
OpenIDM Integrator's Guide

AndersAskåsen
PaulBryan
MarkCraig
AndiEgloff

LaszloHordos
MatthiasTristl

LanaFrost

,
, ,

Copyright © 2011-2013 ForgeRock AS

Abstract

Guide to configurating and integrating OpenIDM into identity management
solutions. The OpenIDM project offers flexible, open source services for automating
management of the identity life cycle.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock™ is the trademark of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING
THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO
NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute
the Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if
the fonts are renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software
without prior written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute
the modifications to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the
Font Software is furnished to do so, subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if
the fonts are renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from
Tavmjong Bah. For further information, contact: tavmjong @ free . fr.

Admonition graphics by Yannick Lung. Free for commerical use. Available at Freecns Cumulus.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://www.iconfinder.com/iconsets/freecns-cumulus

iii

Table of Contents
Preface .. vii

1. Who Should Use this Guide ... vii
2. Formatting Conventions .. vii
3. Accessing Documentation Online .. viii
4. Joining the Open Identity Platform Community ix

1. Architectural Overview .. 1
1.1. OpenIDM Modular Framework ... 2
1.2. Infrastructure Modules ... 2
1.3. Core Services ... 3
1.4. Access Layer .. 5

2. Starting and Stopping OpenIDM ... 7
2.1. To Start and Stop OpenIDM ... 7
2.2. Specifying the OpenIDM Startup Configuration 8
2.3. Obtaining Information About an OpenIDM Instance 12
2.4. Verifying the Health of an OpenIDM System 13
2.5. Displaying Information About Installed Modules 16
2.6. Starting OpenIDM in Debug Mode ... 17

3. OpenIDM Command-Line Interface .. 19
3.1. configexport ... 20
3.2. configimport ... 21
3.3. configureconnector ... 21
3.4. encrypt ... 22
3.5. keytool .. 25
3.6. validate ... 25

4. OpenIDM User Interface ... 27
4.1. Overview of the Default User Interface ... 27
4.2. Configuring the Default User Interface ... 28
4.3. Managing User Accounts With the User Interface 31
4.4. Managing Workflows From the User Interface 32
4.5. Changing the UI Theme ... 33
4.6. Using an External System for Password Reset 35
4.7. Providing a Logout URL to External Applications 36
4.8. Changing the UI Path ... 36
4.9. Disabling the UI ... 37

5. Configuring OpenIDM ... 39
5.1. OpenIDM Configuration Objects ... 39
5.2. Changing the Default Configuration ... 40
5.3. Configuring an OpenIDM System for Production 41
5.4. Configuring OpenIDM Over REST .. 42
5.5. Using Property Value Substitution in the Configuration 47
5.6. Adding Custom Endpoints .. 50

6. Accessing Data Objects ... 55
6.1. Accessing Data Objects by Using Scripts .. 55

OpenIDM Integrator's Guide

iv

6.2. Accessing Data Objects by Using the REST API 56
6.3. Defining and Calling Queries .. 56

7. Using Policies to Validate Data ... 63
7.1. Configuring the Default Policy .. 63
7.2. Extending the Policy Service .. 67
7.3. Disabling Policy Enforcement ... 69
7.4. Managing Policies Over REST .. 69

8. Configuring Server Logs ... 75
9. Connecting to External Resources ... 77

9.1. About OpenIDM & OpenICF ... 78
9.2. Accessing Remote Connectors .. 79
9.3. Configuring Connectors .. 81
9.4. Connector Configuration Examples ... 87
9.5. Creating Default Connector Configurations 114

10. Configuring Synchronization .. 123
10.1. Types of Synchronization .. 123
10.2. Managing Reconciliation Over REST ... 124
10.3. Triggering LiveSync Over REST .. 139
10.4. Flexible Data Model .. 140
10.5. Basic Data Flow Configuration .. 141
10.6. Synchronization Situations and Actions ... 149
10.7. Asynchronous Reconciliation ... 157
10.8. Configuring Case Sensitivity for Data Stores 158
10.9. Reconciliation Optimization .. 159
10.10. Correlation Queries .. 161
10.11. Advanced Data Flow Configuration ... 162
10.12. Scheduling Synchronization .. 165

11. Scheduling Tasks and Events .. 169
11.1. Scheduler Configuration ... 169
11.2. Configuring Persistent Schedules .. 174
11.3. Schedule Examples ... 175
11.4. Service Implementer Notes ... 176
11.5. Scanning Data to Trigger Tasks .. 176

12. Managing Passwords ... 183
12.1. Enforcing Password Policy .. 183
12.2. Password Synchronization .. 184

13. Managing Authentication, Authorization and RBAC 193
13.1. OpenIDM Users .. 193
13.2. Authentication .. 194
13.3. Roles .. 196
13.4. Authorization .. 196

14. Securing & Hardening OpenIDM ... 201
14.1. Use SSL and HTTPS ... 201
14.2. Restrict REST Access to the HTTPS Port 201
14.3. Encrypt Data Internally & Externally .. 205
14.4. Use Message Level Security ... 205

OpenIDM Integrator's Guide

v

14.5. Replace Default Security Settings ... 207
14.6. Secure Jetty .. 209
14.7. Protect Sensitive REST Interface URLs ... 209
14.8. Protect Sensitive Files & Directories ... 210
14.9. Obfuscate Bootstrap Information .. 210
14.10. Remove or Protect Development & Debug Tools 211
14.11. Protect the OpenIDM Repository .. 211
14.12. Adjust Log Levels ... 212
14.13. Set Up Restart At System Boot ... 212

15. Integrating Business Processes and Workflows .. 213
15.1. BPMN 2.0 and the Activiti Tools ... 213
15.2. Setting Up Activiti Integration With OpenIDM 214
15.3. Managing Workflows Over the REST Interface 225
15.4. Example Activiti Workflows With OpenIDM 230

16. Using Audit Logs ... 239
16.1. Audit Log Types .. 239
16.2. Audit Log File Formats ... 240
16.3. Audit Configuration .. 243
16.4. Generating Reports ... 247

17. Sending Email ... 249
17.1. Sending Mail Over REST .. 250
17.2. Sending Mail From a Script .. 251

18. OpenIDM Project Best Practices .. 253
18.1. Implementation Phases ... 253

19. Troubleshooting ... 257
19.1. OpenIDM Stopped in Background ... 257
19.2. Internal Server Error During Reconciliation or Synchronization 258
19.3. The scr list Command Shows Sync Service As Unsatisfied 258
19.4. JSON Parsing Error .. 259
19.5. System Not Available .. 259
19.6. Bad Connector Host Reference in Provisioner Configuration 260
19.7. Missing Name Attribute .. 260

A. File Layout .. 263
B. Ports Used .. 271
C. Data Models and Objects Reference .. 273

C.1. Managed Objects ... 274
C.2. Configuration Objects ... 286
C.3. System Objects .. 289
C.4. Audit Objects ... 289
C.5. Links .. 289

D. Synchronization Reference .. 291
D.1. Object-Mapping Objects ... 291
D.2. Links .. 296
D.3. Queries .. 297
D.4. Reconciliation ... 298
D.5. REST API ... 299

OpenIDM Integrator's Guide

vi

E. REST API Reference ... 301
E.1. URI Scheme ... 301
E.2. Object Identifiers ... 301
E.3. Content Negotiation ... 301
E.4. Conditional Operations ... 302
E.5. Supported Methods .. 302

F. Scripting Reference ... 307
F.1. Scripting Configuration .. 307
F.2. Examples .. 308
F.3. Function Reference .. 309
F.4. Places to Trigger Scripts .. 318
F.5. Variables Available in Scripts ... 319
F.6. Debugging OpenIDM Scripts .. 321

G. Router Service Reference ... 323
G.1. Configuration ... 323
G.2. Example ... 327

H. Embedded Jetty Configuration .. 329
H.1. Using OpenIDM Configuration Properties in the Jetty Configuration 329
H.2. Jetty Default Settings ... 331
H.3. Registering Additional Servlet Filters ... 331

I. Release Levels & Interface Stability ... 335
I.1. Open Identity Platform Product Release Levels 335
I.2. Open Identity Platform Product Interface Stability 336

OpenIDM Glossary ... 339
Index ... 341

vii

Preface

This guide shows you how to integrate OpenIDM as part of a complete identity
management solution.

1 Who Should Use this Guide
This guide is written for systems integrators building identity management
solutions based on OpenIDM services. This guide describes OpenIDM, and shows
you how to set up OpenIDM as part of your identity management solution.

You do not need to be an OpenIDM wizard to learn something from this guide,
though a background in identity management and building identity management
solutions can help.

2 Formatting Conventions
Most examples in the documentation are created in GNU/Linux or Mac OS
X operating environments. If distinctions are necessary between operating
environments, examples are labeled with the operating environment name in
parentheses. To avoid repetition file system directory names are often given
only in UNIX format as in /path/to/server, even if the text applies to C:\path\to
\server as well.

Absolute path names usually begin with the placeholder /path/to/. This path
might translate to /opt/, C:\Program Files\, or somewhere else on your system.

Command line, terminal sessions are formatted as follows:

Accessing Documentation Online

viii

$ echo $JAVA_HOME
/path/to/jdk

Command output is sometimes formatted for narrower, more readable output
even though formatting parameters are not shown in the command. In the
following example, the query string parameter _prettyPrint=true is omitted and
some of the output is replaced with an ellipsis (...):

$ curl https://bjensen:hifalutin@opendj.example.com:8443/users/newuser
{
 "_rev" : "000000005b337348",
 "_id" : "newuser",
 ...
}

Program listings are formatted as follows:

class Test {
 public static void main(String [] args) {
 System.out.println("This is a program listing.");
 }
}

3 Accessing Documentation Online
Open Identity Platform core documentation, such as this document, aims to be
technically accurate and complete with respect to the software documented.

Core documentation therefore follows a three-phase review process designed to
eliminate errors:

• Product managers and software architects review project documentation
design with respect to the readers' software lifecycle needs.

• Subject matter experts review proposed documentation changes for technical
accuracy and completeness with respect to the corresponding software.

• Quality experts validate implemented documentation changes for technical
accuracy, completeness in scope, and usability for the readership.

The review process helps to ensure that documentation published for a Open
Identity Platform release is technically accurate and complete.

Fully reviewed, published core documentation is available at https://
doc.openidentityplatform.org/. Use this documentation when working with a
Open Identity Platform release.

https://doc.openidentityplatform.org/
https://doc.openidentityplatform.org/

Joining the Open Identity
Platform Community

ix

You can find pre-release draft documentation at the online community resource
center. Use this documentation when trying a nightly build.

4 Joining the Open Identity Platform Community
Visit the community resource center where you can find information about each
project, download nightly builds, browse the resource catalog, ask and answer
questions on the forums, find community events near you, and of course get the
source code as well.

https://github.com/OpenIdentityPlatform
https://github.com/OpenIdentityPlatform
https://github.com/OpenIdentityPlatform

x

1

Chapter 1

Architectural Overview

The following figure provides an overview of the OpenIDM architecture, which is
covered in more detail in subsequent sections of this chapter.

OpenIDM Modular Framework

2

1.1 OpenIDM Modular Framework
The OpenIDM framework is based on OSGi.

OSGi

OSGi is a module system and service platform for the Java programming
language that implements a complete and dynamic component model. For a
good introduction, see the OSGi site. While OpenIDM services are designed
to run in any OSGi container, OpenIDM currently runs in Apache Felix.

Servlet

The optional Servlet layer provides RESTful HTTP access to the managed
objects and services. While the Servlet layer can be provided by many
different engines, OpenIDM embeds Jetty by default.

1.2 Infrastructure Modules
OpenIDM infrastructure modules provide the underlying features needed for core
services.

BPMN 2.0 Workflow Engine

OpenIDM provides an embedded workflow and business process engine
based on Activiti and the Business Process Model and Notation (BPMN) 2.0
standard.

For more information, see Integrating Business Processes and Workflows.

Task Scanner

OpenIDM provides a task scanning mechanism that enables you to perform a
batch scan for a specified date in OpenIDM data, on a scheduled interval, and
then to execute a task when this date is reached.

For more information, see Scanning Data to Trigger Tasks.

Scheduler

The scheduler provides a cron-like scheduling component implemented
using the Quartz library. Use the scheduler, for example, to enable regular
synchronizations and reconciliations.

See the Scheduling Synchronization chapter for details.

http://www.osgi.org/About/WhyOSGi
http://felix.apache.org/site/index.html
http://www.quartz-scheduler.org

Core Services

3

Script Engine

The script engine is a pluggable module that provides the triggers and plugin
points for OpenIDM. OpenIDM currently implements a JavaScript engine.

Policy Service

OpenIDM provides an extensible policy service that enables you to apply
specific validation requirements to various components and properties.

For more information, see Using Policies to Validate Data.

Audit Logging

Auditing logs all relevant system activity to the configured log stores. This
includes the data from reconciliation as a basis for reporting, as well as
detailed activity logs to capture operations on the internal (managed) and
external (system) objects.

See the Using Audit Logs chapter for details.

Repository

The repository provides a common abstraction for a pluggable persistence
layer. OpenIDM supports use of MySQL to back the repository. Yet, plugin
repositories can include NoSQL and relational databases, LDAP, and even
flat files. The repository API operates using a JSON-based object model
with RESTful principles consistent with the other OpenIDM services. The
default, embedded implementation for the repository is the NoSQL database
OrientDB, making it easy to evaluate OpenIDM out of the box before using
MySQL in your production environment.

1.3 Core Services
The core services are the heart of the OpenIDM resource oriented unified object
model and architecture.

Object Model

Artifacts handled by OpenIDM are Java object representations of the
JavaScript object model as defined by JSON. The object model supports
interoperability and potential integration with many applications, services
and programming languages. As OpenIDM is a Java-based product, these
representations are instances of classes: Map, List, String, Number, Boolean,
and null.

OpenIDM can serialize and deserialize these structures to and from JSON as
required. OpenIDM also exposes a set of triggers and functions that system

Core Services

4

administrators can define in JavaScript which can natively read and modify
these JSON-based object model structures. OpenIDM is designed to support
other scripting and programming languages.

Managed Objects

A managed object is an object that represents the identity-related data
managed by OpenIDM. Managed objects are configurable, JSON-based data
structures that OpenIDM stores in its pluggable repository. The default
configuration of a managed object is that of a user, but you can define any
kind of managed object, for example, groups or roles.

You can access managed objects over the REST interface with a query similar
to the following:

 $ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/..."

System Objects

System objects are pluggable representations of objects on external systems.
For example, a user entry that is stored in an external LDAP directory is
represented as a system object in OpenIDM.

System objects follow the same RESTful resource-based design principles as
managed objects. They can be accessed over the REST interface with a query
similar to the following:

 $ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/system/..."

There is a default implementation for the OpenICF framework, that allows
any connector object to be represented as a system object.

Mappings

Mappings define policies between source and target objects and their
attributes during synchronization and reconciliation. Mappings can also
define triggers for validation, customization, filtering, and transformation of
source and target objects.

See the Configuring Synchronization chapter for details.

Access Layer

5

Synchronization & Reconciliation

Reconciliation provides for on-demand and scheduled resource comparisons
between the OpenIDM managed object repository and source or target
systems. Comparisons can result in different actions depending on the
mappings defined between the systems.

Synchronization provides for creating, updating, and deleting resources from
a source to a target system either on demand or according to a schedule.

See the Configuring Synchronization chapter for details.

1.4 Access Layer
The access layer provides the user interfaces and public APIs for accessing and
managing the OpenIDM repository and its functions.

RESTful Interfaces

OpenIDM provides REST APIs for CRUD operations and invoking
synchronization and reconciliation for both HTTP and Java.

See the REST API Reference appendix for details.

User Interfaces

User interfaces provide password management, registration, self-service, and
workflow services.

6

7

Chapter 2

Starting and Stopping OpenIDM

This chapter covers the scripts provided for starting and stopping OpenIDM, and
describes how to verify the health of a system, that is, that all requirements are
met for a successful system startup.

2.1 To Start and Stop OpenIDM
By default you start and stop OpenIDM in interactive mode.

To start OpenIDM interactively, open a terminal or command window, change to
the openidm directory, and run the startup script:

• startup.sh (UNIX)

• startup.bat (Windows)

The startup script starts OpenIDM, and opens an OSGi console with a -> prompt
where you can issue console commands.

To stop OpenIDM interactively in the OSGi console, enter the shutdown
command.

-> shutdown

You can also start OpenIDM as a background process on UNIX, Linux, and Mac
OS X. Follow these steps before starting OpenIDM for the first time.

Specifying the OpenIDM
Startup Configuration

8

1. If you have already started OpenIDM, then shut down OpenIDM and remove
the Felix cache files under openidm/felix-cache/.

-> shutdown
...
$ rm -rf felix-cache/*

2. Disable ConsoleHandler logging before starting OpenIDM by editing openidm/
conf/logging.properties to set java.util.logging.ConsoleHandler.level =
OFF, and to comment out other references to ConsoleHandler, as shown in the
following excerpt.

ConsoleHandler: A simple handler for writing formatted records to System.err
#handlers=java.util.logging.FileHandler, java.util.logging.ConsoleHandler
handlers=java.util.logging.FileHandler
...
--- ConsoleHandler ---
Default: java.util.logging.ConsoleHandler.level = INFO
java.util.logging.ConsoleHandler.level = OFF
#java.util.logging.ConsoleHandler.formatter = ...
#java.util.logging.ConsoleHandler.filter=...

3. Remove the text-based OSGi console bundle, bundle/
org.apache.felix.shell.tui-version.jar.

4. Start OpenIDM in the background.

$./startup.sh &

Alternatively, use the nohup command to keep OpenIDM running after you
log out.

$ nohup ./startup.sh &
[2] 394
$ appending output to nohup.out
$

To stop OpenIDM running as a background process, use the shutdown.sh script.

$./shutdown.sh
./shutdown.sh
Stopping OpenIDM (454)

2.2 Specifying the OpenIDM Startup Configuration
By default, OpenIDM starts up with the configuration and script files that are
located in the openidm/conf and openidm/script directories, and with the binaries
that are in the default install location. You can launch OpenIDM with a different

Specifying the OpenIDM
Startup Configuration

9

configuration and set of script files, and even with a different set of binaries, in
order to test a new configuration, managed multiple different OpenIDM projects,
or to run one of the included samples.

The startup.sh script enables you to specify the following elements of a running
OpenIDM instance.

• project location (-p)

The project location specifies the configuration and default scripts with which
OpenIDM will run.

If you specify the project location, OpenIDM does not try to locate
configuration objects in the default location. All configuration objects and any
artifacts that are not in the bundled defaults (such as custom scripts) must be
provided in the project location. This includes everything that is in the default
openidm/conf and openidm/script directories.

The following command starts OpenIDM with the configuration of sample 1:

$./startup.sh -p /path/to/openidm/samples/sample1

If an absolute path is not provided, the path is relative to the system property,
user.dir. If no project location is specified, OpenIDM is launched with the
default configuration in /path/to/openidm/conf.

• working location (-w)

The working location specifies the directory to which OpenIDM writes its
cache. Specifying a working location separates the project from the cached
data that the system needs to store. The working location includes everything
that is in the default openidm/db and openidm/audit, openidm/felix-cache, and
openidm/logs directories.

The following command specifies that OpenIDM writes its cached data to /
Users/admin/openidm/storage:

$./startup.sh -w /Users/admin/openidm/storage

If an absolute path is not provided, the path is relative to the system property,
user.dir. If no working location is specified, OpenIDM writes its cached data to
openidm/db and openidm/logs.

• startup configuration file (-c)

A customizable startup configuration file (named launcher.json) enables you to
specify how the OSGi Framework is started.

Specifying the OpenIDM
Startup Configuration

10

If no configuration file is specified, the default configuration (defined in /path/
to/openidm/bin/launcher.json) is used. The following command starts OpenIDM
with an alternative startup configuration file:

$./startup.sh -c /Users/admin/openidm/bin/launcher.json

You can modify the default startup configuration file to specify a different
startup configuration.

The customizable properties of the default startup configuration file are as
follows:

• "location" : "bundle" - resolves to the install location. You can also load
OpenIDM from a specified zip file ("location" : "openidm.zip") or you can
install a single jar file ("location" : "openidm-system-2.1.jar").

• "includes" : "**/openidm-system-*.jar" - the specified folder is scanned for
jar files relating to the system startup. If the value of "includes" is *.jar,
you must specifically exclude any jars in the bundle that you do not want to
install, by setting the "excludes" property.

• "start-level" : 1 - specifies a start level for the jar files identified
previously.

• "action" : "install.start" - a period-separated list of actions to be taken on
the jar files. Values can be one or more of "install.start.update.uninstall".

• "config.properties" - takes either a path to a configuration file (relative to
the project location) or a list of configuration properties and their values. The
list must be in the format "string":"string", for example:

 "config.properties" :
 {
 "property" : "value"
 },

• "system.properties" - takes either a path to a system.properties file (relative
to the project location) or a list of system properties and their values. The list
must be in the format "string":"string", for example:

 "system.properties" :
 {
 "property" : "value"
 },

Specifying the OpenIDM
Startup Configuration

11

• "boot.properties" - takes either a path to a boot.properties file (relative to
the project location) or a list of boot properties and their values.The list must
be in the format "string":object, for example:

 "boot.properties" :
 {
 "property" : true
 },

By default, properties files are loaded in the following order, and property values
are resolved in the reverse order:

1. system.properties

2. config.properties

3. boot.properties

If both system and boot properties define the same attribute, the property
substitution process locates the attribute in boot.properties and does not
attempt to locate the property in system.properties.

You can use variable substitution in any .json configuration file with the install,
working and project locations described previously. The following properties can
be substituted:

install.location
install.url
working.location
working.url
project.location
project.url

Property substitution takes the following syntax:

&{launcher.property}

For example, to specify the location of the OrientDB database, you can set the
dbUrl property in repo.orientdb.json as follows:

"dbUrl" : "local:&{launcher.working.location}/db/openidm",

The database location is then relative to a working location defined in the startup
configuration.

Obtaining Information
About an OpenIDM Instance

12

2.3 Obtaining Information About an OpenIDM
Instance
OpenIDM includes a customizable information service that provides detailed
information about a running OpenIDM instance. The information can be accessed
over the REST interface, under the context http://localhost:8080/openidm/info.

By default, OpenIDM provides the following information:

• Basic information about the health of the system.

This information can be accessed over REST at http://localhost:8080/openidm/
info/ping. For example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/info/ping"

 {"state":"ACTIVE_READY","shortDesc":"OpenIDM ready"}

The information is provided by the script openidm/bin/defaults/script/info/
ping.js.

• Information about the current OpenIDM session.

This information can be accessed over REST at http://localhost:8080/openidm/
info/login. For example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/info/login"

 {
 "username":"openidm-admin",
 "userid":{
 "id":"openidm-admin",
 "component":"internal/user"
 }
 }

The information is provided by the script openidm/bin/defaults/script/info/
login.js.

You can extend or override the default information that is provided by creating
your own script file and its corresponding configuration file in openidm/conf/
info-name.json. Custom script files can be located anywhere, although a best
practice is to place them in openidm/script/info. A sample customized script

Verifying the Health of
an OpenIDM System

13

file for extending the default ping service is provided in openidm/samples/
infoservice/script/info/customping.js. The corresponding configuration file is
provided in openidm/samples/infoservice/conf/info-customping.json.

The configuration file has the following syntax:

{
 "infocontext" : "ping",
 "type" : "text/javascript",
 "file" : "script/info/customping.js"
}

The parameters in the configuration file are as follows:

• "infocontext" specifies the relative name of the info endpoint under the info
context. The information can be accessed over REST at this endpoint, for
example, setting "infocontext" to "mycontext/myendpoint" would make the
information accessible over REST at http://localhost:8080/openidm/info/
mycontext/myendpoint.

• "type" specifies the type of the information source. Currently, only Javascript is
supported, so the type must be "text/javascript".

• "file" specifies the path to the Javascript file, if you do not provide a "source"
parameter.

• "source" specifies the actual Javascript, if you have not provided a "file"
parameter.

Additional properties can be passed to the script in this configuration file (
openidm/samples/infoservice/conf/info-name.json).

Script files in openidm/samples/infoservice/script/info/ have access to the
following objects:

• request - the request details, including the method called and any parameters
passed.

• healthinfo - the current health status of the system.

• openidm - access to the JSON resource API.

• Any additional properties that are defined in the configuration file (openidm/
samples/infoservice/conf/info-name.json.)

2.4 Verifying the Health of an OpenIDM System

Verifying the Health of
an OpenIDM System

14

Due to the highly modular, configurable nature of OpenIDM, it is often difficult
to assess whether a system has started up successfully, or whether the system is
ready and stable after dynamic configuration changes have been made.

OpenIDM provides a configurable health check service that verifies that the
required modules and services for an operational system are up and running.
During system startup, OpenIDM checks that these modules and services are
available and reports on whether any requirements for an operational system
have not been met. If dynamic configuration changes are made, OpenIDM
rechecks that the required modules and services are functioning so that system
operation is monitored on an ongoing basis.

The health check service reports on the state of the OpenIDM system and outputs
this state to the console and to the log files. The system can be in one of the
following states:

STARTING - OpenIDM is starting up
ACTIVE_READY - all of the specified requirements have been met to consider the
OpenIDM system ready
ACTIVE_NOT_READY - one or more of the specified requirements have not been met
and the OpenIDM system is not considered ready
STOPPING - OpenIDM is shutting down

By default, OpenIDM checks the following modules and services:

Required Modules

"org.forgerock.openicf.framework.connector-framework"
"org.forgerock.openicf.framework.connector-framework-internal"
"org.forgerock.openicf.framework.connector-framework-osgi"
"org.forgerock.openidm.audit"
"org.forgerock.openidm.core"
"org.forgerock.openidm.enhanced-config"
"org.forgerock.openidm.external-email"
"org.forgerock.openidm.external-rest"
"org.forgerock.openidm.filter"
"org.forgerock.openidm.httpcontext"
"org.forgerock.openidm.infoservice"
"org.forgerock.openidm.policy"
"org.forgerock.openidm.provisioner"
"org.forgerock.openidm.provisioner-openicf"
"org.forgerock.openidm.repo"
"org.forgerock.openidm.restlet"
"org.forgerock.openidm.smartevent"
"org.forgerock.openidm.system"
"org.forgerock.openidm.ui"
"org.forgerock.openidm.util"
"org.forgerock.commons.org.forgerock.json.resource"
"org.forgerock.commons.org.forgerock.json.resource.restlet"
"org.forgerock.commons.org.forgerock.restlet"
"org.forgerock.commons.org.forgerock.util"
"org.forgerock.openidm.security-jetty"
"org.forgerock.openidm.jetty-fragment"

Verifying the Health of
an OpenIDM System

15

"org.forgerock.openidm.quartz-fragment"
"org.ops4j.pax.web.pax-web-extender-whiteboard"
"org.forgerock.openidm.scheduler"
"org.ops4j.pax.web.pax-web-jetty-bundle"
"org.forgerock.openidm.repo-jdbc"
"org.forgerock.openidm.repo-orientdb"
"org.forgerock.openidm.config"
"org.forgerock.openidm.crypto"

Required Services

"org.forgerock.openidm.config"
"org.forgerock.openidm.provisioner"
"org.forgerock.openidm.provisioner.openicf.connectorinfoprovider"
"org.forgerock.openidm.external.rest"
"org.forgerock.openidm.audit"
"org.forgerock.openidm.policy"
"org.forgerock.openidm.managed"
"org.forgerock.openidm.script"
"org.forgerock.openidm.crypto"
"org.forgerock.openidm.recon"
"org.forgerock.openidm.info"
"org.forgerock.openidm.router"
"org.forgerock.openidm.scheduler"
"org.forgerock.openidm.scope"
"org.forgerock.openidm.taskscanner"

You can replace this list, or add to it, by adding the following lines to the openidm/
conf/boot/boot.properties file:

"openidm.healthservice.reqbundles" - overrides the default required bundles.
Bundles are specified as a list of symbolic names, separated by commas.
"openidm.healthservice.reqservices" - overrides the default required services.
Services are specified as a list of symolic names, separated by commas.
"openidm.healthservice.additionalreqbundles" - specifies required bundles (in
addition to the default list). Bundles are specified as a list of symbolic names,
separated by commas.
"openidm.healthservice.additionalreqservices" - specifies required services (in
addition to the default list). Services are specified as a list of symbolic names,
separated by commas.

By default, OpenIDM gives the system ten seconds to start up all the required
bundles and services, before the system readiness is assessed. Note that this is
not the total start time, but the time required to complete the service startup
after the framework has started. You can change this default by setting the
value of the servicestartmax property (in miliseconds) in the openidm/conf/boot/
boot.properties file. This example sets the startup time to five seconds.

openidm.healthservice.servicestartmax=5000

Displaying Information
About Installed Modules

16

The health check service works in tandem with the scriptable information
service. For more information see Section 2.3, “Obtaining Information About an
OpenIDM Instance”.

2.5 Displaying Information About Installed Modules
On a running OpenIDM instance, you can list the installed modules and their
states by typing the following command in the Felix administration console:

-> scr list
 Id State Name
[12] [active] org.forgerock.openidm.endpoint
[13] [active] org.forgerock.openidm.endpoint
[14] [active] org.forgerock.openidm.endpoint
[15] [active] org.forgerock.openidm.endpoint
[16] [active] org.forgerock.openidm.endpoint
[17] [active] org.forgerock.openidm.endpoint
[23] [unsatisfied] org.forgerock.openidm.info
[27] [active] org.forgerock.openidm.provisioner.openicf.connectorinfoprovider
[35] [active] org.forgerock.openidm.ui.simple
[29] [active] org.forgerock.openidm.restlet
[3] [active] org.forgerock.openidm.repo.orientdb
[7] [active] org.forgerock.openidm.scope
[5] [active] org.forgerock.openidm.audit
[32] [active] org.forgerock.openidm.schedule
[2] [unsatisfied] org.forgerock.openidm.repo.jdbc
[31] [active] org.forgerock.openidm.workflow
[9] [active] org.forgerock.openidm.managed
[28] [active] org.forgerock.openidm.provisioner.openicf
[22] [active] org.forgerock.openidm.health
[26] [active] org.forgerock.openidm.provisioner
[0] [active] org.forgerock.openidm.config.starter
[34] [active] org.forgerock.openidm.taskscanner
[20] [active] org.forgerock.openidm.external.rest
[6] [active] org.forgerock.openidm.router
[33] [active] org.forgerock.openidm.scheduler
[19] [unsatisfied] org.forgerock.openidm.external.email
[11] [active] org.forgerock.openidm.sync
[25] [active] org.forgerock.openidm.policy
[8] [active] org.forgerock.openidm.script
[10] [active] org.forgerock.openidm.recon
[4] [active] org.forgerock.openidm.http.contextregistrator
[1] [active] org.forgerock.openidm.config
[18] [active] org.forgerock.openidm.endpointservice
[30] [unsatisfied] org.forgerock.openidm.servletfilter
[24] [active] org.forgerock.openidm.infoservice
[21] [active] org.forgerock.openidm.authentication
->

To display additional information about a particular module or service, run the
following command, substituting the Id of that module from the preceding list.

-> scr info Id

The following example displays additional information about the router service:

Starting OpenIDM in Debug Mode

17

-> scr info 6
ID: 6
Name: org.forgerock.openidm.router
Bundle: org.forgerock.openidm.core (41)
State: active
Default State: enabled
Activation: immediate
Configuration Policy: optional
Activate Method: activate (declared in the descriptor)
Deactivate Method: deactivate (declared in the descriptor)
Modified Method: modified
Services: org.forgerock.json.resource.JsonResource
Service Type: service
Reference: ref_JsonResourceRouterService_ScopeFactory
 Satisfied: satisfied
 Service Name: org.forgerock.openidm.scope.ScopeFactory
 Multiple: single
 Optional: mandatory
 Policy: dynamic
Properties:
 component.id = 6
 component.name = org.forgerock.openidm.router
 felix.fileinstall.filename = file:/openidm/samples/sample1/conf/router.json
 jsonconfig = {
 "filters" : [
 {
 "onRequest" : {
 "type" : "text/javascript",
 "file" : "bin/defaults/script/router-authz.js"
 }
 },
 {
 "onRequest" : {
 "type" : "text/javascript",
 "file" : "bin/defaults/script/policyFilter.js"
 },
 "methods" : [
 "create",
 "update"
]
 }
]
}
 openidm.restlet.path = /
 service.description = OpenIDM internal JSON resource router
 service.pid = org.forgerock.openidm.router
 service.vendor = ForgeRock AS
->

2.6 Starting OpenIDM in Debug Mode
To debug custom libraries, you can start OpenIDM with the option to use the Java
Platform Debugger Architecture (JPDA).

• Start OpenIDM with the jpda option:

Starting OpenIDM in Debug Mode

18

$ cd /path/to/openidm
$./startup.sh jpda
./startup.sh
Using OPENIDM_HOME: /Users/lana/openidm
Using OPENIDM_OPTS: -Xmx1024m -Djava.compiler=NONE -Xnoagent -Xdebug -Xrunjdwp:transport=dt_socket,address=5005,server=y,suspend=n
Using LOGGING_CONFIG: -Djava.util.logging.config.file=/Users/lana/openidm/conf/logging.properties
Listening for transport dt_socket at address: 5005
Using boot properties at /Users/lana/openidm/conf/boot/boot.properties
OpenIDM version "2.1.0-SNAPSHOT" (revision: 2144)
-> OpenIDM ready

The relevant JPDA options are outlined in the startup script (startup.sh).

• In your IDE, attach a Java debugger to the JVM via socket, on port 5005.

Caution

This interface is internal and subject to change. If you depend
on this interface, contact ForgeRock support.

19

Chapter 3

OpenIDM Command-Line Interface

OpenIDM includes a basic command-line interface that provides a number of
utilities for managing the OpenIDM instance.

All of the utilities are subcommands of the cli.sh (UNIX) or cli.bat (Windows)
scripts. To use the utilities, you can either run them as subcommands, or launch
the cli script first, and then run the utility. For example, to run the encrypt utility
on a UNIX system:

$ cd /path/to/openidm
$./cli.sh
Using boot properties at /openidm/conf/boot/boot.properties
openidm# encrypt

or

$ cd /path/to/openidm
$./cli.sh encrypt ...

By default, the command-line utilities run with the properties defined in /path/
to/openidm/conf/boot/boot.properties.

The startup and shutdown scripts are not discussed in this chapter. For
information about these scripts, see Starting and Stopping OpenIDM.

The following sections describe the subcommands and their use. Examples
assume that you are running the commands on a UNIX system. For Windows
systems, use cli.bat instead of cli.sh.

configexport

20

3.1 configexport
The configexport subcommand exports all configuration objects to a specified
location, enabling you to reuse a system configuration in another environment.
For example, you can test a configuration in a development environment, then
export it and import it into a production environment. This subcommand also
enables you to inspect the active configuration of an OpenIDM instance.

OpenIDM must be running when you execute this command.

Usage is as follows:

$./cli.sh configexport /export-location

For example:

$./cli.sh configexport /tmp/conf

Configuration objects are exported, as .json files, to the specified directory.
Configuration files that are present in this directory are renamed as backup files,
with a timestamp, for example, audit.json.2012-12-19T12-00-28.bkp, and are not
overwritten. The following configuration objects are exported:

• The internal repository configuration (repo.orientdb.json or repo.jdbc.json)

• The log configuration (audit.json)

• The authentication configuration (authentication.json)

• The managed object configuration (managed.json)

• The connector configuration (provisioner.openicf-*.json)

• The router service configuration (router.json)

• The scheduler service configuration (scheduler.json)

• Any configured schedules (schedule-*.json)

• The synchronization mapping configuration (sync.json)

• If workflows are defined, the configuration of the workflow engine
(workflow.json) and the workflow access configuration (process-access.json)

• Any configuration files related to the user interface (ui-*.json)

• The configuration of any custom endpoints (endpoint-*.json)

• The policy configuration (policy.json)

configimport

21

3.2 configimport
The configimport subcommand imports configuration objects from the
specified directory, enabling you to reuse a system configuration from another
environment. For example, you can test a configuration in a development
environment, then export it and import it into a production environment.

The command updates the existing configuration from the import-location over
the OpenIDM REST interface. By default, if configuration objects are present
in the import-location and not in the existing configuration, these objects are
added. If configuration objects are present in the existing location but not in the
import-location, these objects are left untouched in the existing configuration.

If you include the --replaceAll parameter, the command wipes out the existing
configuration and replaces it with the configuration in the import-location.
Objects in the existing configuration that are not present in the import-location
are deleted.

Usage is as follows:

$./cli.sh configimport [--replaceAll] /import-location

For example:

$./cli.sh configimport --replaceAll /tmp/conf

Configuration objects are imported, as .json files, from the specified directory to
the conf directory. The configuration objects that are imported are outlined in the
corresponding export command, described in the previous section.

3.3 configureconnector
The configureconnector subcommand generates a configuration for an OpenICF
connector.

Usage is as follows:

$./cli.sh configureconnector connector-name

Select the type of connector that you want to configure. The following example
configures a new XML connector.

encrypt

22

$./cli.sh configureconnector myXmlConnector
Using boot properties at /openidm/conf/boot/boot.properties
Dec 11, 2012 10:35:37 AM org.restlet.ext.httpclient.HttpClientHelper start
INFO: Starting the HTTP client
0. CSV File Connector version
1. LDAP Connector version
2. org.forgerock.openicf.connectors.scriptedsql.ScriptedSQLConnector version
3. XML Connector version
4. Exit
Select [0..4]: 3
Edit the configuration file and run the command again. The configuration was
 saved to /openidm/temp/provisioner.openicf-myXmlConnector.json

The basic configuration is saved in a file named /openidm/temp/
provisioner.openicf-connector-name.json. Edit the configurationProperties
parameter in this file to complete the connector configuration. For an XML
connector, you can use the schema definitions in sample 0 for an example
configuration.

 "configurationProperties" : {
 "xmlFilePath" : "samples/sample0/data/resource-schema-1.xsd",
 "createFileIfNotExists" : false,
 "xsdFilePath" : "samples/sample0/data/resource-schema-extension.xsd",
 "xsdIcfFilePath" : "samples/sample0/data/xmlConnectorData.xml"
 },

For more information about the connector configuration properties, see
Configuring Connectors.

When you have modified the file, run the configureconnector command again so
that OpenIDM can pick up the new connector configuration.

$./cli.sh configureconnector myXmlConnector
Using boot properties at /openidm/conf/boot/boot.properties
Configuration was found and picked up from:
 /openidm/temp/provisioner.openicf-myXmlConnector.json
Dec 11, 2012 10:55:28 AM org.restlet.ext.httpclient.HttpClientHelper start
INFO: Starting the HTTP client
...

You can also configure connectors over the REST interface. For more
information, see Creating Default Connector Configurations.

3.4 encrypt
The encrypt subcommand encrypts an input string, or JSON object, provided at
the command line. This subcommand can be used to encrypt passwords, or other

encrypt

23

sensitive data, to be stored in the OpenIDM repository. The encrypted value is
output to standard output and provides details of the cryptography key that is
used to encrypt the data.

Usage is as follows:

$./cli.sh encrypt [-j] string

The -j option specifies that the string to be encrypted is a JSON object. If you do
not enter the string as part of the command, the command prompts for the string
to be encrypted. If you enter the string as part of the command, any special
characters, for example quotation marks, must be escaped.

The following example encrypts a normal string value:

$./cli.sh encrypt mypassword
Using boot properties at /openidm/conf/boot/boot.properties
Oct 23, 2012 2:00:03 PM org.forgerock.openidm.crypto.impl.CryptoServiceImpl activate
INFO: Activating cryptography service of type: JCEKS provider:
 location: security/keystore.jceks
Oct 23, 2012 2:00:03 PM org.forgerock.openidm.crypto.impl.CryptoServiceImpl activate
INFO: Available cryptography key: openidm-sym-default
Oct 23, 2012 2:00:03 PM org.forgerock.openidm.crypto.impl.CryptoServiceImpl activate
INFO: Available cryptography key: openidm-localhost
Oct 23, 2012 2:00:03 PM org.forgerock.openidm.crypto.impl.CryptoServiceImpl activate
INFO: Available cryptography key: openidm-local-openidm-forgerock-org
Oct 23, 2012 2:00:03 PM org.forgerock.openidm.crypto.impl.CryptoServiceImpl activate
INFO: CryptoService is initialized with 3 keys.
-----BEGIN ENCRYPTED VALUE-----
{
 "$crypto" : {
 "value" : {
 "iv" : "M2913T5ZADlC2ip2imeOyg==",
 "data" : "DZAAAM1nKjQM1qpLwh3BgA==",
 "cipher" : "AES/CBC/PKCS5Padding",
 "key" : "openidm-sym-default"
 },
 "type" : "x-simple-encryption"
 }
}
------END ENCRYPTED VALUE------

The following example encrypts a JSON object. The input string must be a valid
JSON object.

encrypt

24

$./cli.sh encrypt -j {\"password\":\"myPassw0rd\"}
Using boot properties at /openidm/conf/boot/boot.properties
Oct 23, 2012 2:00:03 PM org.forgerock.openidm.crypto.impl.CryptoServiceImpl activate
INFO: Activating cryptography service of type: JCEKS provider:
 location: security/keystore.jceks
Oct 23, 2012 2:00:03 PM org.forgerock.openidm.crypto.impl.CryptoServiceImpl activate
INFO: Available cryptography key: openidm-sym-default
Oct 23, 2012 2:00:03 PM org.forgerock.openidm.crypto.impl.CryptoServiceImpl activate
INFO: Available cryptography key: openidm-localhost
Oct 23, 2012 2:00:03 PM org.forgerock.openidm.crypto.impl.CryptoServiceImpl activate
INFO: Available cryptography key: openidm-local-openidm-forgerock-org
Oct 23, 2012 2:00:03 PM org.forgerock.openidm.crypto.impl.CryptoServiceImpl activate
INFO: CryptoService is initialized with 3 keys.
-----BEGIN ENCRYPTED VALUE-----
{
 "$crypto" : {
 "value" : {
 "iv" : "M2913T5ZADlC2ip2imeOyg==",
 "data" : "DZAAAM1nKjQM1qpLwh3BgA==",
 "cipher" : "AES/CBC/PKCS5Padding",
 "key" : "openidm-sym-default"
 },
 "type" : "x-simple-encryption"
 }
}
------END ENCRYPTED VALUE------

The following example prompts for a JSON object to be encrypted. In this case,
you need not escape the special characters.

$./cli.sh encrypt -j
Using boot properties at /openidm/conf/boot/boot.properties
Enter the Json value

> Press ctrl-D to finish input
Start data input:
{"password":"myPassw0rd"}
^D
Oct 23, 2012 2:37:56 PM org.forgerock.openidm.crypto.impl.CryptoServiceImpl activate
INFO: Activating cryptography service of type: JCEKS provider:
 location: security/keystore.jceks
Oct 23, 2012 2:37:56 PM org.forgerock.openidm.crypto.impl.CryptoServiceImpl activate
INFO: Available cryptography key: openidm-sym-default
Oct 23, 2012 2:37:56 PM org.forgerock.openidm.crypto.impl.CryptoServiceImpl activate
INFO: Available cryptography key: openidm-localhost
Oct 23, 2012 2:37:56 PM org.forgerock.openidm.crypto.impl.CryptoServiceImpl activate
INFO: Available cryptography key: openidm-local-openidm-forgerock-org
Oct 23, 2012 2:37:56 PM org.forgerock.openidm.crypto.impl.CryptoServiceImpl activate
INFO: CryptoService is initialized with 3 keys.
-----BEGIN ENCRYPTED VALUE-----
{
 "$crypto" : {
 "value" : {
 "iv" : "6e0RK8/4F1EK5FzSZHwNYQ==",
 "data" : "gwHSdDTmzmUXeD6Gtfn6JFC8cAUiksiAGfvzTsdnAqQ=",
 "cipher" : "AES/CBC/PKCS5Padding",
 "key" : "openidm-sym-default"

keytool

25

 },
 "type" : "x-simple-encryption"
 }
}
------END ENCRYPTED VALUE------

3.5 keytool
The keytool subcommand exports or imports private key values.

The Java keytool command enables you to export and import public keys and
certificates, but not private keys. The OpenIDM keytool subcommand provides
this functionality.

Usage is as follows:

./cli.sh keytool [--export, --import] alias

For example, to export the default OpenIDM symmetric key, run the following
command:

$./cli.sh keytool --export openidm-sym-default
Using boot properties at /openidm/conf/boot/boot.properties
Use KeyStore from: /openidm/security/keystore.jceks
Please enter the password:
[OK] Secret key entry with algorithm AES
AES:606d80ae316be58e94439f91ad8ce1c0

The default keystore password is changeit. You should change this password
after installation.

To import a new secret key named my-new-key, run the following command:

$./cli.sh keytool --import my-new-key
Using boot properties at /openidm/conf/boot/boot.properties
Use KeyStore from: /openidm/security/keystore.jceks
Please enter the password:
Enter the key:
AES:606d80ae316be58e94439f91ad8ce1c0

If a secret key of that name already exists, OpenIDM returns the following error:

"KeyStore contains a key with this alias"

3.6 validate

validate

26

The validate subcommand validates all .json configuration files in the openidm/
conf/ directory.

Usage is as follows:

$./cli.sh validate
Using boot properties at /openidm/conf/boot/boot.properties
...
[Validating] Load JSON configuration files from:
[Validating] /openidm/conf
[Validating] audit.json SUCCESS
[Validating] authentication.json SUCCESS
[Validating] endpoint-getavailableuserstoassign.json SUCCESS
[Validating] endpoint-getprocessesforuser.json SUCCESS
[Validating] endpoint-gettasksview.json SUCCESS
[Validating] endpoint-securityQA.json SUCCESS
[Validating] endpoint-siteIdentification.json SUCCESS
[Validating] endpoint-usernotifications.json SUCCESS
[Validating] managed.json SUCCESS
[Validating] policy.json SUCCESS
[Validating] process-access.json SUCCESS
[Validating] provisioner.openicf-ldap.json SUCCESS
[Validating] provisioner.openicf-xml.json SUCCESS
[Validating] repo.orientdb.json SUCCESS
[Validating] router.json SUCCESS
[Validating] schedule-recon.json SUCCESS
[Validating] schedule-reconcile_systemXmlAccounts_managedUser.json SUCCESS
[Validating] scheduler.json SUCCESS
[Validating] sync.json SUCCESS
[Validating] ui-configuration.json SUCCESS
[Validating] ui-countries.json SUCCESS
[Validating] ui-secquestions.json SUCCESS
[Validating] workflow.json SUCCESS

27

Chapter 4

OpenIDM User Interface

OpenIDM provides a customizable, browser-based user interface. The default
user interface enables administrative users to create, modify and delete user
accounts. It provides role-based access to tasks based on BPMN2 workflows,
and allows users to manage certain aspects of their own accounts, including
configurable self-service registration.

4.1 Overview of the Default User Interface
The default user interface is provided as a reference implementation that
demonstrates the capabilities of the REST API. You can modify certain aspects
of the default user interface according to the requirements of your deployment.
Note, however, that the default user interface is still evolving and is not
guaranteed to be compatible with the next OpenIDM release.

To access the user interface, install and start OpenIDM, then point your browser
to http://localhost:8080/openidmui.

Log in as the default administrative user (Login: openidm-admin, Password:
openidm-admin) or as an existing user in the repository. The display differs,
depending on the role of the user that has logged in.

For an administrative user (role openidm-admin), two tabs are displayed -
Dashboard and Users. The Dashboard tab lists any tasks assigned to the user,
processes available to be invoked, and any notifications for that user. The Users
tab provides an interface to manage user entries (OpenIDM managed objects
under managed/user).

http://localhost:8080/openidmui

Configuring the
Default User Interface

28

The Profile link enables the user to modify elements of his user data. The Change
Security Data link enables the user to change his password and, optionally, to
select a new security question.

For a regular user (role openidm-authorized), the Users tab is not displayed - so
regular users cannot manage user accounts, except for certain aspects of their
own accounts.

4.2 Configuring the Default User Interface
The following sections outline the configurable aspects of the default user
interface.

4.2.1 Enabling Self-Registration

Self-registration (the ability for new users to create their own accounts) is
disabled by default. To enable self-registration, set "selfRegistration" to true in
the conf/ui-configuration.json file.

{
 "configuration" : {
 "selfRegistration" : true,
...

With "selfRegistration" : true, the following capabilities are provided on the
right-hand pane of the user interface:

Register my account
Reset my password

User objects created using self-registration automatically have the role openidm-
authorized.

Configuring Security Questions

29

4.2.2 Configuring Security Questions
Security questions are disabled by default. To guard against unauthorized access,
you can specify that users be prompted with security questions if they request a
password reset. A default set of questions is provided, but you can add to these,
or overwrite them. To enable security questions, set "securityQuestions" to true
in the conf/ui-configuration.json file.

{
 "configuration" : {
 "securityQuestions" : true,
...

Specify the list of questions to be asked in the conf/ui-secquestions.json file.

Refresh your browser after this configuration change for the change to be picked
up by the UI.

4.2.3 Enabling Site Identification
To ensure that users are entering their details onto the correct site, you can
enable site identification. Site identification provides a preventative measure
against phishing.

With site identification enabled, users are presented with a range of images from
which they can select. To enable site identification, set "siteIdentification" to
true in the conf/ui-configuration.json file.

{
 "configuration" : {
 "siteIdentification" : true,
...

Refresh your browser after this configuration change for the change to be picked
up by the UI.

A default list of four images is presented for site identification. The images are
defined in the siteImages property in the conf/ui-configuration.json file:

"siteImages" : [
"images/passphrase/mail.png",
"images/passphrase/user.png",
"images/passphrase/report.png",
"images/passphrase/twitter.png"
],
...

Configuring the Country List

30

The user selects one of these images, which is displayed on login. In addition, the
user enters a Site Phrase, which is displayed beneath the site image on login. If
either the site image, or site phrase is incorrect or absent when the user logs in,
the user is aware that he is not logging in to the correct site.

You can change the default images, and include additional images, by placing
image files in the ui/extension/images folder and modifying the siteImages
property in the ui-configuration.json file to point to the new images. The
following example assumes a file named my-new-image.jpg, located in ui/
extension/images.

"siteImages" : [
"images/passphrase/mail.png",
"images/passphrase/user.png",
"images/passphrase/report.png",
"images/passphrase/twitter.png",
"images/my-new-image.jpg"
],
...

Note that the default image files are located in ui/default/admin/public/images/
passphrase.

4.2.4 Configuring the Country List

The default user profile includes the ability to specify the user's country and state
or province. To specify the countries that appear in this drop down list, and their
associated states or provinces, edit the conf/ui-countries.json file. For example,
to add Norway to the list of countries, you would add the following to the conf/
ui-countries.json file:

 {
 "key" : "norway",
 "value" : "Norway",
 "states" : [
 {
 "key" : "akershus",
 "value" : "Akershus"
 },
 {
 "key" : "aust-agder",
 "value" : "Aust-Agder"
 },
 {
 "key" : "buskerud",
 "value" : "Buskerud"
 },
...

Managing User Accounts
With the User Interface

31

Refresh your browser after this configuration change for the change to be picked
up by the UI.

4.3 Managing User Accounts With the User Interface
Only administrative users (with the role openidm-admin) can add, modify, and
delete user accounts. Regular users can modify certain aspects of their own
accounts.

Procedure 4.1. To Add a User Account

1. Log into the user interface as an administrative user.

2. Select the Users tab.

3. Click Add User.

4. Complete the fields on the Create new account page.

Most of these fields are self-explanatory. Be aware that the user interface is
subject to policy validation, as described in Using Policies to Validate Data.
So, for example, the Email address must be of valid email address format,
and the Password must comply with the password validation settings that are
indicated in the panel to the right.

