
 [7] [unsatisfied] org.forgerock.openidm.external.email
 [18] [unsatisfied] org.forgerock.openidm.repo.orientdb
 [6] [active] org.forgerock.openidm.sync
 [3] [active] org.forgerock.openidm.script
 [5] [active] org.forgerock.openidm.recon

54

 [2] [active] org.forgerock.openidm.scope
 [10] [active] org.forgerock.openidm.http.contextregistrator
 [20] [active] org.forgerock.openidm.config
 [0] [active] org.forgerock.openidm.audit
 [21] [active] org.forgerock.openidm.schedule
 [17] [active] org.forgerock.openidm.repo.jdbc
 [16] [active] org.forgerock.openidm.workflow
 [13] [active] org.forgerock.openidm.provisioner.openicf
 [4] [active] org.forgerock.openidm.managed
 [9] [active] org.forgerock.openidm.authentication
 [11] [active] org.forgerock.openidm.provisioner

55

Chapter 5

Removing and Moving OpenIDM
Software

This chapter shows you how to uninstall OpenIDM software and to move an
existing install to a different location.

Procedure 5.1. To Remove OpenIDM Software

1. (Optional) Stop OpenIDM services if they are running, by entering shutdown
at the -> prompt either on the command line, or on the System Information
tab of the Felix console.

-> shutdown

2. Remove the file system directory where you installed OpenIDM software.

$ rm -rf /path/to/openidm

3. (Optional) If you use a JDBC database for the internal repository, you can
drop the openidm database.

Procedure 5.2. To Move OpenIDM Software

If you want to move OpenIDM to a different directory, you do not have to
uninstall and reinstall. To move an existing OpenIDM instance, follow these
steps:

56

1. Shutdown OpenIDM, as described in To Stop the OpenIDM Services.

2. Remove the felix-cache directory.

$ cd path/to/openidm
$ rm -rf felix-cache

3. Move the files.

$ mv path/to/openidm path/to/new-openidm

4. Start OpenIDM in the new location.

$ cd path/to/new-openidm
$./startup.sh

57

OpenIDM Glossary

JSON JavaScript Object Notation, a lightweight data interchange
format based on a subset of JavaScript syntax. For more
information, see the JSON site.

managed object An object that represents the identity-related data managed
by OpenIDM. Managed objects are configurable, JSON-
based data structures that OpenIDM stores in its pluggable
repository. The default configuration of a managed object is
that of a user, but you can define any kind of managed object,
for example, groups or roles.

mapping A policy that is defined between a source object and a target
object during reconciliation or synchronization. A mapping
can also define a trigger for validation, customization,
filtering, and transformation of source and target objects.

OSGi A module system and service platform for the Java
programming language that implements a complete and
dynamic component model. For a good introduction, see the
OSGi site. OpenIDM services are designed to run in any OSGi
container, but OpenIDM currently runs in Apache Felix.

reconciliation During reconciliation, comparisons are made between
managed objects and objects on source or target systems.
Reconciliation can result in one or more specified actions,
including, but not limited to, synchronization.

http://www.json.org
http://www.osgi.org/About/WhyOSGi
http://felix.apache.org/site/index.html

58

resource An external system, database, directory server, or other
source of identity data to be managed and audited by the
identity management system.

REST Representational State Transfer. A software architecture style
for exposing resources, using the technologies and protocols
of the World Wide Web. REST describes how distributed data
objects, or resources, can be defined and addressed.

source object In the context of reconciliation, a source object is a data
object on the source system, that OpenIDM scans before
attempting to find a corresponding object on the target
system. Depending on the defined mapping, OpenIDM then
adjusts the object on the target system (target object).

synchronization The synchronization process creates, updates, or deletes
objects on a target system, based on the defined mappings
from the source system. Synchronization can be scheduled or
on demand.

system object A pluggable representation of an object on an external system.
For example, a user entry that is stored in an external LDAP
directory is represented as a system object in OpenIDM for
the period during which OpenIDM requires access to that
entry.System objects follow the same RESTful resource-based
design principles as managed objects.

target object In the context of reconciliation, a target object is a data object
on the target system, that OpenIDM scans after locating its
corresponding object on the source system. Depending on the
defined mapping, OpenIDM then adjusts the target object to
match the corresponding source object.