The Admin Role field reflects the roles that are defined in the ui-
configuration.json file. The roles are mapped as follows:

"roles" : {
 "openidm-admin" : "Administrator",
 "openidm-authorized" : "User",
 "tasks-manager" : "Tasks Manager"
},

By default, a user can be assigned more than one role. Only users with the
tasks-manager role can assign tasks to any candidate user for that task.

Procedure 4.2. To Update a User Account

1. Log into the user interface as an administrative user.

2. Select the Users tab.

3. Click the Username of the user that you want to update.

4. On the user's profile page, modify the fields you want to change and click
Update.

Managing Workflows
From the User Interface

32

The user account is updated in the internal repository.

Procedure 4.3. To Reset a User's Password

Users can change their own passwords by following the Change Security Data
link in their profiles. This process requires that users know their existing
passwords.

In a situation where a user forgets his password, an administrator can reset the
password of that user without knowing the user's existing password.

1. Follow steps 1-3 in Procedure 4.2, “To Update a User Account”.

2. On the user's profile page, click Change password.

3. Enter a new password that conforms to the password policy and click Update.

The user password is updated in the repository.

Procedure 4.4. To Delete a User Account

1. Log into the user interface as an administrative user.

2. Select the Users tab.

3. Click the Username of the user that you want to delete.

4. On the user's profile page, click Delete.

5. Click OK to confirm the deletion.

The user is deleted from the internal repository.

4.4 Managing Workflows From the User Interface
The user interface is integrated with the embedded Activiti worfklow engine,
enabling users to interact with workflows. Available workflows are displayed
under the Processes item on the Dashboard. In order for a workflow to be
displayed here, the workflow definition file must be present in the openidm/
workflow directory.

A sample workflow integration with the user interface is provided in openidm/
samples/workflow, and documented in Sample Workflow - Provisioning User
Accounts. Follow the steps in that sample for an understanding of how the
workflow integration works.

Access to workflows is based on OpenIDM roles, and is configured in the file
conf/process-access.json. By default all users with the role openidm-authorized

Changing the UI Theme

33

or openidm-admin can invoke any available workflow. The default process-
access.json file is as follows:

{
 "workflowAccess" : [
 {
 "propertiesCheck" : {
 "property" : "_id",
 "matches" : ".*",
 "requiresRole" : "openidm-authorized"
 }
 },
 {
 "propertiesCheck" : {
 "property" : "_id",
 "matches" : ".*",
 "requiresRole" : "openidm-admin"
 }
 }
]
}

4.5 Changing the UI Theme
You can customize the theme of the default user interface to apply your own
branding. Note that at this stage, the default user interface is still evolving.
Customizations that you make to the functionality of the UI, are therefore not
guaranteed to work in the next OpenIDM release.

By default the user interface reads the stylesheets and images from the openidm/
ui/default directory. Modifications to the default theme should be made in the
openidm/ui/extension directory. If you modify the files in the default directory,
there is no guarantee that your changes will not be overwritten in the next
OpenIDM release. The UI searches the extension directory first and applies any
styles or images located in this directory.

4.5.1 Changing the Default Stylesheet

The default stylesheets are located in the openidm/ui/default/admin/public/css
directory. To customize the stylesheets, copy them to openidm/ui/extension/css,
and edit them according to your requirements.

The following example changes the background color of the input forms to green.

1. Copy the default stylesheets to openidm/ui/extension/css:

$ cd /path/to/openidm/ui/default/admin/public/
$ cp -r css ../../../extension/

Changing the Default Logo

34

2. Edit the openidm/ui/extension/css/user/config.less file as follows:

@content-background: #99CC66;

3. Refresh your browser window for the change to appear.

4.5.2 Changing the Default Logo
The default logo is located in the openidm/ui/default/admin/public/images
directory. To customize the logo:

1. Add your own logo image file, named logo.png, to the directory openidm/ui/
extension/images.

2. Refresh your browser window for the new logo to appear.

4.5.3 Changing the Language of the UI
Currently, the UI is provided only in US English. You can translate the UI and
specify that your own locale is used. The following example shows how to
translate the UI into French.

1. Copy the default locale to openidm/ui/extension/locales:

$ cd /path/to/openidm/ui/default/admin/public/
$ cp -r locales ../../../extension/

The extension/locales folder now contains one locale, en-US.

2. Create a copy of the en-US locale, in a new folder named fr-FR.

$ cd /path/to/openidm/ui/extension/locales
$ cp -r en-US fr-FR

3. Translate the values of the properties in the fr-FR/translate.json file. Do not
translate the property names. For example:

...
"user" : {
 "user" : "Utilisateur"
 "login" : "Login",
 "profile" : "Profil",
....

4. Change the UI configuration to use the new locale by setting the value of the
language property in the openidm/conf/ui-configuration.json file, as follows:

"language" : "fr-FR",

Creating a Project-
Specific UI Theme

35

5. Refresh your browser window for the modification to be applied.

4.5.4 Creating a Project-Specific UI Theme

You can create specific UI themes for different projects and then point a
particular UI instance to use a defined theme on startup. To create a complete
custom theme, follow these steps:

1. Shut down the OpenIDM instance, if it is running. In the Felix administration
console, type:

shutdown
->

2. Clear the felix-cache directory.

$ rm -rf felix-cache

3. Copy the entire default UI theme to an accessible location. For example:

$ cd /path/to/openidm/ui
$ cp -r default ../new-project-theme

4. In the copied theme, modify the required elements, as described in the
previous sections. Note that nothing is copied to the extension folder in this
case - changes are made in the copied theme.

5. In the openidm/conf/boot/boot.properties file, add the following line,
specifying the location of the new theme. The path is relative to the
installation root of the OpenIDM instance.

openidm.ui.fileinstall.dir=new-project-theme

6. Restart OpenIDM.

$ cd /path/to/openidm
$./startup.sh

7. Relaunch the UI in your browser. The UI is displayed with the new custom
theme.

4.6 Using an External System for Password Reset
By default, the password reset mechanism is handled internally, in OpenIDM. You
can reroute password reset in the event that a user has forgotten his password,
by specifying an external URL to which password reset requests are sent. Note

Providing a Logout URL
to External Applications

36

that this URL applies to the password reset link on the login page only, not to the
security data change facility that is available after a user has logged in.

To set an external URL to handle password reset, set the passwordResetLink
parameter in the conf/ui-configuration.json file. The following example sets the
passwordResetLink to https://accounts.example.com/account/reset-password.

passwordResetLink: "https://accounts.example.com/reset-password"

The passwordResetLink parameter takes either an empty string as a value (which
indicates that no external link is used) or a full URL to the external system that
handles password reset requests.

Note

External password reset and security questions for internal
password reset are mutually exclusive. Therefore, if you set a
value for the passwordResetLink parameter, users will not be
prompted with any security questions, regardless of the setting
of the securityQuestions parameter.

4.7 Providing a Logout URL to External Applications
By default, a UI session is invalidated when a user clicks on the Log out link. In
certain situations your external applications might require a distinct logout URL
to which users can be routed, to terminate their UI session.

The logout URL is #logout, appended to the UI URL, for example, http://
localhost:8080/openidmui/index.html#logout/.

The logout URL effectively performs the same action as clicking on the Log out
link of the UI.

4.8 Changing the UI Path
By default, the UI is registered at a specific URL (base-context/openidmui). To
override the default URL and specify your own path, edit the openidm/conf/
ui.context-enduser.json file, setting the urlContextRoot property to the new URL.
For example, to change the path to base-context/exampleui, edit the file as follows:

"urlContextRoot" : "/exampleui",

Disabling the UI

37

4.9 Disabling the UI
The UI is packaged as a separate bundle that can be disabled in the configuration
before server startup. To disable the registration of the UI servlet, edit the
openidm/conf/ui.context-enduser.json file, setting the enabled property to false:

"enabled" : false,

38

39

Chapter 5

Configuring OpenIDM

OpenIDM configuration is split between .properties and container configuration
files, and also dynamic configuration objects. The majority of OpenIDM
configuration files are stored under openidm/conf/, as described in the appendix
listing the File Layout.

OpenIDM stores configuration objects in its internal repository. You can manage
the configuration by using either the REST access to the configuration objects, or
by using the JSON file based views.

5.1 OpenIDM Configuration Objects
OpenIDM exposes internal configuration objects in JSON format. Configuration
elements can be either single instance or multiple instance for an OpenIDM
installation.

Single Instance Configuration Objects

Single instance configuration objects correspond to services that have at most
one instance per installation.

JSON file views of these configuration objects are named object-name.json.

• The audit configuration specifies how audit events are logged.

• The authentication configuration controls REST access.

Changing the Default
Configuration

40

• The endpoint configuration controls any custom REST endpoints.

• The managed configuration defines managed objects and their schemas.

• The policy configuration defines the policy validation service.

• The process access configuration defines access to any configured workflows.

• The repo.repo-type configuration such as repo.orientdb or repo.jdbc configures
the internal repository.

• The router configuration specifies filters to apply for specific operations.

• The sync configuration defines the mappings that OpenIDM uses when
synchronizing and reconciling managed objects.

• The ui configuration defines the configurable aspects of the default user
interface.

• The workflow configuration defines the configuration of the workflow engine.

Multiple Instance Configuration Objects

Multiple instance configuration objects correspond to services that can
have many instances per installation. Configuration objects are named
objectname/instancename, for example, provisioner.openicf/xml.

JSON file views of these configuration objects are named
objectname-instancename.json, for example, provisioner.openicf-xml.json.

• Multiple schedule configurations can run reconciliations and other tasks on
different schedules.

• Multiple provisioner.openicf configurations correspond to the resources
connected to OpenIDM.

5.2 Changing the Default Configuration
When you change OpenIDM's configuration objects, take the following points into
account.

• OpenIDM's authoritative configuration source is the internal repository. JSON
files provide a view of the configuration objects, but do not represent the
authoritative source.

OpenIDM updates JSON files after making configuration changes, whether
those changes are made through REST access to configuration objects, or
through edits to the JSON files.

Configuring an OpenIDM
System for Production

41

• OpenIDM recognizes changes to JSON files when it is running. OpenIDM must
be running when you delete configuration objects, even if you do so by editing
the JSON files.

• Avoid editing configuration objects directly in the internal repository. Rather
edit the configuration over the REST API, or in the configuration JSON files to
ensure consistent behavior and that operations are logged.

• OpenIDM stores its configuration in the internal database by default. If you
remove an OpenIDM instance and do not specifically drop the repository, the
configuration remains in effect for a new OpenIDM instance that uses that
repository. For testing or evaluation purposes, you can disable this persistent
configuration in the conf/system.properties file by uncommenting the following
line:

openidm.config.repo.enabled=false

Disabling persistent configuration means that OpenIDM will store its
configuration in memory only. You should not disable persistent configuration
in a production environment.

5.3 Configuring an OpenIDM System for Production
Out of the box, OpenIDM is configured to make it easy to install and evaluate.
Specific configuration changes are required before you deploy OpenIDM in a
production environment.

5.3.1 Configuring a Production Repository

By default, OpenIDM uses OrientDB for its internal repository so that you do
not have to install a database in order to evaluate OpenIDM. Before you use
OpenIDM in production, you must replace OrientDB with a supported repository.

For more information, see Installing a Repository for Production in the
Installation Guide.

5.3.2 Disabling Automatic Configuration Updates

By default, OpenIDM polls the JSON files in the conf directory periodically for
any changes to the configuration. In a production system, it is recommended
that you disable automatic polling for updates to prevent untested configuration
changes from disrupting your identity service.

Disabling the File-Based
Configuration View

42

To disable automatic polling for configuration changes, edit the conf/
system.properties file by uncommenting the following line:

openidm.fileinstall.enabled=false

Before you disable automatic polling, you must have started the OpenIDM
instance at least once to ensure that the configuration has been loaded into the
database.

Note that scripts are loaded each time the configuration calls the script.
Modifications to scripts are therefore not applied dynamically. If you modify a
script, you must either modify the configuration that calls the script, or restart
the component that uses the modified script. You do not need to restart OpenIDM
for script modifications to take effect.

5.3.3 Disabling the File-Based Configuration View
To control configuration changes to the OpenIDM system, you disable the file-
based configuration view and have OpenIDM read its configuration only from
the repository. To disable the file-based configuration view, edit the conf/
system.properties file to uncomment the following line: # openidm.fileinstall.
enabled=false.

5.4 Configuring OpenIDM Over REST
OpenIDM exposes configuration objects under the /openidm/config context.

You can list the configuration on the local host by performing a GET http://
localhost:8080/openidm/config. The following example shows the default
configuration for an OpenIDM instance started with Sample 1.

$ curl --request GET
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 http://localhost:8080/openidm/config

{
 "configurations": [
 {
 "_id": "endpoint/getprocessesforuser",
 "pid": "endpoint.788f364e-d870-4f46-982a-793525fff6f0",
 "factoryPid": "endpoint"
 },
 {
 "_id": "provisioner.openicf/xml",
 "pid": "provisioner.openicf.90b18af9-fe27-45a2-a4ae-1056c04a4d31",
 "factoryPid": "provisioner.openicf"
 },
 {
 "_id": "ui/configuration",
 "pid": "ui.36bb2bf4-8e19-43d2-9df2-a0553ffac590",

Configuring OpenIDM Over REST

43

 "factoryPid": "ui"
 },
 {
 "_id": "managed",
 "pid": "managed",
 "factoryPid": null
 },
 {
 "_id": "sync",
 "pid": "sync",
 "factoryPid": null
 },
 {
 "_id": "router",
 "pid": "router",
 "factoryPid": null
 },
 {
 "_id": "process/access",
 "pid": "process.44743c97-a01b-4562-85ad-8a2c9b89155a",
 "factoryPid": "process"
 },
 {
 "_id": "endpoint/siteIdentification",
 "pid": "endpoint.ef05a7f3-a420-4fbb-998c-02d283cae4d1",
 "factoryPid": "endpoint"
 },
 {
 "_id": "endpoint/securityQA",
 "pid": "endpoint.e2d87637-c918-4056-99a1-20f25c897066",
 "factoryPid": "endpoint"
 },
 {
 "_id": "scheduler",
 "pid": "scheduler",
 "factoryPid": null
 },
 {
 "_id": "ui/countries",
 "pid": "ui.acde0f4c-808f-45fb-9627-d7d2ca702e7c",
 "factoryPid": "ui"
 },
 {
 "_id": "org.apache.felix.fileinstall/openidm",
 "pid": "org.apache.felix.fileinstall.2dedea63-4592-4074-a709-ffa70f1e841d",
 "factoryPid": "org.apache.felix.fileinstall"
 },
 {
 "_id": "schedule/reconcile_systemXmlAccounts_managedUser",
 "pid": "schedule.f53b235a-862e-4e18-a3cf-10ae3cbabc1e",
 "factoryPid": "schedule"
 },
 {
 "_id": "workflow",
 "pid": "workflow",
 "factoryPid": null
 },
 {
 "_id": "endpoint/getavailableuserstoassign",
 "pid": "endpoint.d19da94f-bae3-4101-922c-fe47ea8616d2",
 "factoryPid": "endpoint"
 },

Configuring OpenIDM Over REST

44

 {
 "_id": "repo.orientdb",
 "pid": "repo.orientdb",
 "factoryPid": null
 },
 {
 "_id": "audit",
 "pid": "audit",
 "factoryPid": null
 },
 {
 "_id": "endpoint/gettasksview",
 "pid": "endpoint.edcc1ff8-a7ba-4c46-8258-bf5216e85192",
 "factoryPid": "endpoint"
 },
 {
 "_id": "ui/secquestions",
 "pid": "ui.649e2c65-0cc7-4a0d-a6b1-95f4c5168bdc",
 "factoryPid": "ui"
 },
 {
 "_id": "org.apache.felix.fileinstall/activiti",
 "pid": "org.apache.felix.fileinstall.a0ba2f7d-bdb9-43b5-b84e-0e8feee6be72",
 "factoryPid": "org.apache.felix.fileinstall"
 },
 {
 "_id": "policy",
 "pid": "policy",
 "factoryPid": null
 },
 {
 "_id": "endpoint/usernotifications",
 "pid": "endpoint.e96d5319-6260-41db-af76-bd4e692b792d",
 "factoryPid": "endpoint"
 },
 {
 "_id": "org.apache.felix.fileinstall/ui",
 "pid": "org.apache.felix.fileinstall.89f8c6dd-f54e-46a4-bfda-1e76ac044c33",
 "factoryPid": "org.apache.felix.fileinstall"
 },
 {
 "_id": "authentication",
 "pid": "authentication",
 "factoryPid": null
 }
]
}

Single instance configuration objects are located under openidm/config/object-
name. The following example shows the default audit configuration.

Configuring OpenIDM Over REST

45

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 http://localhost:8080/openidm/config/audit

{
 "eventTypes": {
 "activity": {
 "filter": {
 "actions": [
 "create",
 "update",
 "delete",
 "patch",
 "action"
]
 }
 },
 "recon": {}
 },
 "logTo": [
 {
 "logType": "csv",
 "location": "audit",
 "recordDelimiter": ";"
 },
 {
 "logType": "repository"
 }
]
}

Multiple instance configuration objects are found under openidm/config/object-
name/instance-name. The following example shows the configuration for the XML
connector provisioner.

Configuring OpenIDM Over REST

46

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 http://localhost:8080/openidm/config/provisioner.openicf/xml

{
 "name": "xmlfile",
 "connectorRef": {
 "bundleName":
 "org.forgerock.openicf.connectors.file.openicf-xml-connector",
 "bundleVersion": "",
 "connectorName": "com.forgerock.openicf.xml.XMLConnector"
 },
 "producerBufferSize": 100,
 "connectorPoolingSupported": true,
 "poolConfigOption": {
 "maxObjects": 10,
 "maxIdle": 10,
 "maxWait": 150000,
 "minEvictableIdleTimeMillis": 120000,
 "minIdle": 1
 },
 "operationTimeout": {
 "CREATE": -1,
 "TEST": -1,
 "AUTHENTICATE": -1,
 "SEARCH": -1,
 "VALIDATE": -1,
 "GET": -1,
 "UPDATE": -1,
 "DELETE": -1,
 "SCRIPT_ON_CONNECTOR": -1,
 "SCRIPT_ON_RESOURCE": -1,
 "SYNC": -1,
 "SCHEMA": -1
 },
 "configurationProperties": {
 "xsdIcfFilePath": "samples/sample1/data/resource-schema-1.xsd",
 "xsdFilePath": "samples/sample1/data/resource-schema-extension.xsd",
 "xmlFilePath": "samples/sample1/data/xmlConnectorData.xml"
 },
 "objectTypes": {
 "account": {
 "$schema": "http://json-schema.org/draft-03/schema",
 "id": "__ACCOUNT__",
 "type": "object",
 "nativeType": "__ACCOUNT__",
 "properties": {
 "description": {
 "type": "string",
 "nativeName": "__DESCRIPTION__",
 "nativeType": "string"
 },
 "firstname": {
 "type": "string",
 "nativeName": "firstname",
 "nativeType": "string"
 },
 "email": {
 "type": "string",
 "nativeName": "email",
 "nativeType": "string"
 },
 "__UID__": {
 "type": "string",
 "nativeName": "__UID__"
 },
 "password": {
 "type": "string",
 "required": false,
 "nativeName": "__PASSWORD__",
 "nativeType": "JAVA_TYPE_GUARDEDSTRING",
 "flags": [
 "NOT_READABLE",
 "NOT_RETURNED_BY_DEFAULT"
]
 },
 "name": {
 "type": "string",
 "required": true,
 "nativeName": "__NAME__",
 "nativeType": "string"
 },
 "lastname": {
 "type": "string",
 "required": true,
 "nativeName": "lastname",
 "nativeType": "string"
 }
 }
 }
 },
 "operationOptions": {}
}

Using Property Value
Substitution in the Configuration

47

You can change the configuration over REST by using an HTTP PUT request to
modify the required configuration object. The following example modifies the
router.json file to remove all filters, effectively bypassing any policy validation.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request PUT
 --data '{
 "filters" : [
 {
 "onRequest" : {
 "type" : "text/javascript",
 "file" : "bin/defaults/script/router-authz.js"
 }
 }
]
 }'
 "http://localhost:8080/openidm/config/router"

See the REST API Reference appendix for additional details and examples using
REST access to update and patch objects.

5.5 Using Property Value Substitution in the
Configuration
In an environment where you have more than one OpenIDM instance, you might
require a configuration that is similar, but not identical, across the different
OpenIDM hosts. OpenIDM supports variable replacement in its configuration
which means that you can modify the effective configuration according to the
requirements of a specific environment or OpenIDM instance.

Property substitution enables you to achieve the following:

• Define a configuration that is specific to a single OpenIDM instance, for
example, setting the location of the keystore on a particular host.

• Define a configuration whose parameters vary between different environments,
for example, the URLs and passwords for test, development, and production
environments.

• Disable certain capabilities on specific nodes. For example, you might want to
disable the workflow engine on specific instances.

When OpenIDM starts up, it combines the system configuration, which
might contain specific environment variables, with the defined OpenIDM
configuration properties. This combination makes up the effective configuration
for that OpenIDM instance. By varying the environment properties, you can

Using Property Value
Substitution in the Configuration

48

change specific configuration items that vary between OpenIDM instances or
environments.

Property references are contained within the construct &{ }. When such
references are found, OpenIDM replaces them with the appropriate property
value, defined in the boot.properties file.

Example 5.1.

The following example defines two separate OpenIDM environments - a
development environment and a production environment. You can specify the
environment at startup time and, depending on the environment, the database
URL is set accordingly.

The environments are defined by adding the following lines to the conf/
boot.properties file:

 PROD.location=production
 DEV.location=development

The database URL is then specified as follows in the repo.orientdb.json file:

 {
 "dbUrl" : "local:./db/&{&{environment}.location}-openidm",
 "user" : "admin",
 "poolMinSize" : 5,
 "poolMaxSize" : 20,
 ...
 }

The effective database URL is determined by setting the OPENIDM_OPTS
environment variable when you start OpenIDM. To use the production
environment, start OpenIDM as follows:

 $ export OPENIDM_OPTS="-Xmx1024m -Denvironment=PROD"
 $./startup.sh

To use the development environment, start OpenIDM as follows:

 $ export OPENIDM_OPTS="-Xmx1024m -Denvironment=DEV"
 $./startup.sh

Using Property Value Substitution
With System Properties

49

5.5.1 Using Property Value Substitution With System Properties

You can use property value substitution in conjunction with the system
properties, to modify the configuration according to the system on which the
OpenIDM instance runs.

Example 5.2.

The following example modifies the audit.json file so that the log file is written to
the user's directory. The user.home property is a default Java System property.

{
 "logTo" : [
 {
 "logType" : "csv",
 "location" : "&{user.home}/audit",
 "recordDelimiter" : ";"
 }
]
}

You can define nested properties (that is a property definition within another
property definition) and you can combine system properties and boot properties.

Example 5.3.

The following example uses the user.country property, a default Java System
property. The example defines specific LDAP ports, depending on the country
(identified by the country code) in the boot.properties file. The value of the LDAP
port (set in the provisioner.openicf-ldap.json file) depends on the value of the
user.country System property.

The port numbers are defined in the boot.properties file as follows:

 openidm.NO.ldap.port=2389
 openidm.EN.ldap.port=3389
 openidm.US.ldap.port=1389

The following extract from the provisioner.openicf-ldap.json file shows how the
value of the LDAP port is eventually determined, based on the System property:

Limitations of Property
Value Substitution

50

 "configurationProperties" :
 {
 "credentials" : "Passw0rd",
 "port" : "&{openidm.&{user.country}.ldap.port}",
 "principal" : "cn=Directory Manager",
 "baseContexts" :
 [
 "dc=example,dc=com"
],
 "host" : "localhost"
 }

5.5.2 Limitations of Property Value Substitution

Note the following limitations when you use property value substitution:

• You cannot reference complex objects or properties with syntaxes other than
String. Property values are resolved from the boot.properties file or from the
System properties and the value of these properties is always in String format.

Property substitution of boolean values is currently only supported in
stringified format, that is, resulting in "true" or "false".

• Substitution of encrypted property values is currently not supported.

5.6 Adding Custom Endpoints
You can customize OpenIDM to meet the specific requirements of your
deployment by adding your own RESTful endpoints. Endpoints are configured in
files named conf/endpoint-name.json, where name generally describes the purpose
of the endpoint.

A sample custom endpoint configuration is provided at openidm/samples/
customendpoint. The sample includes two files:

conf/endpoint-echo.json, which provides the configuration for the endpoint.
script/echo.js, which is launched when the endpoint is accessed.

The structure of an endpoint configuration file is as follows:

{
 "context" : "endpoint/echo",
 "type" : "text/javascript",
 "file" : "script/echo.js"
}

Adding Custom Endpoints

51

"context"

The URL context under which the endpoint is registered. Currently this must
be under endpoint/. An endpoint registered under the context endpoint/echo
is addressable over REST at http://localhost:8080/openidm/endpoint/echo
and with the internal resource API, for example openidm.read("endpoint/
echo").

"type"

The type of implementation. Currently only "text/javascript" is supported.

"source" or "file

The actual script, inline, or a pointer to the file that contains the script. The
sample script, (samples/customendpoint/script/echo.js) simply returns the
HTTP request when a request is made on that endpoint.

The endpoint script has a request variable available in its scope. The request
structure carries all the information about the request, and includes the following
properties:

id

The local ID, without the endpoint/ prefix, for example, echo.

method

The requested operation, that is, create, read, update, delete, patch, query or
action.

params

The parameters that are passed in. For example, for an HTTP GET with ?
param=x, the request contains "params":{"param":"x"}.

parent

Provides the context for the invocation, including headers and security.

Note that the interface for this context is still evolving and may change in a
future release.

A script implementation should check and reject requests for methods that it
does not support. For example, the following implementation supports only the
read method:

Adding Custom Endpoints

52

if (request.method == "read") {
 ...
} else {
 throw "Unsupported operation: " + request.method;
}

The final statement in the script is the return value. Unlike for functions, at this
global scope there is no return keyword. In the following example, the value of
the last statement (x) is returned.

var x = "Sample return"
functioncall();
x

The following example uses the sample provided in openidm/samples/
customendpoint and shows the complete request structure, which is returned by
the query.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/endpoint/echo?param=x"
{
 "type": "resource",
 "uuid": "21c5ddc6-a66e-464e-9fa4-9b777505799e",
 "params": {
 "param": "x"
 },
 "method": "query",
 "parent": {
 "path": "/openidm/endpoint/echo",
 "headers": {
 "Accept": "*/*",
 "User-Agent": "curl/7.21.4 ... OpenSSL/0.9.8r zlib/1.2.5",
 "Authorization": "Basic b3BlbmlkbS1hZG1pbjpvcGVuaWRtLWFkbWlu",
 "Host": "localhost:8080"
 },
 "query": {
 "param": "x"
 },
 "method": "GET",
 "parent": {
 "uuid": "bec97cbf-8618-42f8-a841-9f5f112538e9",
 "parent": null,
 "type": "root"
 },
 "type": "http",
 "uuid": "7fb3e0d9-5f56-4b15-b710-28f2147cf4b4",
 "security": {
 "openidm-roles": [
 "openidm-admin",
 "openidm-authorized"
],

Adding Custom Endpoints

53

 "username": "openidm-admin",
 "userid": {
 "component": "internal/user",
 "id": "openidm-admin"
 }
 }
 },
 "id": "echo"
}

You must protect access to any custom endpoints by configuring the appropriate
authorization for those contexts. For more information, see the Authorization
section.

54

55

Chapter 6

Accessing Data Objects

OpenIDM supports a variety of objects that can be addressed via a URL or URI.
You can access data objects by using scripts (through the Resource API) or by
using direct HTTP calls (through the REST API).

The following sections describe these two methods of accessing data objects, and
provide information on constructing and calling data queries.

6.1 Accessing Data Objects by Using Scripts
OpenIDM's uniform programming model means that all objects are queried and
manipulated in the same way, using the Resource API. The URL or URI that is
used to identify the target object for an operation depends on the object type.
For an explanation of object types, see the Data Models and Objects Reference.
For more information about scripts and the objects available to scripts, see the
Scripting Reference.

You can use the Resource API to obtain managed objects, configuration objects,
and repository objects, as follows:

val = openidm.read("managed/organization/mysampleorg")
val = openidm.read("config/custom/mylookuptable")
val = openidm.read("repo/custom/mylookuptable")

For information about constructing an object ID, see URI Scheme in the REST
API Reference.

Accessing Data Objects
by Using the REST API

56

You can update entire objects with the update() function, as follows.

openidm.update("managed/organization/mysampleorg", mymap)
openidm.update("config/custom/mylookuptable", mymap)
openidm.update("repo/custom/mylookuptable", mymap)

For managed objects, you can partially update an object with the patch()
function.

openidm.patch("managed/organization/mysampleorg", rev, value)

The create(), delete(), and query() functions work the same way.

6.2 Accessing Data Objects by Using the REST API
OpenIDM provides RESTful access to data objects via a REST API. To access
objects over REST, you can use a browser-based REST client, such as the Simple
REST Client for Chrome, or RESTClient for Firefox. Alternatively you can use the
curl command-line utility.

For a comprehensive overview of the REST API, see the REST API Reference
appendix.

To obtain a managed object through the REST API, depending on your security
settings and authentication configuration, perform an HTTP GET on the
corresponding URL, for example https://localhost:8443/openidm/managed/
organization/mysampleorg.

By default, the HTTP GET returns a JSON representation of the object.

6.3 Defining and Calling Queries
OpenIDM supports an advanced query model that enables you to define queries,
and to call them over the REST or Resource API.

6.3.1 Parameterized Queries

Managed objects in the supported OpenIDM repositories can be accessed using
a parameterized query mechanism. Parameterized queries on repositories are
defined in the repository configuration (repo.*.json) and are called by their
_queryId.

https://chrome.google.com/webstore/detail/simple-rest-client/fhjcajmcbmldlhcimfajhfbgofnpcjmb
https://chrome.google.com/webstore/detail/simple-rest-client/fhjcajmcbmldlhcimfajhfbgofnpcjmb
https://addons.mozilla.org/en-US/firefox/addon/restclient/
http://curl.haxx.se/

Native Query Expressions

57

Parameterized queries provide security and portability for the query call
signature, regardless of the back-end implementation. Queries that are
exposed over the REST interface must be parameterized queries to guard
against injection attacks and other misuse. Queries on the officially supported
repositories have been reviewed and hardened against injection attacks.

For system objects, support for parameterized queries is restricted to
_queryId=query-all-ids. There is currently no support for user-defined
parameterized queries on system objects. Typically, parameterized queries on
system objects are not called directly over the REST interface, but are issued
from internal calls, such as correlation queries.

A typical query definition is as follows:

"query-all-ids" : "select _openidm_id from ${unquoted:_resource}"

To call this query, you would reference its ID, as follows:

?_queryId=query-all-ids

The following example calls query-all-ids over the REST interface:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 "http://localhost:8080/openidm/managed/user/?_queryId=query-all-ids"

6.3.2 Native Query Expressions

Native query expressions are supported for all managed objects and system
objects, and can be called directly over the REST interface, rather than being
defined in the repository configuration.

Native queries are intended specifically for internal callers, such as custom
scripts, in situations where the parameterized query facility is insufficient.
For example, native queries are useful if the query needs to be generated
dynamically.

The query expression is specific to the target resource. For repositories, queries
use the native language of the underlying data store. For system objects that are
backed by OpenICF connectors, queries use the applicable query language of the
system resource.

Native queries on the repository are made using the _queryExpression keyword.
For example:

Constructing Queries

58

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 "http://localhost:8080/openidm/managed/user
 ?_queryExpression=select+*+from+managedobjects"

Unlike parameterized queries, native queries are not portable and do not guard
against injection attacks. Such query expressions should therefore not be
used or made accessible over the REST interface or over HTTP, other than for
development, and should be used only via the internal Resource API. For more
information, see the section on Protecting Sensitive REST Interface URLs.

If you really need to expose native queries over HTTP, in a selective manner, you
can design a custom endpoint to wrap such access.

6.3.3 Constructing Queries

The openidm.query function enables you to query OpenIDM resource objects
for reconciliation processes and workflows. Query syntax is openidm.query(id,
 params), where id specifies the object on which the query should be performed
and params provides the parameters that are passed to the query. For example:

var params = {
 'query' : {
 'Equals': {
 'field' : 'uid',
 'values' : [
 id
]
 }
 }
};
var results = openidm.query("system/ScriptedSQL/account", params)

OpenIDM supports nine query filters and a range of keywords that can be applied
to these filters. Each filter takes a field and a list as value. The following filters
are supported:

6.3.3 Constructing Queries

Equals Filter

Determines whether the resource contains an attribute that matches a
specific attribute value.

Returns true if the object satisfies all selection criteria of the filter, otherwise
returns false.

Constructing Queries

59

For example:

{
 "Equals":{
 "field":"lastname",
 "values":[
 "Doe"
]
 }
}

ContainsAllValues Filter

Determines whether the external resource contains an attribute that has the
same name as, and contains all of the values of, the attribute placed into the
filter.

Returns true if the object satisfies all the selection criteria of the filter,
otherwise returns false.

6.3.3 Constructing Queries
Compares single-value attributes to a given filter.

GreaterThan Filter

Determines whether the attribute value of the resource object is greater than
the one provided in the filter.

Returns true if the object value is greater, otherwise returns false.

GreaterThanOrEqual Filter

Determines whether the attribute value of the resource object is greater than
or equal to the one provided in the filter.

Returns true if the object value is greater than or equal, otherwise returns
false.

LessThan Filter

Determines whether the attribute value of the resource object is less than the
one provided in the filter.

Returns true if the object value is less, otherwise returns false.

LessThanOrEqual Filter

Determines whether the attribute value of the resource object is less than or
equal to the one provided in the filter.

Constructing Queries

60

Returns true if the object value is less than or equal, otherwise returns false.

6.3.3 Constructing Queries

Compares string values to a given filter.

StartsWith Filter

Returns attributes whose value starts with the string specified in the filter.

Contains Filter

Returns attributes whose value contains the string specified in the filter.

EndsWith Filter

Returns attributes whose value ends with the string specified in the filter.

6.3.3 Constructing Queries

Filter operations are used to construct more complex filters by comparing two
filters from the preceding section or negating filters defined in the previous
section.

AND Filter

A filter that matches entries using the AND boolean operator on two filters.

Example:

{
 "query":{
 "AND":[
 {
 "Equals":{
 "field":"lastname",
 "values":[
 "Doe"
]
 }
 },
 {
 "Equals":{
 "field":"firstname",
 "values":[
 "John"
]
 }
 }
]
 }
}

Constructing Queries

61

OR Filter

A filter that matches entries using the OR boolean operator on two filters.

Example:

{
 "query":{
 "OR":[
 {
 "StartsWith":{
 "field":"lastname",
 "values":[
 "A"
]
 }
 },
 {
 "StartsWith":{
 "field":"lastname",
 "values":[
 "B"
]
 }
 }
]
 }
}

NOT Filter

A filter that filters out matched entries by negating another filter.

Example:

{
 "query":{
 "NOT":[
 {
 "Equals":{
 "field":"lastname",
 "values":[
 "Doe"
]
 }
 }
]
 }
}

62

63

Chapter 7

Using Policies to Validate Data

OpenIDM provides an extensible policy service that enables you to apply specific
validation requirements to various components and properties. The policy service
provides a REST interface for reading policy requirements and validating the
properties of components against configured policies. Objects and properties are
validated automatically when they are created, updated, or patched. Policies can
be applied to user passwords, but also to any kind of managed object.

The policy service enables you to do the following:

• Read the configured policy requirements of a specific component.

• Read the configured policy requirements of all components.

• Validate a component object against the configured policies.

• Validate the properties of a component against the configured policies.

A default policy applies to all managed objects. You can configure the default
policy to suit your requirements, or you can extend the policy service by
supplying your own scripted policies.

7.1 Configuring the Default Policy
The default policy is configured in two files:

Policy Script File

64

• A policy script file (openidm/bin/defaults/script/policy.js) which defines each
policy and specifies how policy validation is performed.

• A policy configuration file (openidm/conf/policy.json) which specifies which
policies are applicable to each resource.

7.1.1 Policy Script File

The policy script file defines policy configuration in two parts:

• A policy configuration object, which defines each element of the policy.

• A policy implementation function, which describes the requirements that are
enforced by that policy.

Together, the configuration object and the implementation function determine
whether an object is valid in terms of the policy. The following extract from the
policy script file configures a policy that specifies that the value of a property
must contain a certain number of capital letters.

...
 { "policyId" : "at-least-X-capitals",
 "clientValidation": true,
 "policyExec" : "atLeastXCapitalLetters",
 "policyRequirements" : ["AT_LEAST_X_CAPITAL_LETTERS"]
 },
...

function atLeastXCapitalLetters(fullObject, value, params, property) {
 var reg = /[(A-Z)]/g;
 if (typeof value !== "string" || !value.length || value.match(reg)
 === null || value.match(reg).length < params.numCaps) {
 return [{
 "policyRequirement" : "AT_LEAST_X_CAPITAL_LETTERS",
 "params" : {
 "numCaps": params.numCaps
 }
 }
];
 }
 return [];
}
...

To enforce user passwords that contain at least one capital letter, the previous
policy ID is applied to the appropriate resource and the required number
of capital letters is defined in the policy configuration file, as described in
Section 7.1.2, “Policy Configuration File”.

Policy Script File

65

7.1.1.1 Policy Configuration Object

Each element of the policy is defined in a policy configuration object. The
structure of a policy configuration object is as follows:

{ "policyId" : "minimum-length",
 "clientValidation": true,
 "policyExec" : "propertyMinLength",
 "policyRequirements" : ["MIN_LENGTH"]
}

"policyId" - a unique ID that enables the policy to be referenced by component
objects.
"clientValidation" - indicates whether the policy decision can be made on the
client. When "clientValidation": true, the source code for the policy decision
function is returned when the client requests the requirements for a property.
"policyExec" - the name of the function that contains the policy implementation.
For more information, see Section 7.1.1.2, “Policy Implementation Function”.
"policyRequirements" - an array containing the policy requirement ID of each
requirement that is associated with the policy. Typically, a policy will validate
only one requirement, but it can validate more than one.

7.1.1.2 Policy Implementation Function

Each policy ID has a corresponding policy implementation function that performs
the validation. Functions take the following form:

function <name>(fullObject, value, params, propName) {
 <implementation_logic>
}

fullObject is the full resource object that is supplied with the request.
value is the value of the property that is being validated.
params refers to the "params" array that is specified in the property's policy
configuration.
propName is the name of the property that is being validated.

The following example shows the implementation function for the "required"
policy.

Policy Configuration File

66

function required(fullObject, value, params, propName) {
 if (value === undefined) {
 return [{ "policyRequirement" : "REQUIRED" }];
 }
 return [];
}

7.1.2 Policy Configuration File

The policy configuration file includes a pointer to the policy script, and the
configured policies for each component resource. The following extract of the
default policy configuration file shows how the at-least-X-capitals policy is
applied to user passwords, with a default value of 1.

{
 "type" : "text/javascript",
 "file" : "bin/defaults/script/policy.js",
 "resources" : [
 {
 "resource" : "managed/user/*",
 "properties" : [
...
 {
 "name" : "password",
 "policies" : [
 {
 "policyId" : "required"
 },
 {
 "policyId" : "not-empty"
 },
 {
 "policyId" : "at-least-X-capitals",
 "params" : {
 "numCaps" : 1
 }
 },
 ...
 }
]
}

The configuration file includes the following properties:

• "type" - specifies the type of policy service. Currently, only "text/javascript" is
supported.

• "file" - provides the path to the policy script file, relative to the OpenIDM
installation directory.

Extending the Policy Service

67

• "resources" provides an array of resource objects, in JSON format, that are
subject to the policy service. Resource objects are identified by the "resource"
parameter, which indicates the URI and supports wildcard syntax. For example,
"managed/user/*" indicates that the policy applies to all objects under /managed/
user. Each resource has the following properties:

"name" - the name of the property to which the policy is applied.
"policyID" - the ID of the policy that is applied to that property.
"params" - any specific parameters that apply to that policy ID.

You can specify that a particular policy does not apply to users with specific
OpenIDM roles by setting the "exceptRoles" parameter of the policy ID. For
example, the following extract from policy.json specifies that the reauthorization
required policy definition does not apply to users with roles openidm-admin, or
opendim-reg.

...
 {
 "policyId" : "re-auth-required",
 "params" : {
 "exceptRoles" : [
 "openidm-admin",
 "openidm-reg"
]
 }
 }
...

7.2 Extending the Policy Service
You can extend the policy service by adding your own scripted policies in
openidm/script and referencing them in the policy configuration file (conf/
policy.json). Avoid manipulating the default policy script file (in bin/defaults/
script) as doing so might result in interoperability issues in a future release. To
reference additional policy scripts, set the "additionalFiles" property in conf/
policy.json.

The following example creates a custom policy that rejects properties with null
values. The policy is defined in a script named mypolicy.js.

Extending the Policy Service

68

var policy = { "policyId" : "notNull",
 "policyExec" : "notNull",
 "policyRequirements" : ["NOT_NULL"]
}

addPolicy(policy);

function notNull(fullObject, value, params, property) {
 if (value == null) {
 return [{"policyRequirement": "NOT_NULL"}];
 }
 return [];
}

The policy is referenced in the policy configuration file as follows:

{
 "type" : "text/javascript",
 "file" : "bin/defaults/script/policy.js",
 "additionalFiles" : ["script/mypolicy.js"],
 "resources" : [
 {
...

You can also configure policies for managed object properties as part of the
property definition in the conf/managed.json file. For example, the following
extract of a managed.json file shows a policy configuration for the password
property.

Disabling Policy Enforcement

69

...
"properties" : [
 {
 "name" : "password",
 "encryption" : {
 "key" : "openidm-sym-default"
 },
 "scope" : "private"
 "policies" : [
 {
 "policyId" : "required"
 },
 {
 "policyId" : "not-empty"
 },
 {
 "policyId" : "at-least-X-capitals",
 "params" : {
 "numCaps" : 1
 }
 }
]
 },
...

7.3 Disabling Policy Enforcement
Policy enforcement refers to the automatic validation of data in the repository
when it is created, updated, or patched. In certain situations you might want to
disable policy enforcement temporarily. You might, for example, want to import
existing data that does not meet the validation requirements with the intention of
cleaning up this data at a later stage.

You can disable policy enforcement by setting openidm.policy.enforcement.
enabled to false in the conf/boot/boot.properties file. This setting disables policy
enforcement in the back-end only, and has no impact on direct policy validation
calls to the Policy Service (which the user interface makes to validate input
fields). So, with policy enforcement disabled, data added directly over REST is
not subject to validation, but data added with the UI is still subject to validation.

Disabling policy enforcement permanently in a production system is not
recommended.

7.4 Managing Policies Over REST
You can manage the policy service over the REST interface, by calling the REST
endpoint http://localhost:8080/openidm/policy, as shown in the following
examples.

Listing the Defined Policies

70

7.4.1 Listing the Defined Policies

The following REST call displays a list of all the defined policies:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/policy"

The policy objects are returned in JSON format, with one object for each defined
policy ID, for example:

{
 "resources": [
 {
 "resource": "managed/user/*",
 "properties": [
 {
 "policies": [
 {
 "policyId": "required",
 "policyFunction": "function required(fullObject, value, params, propName) {
 if (value === undefined) {
 return [{"policyRequirement":"REQUIRED"}];
 }
 return [];
 }",
 "policyRequirements": [
 "REQUIRED"
]
 },
...

To display the policies that apply to a specific component, include the component
name in the URL. For example, the following REST call displays the policies that
apply to managed users.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/policy/managed/user/*"

{
 "resource": "managed/user/*",
 "properties": [
 {
 "policies": [
 {
 "policyId": "required",
 "policyFunction": "
 \nfunction required(fullObject, value, params, propName) {
 \n if (value === undefined) {
 \n return [{\"policyRequirement\":\"REQUIRED\"}];

Validating Objects and
Properties Over REST

71

 \n }
 \n return [];
 \n}
 \n",
 "policyRequirements": [
 "REQUIRED"
]
 },
 {
 "policyId": "not-empty",
 "policyFunction": "
 \nfunction notEmpty(fullObject, value, params, property) {
 \n if (typeof (value) !== \"string\" || !value.length) {
 \n return [{\"policyRequirement\":\"REQUIRED\"}];
 \n } else {
 \n return [];
 \n }
 \n}
 \n",
 "policyRequirements": [
 "REQUIRED"
]
 },
 {
 "policyId": "unique",
 "policyRequirements": [
 "UNIQUE"
]
 },
...
}

7.4.2 Validating Objects and Properties Over REST

Use the validateObject action to verify that an object adheres to the
requirements of a policy.

The following example verifies that a new managed user object is acceptable in
terms of the policy requirements.

Validating Objects and
Properties Over REST

72

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 --data '{"familyName":"Jones",
 "givenName":"Bob",
 "_id":"bjones",
 "phoneNumber":"0827878921",
 "passPhrase":null,
 "email":"bjones@example.com",
 "accountStatus":"active",
 "roles":"admin",
 "userName":"bjones@example.com",
 "password":"123"}'
 "http://localhost:8080/openidm/policy/managed/user/bjones
 ?_action=validateObject"

{"result":false,
 "failedPolicyRequirements":[
 {"policyRequirements":[
 {"policyRequirement":"AT_LEAST_X_CAPITAL_LETTERS",
 "params":{"numCaps":1}
 },
 {"policyRequirement":"MIN_LENGTH",
 "params":{"minLength":8}
 }
],
 "property":"password"
 }
]
}

The result (false) indicates that the object is not valid. The unfulfilled policy
requirements are provided as part of the response - in this case, the user
password does not meet the validation requirements.

Use the validateProperty action to verify that a specific property adheres to the
requirements of a policy.

The following example checks whether Barbara Jensen's new password (12345) is
acceptable.

Validating Objects and
Properties Over REST

73

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 --data '{ "password" : "12345" }'
 "http://localhost:8080/openidm/policy/managed/user/bjensen
 ?_action=validateProperty"

{
 "result": false,
 "failedPolicyRequirements": [
 {
 "policyRequirements": [
 {
 "policyRequirement": "AT_LEAST_X_CAPITAL_LETTERS",
 "params": {
 "numCaps": 1
 }
 },
 {
 "policyRequirement": "MIN_LENGTH",
 "params": {
 "minLength": 8
 }
 }
],
 "property": "password"
 }
]
}

The result (false) indicates that the password is not valid. The unfulfilled policy
requirements are provided as part of the response - in this case, the minimum
length and the minimum number of capital letters.

Validating a property that does fulfil the policy requirements returns a true
result, for example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 --data '{ "password" : "1NewPassword" }'
 "http://localhost:8080/openidm/policy/managed/user/bjensen
 ?_action=validateProperty"

{
 "result": true,
 "failedPolicyRequirements": []
}

74

75

Chapter 8

Configuring Server Logs

This chapter briefly describes server logging. For audit information, see the
chapter on Using Audit Logs.

You can configure logging by editing the openidm/conf/logging.properties file in
OpenIDM.

The default configuration writes log messages in simple format to openidm/logs/
openidm*.log files, rotating files when the size reaches 5 MB, and retaining up to
5 files. Also by default, OpenIDM writes all system and custom log messages to
the files.

You can update the configuration to attach loggers to individual packages,
setting the log level to one of the following values.

SEVERE (highest value)
WARNING
INFO
CONFIG
FINE
FINER
FINEST (lowest value)

If you use logger functions in your scripts, then you can set the log level for the
scripts:

org.forgerock.openidm.script.javascript.JavaScript.level=level

You can override the log level settings per script by using org.forgerock.openidm.
script.javascript.JavaScript.script-name.level.

76

77

Chapter 9

Connecting to External Resources

This chapter describes how to connect to external resources such as LDAP,
Active Directory, flat files, and others. Configurations shown here are simplified
to show essential aspects. Not all resources support all OpenIDM operations,
however the resources shown here support most of the CRUD operations, and
also reconciliation and LiveSync.

In OpenIDM, resources are external systems, databases, directory servers,
and other sources of identity data to be managed and audited by the identity
management system. OpenIDM connects to resources through the identity
connector framework, OpenICF. OpenICF aims to avoid the need to install agents
to access resources, instead using the resources' native protocols. For example,
OpenICF connects to database resources using the database's Java connection
libraries or JDBC driver. It connects to directory servers over JNDI. It connects to
UNIX systems by using ssh.

Connectors are configured through files named openidm/conf/
provisioner.openicf-name where name corresponds to the name of the connector.
Do not include dash characters (-) in the connector name. A number of sample
connectors are available in the openidm/samples/provisioners directory. To use
these connectors, edit the configuration files as required, and copy them to the
openidm/conf directory.

http://openicf.forgerock.org/

About OpenIDM & OpenICF

78

9.1 About OpenIDM & OpenICF
The following figure shows how OpenIDM can connect to resources through an
OpenICF server. In most cases, the OpenICF server runs as part of OpenIDM.

OpenICF provides a common service provider interface to allow identity services
access to the resources that contain user information. OpenICF uses a connection
server that can run as a local connector server inside OpenIDM, or as a remote
connector server that is a standalone process.

A remote connector server is required when access libraries that cannot be
included as part of the OpenIDM process are needed. If a resource, such as
Microsoft ADSI, does not provide a connection library that can be included
inside the Java Virtual Machine, then OpenICF can use the native .dll with a
remote .NET connector server. (OpenICF connects to ADSI through a remote
connector server implemented as a .NET service.)

Accessing Remote Connectors

79

Tip

Not only .NET connector servers but also Java connector servers
can be run as standalone, remote services. Run them as remote
services for scalability, or to have the service run in the cloud.

By default, and for convenience, OpenIDM includes a Java
connector server that runs as a "#LOCAL" service.

9.2 Accessing Remote Connectors
When you configure remote connectors, you must use the connector
info provider service to connect through remote connector servers.
The configuration is stored in the configuration file, openidm/conf/
provisioner.openicf.connectorinfoprovider.json. A sample can be found under
openidm/samples/provisioners/. To use the file, edit it as required, and then copy
it to the openidm/conf directory.

The connector info provider service takes the following configuration:

{
 "connectorsLocation" : string,
 "remoteConnectorServers" : [remoteConnectorServer objects]
}

Connector Info Provider Properties

connectorsLocation

string, optional

Specifies the directory where the OpenICF connectors are located. The
default location is openidm/connectors.

remoteConnectorServers

array of RemoteConnectorServer objects, optional

A list of remote connector servers managed by this service.

Remote Connector Server Properties

The following example shows a remoteConnectorServer object configuration.

Accessing Remote Connectors

80

{
 "name" : "testServer",
 "host" : "127.0.0.1",
 "port" : 8759,
 "heartbeatInterval" : 60,
 "useSSL" : false,
 "timeout" : 0,
 "key" : "changeit",
 "trustManagers" :
 [
 "X509TrustManager",
 "BlindTrustManager"
]
}

OpenIDM supports the following remote connector server object properties.

name

string, required

The name of the remote connector server object. Used to identify the remote
connector server in connector reference objects.

host

string, required

Remote host to connect to.

port

string, optional

Remote port to connect to. Default value: 8759

heartbeatInterval

integer, optional

Specifies the interval, in seconds, at which heartbeat packets are
transmitted. If the connector server is unreachable, based on this heartbeat
interval, all services that use the connector server are made unavailable until
the connector server can be reached again. Default value: 60

useSSL

boolean, optional

Specifies whether or not to use SSL to connect. Default value: false

timeout

integer, optional

Configuring Connectors

81

Specifies the timeout (in milliseconds) to use for the connection. Default
value: 0

key

string, required

The secret key to use to authenticate to the remote connector server.

trustManagers

not specified

Not implemented yet. The service uses the default JVM TrustManager.

9.3 Configuring Connectors
Connectors are configured through the OpenICF provisioner service. Each
connector configuration is stored in a file in the openidm/conf/ folder or under
the same URL respectively. Configuration files are named openidm/conf/
provisioner.openicf-name where name corresponds to the name of the connector.
Do not include dash characters (-) in the connector name. A number of sample
connectors are available in the openidm/samples/provisioners directory. To use
these connectors, edit the configuration files as required, and copy them to the
openidm/conf directory.

The following example shows an OpenICF provisioner service configuration for
an XML file resource.

{
 "name" : "xml",
 "connectorRef" : connector-ref-object,
 "poolConfigOption" : pool-config-option-object,
 "operationTimeout" : operation-timeout-object,
 "configurationProperties" : configuration-properties-object,
 "objectTypes" : object-types-object,
 "operationOptions" : operation-options-object
}

Connector Reference

The following example shows a connector reference object.

{
 "bundleName" : "org.forgerock.openicf.connectors.file.xml",
 "bundleVersion" : "",
 "connectorName" : "com.forgerock.openicf.xml.XMLConnector",
 "connectorHostRef" : "host"
}

Configuring Connectors

82

bundleName

string, required

The ConnectorBundle-Name of the OpenICF connector.

bundleVersion

string, required

The ConnectorBundle-Version of the OpenICF connector.

connectorName

string, required

The Connector implementation class name.

connectorHostRef

string, optional

The name of the RemoteConnectorServer object.

• If the connector server is local and the connector .jar is installed
in openidm/bundle/ (currently not recommended), then the value
must be "osgi:service/org.forgerock.openicf.framework.api.osgi.
ConnectorManager".

• If the connector server is local and the connector .jar is installed in
openidm/connectors/, then the value must be "#LOCAL". This is currently the
default location.

Pool Configuration Option

The following example shows a pool configuration option object for the
connection pool between OpenIDM and the OpenICF connector server.

{
 "maxObjects" : 10,
 "maxIdle" : 10,
 "maxWait" : 150000,
 "minEvictableIdleTimeMillis" : 120000,
 "minIdle" : 1
}

maxObjects

Maximum number of idle and active objects.

maxIdle

Maximum number of idle objects

Configuring Connectors

83

maxWait

The maximum time in milliseconds which the pool waits for an object before
timing out. Zero means never time out.

minEvictableIdleTimeMillis

Maximum time in milliseconds an object can be idle before it is removed.
Zero means never time out.

minIdle

The minimum number of idle objects.

Operation Timeout

This configuration sets the timeout per operation type.

{
 "CREATE" : -1,
 "TEST" : -1,
 "AUTHENTICATE" : -1,
 "SEARCH" : -1,
 "VALIDATE" : -1,
 "GET" : -1,
 "UPDATE" : -1,
 "DELETE" : -1,
 "SCRIPT_ON_CONNECTOR" : -1,
 "SCRIPT_ON_RESOURCE" : -1,
 "SYNC" : -1,
 "SCHEMA" : -1
}

operation-name

Timeout in milliseconds

A value of -1 disables the timeout.

Configuration Properties

This object contains the configuration for the connection between the connection
server and the resource, and is therefore resource specific.

The following example shows a configuration properties object for the default
XML sample resource connector.

{
 "xsdIcfFilePath": "samples/sample1/data/resource-schema-1.xsd",
 "xsdFilePath": "samples/sample1/data/resource-schema-extension.xsd",
 "xmlFilePath": "samples/sample1/data/xmlConnectorData.xml"
 }

Configuring Connectors

84

property

Individual properties depend on the type of connector.

Object Types

This configuration object specifies the supported object types. The property name
defines the objectType used in the URI: system/$systemName/$objectType

The configuration is based on JSON Schema with extensions described below.

Attribute names which start and/or end with __ are resource type specific
attributes used by OpenICF for particular purposes, such as __NAME__ as the
naming attribute for objects on a resource.

{
 "account" :
 {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "__ACCOUNT__",
 "type" : "object",
 "nativeType" : "__ACCOUNT__",
 "properties" :
 {
 "name" :
 {
 "type" : "string",
 "nativeName" : "__NAME__",
 "nativeType" : "JAVA_TYPE_PRIMITIVE_LONG",
 "flags" :
 [
 "NOT_CREATABLE",
 "NOT_UPDATEABLE",
 "NOT_READABLE",
 "NOT_RETURNED_BY_DEFAULT"
]
 },
 "groups" :
 {
 "type" : "array",
 "items" :
 {
 "type" : "string",
 "nativeType" : "string"
 },
 "nativeName" : "__GROUPS__",
 "nativeType" : "string",
 "flags" :
 [
 "NOT_RETURNED_BY_DEFAULT"
]
 },
 "givenName" : {
 "type" : "string",
 "nativeName" : "givenName",
 "nativeType" : "string"
 },

http://tools.ietf.org/html/draft-zyp-json-schema-03

Configuring Connectors

85

 }
 }
}

Object Level Extensions

nativeType

string, optional

The native OpenICF object type.

Property Level Extensions

nativeType

string, optional

The native OpenICF attribute type.

nativeName

string, optional

The native OpenICF attribute name.

flags

string, optional

The native OpenICF attribute flags. The required and multivalued flags
are defined by the JSON schema.

required = "required" : true

multivalued = "type" : "array"

Note

Avoid using the dash character (-) in property names, like
last-name, as dashes in names make JavaScript syntax more
complex. If you cannot avoid the dash, then write source['last-
name'] instead of source.last-name in the java script scripts.

Operation Options

Operation options define how to act on specified operations. You can for example
deny operations on specific resources to avoid OpenIDM accidentally updating a
read-only resource during a synchronization operation.

Configuring Connectors

86

{
 "SYNC" :
 {
 "denied" : true,
 "onDeny" : "DO_NOTHING",
 "objectFeatures" :
 {
 "__ACCOUNT__" :
 {
 "denied" : true,
 "onDeny" : "THROW_EXCEPTION",
 "operationOptionInfo" :
 {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "FIX_ME",
 "type" : "object",
 "properties" :
 {
 "_OperationOption-float" :
 {
 "type" : "number",
 "nativeType" : "JAVA_TYPE_PRIMITIVE_FLOAT"
 }
 }
 }
 },
 "__GROUP__" :
 {
 "denied" : false,
 "onDeny" : "DO_NOTHING"
 }
 }
 }
}

The list of operations is as follows.

• AUTHENTICATE: AuthenticationApiOp

• CREATE: CreateApiOp

• DELETE: DeleteApiOp

• GET: GetApiOp

• RESOLVEUSERNAME: ResolveUsernameApiOp

• SCHEMA: SchemaApiOp

• SCRIPT_ON_CONNECTOR: ScriptOnConnectorApiOp

• SCRIPT_ON_RESOURCE: ScriptOnResourceApiOp

• SEARCH: SearchApiOp

• SYNC: SyncApiOp

http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/AuthenticationApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/CreateApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/DeleteApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/GetApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/ResolveUsernameApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/SchemaApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/ScriptOnConnectorApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/ScriptOnResourceApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/SearchApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/SyncApiOp.html

Connector Configuration Examples

87

• TEST: TestApiOp

• UPDATE: UpdateApiOp

• VALIDATE: ValidateApiOp

denied

boolean, optional

This property prevents operation execution if the value is true.

onDeny

string, optional

If denied is true, then the service uses this value. Default value: DO_NOTHING.

• DO_NOTHING: On operation the service does nothing.

• THROW_EXCEPTION: On operation the service throws a ForbiddenException
exception.

9.4 Connector Configuration Examples
This section explains provisioner configurations for common connectors. Also
see Section 9.5, “Creating Default Connector Configurations” for instructions on
interactively building connector configurations.

9.4.1 XML File Connector
The following example shows an excerpt of the provisioner configuration for an
XML file connector.

{
 "connectorRef": {
 "connectorHostRef": "#LOCAL",
 "bundleName":
 "org.forgerock.openicf.connectors.file.file.openicf-xml-connector",
 "bundleVersion": "",
 "connectorName": "com.forgerock.openicf.xml.XMLConnector"
 }
}

The connectorHostRef is optional if the connector server is local.

The configuration properties for the XML file connector set the relative path
to the file containing the identity data, and also the paths to the XML schemas
required.

http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/TestApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/UpdateApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/ValidateApiOp.html

Generic LDAP Connector

88

{
 "configurationProperties": {
 "xsdIcfFilePath": "samples/sample1/data/resource-schema-1.xsd",
 "xsdFilePath": "samples/sample1/data/resource-schema-extension.xsd",
 "xmlFilePath": "samples/sample1/data/xmlConnectorData.xml"
 }
}

xmlFilePath

References the XML file containing account entries

xsdIcfFilePath

References the XSD file defining schema common to all XML file resources.
Do not change the schema defined in this file.

xsdFilePath

References custom schema defining attributes specific to your project

9.4.2 Generic LDAP Connector
The following excerpt shows the connectorRef configuration property for
connection to an LDAP server. When using the connect .jar provided in openidm/
connectors, and when using a local connector server, the connectorHostRef
property is optional.

{
 "connectorRef": {
 "connectorHostRef": "#LOCAL",
 "connectorName": "org.identityconnectors.ldap.LdapConnector",
 "bundleName":
 "org.forgerock.openicf.connectors.ldap-connector",
 "bundleVersion": ""
 }
}

The following excerpt shows settings for many connector configuration
properties.

{
 "accountSynchronizationFilter": null,
 "passwordAttributeToSynchronize": null,
 "synchronizePasswords": false,
 "removeLogEntryObjectClassFromFilter": true,
 "modifiersNamesToFilterOut": [],
 "passwordDecryptionKey": null,
 "credentials": "Passw0rd",
 "changeLogBlockSize": 100,
 "baseContextsToSynchronize": [

Generic LDAP Connector

89

 "ou=People,dc=example,dc=com"
],
 "attributesToSynchronize": [
 "uid",
 "sn",
 "cn",
 "givenName",
 "mail",
 "description"
],
 "changeNumberAttribute": "changeNumber",
 "passwordDecryptionInitializationVector": null,
 "filterWithOrInsteadOfAnd": false,
 "objectClassesToSynchronize": [
 "inetOrgPerson"
],
 "port": 1389,
 "vlvSortAttribute": "uid",
 "passwordAttribute": "userPassword",
 "useBlocks": true,
 "maintainPosixGroupMembership": false,
 "failover": [],
 "ssl": false,
 "principal": "cn=Directory Manager",
 "baseContexts": [
 "dc=example,dc=com"
],
 "readSchema": true,
 "accountObjectClasses": [
 "top",
 "person",
 "organizationalPerson",
 "inetOrgPerson"
],
 "accountUserNameAttributes": [
 "uid",
 "cn"
],
 "host": "localhost",
 "groupMemberAttribute": "uniqueMember",
 "accountSearchFilter": null,
 "passwordHashAlgorithm": null,
 "usePagedResultControl": false,
 "blockSize": 100,
 "uidAttribute": "entryUUID",
 "maintainLdapGroupMembership": false,
 "respectResourcePasswordPolicyChangeAfterReset": false
}

accountSynchronizationFilter

Used during synchronization actions to filter out LDAP accounts

accountObjectClasses

The object classes used when creating new LDAP user objects. When
specifying more than one object class, add each object class as its own
property. For object classes that inherit from parents other than top, such as
inetOrgPerson, specify all object classes in the class hierarchy.

Generic LDAP Connector

90

accountSearchFilter

Search filter that accounts must match

accountUserNameAttributes

Attributes holding the account's user name. Used during authentication to
find the LDAP entry matching the user name.

attributesToSynchronize

List of attributes used during object synchronization. OpenIDM ignores
change log updates that do not include any of the specified attributes. If
empty, OpenIDM considers all changes.

baseContexts

Base DNs for operations on the LDAP server

baseContextsToSynchronize

Base DNs for entries taken into account during synchronization

blockSize

Block size for simple paged results and VLV index searches, reflecting the
maximum number of accounts retrieved at any one time

changeLogBlockSize

Block size used when fetching change log entries

changeNumberAttribute

Change log attribute containing the last change number

credentials

Password to connect to the LDAP server

failover

LDAP URLs specifying alternative LDAP servers to connect to if OpenIDM
cannot connect to the primary LDAP server specified in the host and port
properties

filterWithOrInsteadOfAnd

In most cases, the filter to fetch change log entries is AND-based. If this
property is set, the filter ORs the required change numbers instead.

groupMemberAttribute

LDAP attribute holding members for non-POSIX static groups

Generic LDAP Connector

91

host

Primary LDAP server host name

maintainLdapGroupMembership

If true, OpenIDM modifies group membership when entries are renamed or
deleted.

In the sample LDAP connector configuration file provided with OpenIDM,
this property is set to false. This means that LDAP group membership is not
modified when entries are renamed or deleted in OpenIDM. To ensure that
entries are removed from LDAP groups when the entries are deleted, set
this property to true or enable referential integrity on the LDAP server. For
OpenDJ, see Configuring Referential Integrity for more information.

maintainPosixGroupMembership

If true, OpenIDM modifies POSIX group membership when entries are
renamed or deleted.

modifiersNamesToFilterOut

Use to avoid loops caused by OpenIDM's own changes

objectClassesToSynchronize

OpenIDM synchronizes only entries having these object classes.

passwordAttribute

Attribute to which OpenIDM writes the predefined PASSWORD attribute

passwordAttributeToSynchronize

OpenIDM synchronizes password values on this attribute.

passwordDecryptionInitializationVector

Initialization vector used to decrypt passwords when performing password
synchronization

passwordDecryptionKey

Key used to decrypt passwords when performing password synchronization

passwordHashAlgorithm

Hash password values with the specified algorithm if the LDAP server stores
them in clear text

http://docs.forgerock.org/en/opendj/2.6.0/admin-guide/index.html#referential-integrity

Generic LDAP Connector

92

port

Primary LDAP server port number

principal

Bind DN used to connect to the LDAP server

readSchema

If true, read LDAP schema from the LDAP server.

removeLogEntryObjectClassFromFilter

If true, the filter to fetch change log entries does not contain the
changeLogEntry object class, and OpenIDM expects no entries with other
object types in the change log. Default: true

respectResourcePasswordPolicyChangeAfterReset

If true, bind with the Password Expired and Password Policy controls, and
throw PasswordExpiredException and other exceptions appropriately.

ssl

If true, the specified port listens for LDAPS connections.

synchronizePasswords

If true, synchronize passwords.

uidAttribute

OpenIDM maps uid to the specified attribute.

useBlocks

If true, use block-based LDAP controls like simple paged results and virtual
list view.

usePagedResultControl

If true, use simple paged results rather than virtual list view when both are
available.

vlvSortAttribute

Attribute used as the sort key for virtual list view

If you use the LDAP connector over SSL, you must set the ssl property to
true in the provisioner configuration file. You must also specify the path to a
truststore in the system.properties file. A truststore is provided by default at

Active Directory Connector

93

openidm/security/truststore. Add the following line to the system.properties file,
substituting the path to your own truststore if you do not want to use the default.

Set the truststore
javax.net.ssl.trustStore=/path/to/openidm/security/truststore

9.4.3 Active Directory Connector

In contrast to most other connectors, the Active Directory connector is written
not in Java, but instead in .NET. OpenICF should connect to Active Directory
over ADSI, the native connection protocol for Active Directory. The connector
therefore requires a connector server that has access to the ADSI .dll files.

9.4.3.1 Installing and Configuring a .NET Connector

A .NET connector server is useful when an application is written in Java, but a
connector bundle is written using C#. Because a Java application (for example,
a J2EE application) cannot load C# classes, it is necessary to deploy the C#
bundles under a .NET connector server. The Java application can communicate
with the C# connector server over the network, and the C# connector server
acts as a proxy to provide access to the C# bundles that are deployed within the
C# connector server, to any authenticated application.

Note

• The .NET connector server requires version 4.0.30319 of
the .NET framework.

• By default, the connector server outputs log messages to C:>
. If you do not have permission to write to the root of the hard
drive, an error is generated. To change the location of the log
file, set the initializeData parameter in the trace settings of
the configuration file.

Procedure 9.1. Installing the .NET Connector Server

1. Download the OPENICF .NET Connector Server from the OpenIDM download
page under the ForgeRock Open Stack download page.

2. Execute ServiceInstall--dotnet.msi.

http://forgerock.com/download-stack/

Active Directory Connector

94

3. Complete the wizard.

When the wizard has run, the Connector Server is installed as a Windows
Service.

Procedure 9.2. Running the .NET Connector Server

The .NET Connector Server can be started one of two ways.

1. In the Microsoft Service Console, go to Start, type Services, Services.

or

2. In the command prompt, go to Start, type cmd, then cmd again.

3. Change the directory to the location where the Connector Server was
installed. The default location is Program Files/Identity Connectors/
Connector Server.

4. Enter cd Program Files (x86)/Identity Connectors/Connector Server.

5. Start the server with the following command:

ConnectorServer.exe/run

.

Procedure 9.3. Configuring the .NET Connector Server

After starting the Microsoft Services Console, follow these steps to configure
the .NET Connector Server.

1. Check to see if the Connector Server is currently running. If so, stop it. All
configuration changes require that the Connector Server be stopped and
restarted after the changes are saved.

2. At the command prompt (click Start, Run, then type cmd, set the key for the
Connector Server by changing to the directory where the Connector Server
was installed and executing the following command, using a string value for
newkey:

ConnectorServer.exe /setkey <newkey>

This key is used by clients connecting to the Connector Server.

3. Review the ConnectorServer.exe.config file to verify additional configuration,
including the port, address, and SSL settings in the AppSettings.

Active Directory Connector

95

<add key="connectorserver.port" value="8759" />
<add key="connectorserver.usessl" value="false" />
<add key="connectorserver.certificatestorename" value="ConnectorServerSSLCertificate" />
<add key="connectorserver.ipaddress" value="0.0.0.0" />

The port can be set by changing the value of connectorserver.port. The
listening socket can be bound to a particular address, or can be left as
0.0.0.0.

To configure the server to use SSL, set the value of connectorserver.usessl
to true and set the value of connectorserver.certifacatestorename to the
certificate store name.

4. Trace settings are also in the configuration file.

<system.diagnostics>
<trace autoflush="true" indentsize="4">
<listeners>
<remove name="Default" />
<add name="myListener" type="System.Diagnostics.TextWriterTraceListener"
initializeData="c:\connectorserver2.log" traceOutputOptions="DateTime">
<filter type="System.Diagnostics.EventTypeFilter" initializeData="Information" />
</add>
</listeners>
</trace>
</system.diagnostics>

The Connector Server uses the standard .NET trace mechanism. For more
information about the tracing options, see Microsoft's .NET documentation
for System.Diagnostics.

Note

The default settings are a good starting point, but for less
tracing, you can change the EventTypeFilter's initializeData
to "Warning" or "Error". For very verbose logging you can
set the value to "Verbose" or "All". The amount of logging
performed has a direct effect on the performance of the
Connector Servers, so be careful of the setting.

5. Download the AD Connector from the OpenIDM download page under the
ForgeRock Open Stack download page.

6. Unzip the directory in the Connector Server folder.

7. Start the Connector Server service.

http://msdn.microsoft.com/en-us/library/15t15zda(v=vs.71).aspx
http://forgerock.com/download-stack/

Active Directory Connector

96

Procedure 9.4. Configuring the .NET Connector Server with OpenIDM

When you configure remote connectors, you must use the connector
info provider service to connect through remote connector servers.
The configuration is stored in the configuration file, openidm/conf/
provisioner.openicf.connectorinfoprovider.json. A sample can be found under
openidm/samples/provisioners/.

1. Make sure that OpenIDM is running and copy the
provisioner.openicf.connectorinfoprovider.json to /path/to/openidm/conf
and edit it as needed.

$ cd path/to/openidm
$ cp samples/provisioners/provisioner.openicf.connectorinfoprovider.json conf/

2. Create the connector file provisioner.openicf-ad.json in conf/ directory.
The following is an example of what the name, bundleVersion, and a few other
configuration properties will look like.

 {
"name" : "ad",
"connectorRef" : {
"connectorHostRef" : "dotnet",
"connectorName" : "Org.IdentityConnectors.ActiveDirectory.ActiveDirectoryConnector",
"bundleName" : "ActiveDirectory.Connector",
"bundleVersion" : "1.0.0.0"
},
"poolConfigOption" : {
"maxObjects" : 10,
"maxIdle" : 10,
"maxWait" : 150000,
"minEvictableIdleTimeMillis" : 120000,
"minIdle" : 1
},
"operationTimeout" : {
"SYNC" : -1,
"TEST" : -1,
"SEARCH" : -1,
"RESOLVEUSERNAME" : -1,
"SCRIPT_ON_CONNECTOR" : -1,
"VALIDATE" : -1,
"DELETE" : -1,
"UPDATE" : -1,
"AUTHENTICATE" : -1,
"CREATE" : -1,
"SCRIPT_ON_RESOURCE" : -1,
"GET" : -1,
"SCHEMA" : -1
},
"configurationProperties" : {
"DirectoryAdminName" : "EXAMPLE\\Administrator",
"DirectoryAdminPassword" : {
"$crypto" : {

Active Directory Connector

97

"value" : {
"iv" : "QJctjWJi9w2uPLsO2Pucfw==",
"data" : "Akqzk1PW0m9QP5cfOMIuYw==",
"cipher" : "AES/CBC/PKCS5Padding",
"key" : "openidm-sym-default"
},
"type" : "x-simple-encryption"
}
},
"ObjectClass" : "User",
"Container" : "dc=example,dc=com",
"CreateHomeDirectory" : true,
"LDAPHostName" : "10.0.0.2",
"SearchChildDomains" : false,
"DomainName" : "example",
"SyncGlobalCatalogServer" : null,
"SyncDomainController" : null,
"SearchContext" : ""
}

3. Edit the configurationProperties according to your setup and make sure that
the bundleVersion is the same version as ActiveDirectory.Connector.dll in
the Windows Connector Server folder. (Right click on the dll, properties, tab
details, and Product version.)

4. Make sure the connector was installed properly using the following
command:

scr list

This should return all of the installed modules, including the following:

[24] [active] org.forgerock.openidm.provisioner.openicf

Note

The number may differ. Make sure to note the number
returned.

Review the content of the connector using the following command, using the
number returned from the previous step:

scr info <your number>

5. Create the sync.json file where you define mappings of various attributes
and behaviors during reconciliation. The following is a simple example of a
sync.json.

Active Directory Connector

98

{
"mappings" : [
{
"name" : "systemADAccounts_managedUser",
"source" : "system/ad/account",
"target" : "managed/user",
"properties" : [
 {
 "source" : "sAMAccountName",
 "target" : "userName"
 },
 {
 "source" : "sn",
 "target" : "lastname"
 },
 {
 "source" : "givenName",
 "target" : "firstname"
 }
]
 }
]
}

6. Run the reconciliation with the following command.

$ curl --header "X-OpenIDM-Username: openidm-admin" --header "X-OpenIDM-Password:
openidm-admin" --request POST "http://localhost:8080/openidm/recon?
_action=recon&mapping=systemADAccounts_managedUser"

This will return a reconciliation id similar to the following:

{"_id":"0629d920-e29f-4650-889f-4423632481ad"}

7. Check the internal repository (OrientDB or MySQL) to make sure that the
users were reconciled. For information about connecting to OrientDB, see
Before You Begin in the Installation Guide. For information about using
MySQL as a repository, see Installing a Repository For Production in the
Installation Guide.

9.4.3.2 Installing a Standalone Java Connector Server

It may be necessary to set up a remote Java Connector Server (JSC). This section
provides directions for setting up the standalone connecter on Unix/Linux and
Windows.

Procedure 9.5. Installing a Standalone Connector Server for Unix/Linux

1. Download the OPENICF JAVA Connector Server from the OpenIDM download
page under the ForgeRock Open Stack download page.

http://forgerock.com/download-stack/

Active Directory Connector

99

2. Run the terminal and unpack it. The following command will unzip the file in
the current folder, so make sure to move to the appropriate location prior to
running the command.

unzip openicf--java.zip

3. Change the directory to OpenICF using the following command:

$ cd path/to/openicf

4. If needed, secure the communication between OpenIDM and JCS. The JCS
uses a property called secret key to authenticate the connection. The default
secret key value is changeit. To change the value of the secret key enter the
following, replacing newkey with the your own string value:

java - cp "./lib/framework/*" org.identityconnectors.framework.server.Main
 -setKey -key <newkey> -properties ./conf/ConnectorServer.properties

5. Review the ConnectorServer.properties in the /conf directory, and make
changes as necessary. The file contains setting information, including things
like ports, the allowance of one/all IP addresses, and SSL. The file provides
the required information to update these settings.

6. Run the JCS.

java -cp "./lib/framework/*"
org.identityconnectors.framework.server.Main -run -properties
./conf/ConnectorServer.properties

7. If necessary, you can stop the JCS by pressing ^C.

Procedure 9.6. Installing a Standalone Connector Server for Windows

1. Download the OPENICF JAVA Connector Server from the OpenIDM download
page under the ForgeRock Open Stack download page.

2. Unpack the zip file in the desired location, for example C:\openicf.

3. Run the command line (Start, type cmd, and cmd) and change the working
directory to openicf\bin cd c:\openicf\bin

4. Change the directory to OpenICF using the following command:

$ cd path/to/openicf

5. If needed, secure the communication between OpenIDM and JCS. The JCS
uses a property called secret key to authenticate the connection. The default
secret key value is changeit.

http://forgerock.com/download-stack/

Active Directory Connector

100

To change the value of the secret key enter the following, replacing newkey
with the your own string value:

/ConnectorServer.bat /setkey <newkey>

6. Review the ConnectorServer.properties in the /conf directory, and make
changes as necessary. The file contains setting information, including things
like ports, the allowance of one/all IP addresses, and SSL. The file provides
the required information to update these settings.

7. If you would like the JCS to run as a Windows service, enter the following
command.

./ConnecorServer.bat /install (for uninstalling use /uninstall)

Note

If you install JCS as a Windows service you can start/
stop it by Microsoft's Service Console (Start, type
Service, and Service). The JCS service is called:
OpenICFConnectorServerJava.

Or

If you would like to run the JCS from command line, enter the following
command:

.\ConnectorServer.bat /run

8. If necessary, stop the JCS by pressing ^C.

You can view the log files in the openicf/logs directory.

9.4.3.2.1 MySQL Database Example to Reconcile JCS Users

This sample demonstrates using reconciliation of users stored in a MySQL
database on a remote machine. The JCS runs on the same machine as the MySQL
database and mediates the connection between OpenIDM and MySQL database.

Procedure 9.7. Configuring JCS

1. Download MySQL JDBC Driver.

http://www.mysql.com/downloads/connector/j/

Active Directory Connector

101

2. Unpack the MySQL JDBC Driver and copy the mysql-connector-java-5.1.22-
bin.jar to the openicf/lib directory.

3. Go to the /tools directory. The groovy scripts in the folder run on the
JCS side. Copy them from path/to/openidm/sample/sample3/tools folder to
openicf/.

Procedure 9.8. Configuring OpenIDM for the MySQL Database Example

1. Start OpenIDM. You can ignore errors like cannot connect to database
and cannot find jdbc driver. These errors will be fixed once OpenIDM is
configured and restarted.

2. Go to the provisioner.openicf.connectorinfoprovider.json to see information
about your remote connector servers. Copy this file from openidm/samples/
provisioners to openidm/conf.

For Unix/Linux, enter the following in Terminal.

$ cd path/to/openidm
$ cp samples/provisioners/provisioner.openicf.connectorinfoprovider.json ./conf

For Windows, enter the following on the command line.

c:\> cd path/to/openidm
.\> copy .\samples\provisioners\provisioner.openicf.connectorinfoprovider.json .\conf

3. Edit the provisioner.openicf.connectorinfoprovider.json to meet your needs.
The following is an example.

{
 "connectorsLocation" : "connectors",
 "remoteConnectorServers" : [
 {
 "name" : "mysql",
 "host" : "10.0.0.2",
 "port" : 8759,
 "useSSL" : false,
 "timeout" : 0,
 "key" : "password"
 }
],
 }

4. Copy all of the files from openidm/samples/sample3/conf to openidm/conf.

For Unix/Linux, enter the following in Terminal.

$ cp -r ./samples/sample3/conf ./conf

For Window, enter the following on the command line.

Active Directory Connector

102

.\> copy .\samples\sample3\conf\ .\conf\

5. Edit the provisioner.openicf-scriptedsql.json to read like the following.

Active Directory Connector

103

{
 "name" : "hrdb",
 "connectorRef" : {
 "connectorHostRef" : "mysql",
 "bundleName" : "org.forgerock.openicf.connectors.db.openicf-scriptedsql
 -connector",
 "bundleVersion" : "",
 "connectorName" : "org.forgerock.openicf.scriptedsql.ScriptedSQLConnector"
 },
 "producerBufferSize" : 100,
 "connectorPoolingSupported" : true,
 "poolConfigOption" : {
 "maxObjects" : 10,
 "maxIdle" : 10,
 "maxWait" : 150000,
 "minEvictableIdleTimeMillis" : 120000,
 "minIdle" : 1
 },
 "operationTimeout" : {
 "CREATE" : -1,
 "TEST" : -1,
 "AUTHENTICATE" : -1,
 "SEARCH" : -1,
 "VALIDATE" : -1,
 "GET" : -1,
 "UPDATE" : -1,
 "DELETE" : -1,
 "SCRIPT_ON_CONNECTOR" : -1,
 "SCRIPT_ON_RESOURCE" : -1,
 "SYNC" : -1,
 "SCHEMA" : -1
 },
 "configurationProperties" : {
 "host" : "10.0.0.2",
 "port" : "3306",
 "user" : "root",
 "password" : {
 "$crypto" : {
 "value" : {
 "iv" : "dsrEhCU45UakY6Uh9Jxfww==",
 "data" : "X1+77+0I7Yog/6ZirsFSyg==",
 "cipher" : "AES/CBC/PKCS5Padding",
 "key" : "openidm-sym-default"
 },
 "type" : "x-simple-encryption"
 }
 },
 "database" : "HRDB",
 "autoCommit" : true,
 "reloadScriptOnExecution" : false,
 "keyColumn" : "uid",
 "jdbcDriver" : "com.mysql.jdbc.Driver",
 "jdbcConnectionUrl" : "jdbc:mysql://10.0.0.2:3306/HRDB",
 "jdbcUrlTemplate" : "jdbc:mysql://%h:%p/%d",
 "createScriptFileName" : "/home/tester/openicf/tools/CreateScript.groovy",
 "testScriptFileName" : "/home/tester/openicf/tools/TestScript.groovy",
 "searchScriptFileName" : "/home/tester/openicf/tools/SearchScript.groovy",
 "deleteScriptFileName" : "/home/tester/openicf/tools/DeleteScript.groovy",
 "updateScriptFileName" : "/home/tester/openicf/tools/UpdateScript.groovy",
 "syncScriptFileName" : "/home/tester/openicf/tools/SyncScript.groovy"
 },
 "objectTypes" : {
 "group" : {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "__GROUP__",
 "type" : "object",
 "nativeType" : "__GROUP__",
 "properties" : {
 "name" : {
 "type" : "string",
 "required" : true,
 "nativeName" : "__NAME__",
 "nativeType" : "string"
 },
 "gid" : {
 "type" : "string",
 "required" : true,
 "nativeName" : "gid",
 "nativeType" : "string"
 },
 "description" : {
 "type" : "string",
 "required" : false,
 "nativeName" : "description",
 "nativeType" : "string"
 }
 }
 },
 "organization" : {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "organization",
 "type" : "object",
 "nativeType" : "organization",
 "properties" : {
 "name" : {
 "type" : "string",
 "required" : true,
 "nativeName" : "__NAME__",
 "nativeType" : "string"
 },
 "description" : {
 "type" : "string",
 "required" : false,
 "nativeName" : "description",
 "nativeType" : "string"
 }
 }
 },
 "account" : {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "__ACCOUNT__",
 "type" : "object",
 "nativeType" : "__ACCOUNT__",
 "properties" : {
 "firstName" : {
 "type" : "string",
 "nativeName" : "firstname",
 "nativeType" : "string",
 "required" : true
 },
 "email" : {
 "type" : "array",
 "items" : {
 "type" : "string",
 "nativeType" : "string"
 },
 "nativeName" : "email",
 "nativeType" : "string"
 },
 "__PASSWORD__" : {
 "type" : "string",
 "nativeName" : "password",
 "nativeType" : "JAVA_TYPE_GUARDEDSTRING",
 "flags" : [
 "NOT_READABLE",
 "NOT_RETURNED_BY_DEFAULT"
]
 },
 "uid" : {
 "type" : "string",
 "nativeName" : "__NAME__",
 "required" : true,
 "nativeType" : "string"
 },
 "fullName" : {
 "type" : "string",
 "nativeName" : "fullname",
 "nativeType" : "string"
 },
 "lastName" : {
 "type" : "string",
 "required" : true,
 "nativeName" : "lastname",
 "nativeType" : "string"
 },
 "organization" : {
 "type" : "string",
 "required" : true,
 "nativeName" : "organization",
 "nativeType" : "string"
 }
 }
 }
 },
 "operationOptions" : { }
 }

Active Directory Connector

104

6. Verify that the following settings are correct.

• The value of connectorHostRef : mysql points to the property name of
provisioner.openicf.connectorinfoprovider.json. This indicates which
connectorinfoprovider to use.

• The bundleVersion : must be exactly the same as openicf-scriptedsql-
connector-.jar. on JCS /bundles. Unpack the .jar file, open META-INF/
MANIFEST.MF, and search for the Bundle-Version property.

• The path to groovy scripts should be createScriptFileName : /home/tester/
openicf/tools/CreateScript.groovy.

For Windows, the path will follow Unix notation. For example the path
could be Program Files (x86)/openicf/tools/CreateScript.groovy, which
in Windows notation would be C:\Program Files (x86)\openicf\tools
\CreateScript.groovy.

• All instances of the connection setting must be properly set, for example,
jdbcConnectionUrl : jdbc:mysql://10.0.0.2:3306/HRDB.

7. Restart OpenIDM to verify that all of the configuration changes have
occurred. There should be no error message when OpenIDM is restarted. To
check run the following.

src list

This returns a list of installed modules, including the following:

[17] [active] org.forgerock.openidm.provisioner.openicf

Note

The number may differ. Make sure to note the number
returned.

When you have installed more connectors, there will be more OpenICF
modules. If the state of the module is active, the module is installed properly.
If the state is unsatisfied, then you have not configured it correctly and
you must check your configuration. You can also check the content of
installed module (which could be handy if you have unsatisfied state and
you want to see if the content is the same as in *.json – to verify that the
configuration you just set was picked up). To list the content of the module
use the following with the number returned from the previous step:

Active Directory Connector

105

scr info 17 <your number>

Note

You can also check the
provisioner.openicf.connectorinfoprovider

8. Run reconciliation with the following command:

$ curl --header "X-OpenIDM-Username: openidm-admin"
--header "X-OpenIDM-Password: openidm-admin" --request POST
"http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemHrdb_managedUser"

This will return a reconciliation id similar to the following:

{"_id":"a5346543-db9a-4f8b-ba25-af2a1b576a54"}

9. Check the internal repository (OrientDB or MySQL) to make sure that the
users were reconciled. For information about connecting to OrientDB, see
Before You Begin in the Installation Guide. For information about using
MySQL as a repository, see Installing a Repository For Production in the
Installation Guide.

9.4.3.3 XML Example to Reconcile JCS Users

This sample demonstrates using reconciliation of users created in an XML folder
on a remote machine. The JCS provides a way for OpenIDM to pick up and
synchronize the OpenIDM repository with the remote XML user repository.

Procedure 9.9. Configuring JCS

• Copy the openidm/samples/sample1/data directory to a location on the JCS
machine.

Procedure 9.10. Configuring OpenIDM for the XML Example

1. Start OpenIDM. You can ignore errors like cannot connect to database and
cannot find jdbc driver. These errors will be fixed once OpenIDM has been
configured and restarted.

2. Copy the openidm/samples/sample1/conf directory to openidm/conf. Overwrite
any existing files.

Active Directory Connector

106

For Unix/Linux, enter the following in a terminal window.

$ cd path/to/openidm
$ cp -r ./samples/sample1/conf ./conf

For Windows, enter the following on the command line.

c:\> cd path\to\openidm
.\> copy .\samples\sample1\conf .\conf

3. Copy the openidm/samples/provisioners/
provisioner.openicf.connectorinfoprovider.jso to openidm/conf.

$ cp . samples/provisioners/provisioner.openicf.connectorinfoprovider.json ./conf

4. Edit the provisioner.openicf.connectorinfoprovider.json to match your
network setup. The following is an example of how it could look.

{
 "connectorsLocation" : "connectors",
 "remoteConnectorServers" : [
 {
 "name" : "xml",
 "host" : "10.0.0.2",
 "port" : 8759,
 "useSSL" : false,
 "timeout" : 0,
 "key" : "password"
 }
],
 }

5. Edit the provisioner.openicf-xml.json in the /conf directory to read like the
following.

Active Directory Connector

107

{
 "name" : "xmlfile",
 "connectorRef" : {
 "connectorHostRef" : "xml",
 "bundleName" : "org.forgerock.openicf.connectors.file.openicf-xml-connector",
 "bundleVersion" : "",
 "connectorName" : "com.forgerock.openicf.xml.XMLConnector"
 },
 "producerBufferSize" : 100,
 "connectorPoolingSupported" : true,
 "poolConfigOption" : {
 "maxObjects" : 10,
 "maxIdle" : 10,
 "maxWait" : 150000,
 "minEvictableIdleTimeMillis" : 120000,
 "minIdle" : 1
 },
 "operationTimeout" : {
 "CREATE" : -1,
 "TEST" : -1,
 "AUTHENTICATE" : -1,
 "SEARCH" : -1,
 "VALIDATE" : -1,
 "GET" : -1,
 "UPDATE" : -1,
 "DELETE" : -1,
 "SCRIPT_ON_CONNECTOR" : -1,
 "SCRIPT_ON_RESOURCE" : -1,
 "SYNC" : -1,
 "SCHEMA" : -1
 },
 "configurationProperties" : {
 "xsdIcfFilePath" : "/Program files (x86)/openicf/data/
 resource-schema-1.xsd",
 "xsdFilePath" : "/Program Files (x86)/openicf/data/
 resource-schema-extension.xsd",
 "xmlFilePath" : "/Program Files (x86)/openicf/data/xmlConnectorData.xml"
 },
 "objectTypes" : {
 "account" : {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "__ACCOUNT__",
 "type" : "object",
 "nativeType" : "__ACCOUNT__",
 "properties" : {
 "description" : {
 "type" : "string",
 "nativeName" : "__DESCRIPTION__",
 "nativeType" : "string"
 },
 "firstname" : {
 "type" : "string",
 "nativeName" : "firstname",
 "nativeType" : "string"
 },
 "email" : {
 "type" : "array",
 "items" : {
 "type" : "string",
 "nativeType" : "string"
 },
 "nativeName" : "email",
 "nativeType" : "string"
 },
 "__UID__" : {
 "type" : "string",
 "nativeName" : "__UID__"
 },
 "password" : {
 "type" : "string",
 "required" : false,
 "nativeName" : "__PASSWORD__",
 "nativeType" : "JAVA_TYPE_GUARDEDSTRING",
 "flags" : [
 "NOT_READABLE",
 "NOT_RETURNED_BY_DEFAULT"
]
 },
 "name" : {
 "type" : "string",
 "required" : true,
 "nativeName" : "__NAME__",
 "nativeType" : "string"
 },
 "lastname" : {
 "type" : "string",
 "required" : true,
 "nativeName" : "lastname",
 "nativeType" : "string"
 }
 }
 }
 },
 "operationOptions" : { }
}

Active Directory Connector

108

6. Verify that the following settings are correct.

• The value of connectorHostRef : xml points to the property name of
provisioner.openicf.connectorinfoprovider.json. This indicates which
connectorinfoprovider to use.

• The bundleVersion : must be exactly the same as openicf-scriptedsql-
connector-.jar. on JCS /bundles.

• The path to xsdIcfFilePath : /Program files (x86)/openicf/data/resource-
schema-1.xs

7. Restart OpenIDM to verify that all of the configuration changes have
occurred. There should be no error message when OpenIDM is restarted. To
check, run the following command:

src list

This returns a list of installed modules, including the following:

[17] [active] org.forgerock.openidm.provisioner.openicf

Note

The number may differ. Make sure to note the number
returned.

When you have installed more connectors, there will be more OpenIFC
modules. If the state of the module is active, the module is installed properly.
If the state is unsatisfied, then you have not configured it correctly and you
must check your configuration. You can also check the content of installed
modules. This can be useful if you have an unsatisfied state and you want
to check that the content is the same as in the *.json file, to verify that the
configuration change you made was picked up. To list the content of the
module run the following command, with the number returned from the
previous step:

scr info 17 <your number>

Active Directory Connector

109

Note

You can also check the
provisioner.openicf.connectorinfoprovider

8. Run reconciliation with the following command.

$ curl --header "X-OpenIDM-Username: openidm-admin"
--header "X-OpenIDM-Password: openidm-admin" --request POST
"http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemXmlfileAccounts_managedUser"

This will return a reconciliation id similar to the following:

{"_id":"a5346543-db9a-4f8b-ba25-af2a1b576a54"}

9. Check the internal repository (OrientDB or MySQL) to make sure that the
users were reconciled. For information about connecting to OrientDB, see
Before You Begin in the Installation Guide. For information about using
MySQL as a repository, see Installing a Repository For Production in the
Installation Guide.

9.4.3.4 Configuring the Active Directory Connector

A sample Active Directory Connector configuration file is provided in opendim/
samples/provisioners/provisioner.openicf-ad.json. The following excerpt shows
the configuration for the connector.

{
 "connectorHostRef": "dotnet",
 "connectorName":
 "Org.IdentityConnectors.ActiveDirectory.ActiveDirectoryConnector",
 "bundleName": "ActiveDirectory.Connector",
 "bundleVersion": "1.0.0.6109"
}

The connectorHostRef must point by name to an existing connector
info provider configuration, that you store in openidm/conf/
provisioner.openicf.connectorinfoprovider.json. The connectorHostRef property
is required as the Active Directory connector must be installed on a .NET
connector server, which is always "remote" relative to OpenIDM.

The following excerpt shows the configuration for the connector info provider.

Active Directory Connector

110

{
 "connectorsLocation": "connectors",
 "remoteConnectorServers": [
 {
 "name": "dotnet",
 "host": "10.0.0.10",
 "port": 8759,
 "useSSL": false,
 "timeout": 0,
 "key": "Passw0rd"
 }
]
}

The following excerpt shows typical configuration properties.

{
 "DirectoryAdminName": "EXAMPLE\\Administrator",
 "DirectoryAdminPassword": "passw0rd",
 "ObjectClass": "User",
 "Container": "dc=example,dc=com",
 "CreateHomeDirectory": true,
 "LDAPHostName": "127.0.0.1",
 "SearchChildDomains": false,
 "DomainName": "example",
 "SyncGlobalCatalogServer": null,
 "SyncDomainController": null,
 "SearchContext": "dc=example,dc=com"
}

DirectoryAdminName

Account used to authenticate. This can be a domainname\user combination, or
simply the user name.

DirectoryAdminPassword

Password used to authenticate

ObjectClass

Object class for user objects

Container

Base context for all searches

CreateHomeDirectory

When true, create a home directory for new users.

LDAPHostName

Use to enforce connection to a particular Active Directory server.

Active Directory Connector

111

SearchChildDomains

When set to true or false, apply SyncGlobalCatalogServer and
SyncDomainController settings

DomainName

Windows domain name

SyncGlobalCatalogServer

Global catalog server to use when searching child domains

SyncDomainController

Domain controller to use during synchronization when not searching child
domains

SearchContext

Reserved for future use

9.4.3.5 Using PowerShell Scripts With the Active Directory Connector

The Active Directory connector supports PowerShell scripting. The following
example shows a simple PowerShell script that is referenced in the connector
configuration and can be called over the REST interface.

This PowerShell script creates a new MS SQL user with a username that is
specified when the script is called. The script sets the user's password to
Passw0rd and, optionally, gives the user a role. Save this script as openidm/script/
createUser.ps1.

 if ($loginName -ne $NULL) {
 [System.Reflection.Assembly]::LoadWithPartialName('Microsoft.SqlServer.SMO') | Out-Null
 $sqlSrv = New-Object ('Microsoft.SqlServer.Management.Smo.Server') ('WIN-C2MSQ8G1TCA')

 $login = New-Object -TypeName ('Microsoft.SqlServer.Management.Smo.Login') ($sqlSrv, $loginName)
 $login.LoginType = 'SqlLogin'
 $login.PasswordExpirationEnabled = $false
 $login.Create('Passw0rd')
 # The next two lines are optional, and to give the new login a server role, optional
 $login.AddToRole('sysadmin')
 $login.Alter()
} else {
 $Error_Message = [string]"Required variables 'loginName' is missing!"
 Write-Error $Error_Message
 throw $Error_Message
}

CSV File Connector

112

Now edit the Active Directory connector configuration to reference the script.
Add the following section to the connector configuration file (opendim/conf/
provisioner.openicf-ad.json).

"systemActions" : [
 {
 "_scriptId" : "ConnectorScriptName",
 "actions" : [
 {
 "systemType" : ".*ActiveDirectoryConnector",
 "actionType" : "Shell",
 "actionSource" : "@echo off \r\n echo %loginName%\r\n"
 },
 {
 "systemType" : ".*ActiveDirectoryConnector",
 "actionType" : "PowerShell",
 "actionFile" : "script/createUser.ps1"
 }
]
 }
]

To call the PowerShell script over the REST interface, use the following request,
specifying the userName as input:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/system/ActiveDirectory/account
 ?_action=script&_scriptId=ConnectorScriptName&loginName=myUser"

9.4.4 CSV File Connector

The CSV file connector often serves when importing users, either for initial
provisioning or for ongoing updates. When used continuously in production, a
CSV file serves as a change log, often containing only user records that changed.

The following example shows an excerpt of the provisioner configuration.
The default connector-jar location is openidm/connectors. Therefore the
connectorHostRef must point to "#LOCAL".

{
 "connectorRef": {
 "connectorHostRef": "#LOCAL",
 "connectorName": "org.forgerock.openicf.csvfile.CSVFileConnector",
 "bundleName":
 "org.forgerock.openicf.connectors.csvfile-connector",
 "bundleVersion": ""
 }
}

Scripted SQL Connector

113

The following excerpt shows required configuration properties.

{
 "configurationProperties": {
 "filePath": "data/hr.csv",
 "uniqueAttribute": "uid"
 }
}

The CSV file connector also supports a number of optional configuration
properties, in addition to the required properties.

encoding (optional)

Default: "utf-8"

fieldDelimiter (optional)

Default: ","

filePath (required)

References the CSV file containing account entries

multivalueDelimiter (optional)

Used with multi-valued attributes. Default: ";"

passwordAttribute (optional)

Attribute containing the password. Use when password-based authentication
is required.

uniqueAttribute (required)

Primary key used for the CSV file

usingMultivalue (optional)

Whether attributes can have multiple values. Default: false

9.4.5 Scripted SQL Connector

The Scripted SQL Connector uses customizable Groovy scripts to interact with
the database.

The connector uses one script for each of the following actions on the external
database.

• Create

Creating Default
Connector Configurations

114

• Delete

• Search

• Sync

• Test

• Update

See the openidm/samples/sample3/tools/ directory for example scripts.

The scripted SQL connector runs with autocommit mode enabled by default. As
soon as a statement is executed that modifies a table, the update is stored on disk
and the change cannot be rolled back. This setting applies to all database actions
(search, create, delete, test, synch, and update). You can disable autocommit in
the connector configuration file (conf/provisioner.openicf-scriptedsql.json) by
adding the autocommit property and setting it to false, for example:

 "configurationProperties" : {
 "host" : "localhost",
 "port" : "3306",
 ...
 "database" : "HRDB",
 "autoCommit" : false,
 "reloadScriptOnExecution" : true,
 "createScriptFileName" : "/path/to/openidm/tools/CreateScript.groovy",

If you require a traditional transaction with a manual commit for a specific script,
you can disable autocommit mode in the script or scripts for each action that
requires a manual commit.

9.5 Creating Default Connector Configurations
Rather than creating provisioner files by hand, use the service that OpenIDM
exposes through the REST interface to create basic connector configuration files
named provisioner-openicf-Connector Name.json file.

You create a new connector configuration file in three stages.

1. List available connectors.

2. Generate the core configuration.

3. Connect to the target system and generate the final configuration.

List available connectors using the following command.

Creating Default
Connector Configurations

115

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST "http://localhost:8080/openidm/system
 ?_action=CREATECONFIGURATION"

Available connectors are installed in openidm/connectors. OpenIDM bundles the
following connectors.

• csvfile

• ldap

• scriptedsql

• xml

The command above therefore should return the following output (formatted
here with lines folded to make it easier to read.)

{
 "connectorRef": [
 {
 "connectorName": "org.identityconnectors.ldap.LdapConnector",
 "bundleName":
 "org.forgerock.openicf.connectors.ldap-connector",
 "bundleVersion": ""
 },
 {
 "connectorName": "com.forgerock.openicf.xml.XMLConnector",
 "bundleName":
 "org.forgerock.openicf.connectors.file.openicf-xml-connector",
 "bundleVersion": ""
 },
 {
 "connectorHostRef":
 "osgi:service/org.forgerock.openicf.framework.api.osgi.ConnectorManager",
 "connectorName": "org.forgerock.openicf.connectors.scriptedsql.ScriptedSQLConnector",
 "bundleName":
 "org.forgerock.openicf.connectors.scriptedsql-connector",
 "bundleVersion": ""
 },
 {
 "connectorHostRef":
 "osgi:service/org.forgerock.openicf.framework.api.osgi.ConnectorManager",
 "connectorName": "org.forgerock.openicf.csvfile.CSVFileConnector",
 "bundleName":
 "org.forgerock.openicf.connectors.csvfile-connector",
 "bundleVersion": ""
 }
]
}

To generate the core configuration, choose one of the available connectors by
copying JSON objects from the list into the body of the REST command, as shown
below for the XML connector.

Creating Default
Connector Configurations

116

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 -d '{"connectorRef":
 {"connectorName":"com.forgerock.openicf.xml.XMLConnector",
 "bundleName":"org.forgerock.openicf.connectors.file.openicf-xml-connector",
 "bundleVersion":""}}'
 --request POST "http://localhost:8080/openidm/system
 ?_action=CREATECONFIGURATION"

The command returns a core connector configuration. The core connector
configuration returned is not yet functional. It does not contain system specific
"configurationProperties" such as the host name and port for web based
connectors, or the "xmlFilePath" for the XML file based connectors as can be
seen below. In addition, the configuration returned does not include complete
"objectTypes" and "operationOptions" parts.

Creating Default
Connector Configurations

117

{
 "connectorRef": {
 "connectorName": "com.forgerock.openicf.xml.XMLConnector",
 "bundleName":
 "org.forgerock.openicf.connectors.file.openicf-xml-connector",
 "bundleVersion": ""
 },
 "poolConfigOption": {
 "maxObjects": 10,
 "maxIdle": 10,
 "maxWait": 150000,
 "minEvictableIdleTimeMillis": 120000,
 "minIdle": 1
 },
 "resultsHandlerConfig": {
 "enableNormalizingResultsHandler": true,
 "enableFilteredResultsHandler": true,
 "enableCaseInsensitiveFilter": false,
 "enableAttributesToGetSearchResultsHandler": true
 },
 "operationTimeout": {
 "CREATE": -1,
 "UPDATE": -1,
 "DELETE": -1,
 "TEST": -1,
 "SCRIPT_ON_CONNECTOR": -1,
 "SCRIPT_ON_RESOURCE": -1,
 "GET": -1,
 "RESOLVEUSERNAME": -1,
 "AUTHENTICATE": -1,
 "SEARCH": -1,
 "VALIDATE": -1,
 "SYNC": -1,
 "SCHEMA": -1
 },
 "configurationProperties": {
 "xmlFilePath": null,
 "xsdFilePath": null,
 "xsdIcfFilePath": null
 }
}

To generate the final configuration, add the missing "configurationProperties" to
the core configuration, and use the updated core configuration as the body for
the next command.

Creating Default
Connector Configurations

118

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --data '{
 "connectorRef" :
 {
 "connectorName" : "com.forgerock.openicf.xml.XMLConnector",
 "bundleName" :
 "org.forgerock.openicf.connectors.file.openicf-xml-connector",
 "bundleVersion" : ""
 },
 "poolConfigOption" :
 {
 "maxObjects" : 10,
 "maxIdle" : 10,
 "maxWait" : 150000,
 "minEvictableIdleTimeMillis" : 120000,
 "minIdle" : 1
 },
 "resultsHandlerConfig" :
 {
 "enableNormalizingResultsHandler" : true,
 "enableFilteredResultsHandler" : true,
 "enableCaseInsensitiveFilter" : false,
 "enableAttributesToGetSearchResultsHandler" : true
 },
 "operationTimeout" :
 {
 "CREATE" : -1,
 "UPDATE" : -1,
 "DELETE" : -1,
 "TEST" : -1,
 "SCRIPT_ON_CONNECTOR" : -1,
 "SCRIPT_ON_RESOURCE" : -1,
 "GET" : -1,
 "RESOLVEUSERNAME" : -1,
 "AUTHENTICATE" : -1,
 "SEARCH" : -1,
 "VALIDATE" : -1,
 "SYNC" : -1,
 "SCHEMA" : -1
 },
 "configurationProperties" :
 {
 "xsdIcfFilePath" : "samples/sample1/data/resource-schema-1.xsd",
 "xsdFilePath" : "samples/sample1/data/resource-schema-extension.xsd",
 "xmlFilePath" : "samples/sample1/data/xmlConnectorData.xml"
 }
 }'
 --request POST "http://localhost:8080/openidm/system
 ?_action=CREATECONFIGURATION"

Note

Notice the single quotes around the argument to the --data
option in the command above. For most UNIX shells, single
quotes around a string prevent the shell from executing the

Creating Default
Connector Configurations

119

command when encountering a newline in the content. You
can therefore pass the --data '...' option on a single line or
including line feeds.

OpenIDM attempts to read the schema, if available, from the external
resource in order to generate output. OpenIDM then iterates through schema
objects and attributes, creating JSON representations for "objectTypes" and
"operationOptions" for supported objects and operations.

Creating Default
Connector Configurations

120

{
 "connectorRef": {
 "connectorHostRef": "#LOCAL",
 "connectorName": "com.forgerock.openicf.xml.XMLConnector",
 "bundleName":
 "org.forgerock.openicf.connectors.file.openicf-xml-connector",
 "bundleVersion": "-EA"
 },
 "poolConfigOption": {
 "maxObjects": 10,
 "maxIdle": 10,
 "maxWait": 150000,
 "minEvictableIdleTimeMillis": 120000,
 "minIdle": 1
 },
 "resultsHandlerConfig": {
 "enableNormalizingResultsHandler": true,
 "enableFilteredResultsHandler": true,
 "enableCaseInsensitiveFilter": false,
 "enableAttributesToGetSearchResultsHandler": true
 },
 "operationTimeout": {
 "CREATE": -1,
 "UPDATE": -1,
 "DELETE": -1,
 "TEST": -1,
 "SCRIPT_ON_CONNECTOR": -1,
 "SCRIPT_ON_RESOURCE": -1,
 "GET": -1,
 "RESOLVEUSERNAME": -1,
 "AUTHENTICATE": -1,
 "SEARCH": -1,
 "VALIDATE": -1,
 "SYNC": -1,
 "SCHEMA": -1
 },
 "configurationProperties": {
 "xmlFilePath": "samples/sample1/data/xmlConnectorData.xml",
 "xsdFilePath": "samples/sample1/data/resource-schema-extension.xsd",
 "xsdIcfFilePath": "samples/sample1/data/resource-schema-1.xsd"
 },
 "objectTypes": {
 "OrganizationUnit": {
 "...": "..."
 },
 "__GROUP__": {
 "$schema": "http://json-schema.org/draft-03/schema",
 "id": "__GROUP__",
 "type": "object",
 "nativeType": "__GROUP__",
 "properties": {
 "__DESCRIPTION__": {
 "type": "string",
 "required": true,
 "nativeName": "__DESCRIPTION__",
 "nativeType": "string"
 },
 "__NAME__": {
 "type": "string",
 "required": true,
 "nativeName": "__NAME__",
 "nativeType": "string"
 }
 }
 },
 "__ACCOUNT__": {
 "$schema": "http://json-schema.org/draft-03/schema",
 "id": "__ACCOUNT__",
 "type": "object",
 "nativeType": "__ACCOUNT__",
 "properties": {
 "firstname": {
 "type": "string",
 "nativeName": "firstname",
 "nativeType": "string"
 },
 "__DESCRIPTION__": {
 "type": "string",
 "nativeName": "__DESCRIPTION__",
 "nativeType": "string"
 },
 "__UID__": {
 "type": "string",
 "nativeName": "__UID__",
 "nativeType": "string"
 },
 "__NAME__": {
 "type": "string",
 "required": true,
 "nativeName": "__NAME__",
 "nativeType": "string"
 }
 }
 }
 },
 "operationOptions": {
 "CREATE": {
 "objectFeatures": {
 "OrganizationUnit": {
 "...": "..."
 },
 "__GROUP__": {
 "...": "..."
 },
 "__ACCOUNT__": {
 "denied": false,
 "onDeny": "DO_NOTHING",
 "operationOptionInfo": {
 "$schema": "http://json-schema.org/draft-03/schema",
 "id": "FIX_ME",
 "type": "object",
 "properties": {
 "...": "..."
 }
 }
 }
 }
 },
 "UPDATE": {
 "objectFeatures": {
 "__ACCOUNT__": {
 "denied": false,
 "onDeny": "DO_NOTHING",
 "operationOptionInfo": {
 "$schema": "http://json-schema.org/draft-03/schema",
 "id": "FIX_ME",
 "type": "object",
 "properties": {
 "...": "..."
 }
 }
 }
 }
 }
 }
}

Creating Default
Connector Configurations

121

As OpenIDM produces a full property set for all attributes and all object types
in the schema from the external resource, the resulting configuration can be
large. For an LDAP server, OpenIDM can generate a configuration containing
several tens of thousands of lines, for example. You might therefore want to
reduce the schema to a minimum on the external resource before you run the
final command.

122

123

Chapter 10

Configuring Synchronization

One of the core services of OpenIDM is synchronizing identity data from different
resources. This chapter explains what you must know to get started configuring
OpenIDM's flexible synchronization mechanism, and illustrates the concepts with
examples.

10.1 Types of Synchronization
Synchronization happens either when OpenIDM receives a change directly, or
when OpenIDM discovers a change on an external resource.

For direct changes to OpenIDM, OpenIDM immediately pushes updates to
all external resources configured to receive the updates. A direct change can
originate not only as a write request through the REST interface, but also as an
update resulting from reconciliation with another resource.

OpenIDM discovers changes on external resources through reconciliation and
through LiveSync.

Reconciliation

In identity management, reconciliation is the process of bidirectional
synchronization of objects between different data stores. Reconciliation
applies mainly to user objects, although OpenIDM can reconcile any objects,
including groups and roles.

Managing Reconciliation
Over REST

124

To perform reconciliation, OpenIDM analyzes both source and target systems
to uncover the differences that it must reconcile. Reconciliation can therefore
be a heavyweight process. When working with large data sets, finding all
changes can be more work than processing the changes.

Reconciliation is, however, thorough. It recognizes system error conditions
and catches changes that might be missed by the more lightweight LiveSync
mechanism. Reconciliation therefore serves as the basis for compliance and
reporting functionality.

LiveSync

LiveSync performs the same job as reconciliation. LiveSync relies on a
change log on the external resource to determine which objects have
changed.

LiveSync is intended to react quickly to changes as they happen. LiveSync is
however a best effort mechanism that, in some cases, can miss changes.

Furthermore, not all resources provide the change log mechanism that
LiveSync requires. The change log provides OpenIDM with a list of objects
that have changed since the last request, so that OpenIDM does not need to
scan all objects for changes. OpenDJ and Active Directory both provide the
change log required for LiveSync.

To determine what to synchronize, and how to carry out synchronization,
OpenIDM relies on mappings that you configure. LiveSync relies on the set of
mappings that you configure once per OpenIDM server. Reconciliation allows you
to configure specific mappings for a particular reconciliation job.

You must trigger OpenIDM to poll for changes on external resources, usually
by scheduling reconciliation or LiveSync, as described in Scheduling Tasks and
Events. Alternatively, you can manage reconciliation and LiveSync over the REST
interface, as described in the following sections.

10.2 Managing Reconciliation Over REST
You can trigger, cancel, and monitor reconciliation operations over REST, using
the REST endpoint http://localhost:8080/openidm/recon.

10.2.1 Triggering a Reconciliation Run

The following example triggers a reconciliation operation based on the
systemLdapAccounts_managedUser mapping. The mapping is defined in the file
conf/sync.json.

Canceling a Reconciliation Run

125

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemLdapAccounts_managedUser"

By default, an assigned reconciliation run ID is returned immediately when the
reconciliation operation is initiated. Clients can make subsequent calls to the
reconciliation service, using this reconciliation run ID to query its state and to
call operations on it.

For example, the reconciliation run initiated previously would return something
similar to the following:

{"_id":"0890ad62-4738-4a3f-8b8e-f3c83bbf212e"}

To have the entire reconciliation run complete before the reconciliation run ID is
returned, set the waitForCompletion property to true when the reconciliation is
initiated. For example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon?_action=recon&
 mapping=systemLdapAccounts_managedUser&waitForCompletion=true"

10.2.2 Canceling a Reconciliation Run

You can cancel a reconciliation run by sending a REST call with the cancel action,
specifying the reconciliation run ID. For example, the following call cancels the
reconciliation run initiated in the previous section:

$curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon/0890ad62-4738-4a3f-8b8e-f3c83bbf212e
 ?_action=cancel"

The output for a reconciliation cancelation request is similar to the following:

 {"_id":"0890ad62-4738-4a3f-8b8e-f3c83bbf212e",
 "action":"cancel",
 "status":"SUCCESS"}

Listing Reconciliation Runs

126

If you specified that the call should wait for completion before the ID is returned,
you can obtain the reconciliation run ID from the list of active reconciliations, as
described in the following section.

10.2.3 Listing Reconciliation Runs

You can display a list of reconciliation processes that have completed, and those
that are in progress, by running a RESTful GET on "http://localhost:8080/
openidm/recon". The following example displays all reconciliation runs.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/recon"

The output of such a request is similar to the following, with one item for each
reconciliation run.

{"reconciliations":[
 {"_id":"d3040cc9-ec2e-41b8-86c4-72393087a626",
 "mapping":"systemLdapAccounts_managedUser",
 "state":"SUCCESS",
 "stage":"COMPLETED_SUCCESS",
 "stageDescription":"reconciliation completed.",
 "progress":{
 "source":{
 "existing":{
 "processed":1001,
 "total":"1001"
 }
 },
 "target":{
 "existing":{
 "processed":1001,
 "total":"1001"
 },
 "created":0
 },
 "links":{
 "existing":{
 "processed":1001,
 "total":"1001"
 },
 "created":0
 }
 },
 "started":"2012-11-18T08:48:00.031Z",
 "ended":"2012-11-18T08:48:00.160Z"},

Each reconciliation run has the following properties:

Listing Reconciliation Runs

127

_id

The ID of the reconciliation run.

mapping

The name of the mapping, defined in the conf/sync.json file.

state

The high level state of the reconciliation run. Values can be as follows:

• ACTIVE

The reconciliation run is in progress.

• CANCELED

The reconciliation run was successfully canceled.

• FAILED

The reconciliation run was terminated because of failure.

• SUCCESS

The reconciliation run completed successfully.

stage

The current stage of the reconciliation run's progress. Values can be as
follows:

• ACTIVE_INITIALIZED

The initial stage, when a reconciliation run is first created.

• ACTIVE_QUERY_ENTRIES

Querying the source, target and possibly link sets to reconcile.

• ACTIVE_RECONCILING_SOURCE

Reconciling the set of IDs retrieved from the mapping source.

• ACTIVE_RECONCILING_TARGET

Reconciling any remaining entries from the set of IDs retrieved from the
mapping target, that were not matched or processed during the source
phase.

• ACTIVE_LINK_CLEANUP

Listing Reconciliation Runs

128

Checking whether any links are now unused and should be cleaned up.

• ACTIVE_PROCESSING_RESULTS

Post-processing of reconciliation results.

• ACTIVE_CANCELING

Attempting to abort a reconciliation run in progress.

• COMPLETED_SUCCESS

Successfully completed processing the reconciliation run.

• COMPLETED_CANCELED

Completed processing because the reconciliation run was aborted.

• COMPLETED_FAILED

Completed processing because of a failure.

stageDescription

A description of the stages described previously.

progress

The progress object has the following structure (annotated here with
comments):

"progress":{
 "source":{ // Progress on the set of existing entries in the mapping source
 "existing":{
 "processed":1001,
 "total":"1001" // Total number of entries in source set, if known, “?” otherwise
 }
 },
 "target":{ // Progress on the set of existing entries in the mapping target
 "existing":{
 "processed":1001,
 "total":"1001" // Total number of entries in target set, if known, “?” otherwise
 },
 "created":0 // New entries that were created
 },
 "links":{ // Progress on the set of existing links between source and target
 "existing":{
 "processed":1001,
 "total":"1001" // Total number of existing links, if known, “?” otherwise
 },
 "created":0 // Denotes new links that were created
 }
},

Querying the
Reconciliation Audit Log

129

10.2.4 Querying the Reconciliation Audit Log
Reconciliation operations are logged in the file /path/to/openidm/audit/recon.csv
and in the repository. You can read and query the reconciliation audit logs over
the REST interface as outlined in the following examples.

By default all audit/recon query responses are formatted based on the entryType
of the entry. Fields that are not required for the specific entry type are stripped
away from the response. For example, a summary entry would not need to include
a null targetObjectId field, as this field would not make sense in the context of
a summary. You can specify that this auto-formatting be disabled and return the
full entry for all entry types. To disable entry formatting, include formatted=false
as a query parameter in the request.

To return all reconciliation operations logged in the audit log, run a RESTful GET
on the audit/recon endpoint. For example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/audit/recon"

The following code sample shows an extract of the audit log after the first
reconciliation operation in Sample 1.

{
 "entries": [
 {
 "rootActionId": "d0578abf-f38e-4ede-a7dc-5ee9eaa8ce53",
 "messageDetail": null,
 "message": "Reconciliation initiated by openidm-admin",
 "timestamp": "2013-05-08T07:58:33.296Z",
 "reconId": "5cf09dfa-e85c-4d52-ab6c-8ba7c2e3d34f",
 "entryType": "start",
 "_id": "11381e20-3679-469d-a71c-c557c2bd091e",
 "status": "SUCCESS",
 "exception": "",
 "mapping": "systemXmlfileAccounts_managedUser"
 },
 {
 "messageDetail": null,
 "rootActionId": "d0578abf-f38e-4ede-a7dc-5ee9eaa8ce53",
 "situation": "ABSENT",
 "actionId": "86995423-8a43-4fc7-9c3c-9e450e0234cb",
 "targetObjectId": "managed/user/scarter",
 "action": "CREATE",
 "entryType": "",
 "_id": "9f59bb8a-31c6-41af-8f27-02094391ba0c",
 "reconId": "5cf09dfa-e85c-4d52-ab6c-8ba7c2e3d34f",
 "status": "SUCCESS",
 "exception": "",
 "reconciling": "source",
 "ambiguousTargetObjectIds": "",
 "timestamp": "2013-05-08T07:58:33.791Z",
 "message": null,

Querying the
Reconciliation Audit Log

130

 "sourceObjectId": "system/xmlfile/account/scarter"
 },
 {
 "messageDetail": null,
 "rootActionId": "d0578abf-f38e-4ede-a7dc-5ee9eaa8ce53",
 "situation": "ABSENT",
 "actionId": "dea9b5c5-7a75-4cab-b8e4-176bea0a94a6",
 "targetObjectId": "managed/user/bjensen",
 "action": "CREATE",
 "entryType": "",
 "_id": "4fd285ef-a409-4875-abd0-5d70965fe172",
 "reconId": "5cf09dfa-e85c-4d52-ab6c-8ba7c2e3d34f",
 "status": "SUCCESS",
 "exception": "",
 "reconciling": "source",
 "ambiguousTargetObjectIds": "",
 "timestamp": "2013-05-08T07:58:33.793Z",
 "message": null,
 "sourceObjectId": "system/xmlfile/account/bjensen"
 },
 {
 "rootActionId": "d0578abf-f38e-4ede-a7dc-5ee9eaa8ce53",
 "messageDetail": {
 "ended": "2013-05-08T07:58:33.813Z",
 "started": "2013-05-08T07:58:33.294Z",
 "situationSummary": {
 "SOURCE_MISSING": 0,
 "FOUND": 0,
 "SOURCE_IGNORED": 0,
 "UNQUALIFIED": 0,
 "UNASSIGNED": 0,
 "TARGET_IGNORED": 0,
 "CONFIRMED": 0,
 "AMBIGUOUS": 0,
 "ABSENT": 2,
 "MISSING": 0
 },
 "progress": {
 "links": {
 "created": 2,
 "existing": {
 "total": "0",
 "processed": 0
 }
 },
 "target": {
 "created": 2,
 "existing": {
 "total": "0",
 "processed": 0
 }
 },
 "source": {
 "existing": {
 "total": "2",
 "processed": 2
 }
 }
 },
 "stageDescription": "reconciling target entries",
 "stage": "ACTIVE_RECONCILING_TARGET",
 "state": "ACTIVE",

Querying the
Reconciliation Audit Log

131

 "mapping": "systemXmlfileAccounts_managedUser"
 },
 "message": "SOURCE_IGNORED: 0 MISSING: 0 FOUND: 0 AMBIGUOUS: 0 UNQUALIFIED: 0
 CONFIRMED: 0 SOURCE_MISSING: 0 ABSENT: 2 TARGET_IGNORED: 0 UNASSIGNED: 0 ",
 "timestamp": "2013-05-08T07:58:33.813Z",
 "reconId": "5cf09dfa-e85c-4d52-ab6c-8ba7c2e3d34f",
 "entryType": "summary",
 "_id": "a8a81f9f-fa8f-49f4-a0d6-c88b5fc4be2a",
 "status": "SUCCESS",
 "exception": "",
 "mapping": "systemXmlfileAccounts_managedUser"
 }
]
}

Most of the fields in this audit log are self-explanatory. Each distinct
reconciliation operation is identified by its reconId. Each entry in the log
is identified by a unique _id. The first log entry indicates the status for the
complete reconciliation operation. Successive entries indicate the status for each
record affected by the reconciliation.

To obtain information on a specific audit log entry, include its entry _id in the
endpoint. For example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/audit/recon/9f59bb8a-31c6-41af-8f27-02094391ba0c"

The following sample output shows the results of a read operation on a specific
reconciliation audit entry.

{
 "messageDetail": null,
 "rootActionId": "d0578abf-f38e-4ede-a7dc-5ee9eaa8ce53",
 "situation": "ABSENT",
 "actionId": "86995423-8a43-4fc7-9c3c-9e450e0234cb",
 "targetObjectId": "managed/user/scarter",
 "action": "CREATE",
 "entryType": "",
 "_id": "9f59bb8a-31c6-41af-8f27-02094391ba0c",
 "reconId": "5cf09dfa-e85c-4d52-ab6c-8ba7c2e3d34f",
 "status": "SUCCESS",
 "exception": "",
 "reconciling": "source",
 "ambiguousTargetObjectIds": "",
 "timestamp": "2013-05-08T07:58:33.791Z",
 "message": null,
 "sourceObjectId": "system/xmlfile/account/scarter"
}

To query the audit log for a particular reconciliation operation, use the audit-by-
recon-id keyword, specifying the reconciliation ID, as follows:

Querying the
Reconciliation Audit Log

132

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/audit/recon/
 ?_queryId=audit-by-recon-id&reconId=<reconID>"

Output similar to the following is returned, for the specified reconciliation
operation:

{
 "start": {
 "rootActionId": "3c098d6f-a5e5-483c-a8ce-82911a10b0a9",
 "messageDetail": null,
 "message": "Reconciliation initiated by openidm-admin",
 "timestamp": "2013-05-14T08:20:41.343Z",
 "reconId": "1ef8e7b6-33dc-4f92-810a-b51913508a68",
 "entryType": "start",
 "_id": "ce58ef39-425d-4711-94b9-a9c77df23001",
 "status": "SUCCESS",
 "exception": "",
 "mapping": "systemXmlfileAccounts_managedUser"
 },
 "result": [
 {
 "messageDetail": null,
 "rootActionId": "3c098d6f-a5e5-483c-a8ce-82911a10b0a9",
 "situation": "ABSENT",
 "actionId": "1a391fe8-201b-4f59-ad05-92ee804488a8",
 "targetObjectId": "managed/user/scarter",
 "action": "CREATE",
 "entryType": "",
 "_id": "6dc0a18a-826d-487d-a29f-5cd8d2f55465",
 "reconId": "1ef8e7b6-33dc-4f92-810a-b51913508a68",
 "status": "SUCCESS",
 "exception": "",
 "reconciling": "source",
 "ambiguousTargetObjectIds": "",
 "timestamp": "2013-05-14T08:20:41.763Z",
 "message": null,
 "sourceObjectId": "system/xmlfile/account/scarter"
 },
 {
 "messageDetail": null,
 "rootActionId": "3c098d6f-a5e5-483c-a8ce-82911a10b0a9",
 "situation": "ABSENT",
 "actionId": "0aaba292-1dd3-4e98-a0e2-04bec9ae5209",
 "targetObjectId": "managed/user/bjensen",
 "action": "CREATE",
 "entryType": "",
 "_id": "1cda457e-54e2-451b-8a40-ef93dec7e60c",
 "reconId": "1ef8e7b6-33dc-4f92-810a-b51913508a68",
 "status": "SUCCESS",
 "exception": "",
 "reconciling": "source",
 "ambiguousTargetObjectIds": "",
 "timestamp": "2013-05-14T08:20:41.760Z",
 "message": null,
 "sourceObjectId": "system/xmlfile/account/bjensen"
 }

Querying the
Reconciliation Audit Log

133

],
 "summary": {
 "rootActionId": "3c098d6f-a5e5-483c-a8ce-82911a10b0a9",
 "messageDetail": {
 "ended": "2013-05-14T08:20:41.783Z",
 "started": "2013-05-14T08:20:41.342Z",
 "situationSummary": {
 "SOURCE_MISSING": 0,
 "FOUND": 0,
 "SOURCE_IGNORED": 0,
 "UNQUALIFIED": 0,
 "UNASSIGNED": 0,
 "TARGET_IGNORED": 0,
 "CONFIRMED": 0,
 "AMBIGUOUS": 0,
 "ABSENT": 2,
 "MISSING": 0
 },
 "progress": {
 "links": {
 "created": 2,
 "existing": {
 "total": "0",
 "processed": 0
 }
 },
 "target": {
 "created": 2,
 "existing": {
 "total": "0",
 "processed": 0
 }
 },
 "source": {
 "existing": {
 "total": "2",
 "processed": 2
 }
 }
 },
 "stageDescription": "reconciling target entries",
 "stage": "ACTIVE_RECONCILING_TARGET",
 "state": "ACTIVE",
 "mapping": "systemXmlfileAccounts_managedUser"
 },
 "message": "SOURCE_IGNORED: 0 MISSING: 0 FOUND: 0 AMBIGUOUS: 0 UNQUALIFIED: 0
 CONFIRMED: 0 SOURCE_MISSING: 0 ABSENT: 2 TARGET_IGNORED: 0 UNASSIGNED: 0 ",
 "timestamp": "2013-05-14T08:20:41.783Z",
 "reconId": "1ef8e7b6-33dc-4f92-810a-b51913508a68",
 "entryType": "summary",
 "_id": "94c5893c-4ea8-4464-aff2-5533d6369722",
 "status": "SUCCESS",
 "exception": "",
 "mapping": "systemXmlfileAccounts_managedUser"
 }
}

Note that the response structure of a read request on audit/recon differs from
the response structure of a query by recon-id. The read response contains a flat

Querying the
Reconciliation Audit Log

134

list of entries. The query response separates the summary and start event type
entries. Other entries are listed under the result entry.

To query the audit log for a specific reconciliation situation, use the audit-by-
recon-id-situation keyword, specifying the reconciliation ID and the situation
that you want to query. For example, the following query returns all ABSENT
records found during the specified reconciliation operation:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/audit/recon
 ?_queryId=audit-by-recon-id-situation&situation=
 ABSENT&reconId=fd2a59df-1fcd-444d-97ca-2c8a7ec6dc6c"

Output similar to the following is returned, with one entry for each record that
matches the situation queried:

{
 "result": [
 {
 "messageDetail": null,
 "rootActionId": "3c098d6f-a5e5-483c-a8ce-82911a10b0a9",
 "situation": "ABSENT",
 "actionId": "1a391fe8-201b-4f59-ad05-92ee804488a8",
 "targetObjectId": "managed/user/scarter",
 "action": "CREATE",
 "entryType": "",
 "_id": "6dc0a18a-826d-487d-a29f-5cd8d2f55465",
 "reconId": "1ef8e7b6-33dc-4f92-810a-b51913508a68",
 "status": "SUCCESS",
 "exception": "",
 "reconciling": "source",
 "ambiguousTargetObjectIds": "",
 "timestamp": "2013-05-14T08:20:41.763Z",
 "message": null,
 "sourceObjectId": "system/xmlfile/account/scarter"
 },
 {
 "messageDetail": null,
 "rootActionId": "3c098d6f-a5e5-483c-a8ce-82911a10b0a9",
 "situation": "ABSENT",
 "actionId": "0aaba292-1dd3-4e98-a0e2-04bec9ae5209",
 "targetObjectId": "managed/user/bjensen",
 "action": "CREATE",
 "entryType": "",
 "_id": "1cda457e-54e2-451b-8a40-ef93dec7e60c",
 "reconId": "1ef8e7b6-33dc-4f92-810a-b51913508a68",
 "status": "SUCCESS",
 "exception": "",
 "reconciling": "source",
 "ambiguousTargetObjectIds": "",
 "timestamp": "2013-05-14T08:20:41.760Z",
 "message": null,
 "sourceObjectId": "system/xmlfile/account/bjensen"
 }
]

Querying the
Reconciliation Audit Log

135

}

The activity logs track all operations on internal (managed) and external (system)
objects. Entries in the activity log contain identifiers for the reconciliation or
synchronization action that triggered the activity, and for the original caller and
the relationships between related actions.

You can access the activity logs over REST with the following call:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/audit/activity"

The following extract of the activity log shows the last entry in the log, which was
a password change for user bjensen.

{
 "entries": [
 {
 "rootActionId": "3c098d6f-a5e5-483c-a8ce-82911a10b0a9",
 "action": "create",
 "objectId": "managed/user/bjensen",
 "_rev": "0",
 "_id": "22ef6d20-bd84-4267-9db8-745825a46ad1",
 "timestamp": "2013-05-14T08:20:41.712Z",
 "message": null,
 "activityId": "aa964020-b343-4d23-8e00-745ed4b79f50",
 "parentActionId": "0aaba292-1dd3-4e98-a0e2-04bec9ae5209",
 "requester": "openidm-admin",
 "rev": "0",
 "passwordChanged": true,
 "status": "SUCCESS",
 "before": null,
 "changedFields": [
 "/password"
],
 "after": {
 "securityAnswer": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "key": "openidm-sym-default",
 "iv": "c6gZKz4sSL2YNTBwwFXIzw==",
 "cipher": "AES/CBC/PKCS5Padding",
 "data": "7FATEBtuLlLfMXGokfLrtJ2rXPEsE1YTIXSoGQCum4w="
 }
 }
 },
 ...

To return activity information for a specific action, include the _id of the action in
the endpoint, for example:

Querying the
Reconciliation Audit Log

136

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/audit/activity/22ef6d20-bd84-4267-9db8-745825a46ad1"

Results similar to the following are returned:

{
 "rootActionId": "3c098d6f-a5e5-483c-a8ce-82911a10b0a9",
 "action": "create",
 "objectId": "managed/user/bjensen",
 "timestamp": "2013-05-14T08:20:41.712Z",
 "message": null,
 "activityId": "aa964020-b343-4d23-8e00-745ed4b79f50",
 "after": {
 "securityAnswer": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "key": "openidm-sym-default",
 "iv": "c6gZKz4sSL2YNTBwwFXIzw==",
 "cipher": "AES/CBC/PKCS5Padding",
 "data": "7FATEBtuLlLfMXGokfLrtJ2rXPEsE1YTIXSoGQCum4w="
 }
 }
 },
 "stateProvince": "",
 "userName": "bjensen@example.com",
 "roles": "openidm-authorized",
 "description": "Created By XML1",
 "accountStatus": "active",
 "password": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "key": "openidm-sym-default",
 "iv": "bqhRyLW1lI+KZROcpgyukg==",
 "cipher": "AES/CBC/PKCS5Padding",
 "data": "qO8A76GqNqftVVwOlasyPw=="
 }
 }
 },
 "securityQuestion": "1",
 "givenName": "Barbara",
 "address2": "",
 "lastPasswordAttempt": "Tue May 14 2013 10:20:41 GMT+0200 (SAST)",
 "address1": "",
 "familyName": "Jensen",
 "passwordAttempts": "0",
 "country": "",
 "city": "",
 "_rev": "0",
 "lastPasswordSet": "",
 "postalCode": "",
 "phoneNumber": "1234567",
 "_id": "bjensen",
 "email": "bjensen@example.com"
 },
 "changedFields": [
 "/password"

Querying the
Reconciliation Audit Log

137

],
 "_id": "22ef6d20-bd84-4267-9db8-745825a46ad1",
 "_rev": "0",
 "parentActionId": "0aaba292-1dd3-4e98-a0e2-04bec9ae5209",
 "requester": "openidm-admin",
 "rev": "0",
 "passwordChanged": true,
 "status": "SUCCESS",
 "before": null
}

Each action in the activity log has a rootActionId and a parentActionId. The
rootActionId is the ID that was assigned to the incoming or initiating request.
The parentActionId is the ID that is associated with the overall action. So, for
example, if an HTTP request invokes a script that changes a user's password, the
HTTP request is assigned the rootActionId and the action taken by the script is
assigned the parentActionId. You can query the activity log for the details of a
specific action by including the parentActionId in the query. For example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/audit/activity
 ?_queryId=audit-by-activity-parent-action&
 parentActionId=90ce7473-98c7-4747-bfbb-32bfa3ce5d92"

The following sample output shows the result of a query that requests details of
the password change for bjensen.

{
 "result": [
 {
 "rootActionId": "3c098d6f-a5e5-483c-a8ce-82911a10b0a9",
 "action": "create",
 "objectId": "managed/user/bjensen",
 "_rev": "0",
 "_id": "22ef6d20-bd84-4267-9db8-745825a46ad1",
 "timestamp": "2013-05-14T08:20:41.712Z",
 "message": null,
 "activityId": "aa964020-b343-4d23-8e00-745ed4b79f50",
 "parentActionId": "0aaba292-1dd3-4e98-a0e2-04bec9ae5209",
 "requester": "openidm-admin",
 "rev": "0",
 "passwordChanged": true,
 "status": "SUCCESS",
 "before": null,
 "changedFields": [
 "/password"
],
 "after": {
 "securityAnswer": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "key": "openidm-sym-default",
 "iv": "c6gZKz4sSL2YNTBwwFXIzw==",

Querying the
Reconciliation Audit Log

138

 "cipher": "AES/CBC/PKCS5Padding",
 "data": "7FATEBtuLlLfMXGokfLrtJ2rXPEsE1YTIXSoGQCum4w="
 }
 }
 },
 "stateProvince": "",
 "userName": "bjensen@example.com",
 "roles": "openidm-authorized",
 "description": "Created By XML1",
 "accountStatus": "active",
 "password": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "key": "openidm-sym-default",
 "iv": "bqhRyLW1lI+KZROcpgyukg==",
 "cipher": "AES/CBC/PKCS5Padding",
 "data": "qO8A76GqNqftVVwOlasyPw=="
 }
 }
 },
 "securityQuestion": "1",
 "givenName": "Barbara",
 "address2": "",
 "lastPasswordAttempt": "Tue May 14 2013 10:20:41 GMT+0200 (SAST)",
 "address1": "",
 "familyName": "Jensen",
 "passwordAttempts": "0",
 "country": "",
 "city": "",
 "_rev": "0",
 "lastPasswordSet": "",
 "postalCode": "",
 "phoneNumber": "1234567",
 "_id": "bjensen",
 "email": "bjensen@example.com"
 }
 }
]
}

Note

For audit logs in the repository, you can define custom
queries using the parameterized query mechanism. For more
information, see the section on Parameterized Queries

For more information about the entries in these logs, see the chapter that covers
Using Audit Logs.

Triggering LiveSync Over REST

139

10.3 Triggering LiveSync Over REST
The ability to trigger LiveSync operations over REST, or by using the resource
API, enables you to use an external scheduler to trigger a LiveSync operation,
rather than using the OpenIDM scheduling mechanism.

There are two ways in which to trigger a LiveSync operation over REST.

• Use the _action=liveSync parameter directly on the resource. This is the
recommended method. The following example calls a LiveSync operation on the
user accounts in an external LDAP system.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/system/ldap/account?_action=liveSync"

• Target the system endpoint and supply a source parameter to identify the object
that should be synchronized. This method matches the scheduler configuration
and can therefore be used to test schedules before they are implemented.

The following example calls the same LiveSync operation as the previous
example.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/system
 ?_action=liveSync&source=system/ldap/account"

A successful LiveSync operation returns the following response:

{
 "_id": "SYSTEMLDAPACCOUNT",
 "_rev": "0",
 "connectorData": {
 "syncToken": 1,
 "nativeType": "integer"
 }
}

You should not run two identical LiveSync operations simultaneously - you must
ensure that the first operation has completed before a second similar operation is
launched.

To troubleshoot a LiveSync operation that has not succeeded, you can include
an optional parameter (detailedFailure) to return additional information. For
example:

Flexible Data Model

140

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/system/ldap/account
 ?_action=liveSync&detailedFailure=true"

Note

The first time that a LiveSync operation is called, no
synchronization token exists in the database to establish which
changes have already been processed. The default LiveSync
behavior is to locate the last existing entry in the change log,
and to store that entry in the database as the current starting
position from which changes should be applied. This behavior
prevents LiveSync from processing changes that might already
have been processed during an initial data load. Subsequent
LiveSync operations will pick up and process any new changes.

Typically, in setting up LiveSync on a new system, you would
load the data initially (by using reconciliation, for example) and
then enable LiveSync, starting from that base point.

10.4 Flexible Data Model
Identity management software tends to favor either a meta-directory data model,
where all data are mirrored in a central repository, or a virtual data model,
where only a minimum set of attributes are stored centrally, and most are loaded
on demand from the external resources in which they are stored. The meta-
directory model offers fast access at the risk of getting out-of-date data. The
virtual model guarantees fresh data, but pays for that guarantee in terms of
performance.

OpenIDM leaves the data model choice up to you. You determine the right trade
offs for a particular deployment. OpenIDM does not hard code any particular
schema or set of attributes stored in the repository. Instead, you define how
external system objects map onto managed objects, and OpenIDM dynamically
updates the repository to store the managed object attributes that you configure.

You can, for example, choose to follow the data model defined in the Simple
Cloud Identity Management (SCIM) specification. The following object represents
a SCIM user.

http://www.simplecloud.info/specs/draft-scim-core-schema-00.html

Basic Data Flow Configuration

141

{
 "userName": "james1",
 "familyName": "Berg",
 "givenName": "James",
 "email": [
 "james1@example.com"
],
 "description": "Created by OpenIDM REST.",
 "password": "asdfkj23",
 "displayName": "James Berg",
 "phoneNumber": "12345",
 "employeeNumber": "12345",
 "userType": "Contractor",
 "title": "Vice President",
 "active": true
}

Note

Avoid using the dash character (-) in property names, like
last-name, as dashes in names make JavaScript syntax more
complex. If you cannot avoid the dash, then write source['last-
name'] instead of source.last-name in java script.

10.5 Basic Data Flow Configuration
Data flow for synchronization involves the following elements:

• Connector configuration files (conf/provisioner-*.json), with one file per
external resource.

• Synchronization mappings file (conf/sync.json), with one file per OpenIDM
instance.

• A links table that OpenIDM maintains in its repository.

• The scripts required to check objects and manipulate attributes.

10.5.1 Connector Configuration Files
Connector configuration files map external resource objects to OpenIDM objects,
and are described in detail in the chapter on Connecting to External Resources.
Connector configuration files are named openidm/conf/provisioner.resource-
name.json, where resource-name reflects the connector technology and external
resource, such as openicf-xml.

Synchronization Mappings File

142

An excerpt from an example connector configuration follows. The example shows
the name for the connector and two attributes of an account object type. In the
attribute mapping definitions, the attribute name is mapped from the nativeName,
the attribute name used on the external resource, to the attribute name used in
OpenIDM. Thus the example shows that the sn attribute in LDAP is mapped to
lastName in OpenIDM. The homePhone attribute can have multiple values.

{
 "name": "MyLDAP",
 "objectTypes": {
 "account": {
 "lastName": {
 "type": "string",
 "required": true,
 "nativeName": "sn",
 "nativeType": "string"
 },
 "homePhone": {
 "type": "array",
 "items": {
 "type": "string",
 "nativeType": "string"
 },
 "nativeName": "homePhone",
 "nativeType": "string"
 }
 }
 }
}

In order for OpenIDM to access external resource objects and attributes, the
object and its attributes must match the connector configuration. Note that
the connector file only maps external resource objects to OpenIDM objects. To
construct attributes and to manipulate their values, you use the synchronization
mappings file.

10.5.2 Synchronization Mappings File

The synchronization mappings file (openidm/conf/sync.json) represents the core
configuration for OpenIDM synchronization.

The sync.json file describes a set of mappings. Each mapping specifies how
attributes from source objects correspond to attributes on target objects. The
source and target indicate the direction for the data flow, so you must define a
separate mapping for each data flow. For example, if you want data flows from an
LDAP server to the repository and also from the repository to the LDAP server,
you must define two separate mappings.

You identify external resource sources and targets as system/name/object-type,
where name is the name used in the connector configuration file, and object-
type is the object defined in the connector configuration file list of object types.

Synchronization Mappings File

143

For objects in OpenIDM's internal repository, you use managed/object-type,
where object-type is defined in openidm/conf/managed.json. The name for the
mapping by convention is set to a string of the form source_target, as shown in the
following example.

{
 "mappings": [
 {
 "name": "systemLdapAccounts_managedUser",
 "source": "system/MyLDAP/account",
 "target": "managed/user",
 "properties": [
 {
 "target": "familyName",
 "source": "lastName"
 },
 {
 "target": "homePhone",
 "source": "homePhone"
 },
 {
 "target": "phoneExtension",
 "default": "0047"
 },
 {
 "target": "mail",
 "comment": "Set mail if non-empty.",
 "source": "email",
 "condition": {
 "type": "text/javascript",
 "source": "(object.email != null)"
 }
 },
 {
 "target": "displayName",
 "source": "",
 "transform": {
 "type": "text/javascript",
 "source": "source.lastName +', ' + source.firstName;"
 }
 }
]
 }
]
}

In this example, the source is the external resource, MyLDAP, and the target is
OpenIDM's repository, specifically the managed user objects. The properties
reflect OpenIDM attribute names. For example, the mapping has the attribute
lastName defined in the MyLDAP connector configuration file mapped to familyName
in the OpenIDM managed user object. Notice that the attribute names come from
the connector configuration, rather than the external resource itself.

You can create attributes on the target as part of the mapping. In the preceding
example, a phoneExtension attribute with a default value of 0047 is created on the
target. The "default" property can also be used to specify the value to assign to

Synchronization Mappings File

144

the target property if the "source" property and the "transform" script yield a null
value. If no value is specified, the default value is null.

You can also set up conditions under which OpenIDM maps attributes as shown
for the email attribute in the example. By default, OpenIDM synchronizes all
attributes. In the example, the mail attribute is set only if the script for the
condition returns true.

OpenIDM also enables you to transform attributes. In the example, the value of
the displayName attribute is set using a combination of the lastName and firstName
attribute values from the source. For transformations, the source property is
optional. However, the source object is only available when you specify the
source property. Therefore, in order to use source.lastName and source.firstName
to calculate the displayName, the example specifies "source" : "".

To add a flow from the repository to MyLDAP, you would define a mapping with
source managed/user and target system/MyLDAP/account, named for example
managedUser_systemLdapAccounts.

The following image shows the paths to objects in the OpenIDM namespace.

Synchronization Mappings File

145

OpenIDM stores managed objects in the repository, and
exposes them under /openidm/managed. System objects on
external resources are exposed under /openidm/system.

By default, OpenIDM synchronizes all objects that match those defined in the
connector configuration for the resource. Many connectors allow you to limit the
scope of objects that the connector accesses. For example, the LDAP connector
allows you to specify base DNs and LDAP filters so that you do not need to access
every entry in the directory. OpenIDM also allows you to filter what is considered
a valid source or valid target for synchronization by using JavaScript code. To
apply these filters, use the validSource, and validTarget properties in your
mapping.

validSource

A script that determines if a source object is valid to be mapped. The script
yields a boolean value: true indicates that the source object is valid; false
can be used to defer mapping until some condition is met. In the root scope,
the source object is provided in the "source" property. If the script is not
specified, then all source objects are considered valid.

{
 "validSource": {
 "type": "text/javascript",
 "source": "source.ldapPassword != null"
 }
}

validTarget

A script, used during reconciliation's second phase, that determines if a
target object is valid to be mapped. The script yields a boolean value: true
indicates that the target object is valid; false indicates that the target object
should not be included in reconciliation. In the root scope, the source object
is provided in the "target" property. If the script is not specified, then all
target objects are considered valid for mapping.

{
 "validTarget": {
 "type": "text/javascript",
 "source": "target.employeeType == 'internal'"
 }
}

During synchronization, your scripts always have access to a source object and a
target object. Examples already shown in this section use source.attributeName to
retrieve attributes from the source objects. Your scripts can also write to target
attributes using target.attributeName syntax.

Using Encrypted Values

146

{
 "onUpdate": {
 "type": "text/javascript",
 "source": "if (source.email != null) {target.mail = source.email;}"
 }
}

See the Scripting Reference appendix for more on scripting.

By default, all mappings participate in automatic synchronization operations. You
can prevent a specific mapping from participating in automatic synchronization
by setting the "enableSync" property of that mapping to false. In the following
example, automatic synchronization is disabled. This means that changes to
objects in the internal repository are not automatically propagated to the LDAP
directory. To propagate changes to the LDAP directory, reconciliation must be
launched manually.

{
 "mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "enableSync" : false,

}

10.5.3 Using Encrypted Values

OpenIDM supports reversible encryption of attribute values for managed objects.
Attribute values to encrypt include passwords, authentication questions, credit
card numbers, and social security numbers. If passwords are already encrypted
on the external resource, they are generally excluded from the synchronization
process. For more information, see Managing Passwords.

You configure encryption in the managed object configuration (in the openidm/
conf/managed.json file). The following example shows a managed object
configuration that encrypts and decrypts securityAnswer, ssn, and password
attributes using the default symmetric key, and additional scripts for extra
passwords.

{
 "objects": [
 {
 "name": "user",
 "properties": [
 {

Restricting HTTP
Access to Sensitive Data

147

 "name": "securityAnswer",
 "encryption": {
 "key": "openidm-sym-default"
 }
 },
 {
 "name": "ssn",
 "encryption": {
 "key": "openidm-sym-default"
 }
 },
 {
 "name": "password",
 "encryption": {
 "key": "openidm-sym-default"
 }
 }
],
 "onStore": {
 "type": "text/javascript",
 "file": "script/encryptExtraPassword.js"
 },
 "onRetrieve": {
 "type": "text/javascript",
 "file": "script/decryptExtraPassword.js"
 }
 }
]
}

Do not use the default symmetric key, openidm-sym-default, in production. See
the chapter on Securing and Hardening OpenIDM for instructions on adding your
own symmetric key.

10.5.4 Restricting HTTP Access to Sensitive Data

You can protect specific sensitive data stored in the repository by marking the
corresponding properties as "private". Private data, whether it is encrypted or
not, is not accessible over the REST interface. Properties that are marked as
private are removed from an object when that object is retrieved over REST.

To mark a property as private, set its "scope" to "private" in the conf/
managed.json file.

The following extract of the managed.json file shows how HTTP access is
prevented on the password and securityAnswer properties.

Constructing and
Manipulating Attributes

148

 "properties" : [
 {
 "name" : "securityAnswer",
 "encryption" : {
 "key" : "openidm-sym-default"
 },
 "scope" : "private"
 },
 {
 "name" : "password",
 "encryption" : {
 "key" : "openidm-sym-default"
 },
 "scope" : "private"

A potential caveat with using private properties is that such properties are
removed if an object is updated by using an HTTP PUT request. A PUT request
replaces the entire object in the repository. Because properties that are marked
as private are ignored in HTTP requests, these properties are effectively removed
from the object when the update is done. To work around this limitation, do not
use PUT requests if you have configured private properties. Instead, use a PATCH
request to update only those properties that need to be changed.

For example, to update the familyName of user joe, replace only the familyName
and not the entire user object, as follows:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --header "Content-Type: application/json"
 --request POST
 --data '[{"replace":"familyName","value": "Brown"}]'
 "http://localhost:8080/openidm/managed/user
 ?_action=patch&_queryId=for-userName&uid=joe"

Note

The filtering of private data applies only to direct HTTP read
and query calls on managed objects. No automatic filtering is
done for internal callers, and the data that these callers choose
to expose.

10.5.5 Constructing and Manipulating Attributes

Reusing Links

149

OpenIDM enables you to construct and manipulate attributes using scripts that
are triggered when an object is created (onCreate), updated (onUpdate), or
deleted (onDelete), or when a link is created (onLink), or removed (onUnlink).

The following example derives a DN for an LDAP entry when the entry is created
in the internal repository.

{
 "onCreate": {
 "type": "text/javascript",
 "source":
 "target.dn = 'uid=' + source.uid + ',ou=people,dc=example,dc=com'"
 }
}

10.5.6 Reusing Links

When two mappings exist to synchronize the same objects bidirectionally, you
can use the links property in one mapping to have OpenIDM use the same
internally managed link for both mappings. Otherwise, if no links property is
specified, OpenIDM maintains a link for each mapping.

The following excerpt shows two mappings, one from MyLDAP accounts to
managed users, and another from managed users to MyLDAP accounts. In the
second mapping, the link property tells OpenIDM to reuse the links created in
the first mapping, rather than create new links.

{
 "mappings": [
 {
 "name": "systemMyLDAPAccounts_managedUser",
 "source": "system/MyLDAP/account",
 "target": "managed/user"
 },
 {
 "name": "managedUser_systemMyLDAPAccounts",
 "source": "managed/user",
 "target": "system/MyLDAP/account",
 "links": "systemMyLDAPAccounts_managedUser"
 }
]
}

10.6 Synchronization Situations and Actions
During synchronization, OpenIDM categorizes objects by situation. Situations are
characterized by whether an object exists on a source or target system, whether
OpenIDM has registered a link between the source object and the target object,

Synchronization Situations

150

and whether the object is considered valid. OpenIDM takes action depending on
the situation.

You can define actions for particular situations in the policies section of a
synchronization mapping, as shown in the following excerpt.

{
 "policies": [
 {
 "situation": "CONFIRMED",
 "action": "UPDATE"
 },
 {
 "situation": "FOUND",
 "action": "IGNORE"
 },
 {
 "situation": "ABSENT",
 "action": "CREATE"
 },
 {
 "situation": "AMBIGUOUS",
 "action": "IGNORE"
 },
 {
 "situation": "MISSING",
 "action": "IGNORE"
 },
 {
 "situation": "UNQUALIFIED",
 "action": "IGNORE"
 },
 {
 "situation": "UNASSIGNED",
 "action": "IGNORE"
 }
]
}

If you do not define a policy for a particular situation, OpenIDM takes the default
action for the situation.

The situations and their corresponding actions are described in the following
sections.

10.6.1 Synchronization Situations

OpenIDM performs a reconciliation action in two phases:

1. Source reconciliation, where OpenIDM accounts for source objects and
associated links based on the configured mapping.

2. Target reconciliation, where OpenIDM iterates over the target objects that
were not processed in the first phase.

Synchronization Situations

151

During reconciliation OpenIDM builds three lists, assigning values to the objects
to reconcile.

1. All valid objects from the source

OpenIDM assigns valid source objects qualifies=1. Invalid objects, including
those not found in the source system, and those filtered out by the script
specified validSource property, are assigned qualifies=0.

2. All records from the appropriate link table

Objects with corresponding links in the link table of the repository are
assigned link=1. Objects without corresponding links are assigned link=0.

3. All valid objects on the target system

Objects found in the target system are assigned target=1. Objects that are not
found in the target system are assigned target=0.

Based on the values assigned to objects during source reconciliation, OpenIDM
assigns situations, listed here with their default actions.

"CONFIRMED" (qualifies=1, link=1, target=1)

The mapping qualifies for a target object, and a link to an existing target
object was found. Detected during change events and reconciliation. Default
action: "UPDATE".

"FOUND" (qualifies=1, link=0, target=1)

The mapping qualifies for a target object, there is no link to a target object,
and there is a single target object, correlated by the logic found in the
correlationQuery. Detected during change events and reconciliation. Default
action: "UPDATE".

"ABSENT" (qualifies=1, link=0, target=0)

The mapping qualifies for a target object, there is no link to a target object,
and there is no correlated target object found. Detected during change
events and reconciliation. Default action: "CREATE".

"AMBIGUOUS" (qualifies=1, link=0, target>1)

The mapping qualifies for a target object, there is no link to a target object,
but there is more than one correlated target object. Detected during source
object changes and reconciliation. Default action: "EXCEPTION".

"MISSING" (qualifies=1, link=1, target=0)

The mapping qualifies for a target object, and there is a qualified link
to a target object, but the target object is missing. Only detected during

Synchronization Situations

152

reconciliation and source object changes in synchronous mappings. Default
action: "EXCEPTION".

"UNQUALIFIED" (qualifies=0, link=0 or 1, target=1 or >1)

The mapping is not qualified for a source object. One or more targets are
found through the correlation logic. Detected during change events and
reconciliation. Default action: "DELETE".

"TARGET_IGNORED" (qualifies=0, link=0 or 1, target=1)

The mapping is not qualified for a source object. One or more targets are
found through the correlation logic. Detected only during source object
changes. Default action: "IGNORE".

"SOURCE_IGNORED" (qualifies=0, link=0, target=0)

The source object is unqualified (by validSource), no link, no target is found.
Detected during source object changes and reconciliation. Default action:
"IGNORE".

"LINK_ONLY" (qualifies=n/a, link=1, target=0)

The source may or may not be qualified, a link is found, but no target
object is found. Detected only during source object changes. Default action:
"EXCEPTION".

"ALL_GONE" (qualifies=n/a, link=0, no previous object available)

The source may or may not be qualified, no link is found, and the server is
unable to correlate, as the source cannot supply the deleted object. Detected
only during source object changes. Default action: "IGNORE".

Based on the values assigned to objects during target reconciliation, OpenIDM
assigns situations, listed here with their default actions.

"TARGET_IGNORED" (qualifies=0)

During target reconciliation the target becomes unqualified by the
"validTarget" script. Only detected during reconciliation. Default action:
"IGNORE"

"UNASSIGNED" (qualifies=1, link=0)

A target object exists for which there is no link. Only detected during
reconciliation. Default action: "EXCEPTION".

"CONFIRMED" (qualifies=1, link=1, source=1)

The mapping qualifies for a target object, and a link to a source object exists.
Detected only during reconciliation. Default action: "UPDATE".

Source Reconciliation

153

"UNQUALIFIED" (qualifies=0, link=1, source=1, but source does not qualify)

The mapping is not qualified (by validTarget) for a target object, and there
is a link from an existing source object where the source exists. Detected
during change events and reconciliation. Default action: "DELETE".

SOURCE_MISSING (qualifies=1, link=1, source=0)

The target qualifies and a link is found. But the source object is missing.
Detected during change events and reconciliation. Default action: "DELETE".

The following sections reiterate in detail how OpenIDM assigns situations during
each of the two synchronization phases.

10.6.2 Source Reconciliation
OpenIDM starts reconciliation and LiveSync by reading a list of objects from the
resource. For reconciliation, the list includes all objects available through the
connector. For LiveSync, the list contains only changed objects. The connector
can filter objects out of the list, too. You can filter objects out of the list by using
the validSource property.

OpenIDM then iterates over the list, checking each entry against the validSource
filter, classifying objects according to their situations as described in
Section 10.6.1, “Synchronization Situations”. OpenIDM uses the list of links for
the current mapping to classify objects. Finally, OpenIDM executes the action
configured for the situation.

The following table shows how OpenIDM assigns the appropriate situation
during source reconciliation, depending on whether a valid source exists (Source
Qualifies), whether a link with the appropriate type exists in the repository
(Link Exists), and how many target objects are found, either based on links or
correlation results.

Table 10.1. Resolving Source Reconciliation Situations

Source
Qualifies?

Link Exists? Target Objects Founda

Yes No Yes No 0 1 > 1

Situation

 X X TARGET_IGNORED

 X X X SOURCE_MISSING

 X X X UNQUALIFIED

 X X X UNQUALIFIED

Target Reconciliation

154

Source
Qualifies?

Link Exists? Target Objects Founda

Yes No Yes No 0 1 > 1

Situation

 X X X TARGET_IGNORED

 X X X UNQUALIFIED

X X X ABSENT

X X X FOUND

X X X AMBIGUOUS

X X X MISSING

X X X CONFIRMED
aIf no link exists for the source object, then OpenIDM executes a correlation query. If no previous object is available,
OpenIDM cannot correlate.

10.6.3 Target Reconciliation

During source reconciliation, OpenIDM cannot detect situations where no
source object exists, such as the UNASSIGNED situation. When no source object
exists, OpenIDM detects the situation during the second reconciliation phase,
target reconciliation. During target reconciliation, OpenIDM iterates over all
target objects that do not have a representation on the source, checking each
object against the validTarget filter, determining the appropriate situation, and
executing the action configured for the situation.

The following table shows how OpenIDM assigns the appropriate situation
during target reconciliation, depending on whether a valid target exists (Target
Qualifies), whether a link with an appropriate type exists in the repository (Link
Exists), whether a source object exists (Source Exists), and whether the source
object qualifies (Source Qualifies). Not all situations assigned during source
reconciliation are assigned during target reconciliation.

Table 10.2. Resolving Target Reconciliation Situations

Target
Qualifies?

Link Exists? Source Exists? Source
Qualifies?

Yes No Yes No Yes No Yes No

Situation

 X TARGET_IGNORED

Situations Specific to Automatic
Synchronization and LiveSync

155

Target
Qualifies?

Link Exists? Source Exists? Source
Qualifies?

Yes No Yes No Yes No Yes No

Situation

X X X UNASSIGNED

X X X X CONFIRMED

X X X X UNQUALIFIED

X X X SOURCE_MISSING

10.6.4 Situations Specific to Automatic Synchronization and LiveSync

Certain situations occur only during automatic synchronization (when OpenIDM
pushes changes made in the repository out to external systems) and LiveSync
(when OpenIDM polls external system change logs for changes and updates the
repository).

The following table shows the situations that pertain only to automatic sync and
LiveSync, when records are deleted from the source or target resource.

Table 10.3. Resolving Automatic Sync and LiveSync Delete Situations

Source
Qualifies?

Link Exists? Target Objects Founda

Yes No Yes No 0 1 > 1

Situation

N/A N/A X X LINK_ONLY

N/A N/A X X ALL_GONE

X X X AMBIGUOUS

 X X X UNQUALIFIED
aIf no link exists for the source object, then OpenIDM executes a correlation query. If no previous object is available,
OpenIDM cannot correlate.

10.6.5 Synchronization Actions

Once OpenIDM has assigned a situation to an object, OpenIDM takes the actions
configured in the mapping. If no action is configured, then OpenIDM takes the
default action for the situation. OpenIDM supports the following actions.

Providing a Script as an Action

156

"CREATE"

Create and link a target object.

"UPDATE"

Link and update a target object.

"DELETE"

Delete and unlink the target object.

"LINK"

Link the correlated target object.

"UNLINK"

Unlink the linked target object.

"EXCEPTION"

Flag the link situation as an exception.

Do not use this action for LiveSync mappings.

"IGNORE"

Do not change the link or target object state.

10.6.6 Providing a Script as an Action
In addition to the static synchronization actions described in the previous section,
you can provide a script that is run in specific synchronization situations. The
following extract of a sample sync.json file specifies that when a synchronization
operation assesses an entry as ABSENT, the workflow named managedUserApproval
is invoked. The parameters for the workflow are passed in as properties of the
action parameter.

{
 "situation" : "ABSENT",
 "action" : {
 "workflowName" : "managedUserApproval",
 "type" : "text/javascript",
 "file" : "bin/defaults/script/workflow/workflow.js"
 }
}

The variables available to these scripts are described in Variables Available in
Scripts in the Scripting Appendix.

Asynchronous Reconciliation

157

10.7 Asynchronous Reconciliation
Reconciliation can work in tandem with workflows to provide additional business
logic to the reconciliation process. You can define scripts to determine the action
that should be taken for a particular reconciliation situation. A reconciliation
process can launch a workflow after it has assessed a situation, and then perform
the reconciliation, or some other action.

For example, you might want a reconciliation process to assess new user
accounts that need to be created on a target resource. However, new user
account creation might require some kind of approval from a manager before
the accounts are actually created. The initial reconciliation process can assess
the accounts that need to be created, launch a workflow to request management
approval for those accounts, and then relaunch the reconciliation process to
create the accounts, once the management approval has been received.

In this scenario, the defined script returns IGNORE for new accounts and the
reconciliation engine does not continue processing the given object. The script
then initiates an asynchronous process which calls back and completes the
reconciliation process at a later stage.

A sample configuration for this scenario is available in openidm/samples/sample9,
and described in Sample 9 - Asynchronous Reconciliation Using Workflows in the
Installation Guide.

Configuring asynchronous reconciliation involves the following steps:

1. Create the workflow definition file (.bar file) and place it in the openidm/
workflow directory. For more information about creating workflows, see
Integrating Business Processes and Workflows.

2. Modify the conf/sync.json file for the situation or situations that should call
the workflow. Reference the workflow name in the configuration for that
situation.

For example, the following sync.json extract calls the managedUserApproval
workflow if the situation is assessed as ABSENT:

 {
 "situation" : "ABSENT",
 "action" : {
 "workflowName" : "managedUserApproval",
 "type" : "text/javascript",
 "file" : "bin/defaults/script/workflow/workflow.js"
 }
 },

3. In the sample configuration, the workflow calls a second, asynchronous
reconciliation process as a final step.

Configuring Case
Sensitivity for Data Stores

158

10.8 Configuring Case Sensitivity for Data Stores
By default, OpenIDM is case-sensitive, which means that case is taken into
account when comparing IDs during reconciliation. For data stores that are case-
insensitive, such as OpenDJ, IDs and links that are created by a reconciliation
process may be stored with a different case to the way in which they are stored
in the OpenIDM repository. Such a situation can cause problems during a
reconciliation operation, as the links for these IDs may not match.

For such data stores, you can configure OpenIDM to ignore case during
reconciliation operations. With case sensitivity turned off in OpenIDM, for those
specific mappings, comparisons are done without regard to case.

To specify that data stores are not case-sensitive, set the
"sourceIdsCaseSensitive" or "targetIdsCaseSensitive" property to false in the
mapping for those links. For example, if the LDAP data store is case-insensitive,
set the mapping from the LDAP store to the managed user repository as follows:

"mappings" : [
{
"name" : "systemLdapAccounts_managedUser",
"source" : "system/ldap/account",
"sourceIdsCaseSensitive" : false,
"target" : "managed/user",
"properties" : [
...

If a mapping inherits links by using the "links" property, it is not necessary to
set case sensitivity, because the mapping uses the setting of the referred links.

Note that configuring OpenIDM to be case-insensitive when comparing links
does not make the OpenICF provisioner case-insensitive when it requests data.
For example, if a user entry is stored with the ID testuser and you make a
request for http://localhost:8080/openidm/managed/TESTuser, most provisioners
will filter out the match because of the difference in case, and will indicate
that the record is not found. To prevent the provisioner from performing this
secondary filtering, set the enableFilteredResultsHandler property to false in the
provisioner configuration. For example:

"resultsHandlerConfig" :
{
 "enableFilteredResultsHandler":false,
},

Reconciliation Optimization

159

Caution

Do not disable the filtered results handler for the CSV file
connector. The CSV file connector does not perform filtering so
if you disable the filtered results handler for this connector, the
full CSV file will be returned for every request.

10.9 Reconciliation Optimization
By default, reconciliation is configured to function in an optimized way. Some
of these optimizations might, however, be unsuitable for your environment. The
following sections describe the optimizations and how they can be configured.

10.9.1 Correlating Empty Target Sets
To optimize a reconciliation operation, the reconciliation process does not
attempt to correlate source objects to target objects if the set of target objects is
empty when the correlation is started. This considerably speeds up the process
the first time the reconciliation is run. You can change this behavior for a
specific mapping by adding the correlateEmptyTargetSet property to the mapping
definition and setting it to true. For example:

{
 "mappings": [
 {
 "name" : "systemMyLDAPAccounts_managedUser",
 "source" : "system/MyLDAP/account",
 "target" : "managed/user",
 "correlateEmptyTargetSet" : true
 },
]
}

Be aware that this setting will have a performance impact on the reconciliation
process.

10.9.2 Prefetching Links
All links are queried at the start of a correlation and the results of that query are
used. You can disable the prefetching of links, so that the correlation process
looks up each link in the database as it processes each source or target object.
You can disable the prefetching of links by adding the prefetchLinks property to
the mapping, and setting it to false, for example:

Parallel Reconciliation Threads

160

{
 "mappings": [
 {
 "name": "systemMyLDAPAccounts_managedUser",
 "source": "system/MyLDAP/account",
 "target": "managed/user"
 "prefetchLinks" : false
 }
]
}

Be aware that this setting will have a performance impact on the reconciliation
process.

10.9.3 Parallel Reconciliation Threads

By default, reconciliation is executed in a multi-threaded manner, that is,
numerous threads are dedicated to the same reconciliation run. Multithreading
generally improves reconciliation run performance. The default number of
threads for a single reconciliation run is ten (plus the main reconciliation thread).
Under normal circumstances, you should not need to change this number,
however the default might not be appropriate in the following situations:

• The hardware has many cores and supports more concurrent threads. As a rule
of thumb for performance tuning, start with setting the thread number to two
times the number of cores.

• The source or target is an external system with high latency or slow response
times. Threads may then spend considerable time waiting for a response from
the external system. Increasing the available threads enables the system to
prepare or continue with additional objects.

To change the number of threads, set the taskThreads property in the conf/
sync.json file, for example:

 "mappings" : [
 {
 "name" : "systemXmlfileAccounts_managedUser",
 "source" : "system/xmlfile/account",
 "target" : "managed/user",
 "taskThreads" : 20
 ...
 }
]
}

A value of 0 specifies that reconciliation is run on the main reconciliation thread,
that is, in a serial manner.

Correlation Queries

161

10.10 Correlation Queries
Every time OpenIDM creates an object through synchronization, it creates a link
between the source and target objects. OpenIDM then uses the link to determine
the object's situation during later synchronization operations.

Initial, bulk synchronization operations can involve correlating many objects that
exist both on source and target systems. In this case, OpenIDM uses correlation
queries to find target objects that already exist, and that correspond to source
objects. For the target objects that match a correlation query, OpenIDM needs
only to create a link, rather than a new target object.

Correlation queries run against target resources. The query syntax therefore
depends on the target system, and is either specific to the data store underlying
the OpenIDM repository, or to OpenICF query capabilities.

10.10.1 Managed Object as Correlation Query Target

Queries on managed objects in the repository must be defined in the
configuration file for the repository, which is either openidm/conf/
repo.orientdb.json, or openidm/conf/repo.jdbc.json.

The following example shows a correlation query defined in openidm/conf/
repo.orientdb.json.

"for-userName" : "SELECT * FROM ${unquoted:_resource} WHERE userName = ${uid}"

By default, a ${value} token replacement is assumed to be a quoted string. If the
value is not a quoted string, use the unquoted: prefix, as shown above.

The following correlation query example shows the JavaScript to call the query
defined for OrientDB. The _queryId property value matches the name of the query
specified in openidm/conf/repo.orientdb.json, for-userName. The source.name
value replaces ${uid} in the query. OpenIDM replaces ${unquoted:_resource} in
the query with the name of the table that holds managed objects.

{
 "correlationQuery": {
 "type": "text/javascript",
 "source":
 "var query = {'_queryId' : 'for-userName', 'uid' : source.name}; query;"
 }
}

The query can return zero or more objects, so the situation OpenIDM assigns to
the source object depends on the number of target objects returned.

System Object as
Correlation Query Target

162

With a JDBC-based repository, the query defined in openidm/conf/repo.jdbc.json
is more complex due to how the tables are indexed. The correlation query you
define in openidm/conf/sync.json is the same, however.

10.10.2 System Object as Correlation Query Target
Correlation queries on system objects access the connector. The connector then
executes the query on the external resource.

Your correlation query JavaScript must return a map holding a generic query
with the following elements.

• A condition such as "Equals"

• The naming attribute to compare on the system object. In the example that
follows, the naming attribute is uid.

• The value from the source object to use in the search filter. You set this as the
value of the value property, which takes an array. In the example that follows,
the value to use in the search filter is source.userName.

varmap={"query": {"Equals": {"field": "uid", "values": [source.userName]}}};
map;

10.11 Advanced Data Flow Configuration
Section 10.5, “Basic Data Flow Configuration” shows how to trigger scripts when
objects are created and updated. Other situations require you to trigger scripts
in response to other synchronization actions. For example, you might not want
OpenIDM to delete a managed user directly when an external account is deleted,
but instead unlink the objects and deactivate the user in another resource.
(Alternatively, you might delete the object in OpenIDM but nevertheless execute
a script.) The following example shows a more advanced mapping configuration.

 1
 2 {
 3 "mappings": [
 4 {
 5 "name": "systemLdapAccount_managedUser",
 6 "source": "system/ldap/account",
 7 "target": "managed/user",
 8 "validSource": {
 9 "type": "text/javascript",
 10 "file": "script/isValid.js"
 11 },
 12 "correlationQuery": {
 13 "type": "text/javascript",
 14 "file": "script/ldapCorrelationQuery.js"
 15 },

Advanced Data Flow Configuration

163

 16 "properties": [
 17 {
 18 "source": "uid",
 19 "transform": {
 20 "type": "text/javascript",
 21 "source": "source.toLowerCase()"
 22 },
 23 "target": "userName"
 24 },
 25 {
 26 "source": "",
 27 "transform": {
 28 "type": "text/javascript",
 29 "source": "if (source.myGivenName)
 30 {source.myGivenName;} else {source.givenName;}"
 31 },
 32 "target": "givenName"
 33 },
 34 {
 35 "source": "",
 36 "transform": {
 37 "type": "text/javascript",
 38 "source": "if (source.mySn)
 39 {source.mySn;} else {source.sn;}"
 40 },
 41 "target": "familyName"
 42 },
 43 {
 44 "source": "cn",
 45 "target": "fullname"
 46 },
 47 {
 48 "comment": "Multi-valued in LDAP, single-valued in AD.
 49 Retrieve first non-empty value.",
 50 "source": "title",
 51 "transform": {
 52 "type": "text/javascript",
 53 "file": "script/getFirstNonEmpty.js"
 54 },
 55 "target": "title"
 56 },
 57 {
 58 "condition": {
 59 "type": "text/javascript",
 60 "source": "var clearObj = openidm.decrypt(object);
 61 ((clearObj.password != null) &&
 62 (clearObj.ldapPassword != clearObj.password))"
 63 },
 64 "transform": {
 65 "type": "text/javascript",
 66 "source": "source.password"
 67 },
 68 "target": "__PASSWORD__"
 69 }
 70],
 71 "onCreate": {
 72 "type": "text/javascript",
 73 "source": "target.ldapPassword = null;
 74 target.adPassword = null;
 75 target.password = null;
 76 target.ldapStatus = 'New Account'"
 77 },

Advanced Data Flow Configuration

164

 78 "onUpdate": {
 79 "type": "text/javascript",
 80 "source": "target.ldapStatus = 'OLD'"
 81 },
 82 "onUnlink": {
 83 "type": "text/javascript",
 84 "file": "script/triggerAdDisable.js"
 85 },
 86 "policies": [
 87 {
 88 "situation": "CONFIRMED",
 89 "action": "UPDATE"
 90 },
 91 {
 92 "situation": "FOUND",
 93 "action": "UPDATE"
 94 },
 95 {
 96 "situation": "ABSENT",
 97 "action": "CREATE"
 98 },
 99 {
100 "situation": "AMBIGUOUS",
101 "action": "EXCEPTION"
102 },
103 {
104 "situation": "MISSING",
105 "action": "EXCEPTION"
106 },
107 {
108 "situation": "UNQUALIFIED",
109 "action": "UNLINK"
110 },
111 {
112 "situation": "UNASSIGNED",
113 "action": "EXCEPTION"
114 }
115]
116 }
117]
118 }

The following list shows all the properties that you can use as hooks in mapping
configurations to call scripts.

Triggered by Situation

onCreate, onUpdate, onDelete, onLink, onUnlink

Object Filter

vaildSource, validTarget

Correlating Objects

correlationQuery

Scheduling Synchronization

165

Triggered on Reconciliation

result

Scripts Inside Properties

condition, transform

Your scripts can get data from any connected system at any time by using the
openidm.read(id) function, where id is the identifier of the object to read.

The following example reads a managed user object from the repository.

repoUser = openidm.read("managed/user/ddoe);

The following example reads an account from an external LDAP resource.

externalAccount = openidm.read("system/ldap/account/uid=ddoe,ou=People,dc=example,dc=com");

Note that the query targets a DN rather than a UID, as it did in the previous
example. The attribute that is used for the _id is defined in the connector
configuration file and, in this example, is set to "uidAttribute" : "dn". Although
it is possible to use a DN (or any unique attribute) for the _id, as a best practice,
you should use an attribute that is both unique and immutable.

10.12 Scheduling Synchronization
You can schedule synchronization operations, such as LiveSync and
reconciliation, using cron-like syntax.

This section describes scheduling for reconciliation and LiveSync, however,
you can also use OpenIDM's scheduler service to schedule any other event by
supplying a link to a script file, in which that event is defined. For information
about scheduling other events, and for a deeper understanding of the OpenIDM
scheduler service, see Scheduling Tasks and Events.

10.12.1 Configuring Scheduled Synchronization
Each scheduled reconciliation and LiveSync task requires a schedule
configuration file in opendidm/conf. By convention, files are named
openidm/conf/schedule-schedule-name .json, where schedule-name is
a logical name for the scheduled synchronization operation, such as
reconcile_systemXmlAccounts_managedUser.

Schedule configuration files have the following format:

Alternative Mappings

166

{
 "enabled" : true,
 "persisted" : false,
 "type" : "cron",
 "startTime" : "(optional) time",
 "endTime" : "(optional) time",
 "schedule" : "cron expression",
 "misfirePolicy" : "optional, string",
 "timeZone" : "(optional) time zone",
 "invokeService" : "service identifier",
 "invokeContext" : "service specific context info"
}

For an explanation of each of these properties, see Scheduling Tasks and Events.

To schedule a reconciliation or LiveSync task, set the invokeService property to
either "sync" (for reconciliation) or "provisioner" for LiveSync.

The value of the invokeContext property depends on the type of scheduled event.
For reconciliation, the properties are set as follows:

{
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemLdapAccount_managedUser"
 }
}

The "mapping" is either referenced by its name in the openidm/conf/sync.json file,
or defined inline by using the "mapping" property, as shown in the example in
Alternative Mappings.

For LiveSync, the properties are set as follows:

{
 "invokeService": "provisioner",
 "invokeContext": {
 "action": "liveSync",
 "source": "system/OpenDJ/__ACCOUNT__"
 }
}

The "source" property follows OpenIDM's convention for a pointer to an external
resource object and takes the form system/resource-name/ object-type.

10.12.2 Alternative Mappings

Mappings for synchronization are usually stored in openidm/conf/sync.json for
reconciliation, LiveSync, and for pushing changes made to managed objects

Alternative Mappings

167

to external resources. You can, however, provide alternative mappings for
scheduled reconciliation by adding the mapping to the schedule configuration
instead of referencing a mapping in sync.json.

{
 "enabled": true,
 "type": "cron",
 "schedule": "0 08 16 * * ?",
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": {
 "name": "CSV_XML",
 "source": "system/Ldap/account",
 "target": "managed/user",
 "properties": [
 {
 "source": "firstname",
 "target": "firstname"
 },
 ...
],
 "policies": [...]
 }
 }
}

168

169

Chapter 11

Scheduling Tasks and Events

OpenIDM enables you to schedule reconciliation and synchronization tasks.
You can also use scheduling to trigger scripts, collect and run reports, trigger
workflows, perform custom logging, and so forth.

OpenIDM supports cron-like syntax to schedule events and tasks, based on
expressions supported by the Quartz Scheduler (bundled with OpenIDM).

If you use configuration files to schedule tasks and events, you must place
the schedule files in the openidm/conf directory. By convention, OpenIDM
uses file names of the form schedule-schedule-name.json, where schedule-
name is a logical name for the scheduled operation, for example, schedule-
reconcile_systemXmlAccounts_managedUser.json. There are several example
schedule configuration files in the openidm/samples/schedules directory.

You can configure OpenIDM to pick up changes to scheduled tasks and events
dynamically, during initialization and also at runtime. For more information, see
Changing the Configuration.

In addition to the fine-grained scheduling facility, you can perform a scheduled
batch scan for a specified date in OpenIDM data, and then automatically execute
a task when this date is reached. For more information, see Section 11.5,
“Scanning Data to Trigger Tasks”.

11.1 Scheduler Configuration

Scheduler Configuration

170

Schedules are configured through JSON objects. The schedule configuration
involves two types of files:

• The openidm/conf/scheduler.json file, that configures the overall scheduler
service

• One openidm/conf/schedule-schedule-name.json file for each configured schedule

The scheduler service configuration file (openidm/conf/scheduler.json) governs
the configuration for a specific scheduler instance, and has the following format:

{
 "threadPool" : {
 "threadCount" : "10"
 },
 "scheduler" : {
 "instanceId" : "scheduler-example",
 "executePersistentSchedules" : "true",
 "instanceTimeout" : "60000",
 "instanceRecoveryTimeout" : "60000",
 "instanceCheckInInterval" : "10000",
 "instanceCheckInOffset" : "0"
 },
 "advancedProperties" : {
 "org.quartz.scheduler.instanceName" : "OpenIDMScheduler"
 }
}

Some of the optional properties are not in the default configuration file and are
used specifically in the context of clustered OpenIDM instances.

The properties in the scheduler.json file relate to the configuration of the Quartz
Scheduler.

• threadCount specifies the maximum number of threads that are available for the
concurrent execution of scheduled tasks.

• instanceID can be any string, but must be unique for all schedulers working as
if they are the same 'logical' Scheduler within a cluster.

• instanceTimeout specifies the number of milliseconds that must elapse with no
check-ins from a scheduler instance before it is considered to have timed out or
failed. Default: 60000 (60 seconds). When this timeout is reached, the instance
is considered to be in a "recovery" state.

• instanceRecoveryTimeout specifies the number of milliseconds that must elapse
while an instance is in the "recovery" state (meaning that it has failed and
another instance is now attempting to recover its acquired triggers) before the
scheduler instance recovery is considered to have failed. Default: 60000 (60
seconds).

Scheduler Configuration

171

• instanceCheckInInterval Specifies the period (in milliseconds) after which an
instance checks in to indicate that it has not timed out or failed. Default: 10000
(10 seconds).

• instanceCheckInOffset An offset (in milliseconds) that can be used to shift
the checkin events of instances to prevent all instances from accessing the
repository simultaneously (if the instances are started simultaneously and
have the same check-in intervals). This offset can help to minimize MVCC
warnings from multiple instances simultaneously trying to recover the same
failed instance. Default: 0.

• executePersistentSchedules allows you to disable persistent schedule execution
for a specific node. If this parameter is set to false, the Scheduler Service will
support the management of persistent schedules (CRUD operations) but it will
not execute any persistent schedules. The value of this property can be a string
or boolean and is true by default.

• advancedProperties (optional) enables you to configure additional properties for
the Quartz Scheduler.

For details of all the configurable properties for the Quartz Scheduler, see the
Quartz Scheduler Configuration Reference.

Each schedule configuration file, openidm/conf/schedule- schedule-name.json has
the following format:

{
 "enabled" : true,
 "persisted" : false,
 "concurrentExecution" : false,
 "type" : "cron",
 "startTime" : "(optional) time",
 "endTime" : "(optional) time",
 "schedule" : "cron expression",
 "misfirePolicy" : "optional, string",
 "timeZone" : "(optional) time zone",
 "invokeService" : "service identifier",
 "invokeContext" : "service specific context info",
 "invokeLogLevel" : "(optional) debug"
}

The schedule configuration properties are defined as follows:

enabled

Set to true to enable the schedule. When this property is set to false,
OpenIDM considers the schedule configuration dormant, and does not allow
it to be triggered or executed.

If you want to retain a schedule configuration, but do not want it used, set
enabled to false for task and event schedulers, instead of changing the
configuration or cron expressions.

http://www.quartz-scheduler.org/documentation/quartz-2.1.x/configuration/ConfigMain

Scheduler Configuration

172

persisted (optional)

Specifies whether the schedule state should be persisted or stored in
RAM. Boolean (true or false), false by default. For more information, see
Section 11.2, “Configuring Persistent Schedules”.

concurrentExecution

Specifies whether multiple instances of the same schedule can run
concurrently. Boolean (true or false), false by default. Multiple instances of
the same schedule cannot run concurrently by default. This setting prevents
a new scheduled task from being launched before the same previously
launched task has completed. For example, under normal circumstances you
would want a liveSync operation to complete its execution before the same
operation was launched again. To enable concurrent execution of multiple
schedules, set this parameter to true. The behavior of "missed" scheduled
tasks is governed by the misfirePolicy.

type

Currently OpenIDM supports only cron.

startTime (optional)

Used to start the schedule at some time in the future. If this parameter is
omitted, empty, or set to a time in the past, the task or event is scheduled to
start immediately.

Use ISO 8601 format to specify times and dates (YYYY-MM-DD Thh:mm :ss).

endTime (optional)

Used to plan the end of scheduling.

schedule

Takes cron expression syntax. For more information, see the CronTrigger
Tutorial and Lesson 6: CronTrigger.

misfirePolicy

For persistent schedules, this optional parameter specifies the behavior if the
scheduled task is missed, for some reason. Possible values are as follows:

• fireAndProceed. The first execution of a missed schedule is immediately
executed when the server is back online. Subsequent executions are
discarded. After this, the normal schedule is resumed.

• doNothing, all missed schedules are discarded and the normal schedule is
resumed when the server is back online.

http://www.quartz-scheduler.org/docs/tutorials/crontrigger.html
http://www.quartz-scheduler.org/docs/tutorials/crontrigger.html
http://www.quartz-scheduler.org/docs/tutorial/TutorialLesson06.html

Scheduler Configuration

173

timeZone (optional)

If not set, OpenIDM uses the system time zone.

invokeService

Defines the type of scheduled event or action. The value of this parameter
can be one of the following:

• "sync" for reconciliation

• "provisioner" for LiveSync

• "script" to call some other scheduled operation defined in a script

invokeContext

Specifies contextual information, depending on the type of scheduled event
(the value of the invokeService parameter).

The following example invokes reconciliation.

{
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemLdapAccount_managedUser"
 }
}

For a scheduled reconciliation task, you can define the mapping in one of two
ways:

• Reference a mapping by its name in sync.json, as shown in the previous
example. The mapping must exist in the openidm/conf/sync.json file.

• Add the mapping definition inline by using the "mapping" property, as
shown in the example in Alternative Mappings.

The following example invokes a LiveSync action.

{
 "invokeService": "provisioner",
 "invokeContext": {
 "action": "liveSync",
 "source": "system/OpenDJ/__ACCOUNT__"
 }
}

For scheduled LiveSync tasks, the "source" property follows OpenIDM's
convention for a pointer to an external resource object and takes the form
system/resource-name /object-type.

Configuring Persistent Schedules

174

The following example invokes a script, which prints the string Hello World to
the OpenIDM log (/openidm/logs/openidm0.log.X) each minute.

{
 "invokeService": "script",
 "invokeContext": {
 "script": {
 "type": "text/javascript",
 "source": "java.lang.System.out.println('Hello World’);"
 }
 }
}

Note that these are sample configurations only. Your own schedule
configuration will differ according to your specific requirements.

invokelogLevel (optional)

Specifies the level at which the invocation will be logged. Particularly for
schedules that run very frequently, such as LiveSync, the scheduled task
can generate significant output to the log file, and the log level should be
adjusted accordingly. The default schedule log level is info. The value can be
set to any one of the SLF4J log levels:

• "trace"

• "debug"

• "info"

• "warn"

• "error"

• "fatal"

11.2 Configuring Persistent Schedules
By default, scheduling information, such as schedule state and details of the
schedule execution, is stored in RAM. This means that such information is lost
when OpenIDM is rebooted. The schedule configuration itself (defined in the
openidm/conf/schedule- schedule-name.json file) is not lost when OpenIDM is shut
down, and normal scheduling continues when the server is restarted. However,
there are no details of missed schedule executions that should have occurred
during the period the server was unavailable.

You can configure schedules to be persistent, which means that the scheduling
information is stored in the internal repository rather than in RAM. With

http://www.slf4j.org/apidocs/org/apache/commons/logging/Log.html

Schedule Examples

175

persistent schedules, scheduling information is retained when OpenIDM is shut
down. Any previously scheduled jobs can be rescheduled automatically when
OpenIDM is restarted.

Persistent schedules also enable you to manage scheduling across a cluster
(multiple OpenIDM instances). When scheduling is persistent, a particular
schedule will be executed only once across the cluster, rather than once on
every OpenIDM instance. For example, if your deployment includes a cluster of
OpenIDM nodes for high availability, you can use persistent scheduling to start
a reconciliation action on only one node in the cluster, instead of starting several
competing reconciliation actions on each node.

You can use persistent schedules with the default OrientDB repository, or with
the MySQL repository (see Installing a Repository For Production).

To configure persistent schedules, set the "persisted" property to true in the
schedule configuration file (schedule-schedule-name.json).

If OpenIDM is down when a scheduled task was set to occur, one or more
executions of that schedule might be missed. To specify what action should be
taken if schedules are missed, set the misfirePolicy in the schedule configuration
file. The misfirePolicy determines what OpenIDM should do if scheduled tasks
are missed. Possible values are as follows:

• fireAndProceed. The first execution of a missed schedule is immediately
executed when the server is back online. Subsequent executions are discarded.
After this, the normal schedule is resumed.

• doNothing. All missed schedules are discarded and the normal schedule is
resumed when the server is back online.

11.3 Schedule Examples
The following example shows a schedule for reconciliation that is not enabled.
When enabled ("enabled" : true,), reconciliation runs every 30 minutes, starting
on the hour.

{
 "enabled": false,
 "persisted": false,
 "type": "cron",
 "schedule": "0 0/30 * * * ?",
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemLdapAccounts_managedUser"
 }
}

Service Implementer Notes

176

The following example shows a schedule for LiveSync enabled to run every 15
seconds, starting at the beginning of the minute. The schedule is persisted,
that is, stored in the internal repository rather than in memory. If one or more
LiveSync executions are missed, as a result of OpenIDM being unavailable, the
first execution of the LiveSync action is executed when the server is back online.
Subsequent executions are discarded. After this, the normal schedule is resumed.

{
 "enabled": false,
 "persisted": true,
 "misfirePolicy" : "fireAndProceed",
 "type": "cron",
 "schedule": "0/15 * * * * ?",
 "invokeService": "provisioner",
 "invokeContext": {
 "action": "liveSync",
 "source": "system/ldap/account"
 }
}

11.4 Service Implementer Notes
Services that can be scheduled implement ScheduledService. The service PID is
used as a basis for the service identifier in schedule definitions.

11.5 Scanning Data to Trigger Tasks
In addition to the fine-grained scheduling facility described previously, OpenIDM
provides a task scanning mechanism. The task scanner enables you to perform
a batch scan for a specified date in OpenIDM data, on a scheduled interval,
and then to execute a task when this date is reached. When the task scanner
identifies a condition that should trigger the task, it can invoke a script created
specifically to handle the task.

For example, the task scanner can scan all managed/user objects for a "sunset
date" and can invoke a script that executes a sunset task on the user object when
this date is reached.

11.5.1 Configuring the Task Scanner

The task scanner is essentially a scheduled task that queries a span of managed
users. The task scanner is configured in the same way as a regular scheduled
task, in a schedule configuration file named (schedule-task-name.json), with the
"invokeService" parameter set to "taskscanner. The "invokeContext" parameter

Configuring the Task Scanner

177

defines the details of the scan, and the task that should be executed when the
specified condition is triggered.

The following example defines a scheduled scanning task that triggers a sunset
script. This sample configuration file is provided in the OpenIDM delivery as
openidm/samples/taskscanner/conf/schedule-taskscan_sunset.json. To use this
sample file, you must copy it to the openidm/conf directory.

{
 "enabled" : true,
 "type" : "cron",
 "schedule" : "0 0 * * * ?",
 "invokeService" : "taskscanner",
 "invokeContext" : {
 "waitForCompletion" : false,
 "maxRecords" : 2000,
 "numberOfThreads" : 5,
 "scan" : {
 "object" : "managed/user",
 "_queryId" : "scan-tasks",
 "property" : "sunset/date",
 "condition" : {
 "before" : "${Time.now}"
 },
 "taskState" : {
 "started" : "sunset/task-started",
 "completed" : "sunset/task-completed"
 },
 "recovery" : {
 "timeout" : "10m"
 }
 },
 "task" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "script/sunset.js"
 }
 }
 }
}

The "invokeContext" parameter takes the following properties:

"waitForCompletion" (optional)

This property specifies whether the task should be performed synchronously.
Tasks are performed asynchronously by default (with waitForCompletion set
to false). A task ID (such as {"_id":"354ec41f-c781-4b61-85ac-93c28c180e46"})
is returned immediately. If this property is set to true, tasks are performed
synchronously and the ID is not returned until all tasks have completed.

"maxRecords" (optional)

The maximum number of records that can be processed. This property is not
set by default so the number of records is unlimited. If a maximum number

Configuring the Task Scanner

178

of records is specified, that number will be spread evenly over the number of
threads.

"numberOfThreads" (optional)

By default, the task scanner runs in a multi-threaded manner, that
is, numerous threads are dedicated to the same scanning task run.
Multithreading generally improves the performance of the task scanner. The
default number of threads for a single scanning task is ten. To change this
default, set the "numberOfThreads" property.

"scan"

Defines the details of the scan. The following properties are defined:

"object"

Defines the object type against which the query should be performed.

"_queryId"

Specifies the query that is performed. The queries that can be set
here are defined in the database configuration file (either conf/
repo.orientdb.json or conf/repo.jdbc.json).

"property"

Defines the object property against which the range query is performed.

"condition" (optional)

Indicates the conditions that must be matched for the defined property.

In the previous example, the scanner scans for users for whom the
property sunset/date is set to a value prior to the current timestamp at
the time the script is executed.

You can use these fields to define any condition. For example, if you
wanted to limit the scanned objects to a specified location, say, London,
you could formulate a query to compare against object locations and then
set the condition to be:

 "condition" : {
 "location" : "London"
 },

For time-based conditions, the "condition" property supports macro
syntax, based on the Time.now object (which fetches the current time).
You can specify any date/time in relation to the current time, using the +
or - operator, and a duration modifier. For example: "before": "${Time.

Configuring the Task Scanner

179

now + 1d}" would return all user objects whose sunset/date is before
tomorrow (current time plus one day). You must include space characters
around the operator (+ or -). The duration modifier supports the following
unit specifiers:

s - second
m - minute
h - hour
d - day
M - month
y - year

"taskState"

Indicates the fields that are used to track the status of the task.

"started" specifies the field that stores the timestamp for when the task
begins.
"completed” specifies the field that stores the timestamp for when the
task completes its operation.

"recovery" (optional)

Specifies a configurable timeout, after which the task scanner process
ends. In a scenario with clustered OpenIDM instances, there might
be more than one task scanner running at a time. A task cannot be
executed by two task scanners at the same time. When one task scanner
"claims" a task, it indicates that the task has been started. That task is
then unavailable to be claimed by another task scanner and remains
unavailable until the end of the task is indicated. In the event that the
first task scanner does not complete the task by the specified timeout, for
whatever reason, a second task scanner can pick up the task.

"task"

Provides details of the task that is performed. Usually, the task is invoked by
a script, whose details are defined in the "script" property:

"type" - the type of script. Currently, only JavaScript is supported.
"file" - the path to the script file. The script file takes at least two objects
(in addition to the default objects that are provided to all OpenIDM scripts):
"input" which is the individual object that is retrieved from the query (in
the example, this is the individual user object) and "objectID" which is a
string that contains the full identifier of the object. The objectID is useful
for performing updates with the script as it allows you to target the object
directly, for example: openidm.update(objectID, input['_rev'], input);.
A sample script file is provided in openidm/samples/taskscanner/script/
sunset.js. To use this sample file, you must copy it to the openidm/script
directory. The sample script marks all user objects that match the specified

Managing Scanning
Tasks Over REST

180

conditions as "inactive". You can use this sample script to trigger a specific
workflow, or any other task associated with the sunset process. For more
information about using scripts in OpenIDM, see the Scripting Reference.

11.5.2 Managing Scanning Tasks Over REST
You can trigger, cancel, and monitor scanning tasks over the REST interface,
using the REST endpoint http://localhost:8080/openidm/taskscanner.

11.5.2.1 Triggering a Scanning Task
The following REST command executes a task named "taskscan_sunrise". The
task itself is defined in a file named openidm/conf/schedule-taskscan_sunset.json.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/taskscanner
 ?_action=execute&name=schedule/taskscan_sunset"

By default, a scanning task ID is returned immediately when the task is initiated.
Clients can make subsequent calls to the task scanner service, using this task ID
to query its state and to call operations on it.

For example, the scanning task initiated previously would return something
similar to the following, as soon as it was initiated:

{"_id":"edfaf59c-aad1-442a-adf6-3620b24f8385"}

To have the scanning task complete before the ID is returned, set the
waitForCompletion property to true in the task definition file (schedule-
taskscan_sunset.json). You can also set the property directly over the REST
interface when the task is initiated. For example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/taskscanner
 ?_action=execute&name=schedule/taskscan_sunset&waitForCompletion=true"

11.5.2.2 Canceling a Scanning Task
You can cancel a scanning task by sending a REST call with the cancel action,
specifying the task ID. For example, the following call cancels the scanning task
initiated in the previous section.

Managing Scanning
Tasks Over REST

181

$curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/taskscanner/edfaf59c-aad1-442a-adf6-3620b24f8385
 ?_action=cancel"

The output for a scanning task cancelation request is similar to the following, but
on a single line:

 {"_id":"edfaf59c-aad1-442a-adf6-3620b24f8385",
 "action":"cancel",
 "status":"SUCCESS"}

11.5.2.3 Listing Scanning Tasks

You can display a list of scanning tasks that have completed, and those that are
in progress, by running a RESTful GET on "http://localhost:8080/openidm/
taskscanner". The following example displays all scanning tasks.

$curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/taskscanner"

The output of such a request is similar to the following, with one item for each
scanning task. The output appears on a single line, but has been indented here,
for legibility.

{"tasks": [
 {
 "_id": "edfaf59c-aad1-442a-adf6-3620b24f8385",
 "progress": {
 "state": "COMPLETED",
 "processed": 2400,
 "total": 2400,
 "successes": 2400,
 "failures": 0
 },
 "started": 1352455546149,
 "ended": 1352455546182
 }
]
}

Each scanning task has the following properties:

Managing Scanning
Tasks Over REST

182

_id

The ID of the scanning task.

progress

The progress of the scanning task, summarised in the following fields:

state - the overall state of the task, INITIALIZED, ACTIVE, COMPLETED,
CANCELLED, or ERROR
processed - the number of processed records
total - the total number of records
successes - the number of records processed successfully
failures - the number of records not able to be processed

started

The time at which the scanning task started, .

ended

The time at which the scanning task ended.

The number of processed tasks whose details are retained is governed by the
"openidm.taskscanner.maxcompletedruns" property in the conf/boot.properties
file. By default, the last one hundred completed tasks are retained.

183

Chapter 12

Managing Passwords

OpenIDM provides password management features that help you enforce
password policies, limit the number of passwords users must remember, and let
users reset and change their passwords.

12.1 Enforcing Password Policy
A password policy is a set of rules defining what sequence of characters
constitutes an acceptable password. Acceptable passwords generally are too
complex for users or automated programs to generate or guess.

Password policies set requirements for password length, character sets that
passwords must contain, dictionary words and other values that passwords must
not contain. Password policies also require that users not reuse old passwords,
and that users change their passwords on a regular basis.

OpenIDM enforces password policy rules as part of the general policy service.
For more information about the policy service, see Using Policies to Validate
Data. The default password policy applies the following rules to passwords as
they are created and updated:

• A password property is required for any user object.

• The value of a password cannot be empty.

• The password must include at least one capital letter.

Password Synchronization

184

• The password must include at least one number.

• The minimum length of a password is 8 characters.

• The password cannot contain the user name, given name, or family name.

You can remove these validation requirements, or include additional
requirements, by configuring the policy for passwords. For more information, see
Configuring the Default Policy.

The password validation mechanism can apply in many situations.

Password change and password reset

Password change involves changing a user or account password in
accordance with password policy. Password reset involves setting a new user
or account password on behalf of a user.

By default, OpenIDM controls password values as they are provisioned.

To change the default administrative user password, openidm-admin, see the
procedure, To Replace the Default User and Password, for instructions.

Password recovery

Password recovery involves recovering a password or setting a new password
when the password has been forgotten.

OpenIDM provides a self-service end user interface for password changes,
password recovery, and password reset. For more information, see Managing
Passwords With the UI.

Password comparisons with dictionary words

You can add dictionary lookups to prevent use of password values that match
dictionary words.

Password history

You can add checks to prevent reuse of previous password values

Password expiration

You can configure OpenIDM to call a workflow that ensures users are able to
change expiring or to reset expired passwords.

12.2 Password Synchronization

Password Synchronization

185

Password synchronization intercepts user password changes, and ensures
uniform password changes across resources that store the password. Following
password synchronization, the user authenticates using the same password on
each resource. No centralized directory or authentication server is required for
performing authentication. Password synchronization reduces the number of
passwords users need to remember, so they can use fewer, stronger passwords.

OpenIDM can propagate passwords to the resources storing a user's password.
OpenIDM can intercept and synchronize passwords changed natively on OpenDJ
and Active Directory. See the example in samples/misc/managed.json where you
installed OpenIDM for a sample password synchronization configuration.

Before using the sample, you must set up OpenDJ and Active Directory, and
adjust the password attributes, set in the sample as ldapPassword for OpenDJ,
adPassword for Active Directory, and password for the internal OpenIDM password.
Also, either set up password policy enforcement on OpenDJ or Active Directory
rather than OpenIDM, or ensure that all password policies enforced are identical
to prevent password updates on one resource from being rejected by OpenIDM
or by another resource.

Also set up password synchronization plugins for OpenDJ and for Active
Directory. The password synchronization plugins help by intercepting password
changes on the resource before the passwords are stored in encrypted form. The
plugins then send intercepted password values to OpenIDM over an encrypted
channel.

Procedure 12.1. To Install the OpenDJ Password Synchronization Plugin

Before you start, make sure you configure OpenDJ to communicate over LDAPS
as described in the OpenDJ documentation.

The following steps install the plugin in OpenDJ directory server running on
the same host as OpenIDM. If you run OpenDJ on a different host use the fully
qualified domain name rather than localhost, and use your certificates rather
than the example.

1. Import the self-signed OpenIDM certificate into the trust store for OpenDJ.

http://opendj.forgerock.org/doc/admin-guide/#chap-listeners

Password Synchronization

186

$ cd /path/to/OpenDJ/config
$ keytool
 -import
 -alias openidm-localhost
 -keystore truststore
 -storepass `cat keystore.pin`
 -file /path/to/openidm/samples/security/openidm-localhost-cert.txt
Owner: CN=localhost, O=OpenIDM Self-Signed Certificate
Issuer: CN=localhost, O=OpenIDM Self-Signed Certificate
Serial number: 4e4bc38e
Valid from: Wed Aug 17 15:35:10 CEST 2011 until: Tue Aug 17 15:35:10 CEST 2021
Certificate fingerprints:
 MD5: B8:B3:B4:4C:F3:22:89:19:C6:55:98:C5:DF:47:DF:06
 SHA1: DB:BB:F1:14:55:A0:53:80:9D:62:E7:39:FB:83:15:DA:60:63:79:D1
 Signature algorithm name: SHA1withRSA
 Version: 3
Trust this certificate? [no]: yes
Certificate was added to keystore

2. Download the OpenDJ password synchronization plugin, OPENIDM AGENTS-
OPENDJ, from the OpenIDM download page under the ForgeRock Open
Stack download page.

3. Unzip the module delivery.

$ unzip ~/Downloads/opendj-accountchange-handler-.zip
 creating: opendj/
 creating: opendj/config/
 creating: opendj/config/schema/
...

4. Copy files to the directory where OpenDJ is installed.

$ cd opendj
$ cp -r * /path/to/OpenDJ/

5. Restart OpenDJ to load the additional schema from the module.

$ cd /path/to/OpenDJ/bin
$./stop-ds --restart

6. Add the configuration provided to OpenDJ's configuration.

$./ldapmodify
 --port 1389
 --hostname `hostname`
 --bindDN "cn=Directory Manager"
 --bindPassword "password"
 --defaultAdd
 --filename ../config/openidm-pwsync-plugin-config.ldif
Processing ADD request for cn=OpenIDM Notification Handler,
 cn=Account Status Notification Handlers,cn=config
ADD operation successful for DN cn=OpenIDM Notification Handler
 ,cn=Account Status Notification Handlers,cn=config

http://forgerock.com/download-stack/
http://forgerock.com/download-stack/

Password Synchronization

187

7. Restart OpenDJ.

$./stop-ds --restart
...
[16/Jan/2012:15:55:47 +0100] category=EXTENSIONS severity=INFORMATION
 msgID=1049147 msg=Loaded extension from file '/path/to/OpenDJ/lib/extensions
 /opendj-accountchange-handler-.jar' (build <unknown>,
 revision <unknown>)
...
[16/Jan/2012:15:55:51 +0100] category=CORE severity=NOTICE msgID=458891 msg=The
 Directory Server has sent an alert notification generated by class
 org.opends.server.core.DirectoryServer (alert type
 org.opends.server.DirectoryServerStarted, alert ID 458887):
 The Directory Server has started successfully

8. Enable the plugin for the appropriate password policy.

The following command enables the plugin for the default password policy.

$./dsconfig
 set-password-policy-prop
 --port 4444
 --hostname `hostname`
 --bindDN "cn=Directory Manager"
 --bindPassword password
 --policy-name "Default Password Policy"
 --set account-status-notification-handler:"OpenIDM Notification Handler"
 --trustStorePath ../config/admin-truststore
 --no-prompt

Procedure 12.2. To Install the Active Directory Password Synchronization Plugin

Use the Active Directory password synchronization plugin to synchronize
passwords between OpenIDM and Active Directory (on systems running at least
Microsoft Windows 2008).

Install the plugin on Active Directory primary domain controllers (PDCs) to
intercept password changes, and send the password values to OpenIDM over an
encrypted channel. You must have Administrator privileges to install the plugin.
In a clustered Active Directory environment, you must also install the plugin on
all PDCs.

1. Download the Active Directory password synchronization plugin, AD
CONNECTOR, from the OpenIDM download page under the ForgeRock Open
Stack download page.

2. Unzip the plugin, and double-click setup.exe to launch the installation wizard.

3. Complete the installation with the help of the following hints.

CDDL license agreement

You must accept the agreement to proceed with the installation.

http://forgerock.com/download-stack/
http://forgerock.com/download-stack/

Password Synchronization

188

OpenIDM URL

URL where OpenIDM is deployed such as https://openidm.example.
com:8444/openidm for SSL mutual authentication

Private Key alias

Alias used for the OpenIDM certificate also stored in the keystore.jceks
file, such as openidm-localhost used for evaluation

Private Key password

Password to access the PFX keystore file, such as changeit for
evaluation. PFX files contain encrypted private keys, certificates used for
authentication and encryption.

Directory poll interval (seconds)

Number of seconds between calls to check that Active Directory is
available, such as 60

Query ID parameter

Query identifier configured in OpenIDM the openidm/conf/repo.*.json
file. Use for-userName for evaluation.

OpenIDM user password attribute

Password attribute for the managed/user object to which OpenIDM applies
password changes

OpenIDM user search attribute

The sAMAccountName value holder attribute name in the query definition.
For example, "SELECT * FROM ${unquoted:_resource} WHERE userName =
${uid}". Use uid for the evaluation.

Select Certificate File

The PKCS 12 format PFX file containing the certificate used to encrypt
communications with OpenIDM. Use openidm/samples/security/openidm-
localhost.p12 for evaluation.

Select Output Directory

Select a secure directory where the password changes are queued. The
queue contains the encrypted passwords. Yet, the server has to prevent

Password Synchronization

189

access to this folder except access by the Password Sync service. The
path name cannot include spaces.

Select Log Directory

The plugin stores logs in the location you select. The path name cannot
include spaces.

Select Destination Location

Setup installs the plugin in the location you select, by default C:\Program
Files\OpenIDM Password Sync.

4. After running the installation wizard, restart the computer.

5. If you must change any settings after installation, access settings using the
Registry Editor under HKEY_LOCAL_MACHINE > SOFTWARE > ForgeRock
> OpenIDM > PasswordSync.

Procedure 12.3. To Set Up OpenIDM to Handle Password Changes

Follow these steps to configure OpenIDM to access password changes from the
directory server.

1. Add the directory server certificate to the OpenIDM trust store so that
OpenIDM knows to trust the directory server during mutual authentication.

The following commands show how to do this with the default OpenDJ and
OpenIDM settings.

Password Synchronization

190

$ cd /path/to/OpenDJ/config/
$ keytool
 -keystore keystore
 -storepass `cat keystore.pin`
 -export
 -alias server-cert
 > /tmp/opendj.crt
$ cd /path/to/openidm/security/
$ keytool
 -import
 -alias opendj-server-cert
 -file /tmp/opendj.crt
 -keystore truststore
 -storepass changeit
 -trustcacerts
Owner: CN=localhost.localdomain, O=OpenDJ Self-Signed Certificate
Issuer: CN=localhost.localdomain, O=OpenDJ Self-Signed Certificate
Serial number: 4f143976
Valid from: Mon Jan 16 15:51:34 CET 2012 until: Wed Jan 15 15:51:34 CET 2014
Certificate fingerprints:
 MD5: 7B:7A:75:FC:5A:F0:65:E5:84:43:6D:10:B9:EA:CC:F0
 SHA1: D1:C6:C9:8A:EA:09:FD:1E:48:BB:B2:F5:95:41:50:2C:AB:4D:0F:C9
 Signature algorithm name: SHA1withRSA
 Version: 3
Trust this certificate? [no]: yes
Certificate was added to keystore

2. Add the configuration to managed objects to handle password
synchronization.

You can find an example for synchronization with both OpenDJ and
Active Directory in samples/misc/managed.json, JavaScript lines folded for
readability:

{
 "objects": [
 {
 "name": "user",
 "properties": [
 {
 "name": "ldapPassword",
 "encryption": {
 "key": "openidm-sym-default"
 }
 },
 {
 "name": "adPassword",
 "encryption": {
 "key": "openidm-sym-default"
 }
 },
 {
 "name": "password",
 "encryption": {
 "key": "openidm-sym-default"
 }
 }

Password Synchronization

191

],
 "onUpdate": {
 "type": "text/javascript",
 "source":
 "if (newObject.ldapPassword != oldObject.ldapPassword) {
 newObject.password = newObject.ldapPassword
 } else if (newObject.adPassword != oldObject.adPassword) {
 newObject.password = newObject.adPassword
 }"
 }
 }
]
}

This sample assumes you define the password as ldapPassword for OpenDJ,
and adPassword for Active Directory.

3. When you change a password in OpenDJ, you will notice that the value
changes in OpenIDM.

$ tail -f openidm/audit/activity.csv | grep bjensen
...userName=bjensen, ... password={$crypto={...data=tEsy7ZXo6nZtEqzW/uVE/A==...
...userName=bjensen, ... password={$crypto={...data=BReT79lnQEPcvfQG3ibLpg==...

Be aware that the plugin is patching the password value of the managed user
in OpenIDM. The target password property must exist for the patch to work.
After the password has been updated in OpenIDM, automatic synchronization
is launched and the password is updated in Active Directory.

192

193

Chapter 13

Managing Authentication,
Authorization and RBAC

OpenIDM provides a simple, yet flexible authentication and authorization
mechanism based on REST interface URLs and on roles stored in the repository.

13.1 OpenIDM Users
OpenIDM distinguishes between internal users and managed users.

13.1.1 Internal Users

Two internal users are created by default - anonymous and openidm-admin. These
accounts are separated from other user accounts to protect them from any
reconciliation or synchronization processes.

OpenIDM stores internal users and their role membership in a table in the
repository called internaluser when implemented in MySQL, and in the
internal_user table for an OrientDB repository. You can add or remove internal
users over the REST interface (at http://localhost:8080/openidm/repo/internal/
user) or directly in the repository.

Managed Users

194

anonymous

This user serves to access OpenIDM anonymously, for users who do not have
their own accounts. The anonymous user is primarily intended to allow self-
registration.

OpenIDM stores the anonymous user's password, anonymous, in clear text
in the repository internal user table. The password is not considered to be
secret.

openidm-admin

This user serves as the super administrator. After installation, the openidm-
admin user has full access, and provides a fallback mechanism in case other
users are locked out. Do not use openidm-admin for normal tasks. Under
normal circumstances, no real user is associated with the openidm-admin user
account, so audit log records that pertain to openidm-admin do not reflect the
actions of any real person.

OpenIDM encrypts the password, openidm-admin, by default. Change the
password immediately after installation. For instructions, see To Replace the
Default User and Password.

13.1.2 Managed Users

External users that OpenIDM manages are referred to as managed users.
When implemented in MySQL, OpenIDM stores managed users in the managed
objects table of the repository, named managedobjects. A second MySQL table,
managedobjectproperties, serves as the index table. When implemented in
OrientDB, managed objects are stored in the table managed_user.

By default, the attribute names for managed user login and password are
userName and password, respectively.

13.2 Authentication
OpenIDM does not allow access to the REST interface unless you authenticate. If
a project requires anonymous access, to allow users to self-register for example,
then allow access by user anonymous, password anonymous, as described in
Section 13.1.1, “Internal Users”. In production, only applications are expected to
access the REST interface.

OpenIDM supports an improved authentication mechanism on the REST
interface. Unlike basic authentication or form-based authentication, the
OpenIDM authentication mechanism is compatible with the AJAX framework.

Authentication

195

OpenIDM authentication with standard header fields

$ curl --user userName:password

This authentication is compatible with standard basic authentication, except
that it will not prompt for credentials if they are missing in the request.

OpenIDM authentication with OpenIDM header fields

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"

For more information about the OpenIDM authentication mechanism, see Use
Message Level Security.

You can change the attributes that OpenIDM uses to store user login and
password values. The attribute names are shown in a database query that is
defined in openidm/conf/repo.repo-type.json.

Two queries are defined by default.

credential-internaluser-query

Uses the _openidm_id attribute for login

credential-query

Uses the userName attribute for login

The openidm/conf/authentication.json file defines the currently active query as
the value of the queryId property. In the following example, credential-query is
active.

{
 "queryId" : "credential-query",
 "queryOnResource" : "managed/user",
 "defaultUserRoles" : []
}

You can explicitly define the properties that constitute passwords or roles by
setting the propertyMapping object in the conf/authentication.json file. By
default, the property mapping is configured as follows:

 ...
 "propertyMapping" : {
 "userId" : "_id",
 "userCredential" : "password",
 "userRoles" : "roles"
 },
 ...

Roles

196

13.3 Roles
OpenIDM sets up the following roles by default:

openidm-reg

Role for users accessing OpenIDM with the default anonymous account

openidm-admin

OpenIDM administrator role

openidm-authorized

Default role for any user authenticated with a user name and password

openidm-cert

Default role for any user authenticated with mutual SSL authentication

A user's roles are fetched after authentication. If no roles are defined in the user
profile, the defaultUserRoles are applied. You can configure the default roles that
are assigned to successfully authenticated users by setting the defaultUserRoles
property in openidm/conf/authentication.json, which takes a list. The default
value is openidm-authorized.

{
 "queryId": "credential-query",
 "queryOnResource": "managed/user",
 "defaultUserRoles": [
 "openidm-authorized"
]
}

A managed user who does not have a role of openidm-authorized can authenticate
but is unable to access certain system resources, according to the access control
configured in the access.js file. Requests on a resource for which access is
denied return a 403 error. For more information, see the following section
covering Section 13.4, “Authorization”.

13.4 Authorization
OpenIDM provides role-based authorization that restricts direct HTTP access to
REST interface URLs. The default authorization configuration grants different
access rights to users that are assigned the roles "openidm-admin", "openidm-
cert", "openidm-authorized", and "openidm-reg".

Note that this access control applies to direct HTTP calls only. Access for internal
calls (for example, calls from scripts) is not affected by this mechanism.

router-authz.js

197

Authorization is configured in two script files:

• openidm/bin/defaults/script/router-authz.js

• openidm/script/access.js

OpenIDM calls these scripts for each request, via the onRequest hook that is
defined in the default router.json file. The scripts either throw the string Access
denied, or nothing. If Access denied is thrown, OpenIDM denies the request.

13.4.1 router-authz.js

This file provides the functions that enforce access rules. For example, the
following function controls whether users with a certain role can start a specified
process.

...
function isAllowedToStartProcess() {
var processDefinitionId = request.value._processDefinitionId;
return isProcessOnUsersList(processDefinitionId);
}
...

There are certain functions in router-authz.js that should not be altered. These
are indicated in the file itself.

13.4.2 access.js

This file defines the access configuration for HTTP requests and references the
methods defined in router-authz.js. Each entry in the configuration contains
a pattern to match against the incoming request ID, and the associated roles,
methods, and actions that are allowed for requests on that pattern.

The following sample configuration entry indicates the configurable parameters
and their purpose.

 {
 "pattern" : "*",
 "roles" : "openidm-admin",
 "methods" : "*", // default to all methods allowed
 "actions" : "*", // default to all actions allowed
 "customAuthz" : "disallowQueryExpression()",
 "excludePatterns": "system/*"
 },

access.js

198

The overall intention of this entry is to allow users with the role openidm-admin
HTTP access to everything except the system endpoints. The parameters are as
follows:

• "pattern" - the REST endpoint to which access is being controlled. "*" indicates
access to all endpoints. "managed/user/*" would indicate access to all managed
user objects.

• "roles" - a comma-separated list of the roles to which this access configuration
applies.

• "methods" - a comma separated list of the methods to which access is being
granted. The method can be one or more of create, read, update, delete,
 patch, action, query. A value of "*" indicates that all methods are allowed. A
value of "" indicates that no methods are allowed.

• "actions" - a comma separated list of the allowed actions. The possible values
depend on the service (URL) that is being exposed. The following list indicates
the possible actions for each service.

openidm/managed - patch
openidm/recon - recon, cancel
openidm/sync - onCreate, onUpdate, onDelete, recon, performAction
openidm/external/email - (no action parameter applies)
openidm/external/rest - (no action parameter applies)
openidm/authentication - reauthenticate
openidm/system - createconfiguration
openidm/system/* - script
openidm/taskscanner - execute, cancel
openidm/workflow/processinstance - (no action parameter applies)
openidm/workflow/taskinstance - claim,complete

A value of "*" indicates that all actions exposed for that service are allowed. A
value of "" indicates that no actions are allowed.

• "customAuthz" - an optional parameter that enables you to specify a custom
function for additional authorization checks. These functions are defined in
router-authz.js .

The allowedPropertiesForManagedUser variable, declared at the beginning of the
file, enables you to create a white list of attributes that users may modify on
their own accounts.

• "excludePatterns" - an optional parameter that enables you to specify
particular endpoints to which access should not be given.

Extending the
Authorization Mechanism

199

13.4.3 Extending the Authorization Mechanism

You can extend the default authorization mechanism by defining additional
functions in router-authz.js and by creating new access control configuration
definitions in access.js.

200

201

Chapter 14

Securing & Hardening OpenIDM

After following the guidance in this chapter, make sure that you test your
installation to verify that it behaves as expected before putting it into production.

Out of the box, OpenIDM is set up for ease of development and deployment.
When deploying OpenIDM in production, take the following precautions.

14.1 Use SSL and HTTPS
Disable plain HTTP access, included for development convenience, as described
in the section titled Secure Jetty.

Use TLS/SSL to access OpenIDM, ideally with mutual authentication so that
only trusted systems can invoke each other. TLS/SSL protects data on the wire.
Mutual authentication with certificates imported into the applications' trust and
key stores provides some confidence for trusting application access.

Augment this protection with message level security where appropriate.

14.2 Restrict REST Access to the HTTPS Port
Use certificates to secure REST access, over HTTPS. The following procedure
shows how to generate a self-signed certificate to secure REST calls, over
HTTPS. Note that in production systems, it is recommended that you use a key
that has been signed by a certificate authority.

Restrict REST Access
to the HTTPS Port

202

1. Extract the certificate that is installed with OpenIDM.

$ openssl s_client -showcerts -connect localhost:8443 </dev/null

This command outputs the entire certificate to the terminal.

2. Using any text editor, create a file named server.crt. Copy the portion of the
certificate from BEGIN CERTIFICATE to END CERTIFICATE and paste it into the
server.crt file. Your server.crt file should now contain something like the
following:

$ more server.crt
-----BEGIN CERTIFICATE-----
MIIB8zCCAVygAwIBAgIETkvDjjANBgkqhkiG9w0BAQUFADA+MSgwJgYDVQQKEx9P
cGVuSURNIFNlbGYtU2lnbmVkIENlcnRpZmljYXRlMRIwEAYDVQQDEwlsb2NhbGhv
c3QwHhcNMTEwODE3MTMzNTEwWhcNMjEwODE3MTMzNTEwWjA+MSgwJgYDVQQKEx9P
cGVuSURNIFNlbGYtU2lnbmVkIENlcnRpZmljYXRlMRIwEAYDVQQDEwlsb2NhbGhv
c3QwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAKwMkyvHS5yHAnI7+tXUIbfI
nQfhcTChpWNPTHc/cli/+Ta1InTpN8vRScPoBG0BjCaIKnVVl2zZ5ya74UKgwAVe
oJQ0xDZvIyeC9PlvGoqsdtH/Ihi+T+zzZ14oVxn74qWoxZcvkG6rWEOd42QzpVhg
wMBzX98slxkOZhG9IdRxAgMBAAEwDQYJKoZIhvcNAQEFBQADgYEASo4qMI0axEKZ
m0jU4yJejLBHydWoZVZ8fKcHVlD/rTirtVgWsVgvdr3yUr0Idk1rH1nEF47Tzn+V
UCq7qJZ75HnIIeVrZqmfTx8169paAKAaNF/KRhTE6ZII8+awst02L86shSSWqWz3
s5xPB2YTaZHWWdzrPVv90gL8JL/N7/Q=
-----END CERTIFICATE-----

3. Generate a private, self-signed key as follows:

a. Generate an encrypted 1024-bit RSA key, and save it to a file named
localhost.key. Enter a pass phrase for the key as requested.

$ openssl genrsa -des3 -out localhost.key 1024
Generating RSA private key, 1024 bit long modulus
.........++++++
.........................++++++
e is 65537 (0x10001)
Enter pass phrase for localhost.key:
Verifying - Enter pass phrase for localhost.key:

b. Generate a certificate request using the key you created in the previous
step, and save it to a file named localhost.csr. Enter any required
information to create the DN for the request.

$ openssl req -new -key localhost.key -out localhost.csr

This step creates a file, localhost.csr, that contains the details of the
certificate request.

c. Sign the certificate with the key you created in the previous step,
and generate a certificate that is valid for one year in a file named
localhost.crt. The x509 subcommand enables you to retrieve the

Restrict REST Access
to the HTTPS Port

203

information that is stored in the SSL certificate. Output will depend on
the details that you entered in the certificate request.

$ openssl x509 -req -days 365 -in localhost.csr -signkey localhost.key -out localhost.crt
Signature ok
subject=/C=FR/ST=Il-DE-FRANCE/L=Paris/O=example.com
Getting Private key
Enter pass phrase for localhost.key:

The contents of localhost.crt should now be something like this:

$ more localhost.crt
-----BEGIN CERTIFICATE-----
MIIB/zCCAWgCCQD6VdiF6rX2czANBgkqhkiG9w0BAQUFADBEMQswCQYDVQQGEwJa
QTELMAkGA1UECBMCV0MxEjAQBgNVBAcTCUNhcGUgVG93bjEUMBIGA1UEChMLZXhh
bXBsZS5jb20wHhcNMTMwMTI1MTIzNzIyWhcNMTQwMTI1MTIzNzIyWjBEMQswCQYD
VQQGEwJaQTELMAkGA1UECBMCV0MxEjAQBgNVBAcTCUNhcGUgVG93bjEUMBIGA1UE
ChMLZXhhbXBsZS5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAONLO82s
wKA0tWkbR66DajwQKNO9QlYwZvcK4X7MFOcwex+8j2vvG5HCB0BW2Gm72mFTWei8
gVgQDP1oe/yTWDZRaiJ8rGWdvpgH1Cmxcd3N1AhhRya1I2j5wxrc9ZsyyTYCg2fd
pFfULrUXSd9QlB2qQZz7kb4ksT/mSwPiGqvFAgMBAAEwDQYJKoZIhvcNAQEFBQAD
gYEA3WrP8NKjXwQzE0vabYmdUhPHt3PF8EMMwVJ+h8G9Dwmtll0P/kLybXdHF1P/
SvN8ofdaEKi4DrLvBifkJvHdTm9DgZJo+bROM6LM9kac6CxNvwj9m/4g6mhnjxEV
63WQPzvAeriO51JC0ysMVe5vf+lO0t+J8W6SfPTKwoXDQhY=
-----END CERTIFICATE-----

4. Combine the contents of server.crt and localhost.crt to create a Privacy
Enhanced Mail Certificate (.pem) file named CA.pem.

$ cat server.crt localhost.crt > CA.pem

The contents of CA.pem should be something like the following (a
concatenation of server.crt and localhost.crt).

Restrict REST Access
to the HTTPS Port

204

$ more CA.pem
-----BEGIN CERTIFICATE-----
MIIB8zCCAVygAwIBAgIETkvDjjANBgkqhkiG9w0BAQUFADA+MSgwJgYDVQQKEx9P
cGVuSURNIFNlbGYtU2lnbmVkIENlcnRpZmljYXRlMRIwEAYDVQQDEwlsb2NhbGhv
c3QwHhcNMTEwODE3MTMzNTEwWhcNMjEwODE3MTMzNTEwWjA+MSgwJgYDVQQKEx9P
cGVuSURNIFNlbGYtU2lnbmVkIENlcnRpZmljYXRlMRIwEAYDVQQDEwlsb2NhbGhv
c3QwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAKwMkyvHS5yHAnI7+tXUIbfI
nQfhcTChpWNPTHc/cli/+Ta1InTpN8vRScPoBG0BjCaIKnVVl2zZ5ya74UKgwAVe
oJQ0xDZvIyeC9PlvGoqsdtH/Ihi+T+zzZ14oVxn74qWoxZcvkG6rWEOd42QzpVhg
wMBzX98slxkOZhG9IdRxAgMBAAEwDQYJKoZIhvcNAQEFBQADgYEASo4qMI0axEKZ
m0jU4yJejLBHydWoZVZ8fKcHVlD/rTirtVgWsVgvdr3yUr0Idk1rH1nEF47Tzn+V
UCq7qJZ75HnIIeVrZqmfTx8169paAKAaNF/KRhTE6ZII8+awst02L86shSSWqWz3
s5xPB2YTaZHWWdzrPVv90gL8JL/N7/Q=
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
MIIB/zCCAWgCCQD6VdiF6rX2czANBgkqhkiG9w0BAQUFADBEMQswCQYDVQQGEwJa
QTELMAkGA1UECBMCV0MxEjAQBgNVBAcTCUNhcGUgVG93bjEUMBIGA1UEChMLZXhh
bXBsZS5jb20wHhcNMTMwMTI1MTIzNzIyWhcNMTQwMTI1MTIzNzIyWjBEMQswCQYD
VQQGEwJaQTELMAkGA1UECBMCV0MxEjAQBgNVBAcTCUNhcGUgVG93bjEUMBIGA1UE
ChMLZXhhbXBsZS5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAONLO82s
wKA0tWkbR66DajwQKNO9QlYwZvcK4X7MFOcwex+8j2vvG5HCB0BW2Gm72mFTWei8
gVgQDP1oe/yTWDZRaiJ8rGWdvpgH1Cmxcd3N1AhhRya1I2j5wxrc9ZsyyTYCg2fd
pFfULrUXSd9QlB2qQZz7kb4ksT/mSwPiGqvFAgMBAAEwDQYJKoZIhvcNAQEFBQAD
gYEA3WrP8NKjXwQzE0vabYmdUhPHt3PF8EMMwVJ+h8G9Dwmtll0P/kLybXdHF1P/
SvN8ofdaEKi4DrLvBifkJvHdTm9DgZJo+bROM6LM9kac6CxNvwj9m/4g6mhnjxEV
63WQPzvAeriO51JC0ysMVe5vf+lO0t+J8W6SfPTKwoXDQhY=
-----END CERTIFICATE-----

5. Test REST access on the HTTPS port, using the certificate that you created in
the previous step. For example:

$ curl
 --header "X-OpenIDM-Username:openidm-admin"
 --header "X-OpenIDM-Password:openidm-admin"
 --cacert CA.pem
 --request GET
 "https://localhost:8443/openidm/managed/user/?_queryId=query-all-ids"
{
 "conversion-time-ms": 0,
 "result": [
 {
 "_rev": "0",
 "_id": "8afd44a7-13be-449e-9c47-7a310e675c00"
 }
],
 "query-time-ms": 1
}

Encrypt Data
Internally & Externally

205

Note

If you receive the response curl: (52) Empty reply from
server, check that you have, in fact, used https and not http
in the URL.

14.3 Encrypt Data Internally & Externally
Beyond relying on end-to-end availability of TLS/SSL to protect data, OpenIDM
also supports explicit encryption of data that goes on the wire. This can be
important if the TLS/SSL termination happens prior to the final end point.

OpenIDM also supports encryption of data stored in the repository, using a
symmetric key. This protects against some attacks on the data store. Explicit
table mapping is supported for encrypted string values.

OpenIDM automatically encrypts sensitive data in configuration files, such as
passwords. OpenIDM replaces clear text values when the system first reads the
configuration file. Take care with configuration files having clear text values that
OpenIDM has not yet read and updated.

14.4 Use Message Level Security
OpenIDM supports message level security, forcing authentication before granting
access. Authentication works by means of a filter-based mechanism that lets you
use either an HTTP Basic like mechanism or OpenIDM-specific headers, setting
a cookie in the response that you can use for subsequent authentication. If you
attempt to access OpenIDM URLs without the appropriate headers or session
cookie, OpenIDM returns HTTP 401 Unauthorized, or HTTP 403 Forbidden,
depending on the situation. If you use a session cookie, you must include an
additional header that indicates the origin of the request.

The following examples show successful authentications.

$ curl
 --dump-header /dev/stdout
 --user openidm-admin:openidm-admin
 "http://localhost:8080/openidm/managed/user/?_queryId=query-all-ids"

HTTP/1.1 200 OK
Set-Cookie: JSESSIONID=2l0zobpuk6st1b2m7gvhg5zas;Path=/

Use Message Level Security

206

Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: application/json; charset=UTF-8
Date: Wed, 18 Jan 2012 10:36:19 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.0.9
Transfer-Encoding: chunked

{"query-time-ms":1,"result":[{"_id":"ajensen"},{"_id":"bjensen"}]}

$ curl
 --dump-header /dev/stdout
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 "http://localhost:8080/openidm/managed/user/?_queryId=query-all-ids"

HTTP/1.1 200 OK
Set-Cookie: JSESSIONID=ixnekr105coj11ji67xcluux8;Path=/
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: application/json; charset=UTF-8
Date: Wed, 18 Jan 2012 10:36:40 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.0.9
Transfer-Encoding: chunked

{"query-time-ms":0,"result":[{"_id":"ajensen"},{"_id":"bjensen"}]}

$ curl
 --dump-header /dev/stdout
 --header "Cookie: JSESSIONID=ixnekr105coj11ji67xcluux8"
 --header "X-Requested-With: OpenIDM Plugin"
 "http://localhost:8080/openidm/managed/user/?_queryId=query-all-ids"

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Date: Wed, 18 Jan 2012 10:37:20 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.0.9
Transfer-Encoding: chunked

{"query-time-ms":1,"result":[{"_id":"ajensen"},{"_id":"bjensen"}]}

Notice that the last example uses the cookie OpenIDM set in the response to
the previous request, and includes the X-Requested-With header to indicate the
origin of the request. The value of the header can be any string, but should be
informative for logging purposes. If you do not include the X-Requested-With
header, OpenIDM returns HTTP 403 Forbidden.

You can also request one-time authentication without a session.

Replace Default Security Settings

207

$ curl
 --dump-header /dev/stdout
 --header "X-OpenIDM-NoSession: true"
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 "http://localhost:8080/openidm/managed/user/?_queryId=query-all-ids"

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Date: Wed, 18 Jan 2012 10:52:27 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.0.9
Transfer-Encoding: chunked

{"query-time-ms":1,"result":[{"_id":"ajensen"},{"_id":"bjensen"}]}

To log out and destroy the session, send the specific OpenIDM header.

$ curl
 --dump-header /dev/stdout
 --header "Cookie: JSESSIONID=ixnekr105coj11ji67xcluux8"
 --header "X-Requested-With: OpenIDM Plugin"
 --header "X-OpenIDM-Logout: true"
 "http://localhost:8080/openidm/"

HTTP/1.1 204 No Content

OpenIDM creates the openidm-admin user with password openidm-admin by default.
This internal user is stored in OpenIDM's repository.

mysql> select objectid,roles from internaluser;
+---------------+----------------------------------+
| objectid | roles |
+---------------+----------------------------------+
| anonymous | openidm-reg |
| openidm-admin | openidm-admin,openidm-authorized |
+---------------+----------------------------------+
2 rows in set (0.00 sec)

OpenIDM uses the internal table for authentication, and also to set the roles for
RBAC authorization of an authenticated user. The router service, described in
the Router Service Reference appendix, enables you to apply filters as shown
in openidm/conf/router.json and the associated script, openidm/script/router-
authz.js. See the chapter on Managing Authentication, Authorization & RBAC for
details.

14.5 Replace Default Security Settings
The default security settings are adequate for evaluation purposes. For
production, change the default encryption key, and then replace the default user
password.

Replace Default Security Settings

208

Procedure 14.1. To Change Default Encryption Keys

By default, OpenIDM uses an symmetric encryption key with alias openidm-sym-
default. Change this default key before deploying OpenIDM in production.

1. Add the new key to the key store.

$ cd /path/to/openidm/
$ keytool
 -genseckey
 -alias new-sym-key
 -keyalg AES
 -keysize 128
 -keystore security/keystore.jceks
 -storetype JCEKS
Enter keystore password:
Enter key password for <new-sym-key>
 (RETURN if same as keystore password):
Re-enter new password:
$

Also see openidm/samples/security/keystore_readme.txt.

2. Change the alias used in openidm/conf/boot/boot.properties.

Procedure 14.2. To Replace the Default User & Password

After changing the default encryption key, change at least the default user
password.

1. Use the encrypt command to obtain the encrypted version of the new
password.

$ cd /path/to/openidm/
$ cli.sh encrypt newpwd
...
-----BEGIN ENCRYPTED VALUE-----
{
 "$crypto" : {
 "value" : {
 "iv" : "TCoC/YrmiRmINw6jCPB5LQ==",
 "data" : "nCFvBIApIQ7C6k+UPzosaA==",
 "cipher" : "AES/CBC/PKCS5Padding",
 "key" : "openidm-sym-default"
 },
 "type" : "x-simple-encryption"
 }
}
------END ENCRYPTED VALUE------

2. Replace the user object in the openidm/db/scripts/mysql/openidm.sql script
before setting up MySQL as a repository for OpenIDM.

Secure Jetty

209

Alternatively, replace the user in the internal user table.

14.6 Secure Jetty
Before running OpenIDM in production, edit the openidm/conf/jetty.xml
configuration to avoid clear text HTTP. Opt instead for HTTPS, either with or
without mutual authentication. To disable plain HTTP access, comment out the
section in openidm/conf/jetty.xml that enables HTTP on port 8080.

<!--
<Item>
 <New class="org.eclipse.jetty.server.nio.SelectChannelConnector">
 <Set name="host"><Property name="jetty.host" /></Set>
 <Set name="port">8080</Set>
 <Set name="maxIdleTime">300000</Set>
 <Set name="Acceptors">2</Set>
 <Set name="statsOn">false</Set>
 <Set name="confidentialPort">8443</Set>
 <Set name="lowResourcesConnections">20000</Set>
 <Set name="lowResourcesMaxIdleTime">5000</Set>
 </New>
</Item>
-->

14.7 Protect Sensitive REST Interface URLs
Although the repository is accessible directly by default, since anything attached
to the router is accessible with the default policy, avoid direct HTTP access in
production. If you do not need such access, deny it in the authorization policy to
reduce the attack surface.

Similarly deny direct HTTP access to system objects in production, particularly
access to action. As a rule of thumb, do not expose anything that is not used
in production. The main public interfaces over HTTP are /openidm/managed/
and /openidm/config/. Other URIs are triggered indirectly, or are for internal
consumption.

OpenIDM supports native query expressions on the JDBC repository and it is
possible to enable these over HTTP, for example:

$curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 "http://localhost:8080/openidm/managed/user
 ?_queryExpression=select+*+from+managedobjects"

Protect Sensitive
Files & Directories

210

By default, direct HTTP access to native queries is disallowed, and should remain
so in production systems. To enable native queries on the JDBC repository over
HTTP, specifically for testing or development purposes, remove the custom
authorization call from the router authorization script (openidm/script/router-
authz.js).

"customAuthz" : "disallowQueryExpression()"

Remember to remove the comma at the end of the preceding line as well.

See the chapter on Managing Authentication, Authorization & RBAC for an
example showing how to protect sensitive URLs.

14.8 Protect Sensitive Files & Directories
Protect OpenIDM files from access by unauthorized users.

In particular, prevent other users from reading files in at least the openidm/conf/
boot/ and openidm/security/ directories.

14.9 Obfuscate Bootstrap Information
OpenIDM uses the information in conf/boot/boot.properties, including the key
store password, to start up. You can set an obfuscated version in the file, or
prompt for the password at start up time.

To use an obfuscated password, follow these steps:

1. Generate an obfuscated version of the password, by using the crypto bundle
provided with OpenIDM:

$ java -jar /path/to/openidm/bundle/openidm-crypto-2.1.0-SNAPSHOT.jar
This utility helps obfuscate passwords to prevent casual observation.
It is not securely encrypted and needs further measures to prevent disclosure.
Please enter the password:
OBF:1vn21ugu1saj1v9i1v941sar1ugw1vo0
CRYPT:a8b5a01ba48a306f300b62a1541734c7

2. Paste the obfuscated password into the conf/boot/boot.properties file.
Comment out the regular keystore password and remove the comment tag
from the line that contains the obfuscated password:

Remove or Protect
Development & Debug Tools

211

$ more conf/boot/boot.properties
...
 # Keystore password, adjust to match your keystore and protect this file
 # openidm.keystore.password=changeit
 openidm.truststore.password=changeit

 # optionally use the cli encrypt to obfuscate the password and set
 openidm.keystore.password=OBF:1vn21ugu1saj1v9i1v941sar1ugw1vo0
 #openidm.keystore.password=CRYPT:
...

3. Restart OpenIDM.

$./startup.sh

14.10 Remove or Protect Development & Debug Tools
Before deploying OpenIDM in production, remove or protect development
and debug tools, including the OSGi console exposed under /system/console.
Authentication for this console is not integrated with authentication for
OpenIDM.

To remove the OSGi console, remove the web console bundle,
org.apache.felix.webconsole-version.jar.

If you cannot remove the OSGi console, then protect it by overriding
the default admin:admin credentials. Create a file called openidm/conf/
org.apache.felix.webconsole.internal.servlet.OsgiManager.cfg containing the
user name and password to access the console in Java properties file format.

username=user-name
password=password

14.11 Protect the OpenIDM Repository
Use the JDBC repository. OrientDB is not yet supported for production use.

Use a strong password for the JDBC connection. Do not rely on default
passwords.

Use a case sensitive database, particularly if you work with systems with
different identifiers that match except for case. Otherwise correlation queries can
pick up identifiers that should not be considered the same.

Adjust Log Levels

212

14.12 Adjust Log Levels
Leave log levels at INFO in production to ensure that you capture enough
information to help diagnose issues. See the chapter on Configuring Server Logs
for more information.

At start up and shut down, INFO can produce many messages. Yet, during
stable operation, INFO generally results in log messages only when coarse-grain
operations such as scheduled reconciliation start or stop.

14.13 Set Up Restart At System Boot
You can run OpenIDM in the background as a service (daemon), and add startup
and shutdown scripts to manage the service at system boot and shutdown. For
more information, see Starting and Stopping OpenIDM.

See your operating system documentation for details on adding a service such as
OpenIDM to be started at boot and shut down at system shutdown.

213

Chapter 15

Integrating Business Processes and
Workflows

Key to any identity management solution is the ability to provide workflow-driven
provisioning activities, whether for self-service actions such as requests for
entitlements, roles or resources, running sunrise or sunset processes, handling
approvals with escalations, or performing maintenance.

OpenIDM provides an embedded workflow and business process engine based on
Activiti and the Business Process Model and Notation (BPMN) 2.0 standard.

More information about Activiti and the Activiti project can be found at http://
www.activiti.org.

15.1 BPMN 2.0 and the Activiti Tools
Business Process Model and Notation 2.0 is the result of consensus among
Business Process Management (BPM) system vendors. The Object Management
Group (OMG) has developed and maintained the BPMN standard since 2004.

The first version of the BPMN specification focused only on graphical notation,
and quickly became popular with the business analyst audience. BPMN 1.x
defines how constructs such as human tasks, executable scripts, and automated
decisions are visualized in a vendor-neutral, standard way. The second version
of BPMN extends that focus to include execution semantics, and a common
exchange format. Thus, BPMN 2.0 process definition models can be exchanged

http://www.activiti.org
http://www.activiti.org
http://omg.org/
http://omg.org/
http://www.omg.org/spec/BPMN/

Setting Up Activiti
Integration With OpenIDM

214

not only between different graphical editors, but can also be executed as is on
any BPMN 2.0-compliant engine, such as the engine embedded in OpenIDM.

Using BPMN 2.0, you can add artifacts describing workflow and business
process behavior to OpenIDM for provisioning and other purposes. For example,
you can craft the actual artifacts defining business processes and workflow
in a text editor, or using a special Eclipse plugin. The Eclipse plugin provides
visual design capabilities, simplifying packaging and deployment of the artifact
to OpenIDM. See the Activiti BPMN 2.0 Eclipse Plugin documentation for
instructions on installing Activiti Eclipse BPMN 2.0 Designer.

Also, read the Activiti User Guide section covering BPMN 2.0 Constructs, which
describes in detail the graphical notations and XML representations for events,
flows, gateways, tasks, and process constructs.

15.2 Setting Up Activiti Integration With OpenIDM
There are two modes of integrating Activiti with OpenIDM:

• Local integration, where an embedded Activiti Process Engine is started in the
OpenIDM OSGi container.

• Remote integration, where OpenIDM and Activiti run as separate instances and
the integration is done using a REST API.

15.2.1 Setting Up Local Integration

The embedded workflow and business process engine is provided as part of the
standard OpenIDM build.

Install the OpenIDM build, as described in the Installation Guide. Start OpenIDM,
and run the scr list command at the console to check that the workflow bundle is
active.

-> scr list
...
[14] [active] org.forgerock.openidm.workflow
...

To verify the workflow integration you need at least one workflow definition in
the /path/to/openidm/workflow directory. A sample workflow (example.bpmn20.xml)
is provided in the /path/to/openidm/samples/misc directory. Copy this workflow to
the /path/to/openidm/workflow directory to test the workflow integration.

$ cd /path/to/openidm
$ cp samples/misc/example.bpmn20.xml workflow/

http://docs.codehaus.org/display/ACT/Activiti+BPMN+2.0+Eclipse+Plugin
http://www.activiti.org/userguide/#bpmnConstructs

Setting Up Local Integration

215

You can verify the workflow integration by using the REST API. The following
REST call lists the defined workflows:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/workflow/processdefinition
 ?_queryId=query-all-ids"

The sample workflow definition that you copied in the previous step is named
osgiProcess. The result of the preceding REST call is therefore something like:

{"result":[
 {"_id":"osgiProcess:1:3",
 "name":"Osgi process"
 }
]
}

The osgiProcess definition calls OpenIDM, queries the available workflow
definitions from Activiti, then prints the list of workflow definitions to the
OpenIDM logs. Invoke the osgiProcess workflow with the following REST call to
OpenIDM:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/workflow/processinstance
 ?_action=createProcessInstance"
 --data '{"_key":"osgiProcess"}'

The workflow prints the list of workflow definitions to the OpenIDM console. With
the default sample, you should see something like this on the console:

script task using resolver: [
 result:[
 [_id:osgiProcess:1:3, name:Osgi process]
]
]
script task using expression resolver: [
 result:[
 [_id:osgiProcess:1:3, name:Osgi process]
]
]

Setting Up Remote Integration

216

15.2.2 Setting Up Remote Integration

You can set up integration with a remote Activiti engine, as described in the
following steps.

1. Download and install OpenIDM, as described in the Installation Guide.

2. Download and unzip the Activiti zip file (activiti-5.10.zip) from Activiti
Downloads page.

3. Edit the Activiti configuration file to avoid a port conflict with OpenIDM.
OpenIDM runs on port 8080 by default. Edit the file so that Activiti Explorer
runs on port 9090 (by replacing each instance of 8080 with 9090). The
following example uses sed on a UNIX system to replace all instances of 8080
with 9090.

$ cd /path/to/activiti/setup/
$ sed -i.bak 's/8080/9090/g' build.xml

Note

There is currently a bug in the Activiti demo which might
mean that all port replacements are not made. If you cannot
access Activiti Explorer (in the next step) after making this
change, also edit the following file to find and replace each
instance of 8080 with 9090: /path/to/activiti/apps/apache-
tomcat-6.0.32/conf/server.xml.

4. Set up the default Activiti demo.

$ cd /path/to/activiti/setup/
$ ant demo.start

5. In a browser, check that Activiti Explorer is running (on localhost:9090/
activiti-explorer). Log in with the default userid kermit and password kermit.
If all is well, log out.

6. Configure Tomcat to operate with OpenIDM.

1. Stop Tomcat.

$ cd /path/to/activiti/setup/
$ ant tomcat.stop

http://activiti.org/download.html
http://activiti.org/download.html

Setting Up Remote Integration

217

2. Copy the OpenIDM remote workflow WAR file to the Tomcat webapps
folder.

$ cd /path/to/openidm/bin/workflow
$ cp openidm-workflow-remote-.war \
 /path/to/activiti/apps/apache-tomcat-6.0.32/webapps/

3. Copy the OpenIDM workflow Activiti demo jar file to the Tomcat Activiti
Explorer library.

$ cd /path/to/openidm/bin/workflow/
$ cp openidm-workflow-activiti--jar-with-dependencies.jar \
 /path/to/activiti/apps/apache-tomcat-6.0.32/webapps/activiti-explorer/WEB-INF/lib/

4. Edit the Activiti Explorer configuration file to be able to use the OpenIDM
extensions.

$ cd /path/to/activiti/
$ vi apps/apache-tomcat-6.0.32/webapps/activiti-explorer/WEB-INF/applicationContext.xml

Replace the processEngineConfiguration with the OpenIDM extended
configuration. So remove this section:

 <bean id="processEngineConfiguration" class="org.activiti.spring.SpringProcessEngineConfiguration">
 <property name="dataSource" ref="dataSource" />
 <property name="transactionManager" ref="transactionManager" />
 <property name="databaseSchemaUpdate" value="true" />
 <property name="jobExecutorActivate" value="true" />
 <property name="customFormTypes">
 <list>
 <ref bean="userFormType"/>
 </list>
 </property>
 </bean>

and replace it with this section:

 <bean id="processEngineConfiguration" class="org.activiti.spring.SpringProcessEngineConfiguration">
 <property name="dataSource" ref="dataSource" />
 <property name="transactionManager" ref="transactionManager" />
 <property name="databaseSchemaUpdate" value="true" />
 <property name="jobExecutorActivate" value="true" />
 <property name="customFormTypes">
 <list>
 <ref bean="userFormType"/>
 </list>
 </property>
 <property name="customSessionFactories">

Setting Up Remote Integration

218

 <list>
 <bean class="org.forgerock.openidm.workflow.activiti.impl.session.OpenIDMSessionFactory">
 <property name="url" value="http://localhost:8080/openidm/"/>
 <property name="user" value="openidm-admin"/>
 <property name="password" value="openidm-admin"/>
 </bean>
 </list>
 </property>
 <property name="resolverFactories">
 <list>
 <bean class="org.forgerock.openidm.workflow.activiti.impl.OpenIDMResolverFactory"></bean>
 <bean class="org.activiti.engine.impl.scripting.VariableScopeResolverFactory"></bean>
 <bean class="org.activiti.engine.impl.scripting.BeansResolverFactory"></bean>
 </list>
 </property>
 <property name="expressionManager">
 <bean class="org.forgerock.openidm.workflow.activiti.impl.OpenIDMExpressionManager"> </bean>
 </property>
 </bean>

5. Restart Tomcat.

$ cd /path/to/activiti/setup/
$ ant tomcat.start

6. Check that Activiti Explorer is running on localhost:9090/activiti-explorer,
as you did in the previous section.

7. Configure OpenIDM to use the remote Activiti engine instead of the local,
bundled Activiti engine.

1. Copy the workflow.json configuration file to the OpenIDM configuration
directory.

$ cd /path/to/openidm/
$ cp samples/misc/workflow.json conf/

2. Edit the workflow configuration file to specify the remote Activiti engine.

$ vi conf/workflow.json

Ensure that the url, username, and password fields contain the values
that correspond to your remote Activiti engine.

Setting Up Remote Integration

219

{
 "enabled" : true,
 "location" : "remote",
 "engine" : {
 "url" : "http://localhost:9090/openidm-workflow-remote-2.1.0/",
 "username" : "youractivitiuser",
 "password" : "youractivitipassword"
 }
}

8. Start up OpenIDM.

$ cd /path/to/openidm/
$./startup.sh

9. Test the integration by sending the following CURL request to list the
available workflows:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/workflow/processdefinition
 ?_queryId=query-all-ids"

10. Log in to the Activiti Explorer of the remote Activiti engine (with the default
username (kermit) and password (kermit).

11. Install the sample workflow (example.bpmn20.xml).

1. In Activiti Explorer, click Manage.

2. From the Deployments menu, select Upload New.

3. Navigate to the sample workflow (/path/to/openidm/samples /misc/
example.bpmn20.xml)

12. Verify the integration by sending the following CURL request:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/workflow/processinstance
 ?_action=createProcessInstance"
 --data '{"_key":"osgiProcess"}'

The request should return a process ID, similar to the following:

Configuring the Activiti Engine

220

{
 "_id":"614",
 "processInstanceId":"614",
 "status":"ended",
 "businessKey":null,
 "processDefinitionId":"osgiProcess:7:603"
}

This request starts the osgiProcess and writes the list of installed workflows
to the Tomcat server log file (/path/to/activiti/apps/ apache-tomcat-6.0.32/
logs/catalina.out).

13. Test the integration with Activiti Explorer.

1. Click Processes and select Osgi Process from the list of process
definitions.

2. Click Start Process.

3. Check the output in the Tomcat server log file (/path/to/activiti/apps/
apache-tomcat-6.0.32/logs/catalina.out. The list of installed workflows is
written to the log file.

15.2.3 Configuring the Activiti Engine

Whether you use the embedded Activiti engine, or a remote Activiti engine, you
configure the OpenIDM Activiti module in a file named /path/to/openidm/conf/
workflow.json. If this file is absent from the configuration, the workflow module
is unavailable for use. In the default OpenIDM installation, the workflow.json file
assumes an embedded Activiti engine, and has the following configuration:

{
 "enabled" : "true"
}

You can disable the workflow module by setting the "enabled" property in this file
to "false".

A sample workflow.json file, with all configurable properties, is provided in /
path/to/openidm/samples/misc. To configure an Activiti engine beyond the default
configuration that is provided, edit this file as required and copy it to the /path/
to/openidm/conf directory.

The sample workflow.json file contains the following configuration:

Configuring the Activiti Engine

221

 {
 "enabled" : "true",
 "location" : "remote",
 "engine" : {
 "url" : "http://localhost:9090/openidm-workflow-remote-",
 "username" : "youractivitiuser",
 "password" : "youractivitipassword"
 },
 "mail" : {
 "host" : "yourserver.smtp.com",
 "port" : 587,
 "username" : "yourusername",
 "password" : "yourpassword",
 "starttls" : true
 },
 "history" : "audit"
}

These fields have the following meaning:

• enabled. Indicates whether the Activiti module is enabled for use. Possible
values are true or false. The default value is true.

• location. Indicates whether the Activiti engine is embedded with OpenIDM,
or remote. Possible values are embedded or remote. If remote, you must provide
details for the engine property, below.

• engine. Specifies the details of the remote Activiti engine. The following fields
must be defined:

• url. The URL of the remote engine, including the host name and port
number.

• username. A user name for the remote Activiti engine.

• password. The password for the user specified above.

• mail. Specifies the details of the mail server that Activiti will use to send email
notifications. By default, Activiti uses the mail server localhost:25. To specify a
different mail server, enter the details of the mail server here.

• host. The host of the mail server.

• port. The port number of the mail server.

• username. The user name of the account that connects to the mail server.

• password. The password for the user specified above.

• startTLS. Whether startTLS should be used to secure the connection.

Defining Activiti Workflows

222

• history. Determines the history level that should be used for the Activiti
engine. For more information, see Configuring the Activiti History Level.

15.2.3.1 Configuring the Activiti History Level
The Activiti history level determines how much historical information is retained
when workflows are executed. You can configure the history level by setting the
history property in the workflow.json file, for example:

"history" : "audit"

The following history levels can be configured:

• none. No history archiving is done. This level results in the best performance for
workflow execution, but no historical information is available.

• activity. Archives all process instances and activity instances. No details are
archived.

• audit. This is the default level. All process instances, activity instances and
submitted form properties are archived so that all user interaction through
forms is traceable and can be audited.

• full. This is the highest level of history archiving and has the greatest
performance impact. This history level stores all information as in the audit
level as well as any process variable updates.

15.2.4 Defining Activiti Workflows
The following section outlines the process to follow when you create an Activiti
workflow for OpenIDM. Before you start creating workflows, you must configure
the Activiti engine, as described in Configuring the Activiti Engine.

1. Define your workflow in a text file, either using an editor, such as Activiti
Eclipse BPMN 2.0 Designer, or a simple text editor.

2. Package the workflow definition file as a .bar file (Business Archive File). If
you are using Eclipse to define the workflow, a .bar file is created when you
select "Create deployment artifacts". Essentially, a .bar file is the same as a .
zip file, but with the .bar extension.

3. Copy the .bar file to the openidm/workflow directory.

4. Invoke the workflow using a script (in openidm/script/) or directly using the
REST interface. For more information, see Invoking Activiti Workflows.

5. You can also schedule the workflow to be invoked repeatedly, or at a future
time. For more information, see the Scheduler Reference

Invoking Activiti Workflows

223

15.2.5 Invoking Activiti Workflows

You can invoke workflows and business processes from any trigger point within
OpenIDM, including reacting to situations discovered during reconciliation.
Workflows can be invoked from script files, using the openidm.action() function,
or directly from the REST interface.

The following sample script extract shows how to invoke a workflow from a script
file:

/*
 * Calling 'myWorkflow' workflow
 */

var params = {
 "foo" : "bar",
 "_key": "myWorkflow"
};

openidm.action('workflow/processinstance', {"_action" : "createProcessInstance"}, params);

You can invoke the same workflow from the REST interface by sending the
following REST call to OpenIDM:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/workflow/processinstance
 ?_action=createProcessInstance"
 --data '{"_key":"myWorkflow", "foo":"bar"}'

There are two ways in which you can specify the workflow definition that is used
when a new workflow instance is started.

• _key specifies the id attribute of the workflow process definition, for example:

<process id="sendNotificationProcess" name="Send Notification Process">

If there is more than more than one workflow definition with the same _key
parameter, the latest deployed version of the workflow definition is invoked.

• _processDefinitionId specifies the ID that is generated by the Activiti Process
Engine when a workflow definition is deployed, for example:

"sendNotificationProcess:1:104";

Querying Activiti Workflows

224

You can obtain the processDefinitionId by querying the available workflows,
for example:

 {
 "result": [
 {
 "name": "Process Start Auto Generated Task Auto Generated",
 "_id": "ProcessSAGTAG:1:728"
 },
 {
 "name": "Process Start Auto Generated Task Empty",
 "_id": "ProcessSAGTE:1:725"
 },
 ...

If you specify a _key and a _processDefinitionId, the _processDefinitionId is
used because it is more precise.

You can use the optional _businessKey parameter to add specific business logic
information to the workflow when it is invoked. For example, the following
workflow invocation assigns the workflow a business key of "newOrder". This
business key can later be used to query "newOrder" processes.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/workflow/processinstance
 ?_action=createProcessInstance"
 --data '{"_key":"myWorkflow", "_businessKey":"newOrder"}'

15.2.6 Querying Activiti Workflows

The Activiti implementation supports filtered queries that enable you to query
the running process instances and tasks, based on specific query parameters. For
example, the following query returns all process instances with the business key
"newOrder", as invoked in the previous section.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/workflow/processinstance
 ?_queryId=filtered-query
 &businessKey=newOrder"

You can query process instances based on the value of any process instance
variable by prefixing the variable name with _var-. For example:

Managing Workflows
Over the REST Interface

225

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/workflow/processinstance
 ?_queryId=filtered-query
 &_var-processvariablename=processvariablevalue"

The standard Activiti properties can be queried using the Activiti notation, for
example, processDefinitionId=managedUserApproval:1:6405. The query syntax
applies to all queries with _queryId=filtered-query.

15.3 Managing Workflows Over the REST Interface
In addition to the queries described previously, the following examples show the
endpoints that are exposed for managing workflows over the REST interface.
The example output is based on the sample workflow that is provided in openidm/
samples/workflow.

openidm/workflow/processdefinition

List the available workflow definitions, for example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/workflow/processdefinition
 ?_queryId=query-all-ids"

{
 "result": [
 {
 "name": "Managed User Approval Workflow",
 "_id": "managedUserApproval:1:3"
 }
]
}

List the workflows, based on certain filter criteria, for example:

Managing Workflows
Over the REST Interface

226

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/workflow/processdefinition?_queryId=
filtered-query&category=Examples"

{
 "result": [
 {
 "name": "Managed User Approval Workflow",
 "_id": "managedUserApproval:1:3"
 }
]
}

openidm/workflow/processdefinition/{id}

Obtain detailed information for a process definition, based on the ID. (The
ID can be determined by querying all available process definitions). For
example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/workflow/processdefinition/contractorOnboarding:1:3"

{
 "key": "managedUserApproval",
 "_rev": "0",
 "formProperties": [],
 "category": "Examples",
 "_id": "managedUserApproval:1:3",
 "processDiagramResourceName": null,
 "description": null,
 "name": "Managed User Approval Workflow",
 "deploymentId": "1"
}

openidm/workflow/processinstance

Obtain the list of running workflows (process instances). The query returns a
list of IDs. For example:

Managing Workflows
Over the REST Interface

227

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/workflow/processinstance
 ?_queryId=query-all-ids"

{
 "result": [
 {
 "processDefinitionId": "contractorOnboarding:1:3",
 "_id": "4"
 }
]
}

Obtain the list of running workflows based on specific filter criteria. For
example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/workflow/processinstance?_queryId=
filtered-query&businessKey=myBusinessKey"

Start a workflow process instance. For example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --data {"_key":"contractorOnboarding"}
 --request POST
 "http://localhost:8080/openidm/workflow/processinstance
 ?_action=createProcessInstance"

openidm/workflow/processinstance/{id}

Obtain the details of the specified process instance. For example:

Managing Workflows
Over the REST Interface

228

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/workflow/processinstance/4"

{
 "deleteReason": null,
 "processDefinitionId": "contractorOnboarding:1:3",
 "_rev": "0",
 "startTime": "2012-12-18T22:04:50.549+02:00",
 "startUserId": "user1",
 "_id": "4",
 "businessKey": null,
 "durationInMillis": null,
 "endTime": null,
 "superProcessInstanceId": null
}

Stop the specified process instance. For example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request DELETE
 "http://localhost:8080/openidm/workflow/processinstance/4"

openidm/workflow/taskdefinition

Query a task definition based on the process definition ID and the task name
(taskDefinitionKey). For example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/workflow/taskdefinition
 ?_queryId=query-taskdefinition
&processDefinitionId=contractorOnboarding:1:6&taskDefinitionKey=decideApprovalTask"
{
 "dueDate": null,
 "taskCandidateGroup": [
 {
 "expressionText": "manager"
 }
],
 "formProperties": [
 {
 "type": {
 "values": {
 "accept": "Accept",
 "reject": "Reject"
...

Managing Workflows
Over the REST Interface

229

openidm/workflow/taskinstance

Query all running task instances. For example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/workflow/taskinstance?_queryId=query-all-ids"

{
 "result": [
 {
 "name": "Contractor Approval",
 "_id": "70"
 }
]
}

Query task instances based on candidate users or candidate groups. For
example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/workflow/taskinstance
 ?_queryId=filtered-query&taskCandidateUser=manager1"

or

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/workflow/taskinstance
 ?_queryId=filtered-query&taskCandidateGroup=management"

Note that you can include both users and groups in the same query.

openidm/workflow/taskinstance/{id}

Obtain detailed information for a running task, based on the task ID. For
example:

Example Activiti
Workflows With OpenIDM

230

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/workflow/taskinstance/70"

{
 "dueDate": null,
 "processDefinitionId": "contractorOnboarding:1:3",
 "owner": null,
 "taskDefinitionKey": "decideApprovalTask",
 "name": "Contractor Approval",
...

Update task-related data stored in the Activiti workflow engine. For example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --header "If-Match : *"
 --request PUT
 --data '{"description":"updated description"}'
 "http://localhost:8080/openidm/workflow/taskinstance/70"

Complete the specified task. The variables required by the task are provided
in the request body. For example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 --data '{"requestApproved":"true"}'
 "http://localhost:8080/openidm/workflow/taskinstance/70?_action=complete"

Claim the specified task. The ID of the user who claims the task is provided in
the request body. For example:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 --data '{"userId":"manager1"}'
 "http://localhost:8080/openidm/workflow/taskinstance/70?_action=claim"

15.4 Example Activiti Workflows With OpenIDM
This section describes two example workflows - an email notification workflow,
and a workflow that demonstrates provisioning, using the browser-based user
interface.

Example Email
Notification Workflow

231

15.4.1 Example Email Notification Workflow

This example uses the Activiti Eclipse BPMN 2.0 Designer to set up an email
notification business process. The example relies on an SMTP server listening on
localhost, port 25.

The example sets up a workflow that can accept parameters used to specify the
sender and recipient of the mail.

${fromSender}

Used to specify the sender

${toEmail}

Used to specify the recipient

Once you have defined the workflow, drag and drop components to create the
workflow. This simple example uses only a StartEvent, MailTask, and EndEvent.

After creating the workflow, adjust the generated XML source code to use the
variables inside the <serviceTask> tag shown in the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<definitions
 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:activiti="http://activiti.org/bpmn"
 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
 xmlns:omgdc="http://www.omg.org/spec/DD/20100524/DC"
 xmlns:omgdi="http://www.omg.org/spec/DD/20100524/DI"
 typeLanguage="http://www.w3.org/2001/XMLSchema"
 expressionLanguage="http://www.w3.org/1999/XPath"
 targetNamespace="http://www.activiti.org/test">
 <process id="EmailNotification" name="emailNotification">
 <documentation>Simple Email Notification Task</documentation>
 <startEvent id="startevent1" name="Start"></startEvent>
 <sequenceFlow id="flow1" name="" sourceRef="startevent1"
 targetRef="mailtask1"></sequenceFlow>
 <endEvent id="endevent1" name="End"></endEvent>
 <sequenceFlow id="flow2" name="" sourceRef="mailtask1"
 targetRef="endevent1"></sequenceFlow>
 <serviceTask id="mailtask1" name="Email Notification"
 activiti:type="mail">
 <extensionElements>
 <activiti:field name="to" expression="${toEmail}"

Example Email
Notification Workflow

232

 ></activiti:field>
 <activiti:field name="from" expression="${fromSender}"
 ></activiti:field>
 <activiti:field name="subject" expression="Simple Email Notification"
 ></activiti:field>
 <activiti:field name="text">
 <activiti:expression><![CDATA[Here is a simple Email Notification
 from ${fromSender}.]]></activiti:expression>
 </activiti:field>
 </extensionElements>
 </serviceTask>
 </process>
 <bpmndi:BPMNDiagram id="BPMNDiagram_EmailNotification">
 <bpmndi:BPMNPlane bpmnElement="EmailNotification"
 id="BPMNPlane_EmailNotification">
 <bpmndi:BPMNShape bpmnElement="startevent1" id="BPMNShape_startevent1">
 <omgdc:Bounds height="35" width="35" x="170" y="250"></omgdc:Bounds>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape bpmnElement="endevent1" id="BPMNShape_endevent1">
 <omgdc:Bounds height="35" width="35" x="410" y="250"></omgdc:Bounds>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape bpmnElement="mailtask1" id="BPMNShape_mailtask1">
 <omgdc:Bounds height="55" width="105" x="250" y="240"></omgdc:Bounds>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNEdge bpmnElement="flow1" id="BPMNEdge_flow1">
 <omgdi:waypoint x="205" y="267"></omgdi:waypoint>
 <omgdi:waypoint x="250" y="267"></omgdi:waypoint>
 </bpmndi:BPMNEdge>
 <bpmndi:BPMNEdge bpmnElement="flow2" id="BPMNEdge_flow2">
 <omgdi:waypoint x="355" y="267"></omgdi:waypoint>
 <omgdi:waypoint x="410" y="267"></omgdi:waypoint>
 </bpmndi:BPMNEdge>
 </bpmndi:BPMNPlane>
 </bpmndi:BPMNDiagram>
</definitions>

In Eclipse, select the project, then right click and select Create deployment
artifacts to generate the components and package them in a .bar file for
deployment in the openidm/workflow directory.

After you deploy the .bar, create a script named openidm/script/
triggerEmailNotification.js. The script invokes the workflow.

/*
 * Calling 'EmailNotification' workflow
 */

var params = {
 "_key" : "EmailNotification",
 "fromSender" : "noreply@openidm",
 "toEmail" : "jdoe@example.com"
};

openidm.action('workflow/processinstance', {"_action" : "createProcessInstance"}, params);

You can also invoke the workflow over the REST interface with the following
REST command:

Sample Workflow -
Provisioning User Accounts

233

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --data '{"_key":"EmailNotification", "fromSender":"noreply@openidm", "toEmail":"jdoe@example.com"}'
 --request POST
 "http://localhost:8080/openidm/workflow/processinstance
 ?_action=createProcessInstance"

To schedule the workflow to be invoked regularly, create a schedule
configuration object named openidm/conf/schedule-EmailNotification.json. The
following schedule invokes the workflow once per minute.

{
 "enabled" : true,
 "type" : "cron",
 "schedule" : "0 0/1 * * * ?",
 "invokeService" : "script",
 "invokeContext" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "script/triggerEmailNotification.js"
 },
 }
}

15.4.2 Sample Workflow - Provisioning User Accounts

This example, provided in openidm/samples/workflow, uses workflows to provision
user accounts. The example demonstrates the use of the browser-based user
interface to manage workflows.

15.4.2.1 Overview of the Sample

The sample starts with a reconciliation process that loads user accounts from an
XML file into the managed users repository. The reconciliation creates two users,
with UIDs user1 and manager1. Both users have the same password (Welcome1).

The sample adds two new business roles to the configuration - employee (assigned
to user1) and manager (assigned to manager1).

As part of the provisioning, employees are required to initiate a "Contract
Onboarding" process. This process is a request to add a contractor to the
managed users repository, with an option to include the contractor in the original
data source (the XML file).

When the employee has completed the required form, the request is sent to the
manager for approval. Any user with the role "manager" can claim the approval
task. If the request is approved, the user is created in the managed users

Sample Workflow -
Provisioning User Accounts

234

repository. If a request was made to add the user to the original data source (the
XML file) this is done in a subsequent step.

The workflow uses embedded templates to build a more sophisticated input
form. The form is validated with the server-side policy rules, described in Using
Policies to Validate Data.

15.4.2.2 Running the Sample

1. Start OpenIDM with the configuration for the workflow sample.

$ cd /path/to/openidm
$./startup.sh -p samples/workflow

2. Run reconciliation over the REST interface.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/recon
 ?_action=recon&mapping=systemXmlfileAccounts_managedUser"

Successful reconciliation returns an "_id" object, such as the following:

{"_id":"aea493f5-29ee-423d-b4b1-10449c60886c"}

The two users are added to the repository. You can test this with the
following REST query, which shows the two users, manager1 and user1.

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/?_queryId=query-all-ids"

{
 "conversion-time-ms": 0,
 "result": [
 {
 "_rev": "0",
 "_id": "manager1"
 },
 {
 "_rev": "0",
 "_id": "user1"
 }
],
 "query-time-ms": 1
}

Sample Workflow -
Provisioning User Accounts

235

3. Log in to the user interface as user1, with password Welcome1. For information
about logging in to the user interface, see Overview of the Default User
Interface.

4. Under "Processes" click "Contractor onboarding process".

5. Complete the details of the new user, then click Start.

6. Log out of the UI.

7. Log in to the UI as manager1, with password Welcome1.

8. Under "Tasks that are in my group's queue" click "Contractor Approval".

9. From the drop-down list, select "Assign to me".

Note that the "Contractor Approval" task has now moved under "My tasks".

10. Under "My tasks" click "Contractor Approval".

11. Under Actions, click Details.

Sample Workflow -
Provisioning User Accounts

236

The form containing the details of the contractor is displayed.

12. At the bottom of the form, select a decision from the drop-down list (either
"Accept" or "Reject"), then click Complete.

If you Accept the new contractor details, the user account is created in the
repository. You can check the new account by running the following REST
command:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/?_queryId=query-all-ids"

{
 "conversion-time-ms": 0,
 "result": [
 {
 "_rev": "0",
 "_id": "manager1"
 },
 {
 "_rev": "0",
 "_id": "user1"
 },
 {
 "_rev": "0",
 "_id": "51afe0f8-94c3-45c5-8c69-319e6ef5981f"
 }
],
 "query-time-ms": 1
}

Display the details of the new user, by running a REST query on the user ID,
as follows:

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request GET
 "http://localhost:8080/openidm/managed/user/51afe0f8-94c3-45c5-8c69-319e6ef5981f"

{
 "city": "",
 "country": "",
 "address2": "",
 "address1": "",
 "lastPasswordAttempt": "Fri Dec 14 2012 13:54:02 GMT+0200 (SAST)",
 "passwordAttempts": "0",
 "stateProvince": "",
 "postalCode": "",
 "lastPasswordSet": "",
 "jobTitle": "Accountant",
 "department": "Finance",
 "manager": "user1",

Sample Workflow -
Provisioning User Accounts

237

 "familyName": "Doe",
 "givenName": "John",
 "userName": "johnd",
 "_rev": "0",
 "_id": "51afe0f8-94c3-45c5-8c69-319e6ef5981f",
 "phoneNumber": "123456789",
 "email": "johnd@example.com",
 "startDate": "12/12/2012",
 "endDate": "12/12/2012",
 "description": "Contract accountant",
 "provisionToXML": "1",
 "accountStatus": "active",
 "roles": "openidm-authorized"
}

You can now log in to the UI as the new user (with the details that you
specified in Step 5). Under "Notifications" you will see a welcome message
indicating the working dates of the new user. If you log in as user1 you are
notified of the result of the manager's decision.

If you specified that the new user should be added to the original data
source, you will see that the account was added to the XML file:

$ cd /path/to/openidm
$ cat samples/workflow/data/xmlConnectorData.xml
...
 >ri:__ACCOUNT__<
 >icf:__DESCRIPTION__<Contract accountant>/icf:__DESCRIPTION__<
 >ri:roles<openidm-authorized>/ri:roles<
 >ri:mobileTelephoneNumber<123456789>/ri:mobileTelephoneNumber<
 >ri:firstname<John>/ri:firstname<
 >ri:manager<user1>/ri:manager<
 >ri:startDate<12/12/2012>/ri:startDate<
 >ri:jobTitle<Accountant>/ri:jobTitle<
 >icf:__UID__<201e0d50-3313-47b3-9bd1-30c1c7dd1cee>/icf:__UID__<
 >icf:__NAME__<johnd>/icf:__NAME__<
 >ri:email<johnd@example.com>/ri:email<
 >icf:__PASSWORD__<MyPassw0rd>/icf:__PASSWORD__<
 >ri:department<Finance>/ri:department<
 >ri:endDate<12/12/2012>/ri:endDate<
 >ri:lastname<Doe>/ri:lastname<
 >/ri:__ACCOUNT__<
...

If you declined the approval request, the user will not be created in either
data source.

You can see the details of the workflow definition in samples/workflow/workflow/
contractorOnboarding.bpmn20.xml.

238

239

Chapter 16

Using Audit Logs

OpenIDM auditing can publish and log all relevant system activity to the
targets you specify. Auditing can include data from reconciliation as a basis for
reporting, access details, and activity logs that capture operations on internal
(managed) objects and external (system) objects. Auditing provides the data for
all the relevant reports, including orphan account reports.

The auditing interface allows you to push auditing data to files and to the
OpenIDM repository.

16.1 Audit Log Types
This section describes the types of audit log OpenIDM provides.

Access Log

OpenIDM writes messages concerning access to the REST API in this log.

Default file: openidm/audit/access.csv

Activity Log

OpenIDM logs operations on internal (managed) and external (system)
objects to this log type.

Audit Log File Formats

240

Entries in the activity log contain identifiers both for the reconciliation or
synchronization action that triggered the activity, and also for the original
caller and the relationships between related actions.

Default file: openidm/audit/activity.csv

Reconciliation Log

OpenIDM logs the results of a reconciliation run, including situations and
the resulting actions taken to this log type. The activity log contains details
about the actions, where log entries display parent activity identifiers,
recon/reconID.

Default file: openidm/audit/recon.csv

Where an action happens in the context of a higher level business function,
the log entry points to a parent activity for the context. The relationships
are hierarchical. For example, a synchronization operation could result from
scheduled reconciliation for an object type. OpenIDM also logs the top level root
activity with each entry, making it possible to query related activities.

16.2 Audit Log File Formats
This section describes the audit log file formats to help you map these to the
reports you generate.

Access Log Fields

Access messages are split into the following fields.

"_id"

UUID for the message object, such as "0419d364-1b3d-4e4f-b769-
555c3ca098b0"

"action"

Action requested, such as "authenticate"

"ip"

IP address of the client. For access from the local host, this can appear for
example as "0:0:0:0:0:0:0:1%0".

"principal"

Principal requesting the operation, such as "openidm-admin"

Audit Log File Formats

241

"roles"

Roles associated with the principal, such as "[openidm-admin, openidm-
authorized]"

"status"

Result of the operation, such as "SUCCESS"

"timestamp"

Time when OpenIDM logged the message, in UTC format, for example "2012-
11-18T08:48:00.160Z"

Activity Log Fields

Activity messages are split into the following fields.

"_id"

UUID for the message object, such as "0419d364-1b3d-4e4f-b769-
555c3ca098b0"

"action"

Action performed, such as "create". See the section on Event Types for a list.

"activityId"

UUID for the activity corresponding to the UUID of the resource context

"after"

JSON representation of the object resulting from the activity

"before"

JSON representation of the object prior to the activity

"message"

Human readable text about the activity

"objectId"

Object identifier such as "managed/user/DDOE1"

"parentActionId"

UUID of the action leading to the activity

Audit Log File Formats

242

"requester"

Principal requesting the operation

"rev"

Object revision number

"rootActionId"

UUID of the root cause for the activity. This matches a corresponding
"rootActionId" in a reconciliation message.

"status"

Result of the operation, such as "SUCCESS"

"timestamp"

Time when OpenIDM logged the message, in UTC format, for example "2012-
11-18T08:48:00.160Z"

Reconciliation Log Fields

Reconciliation messages are split into the following fields.

"_id"

UUID for the message object, such as "0419d364-1b3d-4e4f-b769-
555c3ca098b0"

"action"

Synchronization action, such as "CREATE". See the section on Actions for a list.

"ambiguousTargetObjectIds"

When the situation is AMBIGUOUS or UNQUALIFIED and OpenIDM
cannot distinguish between more than one target object, OpenIDM logs the
identifiers of the objects in this field in comma-separated format. This makes
it possible to figure out what was ambiguous afterwards.

"entryType"

Kind of reconciliation log entry, such as "start", or "summary".

"message"

Human readable text about the reconciliation action

Audit Configuration

243

"reconciling"

What OpenIDM is reconciling, "source" for the first phase, "target" for the
second phase

"reconId"

UUID for the reconciliation operation, which is the same for all entries
pertaining to the reconciliation run.

"rootActionId"

UUID of the root cause for the activity. This matches a corresponding
"rootActionId" in an activity message.

"situation"

The situation encountered. See the section describing synchronization
situations for a list.

"sourceObjectId"

UUID for the source object.

"status"

Result of the operation, such as "SUCCESS"

"targetObjectId"

UUID for the target object

"timestamp"

Time when OpenIDM logged the message, in UTC format, for example "2012-
11-18T08:48:00.160Z"

16.3 Audit Configuration
OpenIDM exposes the audit logging configuration under http://localhost:8080/
openidm/config/audit for the REST API, and in the file conf/audit.json where you
installed OpenIDM. The default conf/audit.json file contains the following object.

{
 "eventTypes" : {
 "activity" : {
 "filter" : {
 "actions" : [

Event Types

244

 "create",
 "update",
 "delete",
 "patch",
 "action"
]
 },
 "watchedFields" : [],
 "passwordFields" : ["password"]
 },
 "recon" : { }
 },
 "logTo" : [
 {
 "logType" : "csv",
 "location" : "audit",
 "recordDelimiter" : ";"
 },
 {
 "logType" : "repository",
 "useForQueries" : true
 }
],
 "exceptionFormatter" : {
 "type" : "text/javascript",
 "file" : "bin/defaults/script/audit/stacktraceFormatter.js"
 }
}

16.3.1 Event Types

The eventTypes configuration specifies what events OpenIDM writes to audit logs.
OpenIDM supports two eventTypes: activity for the activity log, and recon for the
reconciliation log. The filter for actions under activity logging shows the actions
on managed or system objects for which OpenIDM writes to the activity log.

The filter actions list enables you to configure the conditions that result in
actions being written to the activity log.

read

When an object is read by using its identifier.

create

When an object is created.

update

When an object is updated.

delete

When an object is deleted.

Event Types

245

patch

When an object is partially modified.

query

When a query is performed on an object.

action

When an action is performed on an object.

You can optionally add a filter triggers list that specifies the actions that
are logged for a particular trigger. For example, the following addition to the
audit.json file specifies that only create and update actions are logged for an
activity that was triggered by a recon.

 ...
 "filter" : {
 "actions" : [
 "create",
 "update",
 "delete",
 "patch",
 "action"
],
 "triggers" : {
 "recon" : [
 "create",
 "update"
]
 }
 },
 "watchedFields" : [],
 ...

If a trigger is provided, but no actions are specified, nothing is logged for that
trigger. If a trigger is omitted, all actions are logged for that trigger. In the
current OpenIDM release, only the recon trigger is implemented. For a list of
reconciliation actions that can be logged, see Synchronization Actions.

The watchedFields parameter enables you to specify a list of fields that should be
"watched" for changes. When the value of one of the fields in this list changes,
the change is logged in the audit log, under the column "changedFields". Fields
are listed in comma-separated format, for example:

"watchedFields" : ["email", "address"]

The passwordFields parameter enables you to specify a list of fields that are
considered passwords. This parameter functions much like the watchedFields
parameter in that changes to these field values are logged in the audit log, under
the column "changedFields". In addition, when a password field is changed, the

Log To List

246

boolean "passwordChanged" flag is set to true in the audit log. Fields are listed in
comma-separated format, for example:

"passwordFields" : ["password", "username"]

16.3.2 Log To List
The logTo list enables you to specify the format of the log, where it is written, and
various parameters for each log type.

logType

The format of the audit log. The log type can be one of the following:

• csv - write to a comma-separated variable format file.

The "location" property indicates the name of the directory in which
the file should be written, relative to the directory in which you installed
OpenIDM.

Audit file names are fixed, access.csv, activity.csv, and recon.csv.

The "recordDelimiter" property enables you to specify the separator
between each record.

• repository - write to the OpenIDM database repository.

OpenIDM stores entries under the /openidm/repo/audit/ context. Such
entries appear as audit/access/_id, audit/activity/_id, and audit/
recon/_id, where the _id is the UUID of the entry, such as 0419d364-1b3d-
4e4f-b769-555c3ca098b0.

In the OrientDB repository, OpenIDM stores log records in the
audit_access, audit_activity, and audit_recon tables.

In a JDBC repository, OpenIDM stores records in the auditaccess,
auditactivity, and auditrecon tables.

The "useForQueries" boolean property indicates whether the repository
logger should be used to service reads and query requests. The value is
true by default. If "useForQueries" is set to false, the CSV file is used to
service read and query requests.

16.3.3 Exception Formatter
The exceptionFormatter property specifies the name and type of file that handles
the formatting and display of exceptions thrown by the audit logger. Currently,
"text/javascript" is the only supported type.

Generating Reports

247

The "file" property provides the path to the script file that performs the
formatting. The default exception formatter is "bin/defaults/script/audit/
stacktraceFormatter.js".

16.4 Generating Reports
When generating reports from audit logs, you can correlate information from
activity and reconciliation logs by matching the "rootActionId" on entries in both
logs.

The following MySQL query shows a join of the audit activity and audit
reconciliation tables using root action ID values.

mysql> select distinct auditrecon.activity,auditrecon.sourceobjectid,
 auditrecon.targetobjectid,auditactivity.activitydate,auditrecon.status
 from auditactivity inner join auditrecon
 auditactivity.rootactionid=auditrecon.rootactionid
 where auditrecon.activity is not null group by auditrecon.sourceobjectid;
+----------+--------------------------+----------------------+---------------------+---------+
| activity | sourceobjectid | targetobjectid | activitydate | status |
+----------+--------------------------+----------------------+---------------------+---------+
CREATE	system/xmlfile/account/1	managed/user/juser	2012-01-17T07:59:12	SUCCESS
CREATE	system/xmlfile/account/2	managed/user/ajensen	2012-01-17T07:59:12	SUCCESS
CREATE	system/xmlfile/account/3	managed/user/bjensen	2012-01-17T07:59:12	SUCCESS
+----------+--------------------------+----------------------+---------------------+---------+
3 rows in set (0.00 sec)

248

249

Chapter 17

Sending Email

This chapter shows you how to configure the outbound email service, so that you
can send email through OpenIDM either by script or through the REST API.

Procedure 17.1. To Set Up Outbound Email

The outbound email service relies on a configuration object to identify the email
account used to send messages.

1. Shut down OpenIDM.

2. Copy the sample configuration to openidm/conf.

$ cd /path/to/openidm/
$ cp samples/misc/external.email.json conf/

3. Edit external.email.json to reflect the account used to send messages.

{
 "host" : "smtp.example.com",
 "port" : "25",
 "username" : "openidm",
 "password" : "secret12",
 "mail.smtp.auth" : "true",
 "mail.smtp.starttls.enable" : "true"
}

OpenIDM encrypts the password you provide.

Sending Mail Over REST

250

Follow these hints when editing the configuration.

"host"

SMTP server host name or IP address. This can be "localhost" if the
server is on the same system as OpenIDM.

"port"

SMTP server port number such as 25, or 587

"username"

Mail account user name needed when "mail.smtp.auth" : "true"

"password"

Mail account user password needed when "mail.smtp.auth" : "true"

"mail.smtp.auth"

If "true", use SMTP authentication

"mail.smtp.starttls.enable"

If "true", use TLS

"from"

Optional default From: address

4. Start up OpenIDM.

5. Check that the email service is active.

-> scr list
...
[6] [active] org.forgerock.openidm.external.email
...

17.1 Sending Mail Over REST
Although you are more likely to send mail from a script in production, you can
send email using the REST API by sending an HTTP POST to /openidm/external/
email in order to test that your configuration works. You pass the message
parameters as POST parameters, URL encoding the content as necessary.

The following example sends a test email using the REST API.

Sending Mail From a Script

251

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/external/email?
 _from=openidm@example.com&_to=admin@example.com&
 _subject=Test&_body=Test"

17.2 Sending Mail From a Script
You can send email from using the resource API functions with the external/
email context, as in the following example, where params is an object containing
the POST parameters.

var params = new Object();
params._from = "openidm@example.com";
params._to = "admin@example.com";
params._cc = "wally@example.com,dilbert@example.com";
params._subject = "OpenIDM recon report";
params._type = "text/html";
params._body = "<html><body><p>Recon report follows...</p></body></html>";

openidm.action("external/email", params);

OpenIDM supports the following POST parameters.

_from

Sender mail address

_to

Comma-separated list of recipient mail addresses

_cc

Optional comma-separated list of copy recipient mail addresses

_bcc

Optional comma-separated list of blind copy recipient mail addresses

_subject

Email subject

_body

Email body text

Sending Mail From a Script

252

_type

Optional MIME type. One of "text/plain", "text/html", or "text/xml".

253

Chapter 18

OpenIDM Project Best Practices

This chapter lists points to check when implementing an identity management
solution with OpenIDM.

18.1 Implementation Phases
Any identity management project should follow a set of well defined phases,
where each phase defines discrete deliverables. The phases take the project from
initiation to finally going live with a tested solution.

18.1.1 Initiation

The project's initiation phase involves identifying and gathering project
background, requirements, and goals at a high level. The deliverable for this
phase is a statement of work or a mission statement.

18.1.2 Definition

In the definition phase, you gather more detailed information on existing
systems, determine how to integrate, describe account schemas, procedures,
and other information relevant to the OpenIDM deployment. The deliverable for
this phase is one or more documents that define detailed requirements for the
project, and that cover project definition, the business case, use cases to solve,
and functional specifications.

Definition

254

The definition phase should capture at least the following.

User Administration and Management

Procedures for managing users and accounts, who manages users, what
processes look like for joiners, movers and leavers, and what is required of
OpenIDM to manage users

Password Management and Password Synchronization

Procedures for managing account passwords, password policies, who
manages passwords, and what is required of OpenIDM to manage passwords

Security Policy

What security policies defines for users, accounts, passwords, and access
control

Target Systems

Target systems and resources with which OpenIDM must integrate.
Information such as schema, attribute mappings and attribute transformation
flow, credentials and other integration specific information.

Entitlement Management

Procedures to manage user access to resources, individual entitlements,
grouping provisioning activities into encapsulated concepts such as roles and
groups

Synchronization and Data Flow

Detailed outlines showing how identity information flows from authoritative
sources to target systems, attribute transformations required

Interfaces

How to secure the REST, user and file-based interfaces, and to secure the
communication protocols involved

Auditing and Reporting

Procedures for auditing and reporting, including who takes responsibility for
auditing and reporting, and what information is aggregated and reported.
Characteristics of reporting engines provided, or definition of the reporting
engine to be integrated.

Technical Requirements

Other technical requirements for the solution such as how to maintain the
solution in terms of monitoring, patch management, availability, backup,

Design

255

restore and recovery process. This includes any other components leveraged
such as a ConnectorServer and plug-ins for password synchronization on
Active Directory, or OpenDJ.

18.1.3 Design

This phase focuses on solution design including on OpenIDM and other
components. The deliverables for this phase are the architecture and design
documents, and also success criteria with detailed descriptions and test cases to
verify when project goals have been met.

18.1.4 Build

This phase builds and tests the solution prior to moving the solution into
production.

18.1.5 Production

This phase deploys the solution into production until an application steady state
is reached and maintenance routines and procedures can be applied.

256

257

Chapter 19

Troubleshooting

When things are not working check this chapter for tips and answers.

19.1 OpenIDM Stopped in Background
When you start OpenIDM in the background without having disabled the text
console, the job can stop immediately after startup.

$./startup.sh &
[2] 346
$./startup.sh
Using OPENIDM_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m
Using LOGGING_CONFIG:
 -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
Using boot properties at /path/to/openidm/conf/boot/boot.properties
->

[2]+ Stopped ./startup.sh

To resolve this problem, make sure you remove openidm/bundle/
org.apache.felix.shell.tui-1.4.1.jar before starting OpenIDM, and also remove
Felix cache files in openidm/felix-cache/.

Internal Server Error During
Reconciliation or Synchronization

258

19.2 Internal Server Error During Reconciliation or
Synchronization
You might see an error message such as the following returned from
reconciliation or synchronization.

{
 "error": "Conflict",
 "description": "Internal Server Error:
 org.forgerock.openidm.sync.SynchronizationException:
 Cowardly refusing to perform reconciliation with an
 empty source object set: Cowardly refusing to perform
 reconciliation with an empty source object set"
}

This error can be misleading. This usually means the connector is not able to
communicate with the target source.

Check the settings for your connector. For example, with the XML connector you
get this error if the filename for the source is invalid. With the LDAP connector,
you can get this error if your connector cannot contact the target LDAP server.

19.3 The scr list Command Shows Sync Service As
Unsatisfied
You might encounter this message in the logs.

WARNING: Loading configuration file /path/to/openidm/conf/sync.json failed
org.forgerock.openidm.config.InvalidException:
 Configuration for org.forgerock.openidm.sync could not be parsed and may not
 be valid JSON : Unexpected character ('}' (code 125)): expected a value
 at [Source: java.io.StringReader@3951f910; line: 24, column: 6]
 at org.forgerock.openidm.config.crypto.ConfigCrypto.parse...
 at org.forgerock.openidm.config.crypto.ConfigCrypto.encrypt...
 at org.forgerock.openidm.config.installer.JSONConfigInstaller.setConfig...

This indicates a syntax error in openidm/conf/sync.json. After fixing your
configuration, change to the /path/to/openidm/ directory, and use the cli.sh
validate command to check that your configuration files are valid.

JSON Parsing Error

259

$ cd /path/to/openidm ; ./cli.sh validate
Using boot properties at /path/to/openidm/conf/boot/boot.properties
...
[Validating] Load JSON configuration files from:
[Validating] /path/to/openidm/conf
[Validating] audit.json SUCCESS
[Validating] authentication.json SUCCESS
[Validating] managed.json SUCCESS
[Validating] provisioner.openicf-xml.json SUCCESS
[Validating] repo.orientdb.json SUCCESS
[Validating] router.json SUCCESS
[Validating] scheduler-reconcile_systemXmlAccounts_managedUser.json SUCCESS
[Validating] sync.json SUCCESS

19.4 JSON Parsing Error
You might encounter this error message in the logs.

"Configuration for org.forgerock.openidm.provisioner.openicf could not be
 parsed and may not be valid JSON : Unexpected character ('}' (code 125)):
 was expecting double-quote to start field name"

The error message usually points precisely to the point where the JSON file has
the syntax problem. The error above was caused by a excess comma in the JSON
file, {"attributeName":{},{},}. The second comma is too much.

The situation usually results in the service the JSON file configures being left in
the unsatisfied state.

After fixing your configuration, change to the /path/to/openidm/ directory, and
use the cli.sh validate command to check that your configuration files are valid.

19.5 System Not Available
OpenIDM throws the following error as a result of a reconciliation where the
source systems configuration can not be found.

{
 "error": "Conflict",
 "description": "Internal Server Error:
 org.forgerock.openidm.sync.SynchronizationException:
 org.forgerock.openidm.objset.ObjectSetException:
 System: system/HR/account is not available.:
 org.forgerock.openidm.objset.ObjectSetException:
 System: system/HR/account is not available.:
 System: system/HR/account is not available."
}

Bad Connector Host Reference
in Provisioner Configuration

260

This error occurs when the "name" property value in provisioner.resource.json is
changed from HR to something else.

The same error also occurs when a provisioner configuration fails to load due to
misconfiguration, or when the path to the data file for a CSV or XML connector is
incorrectly set.

19.6 Bad Connector Host Reference in Provisioner
Configuration
You might see the following error when a provision configuration loads.

Wait for meta data for config org.forgerock.openidm.provisioner.openicf-scriptedsql

In this case the configuration fails to load because some information is missing.
One possible cause is a wrong value for connectorHostRef in the provisioner
configuration file.

For local Java connector servers, the following rules apply.

• If the connector .jar is installed as a bundle under openidm/bundle, then the
value must be "connectorHostRef" : "osgi:service/org.forgerock.openicf.
framework.api.osgi.ConnectorManager",.

• If the connector .jar is installed as a connector under openidm/connectors, then
the value must be "connectorHostRef" : "#LOCAL",.

19.7 Missing Name Attribute
In this case, the situation in the audit recon log shows "NULL".

A missing name attribute error, followed by an IllegalArgumentException, points
to misconfiguration of the correlation rule, with the correlation query pointing
to the external system. Such queries usually reference the "name" field which, if
empty, leads to the error below.

Missing Name Attribute

261

Jan 20, 2012 1:59:58 PM
 org.forgerock.openidm.provisioner.openicf.commons.AttributeInfoHelper build
SEVERE: Failed to build name attribute out of [null]
Jan 20, 2012 1:59:58 PM
 org.forgerock.openidm.provisioner.openicf.impl.OpenICFProvisionerService query
SEVERE: Operation [query, system/ad/account] failed with Exception on system
 object: java.lang.IllegalArgumentException: Attribute value must be an
 instance of String.
Jan 20, 2012 1:59:58 PM org.forgerock.openidm.router.JsonResourceRouterService
 handle
WARNING: JSON resource exception
org.forgerock.json.resource.JsonResourceException: IllegalArgumentException
 at org.forgerock.openidm.provisioner....OpenICFProvisionerService.query...
 at org.forgerock.openidm.provisioner.....OpenICFProvisionerService.handle...
 at org.forgerock.openidm.provisioner.impl.SystemObjectSetService.handle...
 at org.forgerock.json.resource.JsonResourceRouter.handle...

Check your correlationQuery. Another symptom of a broken correlationQuery is
that the audit recon log shows a situation of "NULL", and no onCreate, onUpdate
or similar scripts are executed.

262

263

Appendix A. File Layout

When you unpack and start OpenIDM , you create the following files and
directories. Note that the precise paths will depend on the install, project, and
working directories that you have selected during startup. For more information,
see Specifying the OpenIDM Startup Configuration.

openidm/audit/

OpenIDM audit log directory default location, created at run time, as
configured in openidm/conf/audit.json

openidm/audit/access.csv

Default OpenIDM access audit log

openidm/audit/activity.csv

Default OpenIDM activity audit log

openidm/audit/recon.csv

Default OpenIDM reconciliation audit log

openidm/bin/

OpenIDM core libraries and scripts

openidm/bin/create-openidm-logrotate.sh

Script to create an openidmlog log rotation scheduler for inclusion under /
etc/logrotate.d/

264

openidm/bin/create-openidm-rc.sh

Script to create an openidm resource definition file for inclusion under /etc/
init.d/

openidm/bin/defaults/script

Default scripts required to run specific services. In general, you should not
modify these scripts. Instead, add customized scripts to the openidm/script
folder.

openidm/bin/defaults/script/info/login.js

Provides information about the current OpenIDM session.

openidm/bin/defaults/script/info/ping.js

Provides basic information about the health of an OpenIDM system

openidm/bin/defaults/script/policy.js

Defines each policy and specifies how policy validation is performed

openidm/bin/defaults/script/policyFilter.js

Enforces policy validation

openidm/bin/defaults/script/router-authz.js

Provides the functions that enforce access rules

openidm/bin/defaults/script/ui/*

Scripts required by the UI

openidm/bin/defaults/script/workflow/*

Default workflow scripts

openidm/bin/felix.jar
openidm/bin/openidm.jar
openidm/bin/org.apache.felix.gogo.runtime-0.10.0.jar
openidm/bin/org.apache.felix.gogo.shell-0.10.0.jar

Files relating to the Apache Felix OSGi framework

openidm/bin/launcher.bat
openidm/bin/launcher.jar
openidm/bin/launcher.json

Files relating to the startup configuration

265

openidm/bin/LICENSE.TXT
openidm/bin/NOTICE.TXT

Files relating to the Apache Software License

openidm/bin/MonitorService.bat
openidm/bin/prunmgr.exe
openidm/bin/amd64/prunsrv.exe
openidm/bin/i386/prunsrv.exe
openidm/bin/ia64/prunsrv.exe

Files required by the user interface to monitor and configure installed
services

openidm/bin/startup/
openidm/bin/startup/OS X - Run OpenIDM In Background.command
openidm/bin/startup/OS X - Run OpenIDM In Terminal Window.command
openidm/bin/startup/OS X - Stop OpenIDM.command

Clickable commands for Mac OS X

openidm/bin/workflow/

Files related to the Activiti workflow engine

openidm/bundle/

OSGi bundles and modules required by OpenIDM. Upgrade can install new
and upgraded bundles here.

openidm/cli.bat
openidm/cli.sh

Management commands for operations such as validating configuration files

openidm/conf/

OpenIDM configuration files, including .properties files and JSON files. You
can also access JSON views through the REST interface.

openidm/conf/audit.json

Audit event publisher configuration file

openidm/conf/authentication.json

Authentication configuration file for access to the REST API

openidm/conf/boot/boot.properties

OpenIDM bootstrap properties

266

openidm/conf/config.properties

Felix and OSGi bundle configuration properties

openidm/conf/endpoint-*.json

Endpoint configuration files required by the UI for the default workflows

openidm/conf/jetty.xml

Jetty configuration controlling access to the REST interface

openidm/conf/logging-config.xml

Experimental log configuration

openidm/conf/logging.properties

OpenIDM log configuration properties

openidm/conf/managed.json

Managed object configuration file

openidm/conf/policy.json

Default policy configuration

openidm/conf/process-access.json

Workflow access configuration

openidm/conf/repo.orientdb.json

OrientDB internal repository configuration file

openidm/conf/router.json

Router service configuration file

openidm/conf/scheduler.json

Scheduler service configuration

openidm/conf/system.properties

System configuration properties used when starting OpenIDM services

openidm/conf/ui-configuration.json

Main configuration file for the browser-based user interface

267

openidm/conf/ui-countries.json

Configurable list of countries available when registering users in the user
interface

openidm/conf/ui-secquestions.json

Configurable list of security questions available when registering users in the
user interface

openidm/conf/workflow.json

Configuration of the Activiti workflow engine

openidm/connectors/

OpenICF connector libraries. OSGi enabled connector libraries can also be
stored in openidm/bundle/.

openidm/db/

Internal repository files, including both OrientDB files and data definition
language scripts for JDBC based repositories such as MySQL

openidm/felix-cache/

Bundle cache directory created when the Felix framework is started

openidm/logs/

OpenIDM service log directory

openidm/logs/openidm0.log.*

OpenIDM service log files as configured in openidm/conf/logging.properties

openidm/samples/

OpenIDM sample configurations

openidm/samples/customendpoint

Sample custom endpoint configuration. For more information, see Adding
Custom Endpoints.

openidm/samples/infoservice

Sample that shows how to use the configurable information service. For more
information, see Obtaining Information About an OpenIDM Instance.

268

openidm/samples/misc/

Sample configuration files

openidm/samples/openam/

Sample that shows how to protect OpenIDM with OpenAM

openidm/samples/provisioners/

Sample connector configuration files

openidm/samples/sample1/

XML file connector sample

openidm/samples/sample2/

OpenDJ connector sample with no back link

openidm/samples/sample2b/

OpenDJ connector sample with back link

openidm/samples/sample2c/

OpenDJ connector sample synchronizing users' LDAP group membership

openidm/samples/sample2d/

OpenDJ connector sample synchronizing LDAP groups

openidm/samples/sample3/

Scripted SQL connector sample for MySQL

openidm/samples/sample4/

CSV connector sample

openidm/samples/sample5/

LDAP to OpenIDM to Active Directory attribute flow sample using XML
resources rather than actual directories

openidm/samples/sample6/

LiveSync sample for use with one or two LDAP servers

openidm/samples/sample7/

Sample exposing identities with a SCIM-line schema

269

openidm/samples/sample8/

Sample demonstrating logging in scripts

openidm/samples/sample9/

Sample showing asynchronous reconciliation with workflows

openidm/samples/schedules/

Sample schedule configuration files

openidm/samples/security/

Sample key store, trust store, and certificates

openidm/samples/taskscanner/

Sample sunset scanning task. For more information, see Scanning Data to
Trigger Tasks.

openidm/samples/workflow/

Typical use case of a workflow for provisioning

openidm/script/

OpenIDM location for JavaScript files referenced in the configuration

openidm/script/access.js

Default authorization policy script

openidm/security/

OpenIDM security configuration, key store, and trust store

openidm/shutdown.sh

Script to shutdown OpenIDM services based on the process identifier

openidm/startup.bat

Script to start OpenIDM services on Windows

openidm/startup.sh

Script to start OpenIDM services on UNIX

openidm/ui/

OpenIDM graphical UI files

270

openidm/workflow/

OpenIDM location for BPMN 2.0 workflows and .bar files

271

Appendix B. Ports Used

By default, OpenIDM listens on the following ports (specified in /path/to/
openidm/conf/boot/boot.properties):

8080

HTTP access to the REST API, requiring OpenIDM authentication. This
port is not secure, exposing clear text passwords and all data that is not
encrypted. This port is therefore not suitable for production use.

8443

HTTPS access to the REST API, requiring OpenIDM authentication

8444

HTTPS access to the REST API, requiring SSL mutual authentication. Clients
presenting certificates found in the trust store under openidm/security/ are
granted access to the system.

The Jetty configuration (in openidm/conf/jetty.xml) references the ports that are
specified in the boot.properties file.

272

273

Appendix C. Data Models and Objects
Reference

OpenIDM allows you to customize a variety of objects that can be addressed via a
URL or URI, and that have a common set of functions that OpenIDM can perform
on them such as CRUD, query, and action.

Depending on how you intend to use them, different objects are appropriate.

Table C.1. OpenIDM Objects

Object Type Intended Use Special Functionality

Managed objects Serve as targets and sources for
synchronization, and to build virtual
identities.

Provide appropriate
auditing, script hooks,
declarative mappings
and so forth in addition
to the REST interface.

Configuration objects Ideal for look-up tables or other
custom configuration, which can be
configured externally like any other
system configuration.

Adds file view, REST
interface, and so forth

Repository objects The equivalent of arbitrary database
table access. Appropriate for
managing data purely through the

Persistence and API
access

Managed Objects

274

Object Type Intended Use Special Functionality
underlying data store or repository
API.

System objects Representation of target resource
objects, such as accounts, but also
resource objects such as groups.

Audit objects Houses audit data in the OpenIDM
internal repository.

Links Defines a relation between two
objects.

C.1 Managed Objects
A managed object in OpenIDM is an object which represents the identity-related
data managed by OpenIDM. Managed objects are stored by OpenIDM in its data
store. All managed objects are JSON-based data structures.

C.1.1 Managed Object Schema
Managed objects have an associated schema to enforce a specific data structure.
Schema is specified using the JSON Schema specification. This is currently an
Internet-Draft, with implementations in multiple programming languages.

C.1.1.1 Managed Object Reserved Properties
Top-level properties in a managed object that begin with an underscore (_) are
reserved by OpenIDM for internal use, and are not explicitly part of its schema.
Internal properties are read-only, and are ignored when provided by the REST
API client.

The following properties exist for all managed objects in OpenIDM.

_id

string

The unique identifier for the object. This value forms a part of the managed
object's URI.

_rev

string

http://tools.ietf.org/html/draft-zyp-json-schema-03

Data Consistency

275

The revision of the object. This is the same value that is exposed as the
object's ETag through the REST API. The content of this attribute is not
defined. No consumer should make any assumptions of its content beyond
equivalence comparison. This attribute may be provided by the underlying
data store.

_schema_id

string

The a reference to the schema object that the managed object is associated
with.

_schema_rev

string

The revision of the schema that was used for validation when the object was
last stored.

C.1.1.2 Managed Object Schema Validation
Schema validation is performed unequivocally whenever an object is stored, and
conditionally whenever an object is retrieved from the data store and exhibits
a _schema_rev value that differs from the _rev of the schema that the OpenIDM
instance currently has for that managed object type. Whenever schema validation
is performed, the _schema_rev of the object is updated to contain the _rev value of
the current schema.

C.1.1.3 Managed Object Derived Properties
Properties can be defined to be strictly derived from other properties within
the object. This allows computed and composite values to be created in the
object. Whenever an object undergoes a change, all derived properties are
recomputed. The values of derived properties are stored in the data store, and
are not recomputed upon retrieval.

C.1.2 Data Consistency
Single-object operations shall be consistent within the scope of the operation
performed, limited by capabilities of the underlying data store. Bulk operations
shall not have any consistency guarantees. OpenIDM does not expose any
transactional semantics in the managed object access API.

All access through the REST API uses the ETag and associated conditional
headers: If-Match, If-None-Match. In operations that modify model objects,
conditional headers are mandatory.

Managed Object Triggers

276

C.1.3 Managed Object Triggers

Triggers are user-definable functions that validate or modify object or property
state.

C.1.3.1 State Triggers

Managed objects are resource-oriented. A set of triggers is defined to intercept
the supported request methods on managed objects. Such triggers are intended
to perform authorization, redact, or modify objects before the action is
performed. The object being operated on is in scope for each trigger, meaning
that the object is retrieved by the data store before the trigger is fired.

If retrieval of the object fails, the failure occurs before any trigger is called.
Triggers are executed before any optimistic concurrency mechanisms are
invoked. The reason for this is to prevent a potential attacker from getting
information about an object (including its presence in the data store) before
authorization is applied.

onCreate

Called upon a request to create a new object. Throwing an exception causes
the create to fail.

onRead

Called upon a request to retrieve a whole object or portion of an object.
Throwing an exception causes the object to not be included in the result.
This method is also called when lists of objects are retrieved via requests to
its container object; in this case, only the requested properties are included
in the object. Allows for uniform access control for retrieval of objects,
regardless of the method in which they were requested.

onUpdate

Called upon a request to store an object. The "old" and "new" objects are
in-scope for the trigger. The "old" object represents a complete object as
retrieved from the data store. The trigger can elect to change "new" object
properties. If as a result of the trigger the object's "old" and "new" values are
identical (that is, update is reverted), the update ends prematurely, though
successfully. Throwing an exception causes the update to fail.

onDelete

Called upon a request to delete an object. Throwing an exception causes the
deletion to fail.

Managed Object Triggers

277

C.1.3.2 Object Storage Triggers

An object-scoped trigger applies to an entire object. Unless otherwise specified,
the object itself is in scope for the trigger.

onValidate

Validates an object prior to its storage in the data store. Throws an exception
in the event of a validation failure.

onRetrieve

Called when an object is retrieved from the data store. Typically used to
transform an object after it has been retrieved (for example decryption, JIT
data conversion).

onStore

Called just prior to when an object is stored in the data store. Typically used
to transform an object just prior to its storage (for example, encryption).

C.1.3.3 Property Storage Triggers

A property-scoped trigger applies to a specific property within an object. Only
the property itself is in scope for the trigger. No other properties in the object
should be accessed during execution of the trigger. Unless otherwise specified,
the order of execution of property-scoped triggers is intentionally left undefined.

onValidate

Validates a given property value after its retrieval from and prior to its
storage in the data store. Throws an exception in the event of a validation
failure.

onRetrieve

Called after an object is retrieved from the data store. Typically used to
transform a given property after its object's retrieval.

onStore

Called prior to when an object is stored in the data store. Typically used to
transform a given property prior to its object's storage.

C.1.3.4 Storage Trigger Sequences

Triggers are executed in the following order:

Managed Object Encryption

278

Object Retrieval Sequence

1. Retrieve the raw object from the data store

2. Call object onRetrieve trigger

3. Per-property within the object:

• Call property onRetrieve trigger

• Perform schema validation if _schema_rev does not match (see the Schema
Validation section)

Object Storage Sequence

1. Per-property within the object:

• Call property onValidate trigger

• Call object onValidate trigger

2. Per-property trigger within the object:

• Call property onStore trigger

• Call object onStore trigger

• Store the object with any resulting changes to the data store

C.1.4 Managed Object Encryption

Sensitive object properties can be encrypted prior to storage, typically through
the property onStore trigger. The trigger has access to configuration data, which
can include arbitrary attributes that you define, such as a symmetric encryption
key. Such attributes can be decrypted during retrieval from the data store
through the property onRetrieve trigger.

C.1.5 Managed Object Configuration

Configuration of managed objects is provided through an array of managed
object configuration objects.

{
 "objects": [managed-object-config object, ...]
}

Managed Object Configuration

279

objects

array of managed-object-config objects, required

Specifies the objects that the managed object service manages.

Managed-Object-Config Object Properties

Specifies the configuration of each managed object.

{
 "name" : string,
 "schema" : json-schema object,
 "onCreate" : script object,
 "onRead" : script object,
 "onUpdate" : script object,
 "onDelete" : script object,
 "onValidate": script object,
 "onRetrieve": script object,
 "onStore" : script object,
 "properties": [property-configuration object, ...]
}

name

string, required

The name of the managed object. Used to identify the managed object in
URIs and identifiers.

schema

json-schema object, optional

The schema to use to validate the structure and content of the managed
object. The schema-object format is specified by the JSON Schema
specification.

onCreate

script object, optional

A script object to trigger when the creation of an object is being requested.
The object to be created is provided in the root scope as an object property.
The script may change the object. If an exception is thrown, the create aborts
with an exception.

onRead

script object, optional

Managed Object Configuration

280

A script object to trigger when the read of an object is being requested. The
object being read is provided in the root scope as an object property. The
script may change the object. If an exception is thrown, the read aborts with
an exception.

onUpdate

script object, optional

A script object to trigger when an update to an object is requested. The
old value of the object being updated is provided in the root scope as an
oldObject property. The new value of the object being updated is provided in
the root scope as a newObject property. The script may change the newObject.
If an exception is thrown, the update aborts with an exception.

onDelete

script object, optional

A script object to trigger when the deletion of an object is being requested.
The object being deleted is provided in the root scope as an object property.
If an exception is thrown, the deletion aborts with an exception.

onValidate

script object, optional

A script object to trigger when the object requires validation. The object to be
validated is provided in the root scope as an object property. If an exception
is thrown, the validation fails.

onRetrieve

script object, optional

A script object to trigger once an object is retrieved from the repository. The
object that was retrieved is provided in the root scope as an object property.
The script may change the object. If an exception is thrown, then object
retrieval fails.

onStore

script object, optional

A script object to trigger when an object is about to be stored in the
repository. The object to be stored is provided in the root scope as an object
property. The script may change the object. If an exception is thrown, then
object storage fails.

Managed Object Configuration

281

properties

array of property-config objects, optional

A list of property specifications.

Script Object Properties

{
 "type" : "text/javascript",
 "source": string
 }

type

string, required

Specifies the type of script to be executed. Currently, only "text/javascript"
is supported.

source, file

string, required (only one, source or file is required)

Specifies the source code of the script to be executed (if the keyword is
"source"), or a pointer to the file that contains the script (if the keyword is
"file").

Property Config Properties

{
 "name" : string,
 "onValidate": script object,
 "onRetrieve": script object,
 "onStore" : script object,
 "encryption": property-encryption object
}

name

string, required

The name of the property being configured.

onValidate

script object, optional

A script object to trigger when the property requires validation. The property
to be validated is provided in the root scope as the property property. If an
exception is thrown, the validation fails.

Custom Managed Objects

282

onRetrieve

script object, optional

A script object to trigger once a property is retrieved from the repository.
The property that was retrieved is provided in the root scope as the property
property. The script may change the property value. If an exception is
thrown, then object retrieval fails.

onStore

script object, optional

A script object to trigger when a property is about to be stored in the
repository. The property to be stored is provided in the root scope as the
property property. The script may change the property value. If an exception
is thrown, then object storage fails.

encryption

property-encryption object, optional

Specifies the configuration for encryption of the property in the repository. If
omitted or null, the property is not encrypted.

Property Encryption Object

{
 "cipher": string,
 "key" : string
}

cipher

string, optional

The cipher transformation used to encrypt the property. If omitted or null,
the default cipher of "AES/CBC/PKCS5Padding" is used.

key

string, required

The alias of the key in the OpenIDM cryptography service keystore used to
encrypt the property.

C.1.6 Custom Managed Objects
Managed objects in OpenIDM are inherently fully user definable and
customizable. Like all OpenIDM objects, managed objects can maintain

Custom Managed Objects

283

relationships to each other in the form of links. Managed objects are intended for
use as targets and sources for synchronization operations to represent domain
objects, and to build up virtual identities. The name comes from the intention that
OpenIDM stores and manages these objects, as opposed to system objects that
are present in external systems.

OpenIDM can synchronize and map directly between external systems (system
objects), without storing intermediate managed objects. Managed objects are
appropriate, however, as a way to cache the data—for example, when mapping to
multiple target systems, or when decoupling the availability of systems—to more
fully report and audit on all object changes during reconciliation, and to build up
views that are different from the original source, such transformed and combined
or virtual views. Managed objects can also be allowed to act as an authoritative
source if no other appropriate source is available.

Other object types exist for other settings that should be available to a script,
such as configuration or look-up tables that do not need audit logging.

C.1.6.1 Setting Up a Managed Object Type

To set up a managed object, you declare the object in the conf/managed.json file
where OpenIDM is installed. The following example adds a simple foobar object
declaration after the user object type.

{
 "objects": [
 {
 "name": "user"
 },
 {
 "name": "foobar"
 }
]
}

C.1.6.2 Manipulating Managed Objects Declaratively

By mapping an object to another object, either an external system object or
another internal managed object, you automatically tie the object life cycle
and property settings to the other object. See the chapter on Configuring
Synchronization for details.

C.1.6.3 Manipulating Managed Objects Programmatically

You can address managed objects as resources using URLs or URIs with the
managed/ prefix. This works whether you address the managed object internally as
a script running in OpenIDM or externally through the REST interface.

Custom Managed Objects

284

You can use all resource API functions in script objects for create, read, update,
delete operations, and also for arbitrary queries on the object set, but not
currently for arbitrary actions. See the Scripting Reference appendix for details.

OpenIDM supports concurrency through a multi version concurrency control
(MVCC) mechanism. In other words, each time an object changes, OpenIDM
assigns it a new revision.

Objects can be arbitrarily complex as long as they use supported types, such as
maps, lists, numbers, strings, and booleans as defined in JSON.

C.1.6.3.1 Creating Objects

The following script example creates an object type.

openidm.create("managed/foobar/myidentifier", mymap)

C.1.6.3.2 Updating Objects

The following script example updates an object type.

var expectedRev = origMap._rev
openidm.update("managed/foobar/myidentifier", expectedRev, mymap)

The MVCC mechanism requires that expectedRev be set to the expected revision
of the object to update. You obtain the revision from the object's _rev property.
If something else changes the object concurrently, OpenIDM rejects the update,
and you must either retry or inspect the concurrent modification.

C.1.6.3.3 Patching Objects

You can partially update a managed object using the patch method, which
changes only the specified properties of the object. OpenIDM implements the
JSON patch media type version 02, described at https://tools.ietf.org/html/draft-
pbryan-json-patch-02.

The following script example updates an object type.

openidm.patch("managed/foobar/myidentifier", rev, value)

The patch method supports a revision of "null", which effectively disables the
MVCC mechanism, that is, changes are applied, regardless of revision. In the
REST interface, this matches the If-Match: "*" condition supported by patch.

The API supports patch by query, so the caller does not need to know the
identifier of the object to change.

http://www.json.org
https://tools.ietf.org/html/draft-pbryan-json-patch-02
https://tools.ietf.org/html/draft-pbryan-json-patch-02

Custom Managed Objects

285

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST -d '[{"replace":"/password","value": "Passw0rd"}]'
 "http://localhost:8080/openidm/managed/user
 ?_action=patch&_queryId=for-userName&uid=DDOE"

For the syntax on how to formulate the query _queryId=for-userName&uid=DDOE see
Section C.1.6.3.6, “Querying Object Sets”.

C.1.6.3.4 Deleting Objects

The following script example deletes an object type.

var expectedRev = origMap._rev
openidm.delete("managed/foobar/myidentifier", expectedRev)

The MVCC mechanism requires that expectedRev be set to the expected revision
of the object to update. You obtain the revision from the object's _rev property. If
something else changes the object concurrently, OpenIDM rejects deletion, and
you must either retry or inspect the concurrent modification.

C.1.6.3.5 Reading Objects

The following script example reads an object type.

val = openidm.read("managed/foobar/myidentifier")

C.1.6.3.6 Querying Object Sets

The following script example queries object type instances.

var params = {
 "_queryId": "my-custom-query-id",
 "mycustomtoken": "samplevalue"
};
val = openidm.query("managed/foobar", params);

The example sets up a query with ID my-custom-query-id. The query definition
(not shown) is found in the repository configuration. The query definition
includes the parameter mycustomtoken for token substitution.

An example for a query can be found in chapter Managed Object as Correlation
Query Target .

Accessing Managed Objects
Through the REST API

286

C.1.7 Accessing Managed Objects Through the REST API

OpenIDM exposes all managed object functionality through the REST API unless
you configure a policy to prevent such access. In addition to the common REST
functionality of create, read, update, delete, patch, and query, the REST API also
supports patch by query. See the REST API Reference appendix for details.

OpenIDM requires authentication to access the REST API. Authentication
configuration is shown in openidm/conf/authentication.json. The default
authorization filter script is openidm/script/router-authz.js.

C.2 Configuration Objects
OpenIDM provides an extensible configuration to allow you to leverage regular
configuration mechanisms.

Unlike native OpenIDM configuration, which OpenIDM interprets automatically
and can start new services, OpenIDM stores custom configuration objects and
makes them available to your code through the API.

See the chapter on Configuration Options for an introduction to standard
configuration objects.

C.2.1 When To Use Custom Configuration Objects

Configuration objects are ideal for metadata and settings that need not be
included in the data to reconcile. In other words, use configuration objects for
data that does not require audit log, and does not serve directly as a target or
source for mappings.

Although you can set and manipulate configuration objects both
programmatically and also manually, configuration objects are expected to
change slowly, perhaps through a mix of both manual file updates and also
programmatic updates. To store temporary values that can change frequently
and that you do not expect to be updated by configuration file changes, custom
repository objects can be more appropriate.

C.2.2 Custom Configuration Object Naming Conventions

By convention custom configuration objects are added under the reserved
context, config/custom.

You can choose any name under config/context. Be sure, however, to choose a
value for context that does not clash with future OpenIDM configuration names.

Mapping Configuration
Objects To Configuration Files

287

C.2.3 Mapping Configuration Objects To Configuration Files
If you have not disabled the file based view for configuration, you can view and
edit all configuration including custom configuration in openidm/conf/*.json files.
The configuration maps to a file named context-config-name.json, where context
for custom configuration objects is custom by convention, and config-name is the
configuration object name. A configuration object named escalation thus maps to
a file named conf/custom-escalation.json.

OpenIDM detects and automatically picks up changes to the file.

OpenIDM also applies changes made through APIs to the file.

By default, OpenIDM stores configuration objects in the repository. The file view
is an added convenience aimed to help you in the development phase of your
project.

C.2.4 Configuration Objects File & REST Payload Formats
By default, OpenIDM maps configuration objects to JSON representations.

OpenIDM represents objects internally in plain, native types like maps, lists,
strings, numbers, booleans, null. OpenIDM constrains the object model to simple
types so that mapping objects to external representations is trivial.

The following example shows a representation of a configuration object with a
look-up map.

{
 "CODE123" : "ALERT",
 "CODE889" : "IGNORE"
}

In the JSON representation, maps are represented with braces ({ }), and lists
are represented with brackets ([]). Objects can be arbitrarily complex, as in the
following example.

{
 "CODE123" : {
 "email" : ["sample@sample.com", "john.doe@somedomain.com"],
 "sms" : ["555666777"]
 }
 "CODE889" : "IGNORE"
}

C.2.5 Accessing Configuration Objects Through the REST API
You can list all available configuration objects, including system and custom
configurations, using an HTTP GET on /openidm/config.

Accessing Configuration
Objects Programmatically

288

The _id property in the configuration object provides the link to the configuration
details with an HTTP GET on /openidm/config/id-value. By convention, the id-
value for a custom configuration object called escalation is custom/escalation.

OpenIDM supports REST mappings for create, read, update, and delete of
configuration objects. Currently OpenIDM does not support patch and custom
query operations for configuration objects.

C.2.6 Accessing Configuration Objects Programmatically

You can address configuration objects as resources using the URL or URI config/
prefix both internally and also through the REST interface. The resource API
provides script object functions for create, read, update, and delete operations.

OpenIDM supports concurrency through a multi version concurrency control
mechanism. In other words, each time an object changes, OpenIDM assigns it a
new revision.

Objects can be arbitrarily complex as long as they use supported types, such as
maps, lists, numbers, strings, and booleans.

C.2.7 Creating Objects

The following script example creates an object type.

openidm.create("config/custom/myconfig", mymap)

C.2.8 Updating Objects

The following script example updates a custom configuration object type.

openidm.update("config/custom/myconfig", mymap)

C.2.9 Deleting Objects

The following script example deletes a custom configuration object type.

openidm.delete("config/custom/myconfig")

C.2.10 Reading Objects

The following script example reads an object type.

System Objects

289

val = openidm.read("config/custom/myconfig")

C.3 System Objects
System objects are pluggable representations of objects on external systems.
They follow the same RESTful resource based design principles as managed
objects. There is a default implementation for the OpenICF framework, which
allows any connector object to be represented as a system object.

C.4 Audit Objects
Audit objects house audit data selected for local storage in the OpenIDM
repository. For details, see the chapter on Using Audit Logs.

C.5 Links
Link objects define relations between source objects and target objects, usually
relations between managed objects and system objects. The link relationship
is established by provisioning activity that either results in a new account on a
target system, or a reconciliation or synchronization scenario that takes a LINK
action.

290

291

Appendix D. Synchronization Reference

The synchronization engine is one of the core services of OpenIDM. You
configure the synchronization service through a mappings property that specifies
mappings between objects that are managed by the synchronization engine.

{
 "mappings": [object-mapping object, ...]
}

D.1 Object-Mapping Objects
An object-mapping object specifies the configuration for a mapping of source
objects to target objects.

 {
 "name" : string,
 "source" : string,
 "target" : string,
 "links" : string,
 "validSource" : script object,
 "validTarget" : script object,
 "correlationQuery": script object,
 "properties" : [property object, ...],
 "policies" : [policy object, ...],
 "onCreate" : script object,
 "onUpdate" : script object,
 "onLink" : script object,
 "onUnlink" : script object
}

Object-Mapping Objects

292

Mapping Object Properties

name

string, required

Uniquely names the object mapping. Used in the link object identifier.

source

string, required

Specifies the path of the source object set. Example: "managed/user".

target

string, required

Specifies the path of the target object set. Example: "system/ldap/account".

links

string, optional

Enables reuse of the links created in another mapping. Example:
"systemLdapAccounts_managedUser" reuses the links created by a previous
mapping whose name is "systemLdapAccounts_managedUser".

validSource

script object, optional

A script that determines if a source object is valid to be mapped. The script
yields a boolean value: true indicates the source object is valid; false can
be used to defer mapping until some condition is met. In the root scope,
the source object is provided in the "source" property. If the script is not
specified, then all source objects are considered valid.

validTarget

script object, optional

A script used during the target phase of reconciliation that determines if a
target object is valid to be mapped. The script yields a boolean value: true
indicates that the target object is valid; false indicates that the target object
should not be included in reconciliation. In the root scope, the target object is
provided in the "target" property. If the script is not specified, then all target
objects are considered valid for mapping.

Object-Mapping Objects

293

correlationQuery

script object, optional

A script that yields a query object to query the target object set when a
source object has no linked target. The syntax for writing the query depends
on the target system of the correlation. See the section on Correlation
Queries for examples of some common targets. The source object is provided
in the "source" property in the script scope.

properties

array of property-mapping objects, optional

Specifies mappings between source object properties and target object
properties, with optional transformation scripts.

policies

array of policy objects, optional

Specifies a set of link conditions and associated actions to take in response.

onCreate

script object, optional

A script to execute when a target object is to be created, after property
mappings have been applied. In the root scope, the source object is provided
in the "source" property, projected target object in the "target" property
and the link situation that led to the create operation in "situation". The _id
property in the target object can be modified, allowing the mapping to select
an identifier; if not set then the identifier is expected to be set by the target
object set. If the script throws an exception, then target object creation is
aborted.

onUpdate

script object, optional

A script to execute when a target object is to be updated, after property
mappings have been applied. In the root scope, the source object is provided
in the "source" property, projected target object in the "target" property, link
situation that led to the update operation in "situation". If the script throws
an exception, then target object update is aborted.

onLink

script object, optional

Property Objects

294

A script to execute when a source object is to be linked to a target object,
after property mappings have been applied. In the root scope, the source
object is provided in the "source" property, projected target object in the
"target" property. If the script throws an exception, then target object
linking is aborted.

onUnlink

script object, optional

A script to execute when a source and a target object are to be unlinked,
after property mappings have been applied. In the root scope, the source
object is provided in the "source" property, projected target object in the
"target" property. If the script throws an exception, then target object
unlinking is aborted.

result

script object, optional

A script to execute on each mapping event, independent of the nature of the
operation. In the root scope, the source object is provided in the "source"
property, projected target object in the "target" property. If the script throws
an exception, then target object unlinking is aborted.

The "result" script is executed only during reconciliation operations!

D.1.1 Property Objects
A property object specifies how the value of a target property is determined.

 {
 "target" : string,
 "source" : string,
 "transform" : script object,
 "condition" : script object,
 "default": value
}

Property Object Properties

target

string, required

Specifies the path of the property in the target object to map to.

source

string, optional

Policy Objects

295

Specifies the path of the property in the source object to map from. If not
specified, then the target property value is derived from the script or default
value.

transform

script object, optional

A script to determine the target property value. The root scope contains
the value of the source in the "source" property, if specified. If the "source"
property has a value of "", then the entire source object of the mapping is
contained in the root scope. The resulting value yielded by the script is stored
in the target property.

condition

script object, optional

A script to determine whether the mapping should be executed or not.
The condition has an "object" property available in root scope, which (if
specified) contains the full source object. For example "source": "(object.
email != null)". The script is considered to return a boolean value.

default

any value, optional

Specifies the value to assign to the target property if a non-null value is not
established by "source" or "transform". If not specified, the default value is
null.

D.1.2 Policy Objects

A policy object specifies a link condition and the associated actions to take in
response.

{
 "situation" : string,
 "action" : string or script object
 "postAction" : optional, script object
}

Policy Object Properties

situation

string, required

Specifies the situation for which an associated action is to be defined.

Links

296

action

string or script object, required

Specifies the action to perform. If a script is specified, the script is executed
and is expected to yield a string containing the action to perform.

postAction

script object, optional

Specifies the action to perform after the previously specified action has
completed.

D.1.2.1 Script Object

Script objects take the following form.

{
 "type" : "text/javascript",
 "source": string
}

type

string, required

Specifies the type of script to be executed. Currently, OpenIDM supports only
"text/javascript".

source

string, required

Specifies the source code of the script to be executed.

D.2 Links
To maintain links between source and target objects in mappings, OpenIDM
stores an object set in the repository. The object set identifier follows this
scheme.

links/mapping

Here, mapping represents the name of the mapping for which links are managed.

Link entries have the following structure.

Queries

297

{
 "_id":string,
 "_rev":string,
 "linkType":string,
 "firstId":string
 "secondId":string,
}

_id

string

The identifier of the link object.

_rev

string, required

The value of link object's revision.

linkType

string, required

The type of the link. Usually then name of the mapping which created the
link.

firstId

string, required

The identifier of the first of the two linked objects.

secondId

string

The identifier of the second of the two linked objects.

D.3 Queries
OpenIDM performs the following queries on a link object set.

1. Find link(s) for a given firstId object identifier.

SELECT * FROM links WHERE linkType
 = value AND firstId = value

Although a single result makes sense, this query is intended to allow multiple
results so that this scenario can be handled as an exception.

2. Select link(s) for a given second object identifier.

Reconciliation

298

SELECT * FROM links WHERE linkType
 = value AND secondId = value

Although a single result makes sense, this query is intended to allow multiple
results so that this scenario can be handled as an exception.

D.4 Reconciliation
OpenIDM performs reconciliation on a per-mapping basis. The process of
reconciliation for a given mapping includes these stages.

1. Iterate through all objects for the object set specified as "source". For each
source object, carry out the following steps.

a. Look for a link to a target object in the link object set, and perform a
correlation query (if defined).

b. Determine the link condition, as well as whether a target object can be
found.

c. Determine the action to perform based on the policy defined for the
condition.

d. Perform the action.

e. Keep track of the target objects for which a condition and action has
already been determined.

f. Write the results.

2. Iterate through all object identifiers for the object set specified as "target".
For each identifier, carry out the following steps.

a. Find the target in the link object set.

Determine if the target object was handled in the first phase.

b. Determine the action to perform based on the policy defined for the
condition.

c. Perform the action.

d. Write the results.

3. Iterate through all link objects, carrying out the following steps.

a. If the reconId is "my", then skip the object.

REST API

299

If the reconId is not recognized, then the source or the target is missing.

b. Determine the action to perform based on the policy.

c. Perform the action.

d. Store the reconId identifer in the mapping to indicate that it was
processed in this run.

Note

To optimize a reconciliation operation, the reconciliation
process does not attempt to correlate source objects to target
objects if the set of target objects is empty when the correlation
is started. For information on changing this default behaviour,
see Reconciliation Optimization.

D.5 REST API
External synchronized objects expose an API to request immediate
synchronization. This API includes the following requests and responses.

Request

Example:

POST /openidm/system/xml/account/jsmith?action=sync HTTP/1.1

Response (success)

Example:

HTTP/1.1 204 No Content
...

Response (synchronization failure)

Example:

HTTP/1.1 409 Conflict
...
[JSON representation of error]

300

301

Appendix E. REST API Reference

OpenIDM provides a RESTful API for accessing managed objects.

E.1 URI Scheme
The URI scheme for accessing a managed object follows this convention,
assuming the OpenIDM web application was deployed at /openidm.

/openidm/managed/type/id

E.2 Object Identifiers
Each managed object has an identifier (expressed as id in the URI scheme)
which is used to address the object through the REST API. The REST API allows
for the client-generated and server-generated identifiers, through PUT and
POST methods. The default server-generated identifier type is a UUID. Object
identifiers that begin with underscore (_) are reserved for future use.

E.3 Content Negotiation
The REST API fully supports negotiation of content representation through the
Accept HTTP header. Currently, the supported content type is JSON; omitting
content-negotiation is equivalent to including the following header:

Conditional Operations

302

Accept: application/json

E.4 Conditional Operations
The REST API fully supports conditional operations through the use of the
ETag, If-Match and If-None-Match HTTP headers. The use of HTTP conditional
operations is the basis of OpenIDM's optimistic concurrency control system.
Clients should make requests conditional in order to prevent inadvertent
modification of the wrong version of an object.

E.5 Supported Methods
The managed object API uses standard HTTP methods to access managed
objects.

GET

Retrieves a managed object in OpenIDM.

Example Request

GET /openidm/managed/user/bdd793f8 HTTP/1.1
...

Example Response

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 123
ETag: "0"
...

[JSON representation of the managed object]

HEAD

Returns metainformation about a managed object in OpenIDM.

Example Request

HEAD /openidm/managed/user/bdd793f8 HTTP/1.1
...

Example Response

Supported Methods

303

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 123
ETag: "0"

PUT

Creates or updates a managed object. PUT is the preferred method of
creating managed objects.

Example Request: Creating a new object

PUT /openidm/managed/user/5752c0fd9509 HTTP/1.1
Content-Type: application/json
Content-Length: 123
If-None-Match: *
...

[JSON representation of the managed object to create]

Example Response: Creating a new object

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 45
ETag: "0"
...

[JSON representation containing metadata (underscore-prefixed) properties]

Example Request: Updating an existing object

PUT /openidm/managed/user/5752c0fd9509 HTTP/1.1
Content-Type: application/json
Content-Length: 123
If-Match: "0"
...

[JSON representation of managed object to update]

Example Response: Updating an existing object (success)

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 45
ETag: "0"
....

This return code may change in a future release.

Supported Methods

304

Example Response: Updating an existing object when no version is supplied
(version conflict)

HTTP/1.1 409 Conflict
Content-Type: application/json
Content-Length: 89
...

[JSON representation of error]

Example Response: Updating an existing object when an invalid version is
supplied (version conflict)

HTTP/1.1 412 Precondition Required
Content-Type: application/json
Content-Length: 89
...

[JSON representation of error]

POST

The POST method allows arbitrary actions to be performed on managed
objects. The _action query parameter defines the action to be performed.

The create action is used to create a managed object. Because POST is
neither safe nor idempotent, PUT is the preferred method of creating
managed objects, and should be used if the client knows what identifier it
wants to assign the object. The response contains the server-generated _id of
the newly created managed object.

The POST method create optionally accepts an _id query parameter to
specify the identifier to give the newly created object. If an _id is not
provided, the server selects its own identifier.

The patch action is used to update one or more attributes of a managed
object, without replacing the entire object.

Example Create Request

POST /openidm/managed/user?_action=create HTTP/1.1
Content-Type: application/json
Content-Length: 123
...

[JSON representation of the managed object to create]

Example Response

Supported Methods

305

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 45
ETag: "0"
...

[JSON representation containing metadata (underscore-prefixed) properties]

Example Patch Request

POST /openidm/managed/user?_action=patch HTTP/1.1
Content-Type: application/json
Content-Length: 123
...

[JSON representation of the managed object to create]

Example Response (success)

HTTP/1.1 204 No Content
ETag: "1"
...

DELETE

Deletes a managed object.

Example Request

DELETE /openidm/managed/user/c3471805b60f
If-Match: "0"
...

Example Response (success)

HTTP/1.1 204 No Content
...

Deleting an existing object when no version is supplied (version conflict)

HTTP/1.1 409 Conflict
Content-Type: application/json
Content-Length: 89
...

[JSON representation of error]

Example Response: Deleting an existing object when an invalid version is
supplied (version conflict)

Supported Methods

306

HTTP/1.1 412 Precondition Required
Content-Type: application/json
Content-Length: 89
...

[JSON representation of error]

PATCH

Performs a partial modification of a managed object.

See the JSON Patch Internet-Draft for details.

Example Request

PATCH /openidm/managed/user/5752c0fd9509 HTTP/1.1
Content-Type: application/patch+json
Content-Length: 456
If-Match: "0"
...

[JSON representation of patch document to apply]

Example Response (success)

HTTP/1.1 200 OK
Set-Cookie: JSESSIONID=1kke440cyv1vivbrid6ljso7b;Path=/
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: application/json; charset=UTF-8
ETag: "1"
...
{"_id":"5752c0fd9509","_rev":"2"}

Updating an existing object when no version is supplied (version conflict)

HTTP/1.1 409 Conflict
Content-Type: application/json
Content-Length: 89
...

[JSON representation of error]

Example Response: Updating an existing object when an invalid version is
supplied (version conflict)

HTTP/1.1 412 Precondition Required
Content-Type: application/json
Content-Length: 89
...

[JSON representation of error]

http://tools.ietf.org/html/draft-pbryan-json-patch-04

307

Appendix F. Scripting Reference

Scripting allows you to customize various aspects of OpenIDM functionality,
for example, by providing custom logic between source and target mappings,
defining correlation rules, filters, and triggers, and so on.

F.1 Scripting Configuration
You define scripts using script objects, which can either include the code directly
in the configuration, or call an external file that contains the script.

Custom scripts should be placed in the script/ folder for your project, for
example path/to/openidm/script/. Do not modify or remove the script files
located in path/to/openidm/bin/defaults/script/. This folder contains the default
scripts that are required to run specific services. Scripts in this folder are not
guaranteed to remain constant between product releases.

{
 "type" : "text/javascript",
 "source": string
}

or

Examples

308

{
 "type" : "text/javascript",
 "file" : file location
}

type

string, required

Specifies the type of script to be executed. Currently, OpenIDM supports
only"text/javascript".

source

string, required if file is not specified

Specifies the source code of the script to be executed.

file

string, required if source is not specified

Specifies the file containing the source code of the script to execute.

F.2 Examples
The following example (included in the sync.json file) returns true if the
employeeType is equal to external, otherwise returns false. This script can be
useful during reconciliation to establish whether the source object should be a
part of the reconciliation, or ignored.

"validTarget": {
 "type" : "text/javascript",
 "source": "target.employeeType == 'external'"
}

The following example (included in the sync.json file) sets the __PASSWORD__
attribute to defaultpwd when OpenIDM creates a target object.

"onCreate" : {
 "type" : "text/javascript",
 "source": "target.__PASSWORD__ = 'defaultpwd'"
}

Function Reference

309

The following example (included in the router.json file) shows a trigger to create
Solaris home directories using a script. The script is located in a file, /path/to/
openidm/script/createUnixHomeDir.js.

{
 "filters" : [{
 "pattern" : "^system/solaris/account$",
 "methods" : ["create"],
 "onResponse" : {
 "type" : "text/javascript",
 "file" : "script/createUnixHomeDir.js"
 }
 }]
}

F.3 Function Reference
Functions (access to managed objects, system objects, and configuration objects)
within OpenIDM are accessible to scripts via the openidm object, which is
included in the top-level scope provided to each script.

OpenIDM also provides a logger object to access SLF4J facilities. The following
code shows an example:

logger.info("Parameters passed in: {} {} {}", param1, param2, param3);

To set the log level, use org.forgerock.openidm.script.javascript.JavaScript.
level in openidm/conf/logging.properties.

F.3.1 openidm.create(id, value)

This function creates a new resource object.

Parameters

id

string

The identifier of the object to be created.

value

object

openidm.patch(id, rev, value)

310

The value of the object to be created.

Returns

• The created OpenIDM resource object.

Throws

• An exception is thrown if the object could not be created.

F.3.2 openidm.patch(id, rev, value)
This function performs a partial modification of a managed object. Unlike the
update function, only the modified attributes are provided, not the entire object.

Parameters

id

string

The identifier of the object to be updated.

rev

string

The revision of the object to be updated, or null if the object is not subject to
revision control.

value

object

The value of the modifications to be applied to the object.

Returns

• The modified OpenIDM resource object.

Throws

• An exception is thrown if the object could not be updated.

F.3.3 openidm.read(id)
This function reads and returns an OpenIDM resource object.

openidm.update(id, rev, value)

311

Parameters

id

string

The identifier of the object to be read.

Returns

• The read OpenIDM resource object, or null if not found.

F.3.4 openidm.update(id, rev, value)
This function updates a resource object.

Parameters

id

string

The identifier of the resource object to be updated.

rev

string

The revision of the object to be updated, or null if the object is not subject to
revision control.

value

object

The value of the object to be updated.

Returns

• The modified OpenIDM resource object.

Throws

• An exception is thrown if the object could not be updated.

F.3.5 openidm.delete(id, rev)
This function deletes a resource object.

openidm.query(id, params)

312

Parameters

id

string

The identifier of the object to be deleted.

rev

string

The revision of the object to be deleted, or null if the object is not subject to
revision control.

Returns

• A null value if successful.

Throws

• An exception is thrown if the object could not be deleted.

Note that delete is a reserved word in JavaScript and this function can therefore
not be called in the usual manner. To call delete from a JavaScript, you must
specify the call as shown in the following example:

openidm['delete']('managed/user/'+ user._id, user._rev)

Calling openidm.delete() directly from a JavaScript results in an error similar to
the following:

 org.forgerock.openidm.script.ScriptException: missing name after . operator

F.3.6 openidm.query(id, params)

This function performs a query on the specified OpenIDM resource object.

Parameters

id

string

openidm.query(id, params)

313

The identifier of the object to perform the query on.

params

object

An object containing the query ID and its parameters.

Returns

• The result of the query. A query result includes the following parameters:

"query-time-ms"

The time, in milliseconds, that OpenIDM took to process the query.

"conversion-time-ms"

(For an OrientDB repository only) the time, in milliseconds, taken to
convert the data to a JSON object.

"result"

The list of entries retrieved by the query. The result includes the revision
("_rev") of the entry and any other properties that were requested in the
query.

The following example shows the result of a custom query that requests the
ID, user name, and email address of managed users in the repository. For an
OrientDB repository, the query would be something like select _openidm_id,
 userName, email from managed_user,.

{
 "conversion-time-ms": 0,
 "result": [
 {
 "email": "bjensen@example.com",
 "userName": "bjensen",
 "_rev": "0",
 "_id": "36bbb745-517f-4695-93d0-998e1e7065cf"
 },
 {
 "email": "scarter@example.com",
 "userName": "scarter",
 "_rev": "0",
 "_id": "cc3bf6f0-949e-4699-9b8e-8c78ce04a287"
 }
],
 "query-time-ms": 1
}

openidm.action(id, params, value)

314

Throws

• An exception is thrown if the given query could not be processed.

F.3.7 openidm.action(id, params, value)

This function performs an action on the specified OpenIDM resource object.

Parameters

id

string

The identifier of the object on which the action should be performed.

params

object

An object containing the parameters to pass to the action.

value

object

A value that can be provided to the action for processing.

Returns

• The result of the action. May be null if no result is provided.

Throws

• An exception is thrown if the given action could not be executed for any reason.

F.3.8 openidm.encrypt(value, cipher, alias)

This function encrypts a value.

Parameters

value

any

openidm.decrypt(value)

315

The value to be encrypted.

cipher

string

The cipher with which to encrypt the value, using the form "algorithm/mode/
padding" or just "algorithm". Example: AES/ECB/PKCS5Padding.

alias

string

The key alias in the key store with which to encrypt the node.

Returns

• The value, encrypted with the specified cipher and key.

Throws

• An exception is thrown if the object could not be encrypted for any reason.

F.3.9 openidm.decrypt(value)

This function decrypts a value.

Parameters

value

any

The value to be decrypted.

Returns

• A deep copy of the value, with any encrypted value decrypted.

Throws

• An exception is thrown if the object could not be decrypted for any reason.

F.3.10 logger.debug(string message, object... params)

Logs a message at DEBUG level.

logger.error(string
message, object... params)

316

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

• A null value if successful.

Throws

• An exception is thrown if the message could not be logged.

F.3.11 logger.error(string message, object... params)
Logs a message at ERROR level.

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

• A null value if successful.

Throws

• An exception is thrown if the message could not be logged.

logger.info(string
message, object... params)

317

F.3.12 logger.info(string message, object... params)

Logs a message at INFO level.

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

• A null value if successful.

Throws

• An exception is thrown if the message could not be logged.

F.3.13 logger.trace(string message, object... params)

Logs a message at TRACE level.

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

• A null value if successful.

logger.warn(string
message, object... params)

318

Throws

• An exception is thrown if the message could not be logged.

F.3.14 logger.warn(string message, object... params)

Logs a message at WARN level.

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

• A null value if successful.

Throws

• An exception is thrown if the message could not be logged.

F.4 Places to Trigger Scripts
Scripts can be triggered at different places, by different events.

In openidm/conf/sync.json

Triggered by situation

onCreate, onUpdate, onDelete, onLink, onUnlink

Object filter

vaildSource, validTarget

Variables Available in Scripts

319

Correlating objects

correlationQuery

Triggered on any reconciliation

result

Scripts inside properties

condition, transform

sync.json supports only one script per hook. If multiple scripts are
defined for the same hook, only the last one is kept.

In openidm/conf/managed.json

onCreate, onRead, onUpdate, onDelete, onValidate, onRetrieve and onStore

managed.json supports only one script per hook. If multiple scripts are defined
for the same hook, only the last one is kept.

In openidm/conf/router.json

onRequest, onResponse, onFailure

router.json supports multiple scripts per hook.

F.5 Variables Available in Scripts
The variables that are available to scripts depend on the triggers that launch the
script. The following section outlines the available variables, per trigger.

condition

object

correlationQuery

source

Custom endpoint scripts

request

onCreate

object, source, target

Variables Available in Scripts

320

onDelete

object

onLink

source, target

onRead

object

onRetrieve

object, property

onStore

object, property

onUnlink

source, target

onUpdate

oldObject, newObject

onValidate

object, property

result

source, target

synchronization situation scripts

recon.actionParam - the details of the synchronization operation in progress.
This variable can be used for asynchronous callbacks to execute the action at
a later stage.

sourceAction - a boolean that indicates whether the situation was assessed
during the source phase

source (if found)

target (if found)

The properties from the configured script object.

Debugging OpenIDM Scripts

321

taskScanner

input, objectID

transform

source

validSource

source

validTarget

target

F.6 Debugging OpenIDM Scripts
OpenIDM includes Eclipse JSDT libraries so you can use Eclipse to debug your
OpenIDM scripts during development.

Procedure F.1. To Enable Debugging

Follow these steps to enable debugging using Eclipse.

1. Install the environment to support JavaScript development in either of the
following ways.

• Download and install Eclipse IDE for JavaScript Web Developers from the
Eclipse download page.

• Add JavaScript Development Tools to your existing Eclipse installation.

2. Create an empty JavaScript project called External JavaScript Source in
Eclipse.

Eclipse then uses the External JavaScript Source directory in the default
workspace location to store sources that it downloads from OpenIDM.

3. Stop OpenIDM.

4. Edit openidm/conf/boot/boot.properties to enable debugging.

a. Uncomment and edit the following line.

#openidm.script.javascript.debug=transport=socket,suspend=y,address=9888,trace=true

http://www.eclipse.org/downloads/
http://wiki.eclipse.org/JSDT

Debugging OpenIDM Scripts

322

Here suspend=y prevents OpenIDM from starting until the remote
JavaScript debugger has connected. You might therefore choose to set
this to suspend=n.

b. Uncomment and edit the following line.

#openidm.script.javascript.sources=/Eclipse/workspace/External JavaScript Source/

Adjust /Eclipse/workspace/External JavaScript Source/ to match
the absolute path to this folder including the trailing / character. On
Windows, also use forward slashes, such asC:/Eclipse/workspace/
External JavaScript Source/.

Each time OpenIDM loads a new script, it then creates or overwrites
the file in the External JavaScript Source directory. Before toggling
breakpoints, be sure to refresh the source manually in Eclipse so you
have the latest version.

5. Prepare the Eclipse debugger to allow you to set breakpoints.

In the Eclipse Debug perspective, select the Breakpoints tab, and then click
the Add Script Load Breakpoint icon to open the list of scripts.

In the Add Script Load Breakpoint window, select your scripts, and then click
OK.

6. Start OpenIDM, and connect the debugger.

To create a new debug, configuration click Run > Debug Configurations...
> Remote JavaScript > New button, and then set the port to 9888 as shown
above.

323

Appendix G. Router Service Reference

The OpenIDM router service provides the uniform interface to all objects in
OpenIDM: managed objects, system objects, configuration objects, and so on.

G.1 Configuration
The router object as shown in conf/router.json defines an array of filter objects.

{
 "filters": [filter object, ...]
}

The required filters array defines a list of filters to be processed on each router
request. Filters are processed in the order in which they are specified in this
array.

G.1.1 Filter Objects

Filter objects are defined as follows.

Filter Objects

324

{
 "pattern": string,
 "methods": [string, ...],
 "condition": script object,
 "onRequest": script object,
 "onResponse": script object,
 "onFailure": script object
}

"pattern"

string, optional

Specifies a regular expression pattern matching the JSON pointer of the
object to trigger scripts. If not specified, all identifiers (including null)
match.

"methods"

array of strings, optional

One or more methods for which the script(s) should be triggered. Supported
methods are: "create", "read", "update", "delete", "patch", "query", "action".
If not specified, all methods are matched.

"condition"

script object, optional

Specifies a script that is called first to determine if the script should be
triggered. If the condition yields "true", the other script(s) are executed. If no
condition is specified, the script(s) are called unconditionally.

"onRequest"

script object, optional

Specifies a script to execute before the request is dispatched to the resource.
If the script throws an exception, the method is not performed, and a client
error response is provided.

"onResponse"

script object, optional

Specifies a script to execute after the request is successfully dispatched to
the resource and a response is returned. Throwing an exception from this
script does not undo the method already performed.

"onFailure"

script object, optional

Script Execution Sequence

325

Specifies a script to execute if the request resulted in an exception being
thrown. Throwing an exception from this script does not undo the method
already performed.

G.1.2 Script Execution Sequence

All "onRequest" and "onResponse" scripts are executed in sequence. First, the
"onRequest" scripts are executed from the top down, then the "onResponse"
scripts are executed from the bottom up.

client -> filter 1 onRequest -> filter 2 onRequest -> resource
client <- filter 1 onResponse <- filter 2 onResponse <- resource

The following sample router.json file shows the order in which the scripts would
be executed:

{
 "filters" : [
 {
 "onRequest" : {
 "type" : "text/javascript",
 "file" : "script/router-authz.js"
 }
 },
 {
 "pattern" : "^managed/user/.*",
 "methods" : [
 "read"
],
 "onRequest" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('requestFilter 1');"
 }
 },
 {
 "pattern" : "^managed/user/.*",
 "methods" : [
 "read"
],
 "onResponse" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('responseFilter 1');"
 }
 },
 {
 "pattern" : "^managed/user/.*",
 "methods" : [
 "read"
],
 "onRequest" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('requestFilter 2');"
 }

Script Scope

326

 },
 {
 "pattern" : "^managed/user/.*",
 "methods" : [
 "read"
],
 "onResponse" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('responseFilter 2');"
 }
 }
]
}

Will produce a log like:

requestFilter 1
requestFilter 2
responseFilter 2
responseFilter 1

G.1.3 Script Scope

Scripts are provided with the following scope.

{
 "openidm": openidm-functions object,
 "request": resource-request object,
 "response": resource-response object,
 "exception": exception object
}

"openidm"

openidm-functions object

Provides access to OpenIDM resources.

"request"

resource-request object

The resource-request context, which has one or more parent contexts.
Provided in the scope of "condition", "onRequest", "onResponse" and
"onFailure" scripts.

"response"

openidm-functions object

https://wikis.forgerock.org/confluence/display/json/resource-request

Example

327

The response to the resource-request. Only provided in the scope of the
"onResponse" script.

"exception"

exception object

The exception value that was thrown as a result of processing the request.
Only provided in the scope of the "onFailure" script.

An exception object is defined as follows.

{
 "error": integer,
 "reason": string,
 "message": string,
 "detail": string
}

"error"

integer

The numeric code of the exception.

"reason"

string

The short reason phrase of the exception.

"message"

string

A brief message describing the exception.

"detail"

(optional), string

A detailed description of the exception, in structured JSON format, suitable
for programmatic evaluation.

G.2 Example
The following example executes a script after a managed user object is created or
updated.

Example

328

{
 "filters": [
 {
 "pattern": "^managed/user/.*",
 "methods": [
 "create",
 "update"
],
 "onResponse": {
 "type": "text/javascript",
 "file": "scripts/afterUpdateUser.js"
 }
 }
]
}

329

Appendix H. Embedded Jetty
Configuration

OpenIDM includes an embedded Jetty web server.

To configure the embedded Jetty server, edit openidm/conf/jetty.xml. OpenIDM
delegates most of the connector configuration to jetty.xml. OSGi and PAX web
specific settings for connector configuration therefore do not have an effect.
This lets you take advantage of all Jetty capabilities, as the web server is not
configured through an abstraction that might limit some of the options.

The Jetty configuration can reference configuration properties (such as port
numbers and key store details) from OpenIDM's boot.properties configuration
file.

H.1 Using OpenIDM Configuration Properties in the
Jetty Configuration
OpenIDM exposes a Param class that you can use in jetty.xml to include
OpenIDM configuration. The Param class exposes Bean properties for common
Jetty settings and generic property access for other, arbitrary settings.

H.1.1 Accessing Explicit Bean Properties

To retrieve an explicit Bean property, use the following syntax in jetty.xml.

Accessing Explicit Bean Properties

330

<Get class="org.forgerock.openidm.jetty.Param" name="<bean property name>"/>

For example, to set a Jetty property for keystore password:

<Set name="password">
 <Get class="org.forgerock.openidm.jetty.Param" name="keystorePassword"/>
</Set>

Also see the bundled jetty.xml for further examples.

The following explicit Bean properties are available.

port

Maps to openidm.port.http

port

Maps to openidm.port.https

port

Maps to openidm.port.mutualauth

keystoreType

Maps to openidm.keystore.type

keystoreProvider

Maps to openidm.keystore.provider

keystoreLocation

Maps to openidm.keystore.location

keystorePassword

Maps to openidm.keystore.password

keystoreKeyPassword

Maps to openidm.keystore.key.password, or the key store password if not set

truststoreLocation

Maps to openidm.truststore.location, or the key store location if not set

Accessing Generic Properties

331

truststorePassword

Maps to openidm.truststore.password, or the key store password if not set

H.1.2 Accessing Generic Properties

<Call class="org.forgerock.openidm.jetty.Param" name="getProperty">
 <Arg>org.forgerock.openidm.some.sample.property</Arg>
</Call>

H.2 Jetty Default Settings
By default the embedded Jetty server uses the following settings.

• The HTTP, SSL, and Mutual Authentication ports defined in OpenIDM

• Same key store/trust store settings as OpenIDM

• Trivial sample realm, openidm/security/realm.properties to add users

The default settings are intended for evaluation only. Adjust them according to
your production requirements.

H.3 Registering Additional Servlet Filters
You can register generic servlet filters in the embedded Jetty server to perform
additional filtering tasks on requests to or responses from OpenIDM. For
example, you might want to use a servlet filter to protect access to OpenIDM
with an access management product such, as OpenAM. Servlet filters are
configured in files named openidm/conf/servletfilter-name.json. These servlet
filter configuration files define the filter class, required libraries, and other
settings.

A sample servlet filter configuration is provided in openidm/samples/openam.
The sample configuration includes the servlet filter configuration file (conf/
servletfilter-openam.json) and the extension script that implements the filter
(script/security/populateContext.js).

The sample servlet filter configuration file is shown below:

Registering Additional
Servlet Filters

332

{
 "classPathURLs" : [
 "file:/jetty_v61_agent/lib/agent.jar",
 "file:/jetty_v61_agent/lib/openssoclientsdk.jar",
 "file:/jetty_v61_agent/lib/",
 "file:/jetty_v61_agent/locale/"
],
 "systemProperties" : {
 "openam.agents.bootstrap.dir" : "/jetty_v61_agent/Agent_001/config"
 },
 "requestAttributes" : {
 "openidm.authinvoked" : "servletfilter-openam"
 },
 "scriptExtensions" : {
 "augmentSecurityContext" : {
 "type" : "text/javascript",
 "file" : "script/security/populateContext.js"
 }
 },
 "filterClass" : "com.sun.identity.agents.filter.AmAgentFilter"
}

The sample configuration includes the following properties:

"classPathURLs"

The URLs to any required classes or libraries that should be added to the
classpath used by the servlet filter class

"systemProperties"

Any additional Java system properties required by the filter

"requestAttributes"

The HTTP Servlet request attributes that will be set by OpenIDM when the
filter is invoked. OpenIDM expects certain request attributes to be set by
any module that protects access to it, so this helps in setting these expected
settings.

"scriptExtensions"

Optional script extensions to OpenIDM. Currently only
"augmentSecurityContext" is supported. A script that is defined in
augmentSecurityContext is executed by OpenIDM after a successful
authentication request. The script helps to populate the expected security
context in OpenIDM. For example, the login module (servlet filter) might
select to supply only the authenticated user name, while the associated roles
and user ID can be augmented by the script.

Only JavaScript is supported ("type":"text/javascript"). The script can be
provided inline ("source":script source) or in a file ("file":filename). The

Registering Additional
Servlet Filters

333

sample filter extends the filter interface with the functionality in the script
script/security/populateContext.js.

"filterClass"

The servlet filter that is being registered

The following additional properties can be configured for the filter:

"httpContextId"

The HTTP context under which the filter should be registered. The default is
"openidm".

"servletNames"

A list of servlet names to which the filter should apply. The default is "OpenIDM
REST".

"urlPatterns"

A list of URL patterns to which the filter applies. The default is ["/openidm/
", "/openidmui/"].

"initParams"

Filter configuration initialization parameters that are passed to the servlet
filter init method. For more information, see http://docs.oracle.com/javaee/5/
api/javax/servlet/FilterConfig.html.

When a servlet filter is used to integrate an access management product, the
specific servlet filter that is used, and the configuration that is associated
with that filter, is product-specific. The sample configuration in openidm/
samples/openam is specific to OpenAM. For a detailed description of the OpenAM
implementation, see Protecting OpenIDM With OpenAM.

http://docs.oracle.com/javaee/5/api/javax/servlet/FilterConfig.html
http://docs.oracle.com/javaee/5/api/javax/servlet/FilterConfig.html

334

335

Appendix I. Release Levels & Interface
Stability

This appendix includes ForgeRock definitions for product release levels and
interface stability.

I.1 Open Identity Platform Product Release Levels
Open Identity Platform defines Major, Minor, and Maintenance product release
levels. The release level is reflected in the version number. The release level tells
you what sort of compatibility changes to expect.

Major (version: x[.0.0], trailing 0s are optional)

Major releases bring big new features. Major releases can include changes
even to Stable interfaces. Major releases can remove previously Deprecated
functionality, and in rare cases remove Evolving functionality that has not
been explicitly Deprecated. Major releases also include the changes present
in previous Minor and Maintenance releases.

Minor (version: x.y[.0], trailing 0s are optional)

Minor releases might include new features, backwards-compatible
changes to Stable interfaces in the same Major release, and incompatible
changes to Evolving interfaces. Minor releases can remove previously
Deprecated functionality. Minor releases also include the changes present in
Maintenance releases.

Open Identity Platform
Product Interface Stability

336

Maintenance (version: x.y.z)

Maintenance releases can include bug fixes. Maintenance releases are
intended to be fully compatible with previous versions from the same Minor
release.

I.2 Open Identity Platform Product Interface
Stability
Open Identity Platform products support many protocols, APIs, GUIs, and
command-line interfaces. Some of these interfaces are standard and very stable.
Others offer new functionality that is continuing to evolve.

We realize that you invest in these interfaces, and therefore must know when
and how Open Identity Platform Community expects them to change. For that
reason, Open Identity Platform Community defines interface stability labels and
uses these definitions in Open Identity Platform products.

Stable

This documented interface is expected to undergo only backwards-
compatible changes between major releases. Changes are announced at least
one minor release before they take effect.

Evolving

This documented interface is continuing to evolve and so is expected to
change, potentially in backwards-incompatible ways even in a minor release.
Changes are documented at the time of product release.

While new protocols and APIs are still in the process of standardization,
they are Evolving. This applies for example to recent Internet-Draft
implementations, and also to newly developed functionality.

Deprecated

This interface is deprecated and likely to be removed in a future release. For
previously stable interfaces, the change was likely announced in a previous
release. Deprecated interfaces will be removed from Open Identity Platform
products.

Removed

This interface was deprecated in a previous release and has now been
removed from the product.

Open Identity Platform
Product Interface Stability

337

Internal/Undocumented

Internal and undocumented interfaces can change without notice. If you
depend on one of these interfaces, contact Open Identity Platform support to
discuss your needs.

https://github.com/OpenIdentityPlatform

338

339

OpenIDM Glossary

JSON JavaScript Object Notation, a lightweight data interchange
format based on a subset of JavaScript syntax. For more
information, see the JSON site.

managed object An object that represents the identity-related data managed
by OpenIDM. Managed objects are configurable, JSON-
based data structures that OpenIDM stores in its pluggable
repository. The default configuration of a managed object is
that of a user, but you can define any kind of managed object,
for example, groups or roles.

mapping A policy that is defined between a source object and a target
object during reconciliation or synchronization. A mapping
can also define a trigger for validation, customization,
filtering, and transformation of source and target objects.

OSGi A module system and service platform for the Java
programming language that implements a complete and
dynamic component model. For a good introduction, see the
OSGi site. OpenIDM services are designed to run in any OSGi
container, but OpenIDM currently runs in Apache Felix.

reconciliation During reconciliation, comparisons are made between
managed objects and objects on source or target systems.
Reconciliation can result in one or more specified actions,
including, but not limited to, synchronization.

http://www.json.org
http://www.osgi.org/About/WhyOSGi
http://felix.apache.org/site/index.html

340

resource An external system, database, directory server, or other
source of identity data to be managed and audited by the
identity management system.

REST Representational State Transfer. A software architecture style
for exposing resources, using the technologies and protocols
of the World Wide Web. REST describes how distributed data
objects, or resources, can be defined and addressed.

source object In the context of reconciliation, a source object is a data
object on the source system, that OpenIDM scans before
attempting to find a corresponding object on the target
system. Depending on the defined mapping, OpenIDM then
adjusts the object on the target system (target object).

synchronization The synchronization process creates, updates, or deletes
objects on a target system, based on the defined mappings
from the source system. Synchronization can be scheduled or
on demand.

system object A pluggable representation of an object on an external system.
For example, a user entry that is stored in an external LDAP
directory is represented as a system object in OpenIDM for
the period during which OpenIDM requires access to that
entry.System objects follow the same RESTful resource-based
design principles as managed objects.

target object In the context of reconciliation, a target object is a data object
on the target system, that OpenIDM scans after locating its
corresponding object on the source system. Depending on the
defined mapping, OpenIDM then adjusts the target object to
match the corresponding source object.

341

Index

A
Architecture, 1
Audit logs, 239
Authentication, 193

Internal users, 193, 207
Managed users, 193
Roles, 196

Authorization, 193, 196

B
Best practices, 201, 253
Business processes, 213

C
Configuration

Email, 249
Files, 263
Objects, 39
REST API, 42
Validating, 25

Connectors, 77
Examples, 87
Generating configurations, 114
Object types, 84
Remote, 79

Correlation queries, 161

D
Data

accessing, 55

E
Encryption, 205, 208

F
File layout, 263

H
healthcheck, 13

K
Keytool, 25

L
LiveSync, 124

Scheduling, 165

M
Mappings, 4, 142

Hooks for scripting, 162
Scheduled reconciliation, 166

O
Objects

Audit objects, 289
Configuration objects, 39
Links, 289
Managed objects, 4, 140, 194, 274, 301

Customizing, 282
Identifiers, 301
Passwords, 183

Object types, 273
Script access, 55, 309
System objects, 4, 289

OpenICF, 77

P
Passwords, 183, 207
Policies, 63
Ports

8080, 271
8443, 271
8444, 271
Disabling, 209

R
Reconciliation, 5, 123

Scheduling, 165
Resources, 77
REST API, 42, 301

Listing configuration objects, 42
Roles, 196
Router service, 323

342

S
Schedule

Examples, 175
Scheduler, 165, 169

Configuration, 169
Scheduling tasks, 169
Scripting, 307

Functions, 309
Security, 201

Authentication, 205
Encryption, 205, 208
SSL, 201

Sending mail, 249
Server logs, 75
Starting OpenIDM, 7
Stopping OpenIDM, 7
Synchronization, 5, 123, 291

Actions, 149
Conditions, 144
Connectors, 141
Correlation queries, 161
Creating attributes, 143, 148
Direct (push), 123
Encryption, 146
Filtering, 145
Mappings, 142
Passwords, 184

With Active Directory, 187
With OpenDJ, 185

Reusing links, 149
Scheduling, 165
Situations, 149
Transforming attributes, 144

T
Troubleshooting, 257

W
Workflow, 213

	OpenIDM Integrator's Guide
	Table of Contents
	Preface
	1. Who Should Use this Guide
	2. Formatting Conventions
	3. Accessing Documentation Online
	4. Joining the Open Identity Platform Community

	1 Architectural Overview
	1.1. OpenIDM Modular Framework
	1.2. Infrastructure Modules
	1.3. Core Services
	1.4. Access Layer

	2 Starting and Stopping OpenIDM
	2.1. To Start and Stop OpenIDM
	2.2. Specifying the OpenIDM Startup Configuration
	2.3. Obtaining Information About an OpenIDM Instance
	2.4. Verifying the Health of an OpenIDM System
	2.5. Displaying Information About Installed Modules
	2.6. Starting OpenIDM in Debug Mode

	3 OpenIDM Command-Line Interface
	3.1. configexport
	3.2. configimport
	3.3. configureconnector
	3.4. encrypt
	3.5. keytool
	3.6. validate

	4 OpenIDM User Interface
	4.1. Overview of the Default User Interface
	4.2. Configuring the Default User Interface
	4.2.1. Enabling Self-Registration
	4.2.2. Configuring Security Questions
	4.2.3. Enabling Site Identification
	4.2.4. Configuring the Country List

	4.3. Managing User Accounts With the User Interface
	4.4. Managing Workflows From the User Interface
	4.5. Changing the UI Theme
	4.5.1. Changing the Default Stylesheet
	4.5.2. Changing the Default Logo
	4.5.3. Changing the Language of the UI
	4.5.4. Creating a Project-Specific UI Theme

	4.6. Using an External System for Password Reset
	4.7. Providing a Logout URL to External Applications
	4.8. Changing the UI Path
	4.9. Disabling the UI

	5 Configuring OpenIDM
	5.1. OpenIDM Configuration Objects
	5.2. Changing the Default