59

Index

A
Application container

Requirements, 1

D
Downloading, 2

G
Getting started, 4, 7

I
Installing, 2

Samples, 19

J
Java

Requirements, 1

R
Repository database

Evaluation version, 7
Production ready, 47
Requirements, 2
Table names, 48

S
Samples

Sample 1 - XML file, 7
Sample 2 - LDAP one way, 20
Sample 2b - LDAP two way, 23
Sample 2c - Synchronizing LDAP Group
Membership, 25
Sample 2d - Synchronizing LDAP Groups,
28
Sample 3 - Scripted SQL, 30
Sample 4 - CSV file, 33
Sample 5 - Synchronization of two
resources, 34
Sample 6 - LiveSync between two LDAP
servers, 35

Sample 7 - Scripting a SCIM-like Schema,
41
Sample 8 - Logging in Scripts, 43
Sample 9 - asynchronous reconciliation, 44

Starting OpenIDM, 2
Stopping OpenIDM, 6

U
Uninstalling, 55

60

	OpenIDM Installation Guide
	Table of Contents
	Preface
	1. Who Should Use this Guide
	2. Formatting Conventions
	3. Accessing Documentation Online
	4. Joining the Open Identity Platform Community

	1 Installing OpenIDM Services
	1.1. Before You Run OpenIDM
	1.1.1. Java Environment
	1.1.2. Application Container

	1.2. Installing and Running OpenIDM

	2 First OpenIDM Sample
	2.1. Before You Begin
	2.2. About the Sample
	2.3. Running Reconciliation
	2.4. Viewing Users and Logs
	2.5. Adding Users in a Resource
	2.6. Adding Users Through REST

	3 More OpenIDM Samples
	3.1. Before You Begin
	3.1.1. Installing the Samples
	3.1.2. Preparing OpenIDM

	3.2. Sample 1 - XML File
	3.3. Sample 2 - LDAP One Way
	3.3.1. LDAP Server Configuration
	3.3.2. Install the Sample
	3.3.3. Running the Sample

	3.4. Sample 2b - LDAP Two Way
	3.4.1. External LDAP Configuration
	3.4.2. Install the Sample
	3.4.3. Running the Sample

	3.5. Sample 2c - Synchronizing LDAP Group Membership
	3.5.1. External LDAP Configuration
	3.5.2. Install the Sample
	3.5.3. Running the Sample

	3.6. Sample 2d - Synchronizing LDAP Groups
	3.6.1. External LDAP Configuration
	3.6.2. Install the Sample
	3.6.3. Running the Sample

	3.7. Sample 3 - Scripted SQL
	3.7.1. External Configuration
	3.7.2. Install the Sample
	3.7.3. Run the Sample

	3.8. Sample 4 - CSV File
	3.8.1. Install the Sample
	3.8.2. Run the Sample

	3.9. Sample 5 - Synchronization of Two Resources
	3.9.1. Install the Sample
	3.9.2. Run the Sample

	3.10. Sample 6 - LiveSync Between Two LDAP Servers
	3.10.1. External Configuration
	3.10.1.1. Prepare OpenDJ For LiveSync
	3.10.1.2. LDAP Configuration

	3.10.2. Install the Sample
	3.10.3. Running the Sample
	3.10.3.1. Using Reconciliation
	3.10.3.2. Using LiveSync

	3.11. Sample 7 - Scripting a SCIM-like Schema
	3.11.1. Install the Sample
	3.11.2. Running the Sample

	3.12. Sample 8 - Logging in Scripts
	3.12.1. Install the Sample
	3.12.2. Running the Sample

	3.13. Sample 9 - Asynchronous Reconciliation Using Workflows
	3.13.1. Install the Sample
	3.13.2. Running the Sample

	4 Installing a Repository For Production
	5 Removing and Moving OpenIDM Software
	OpenIDM Glossary
	Index

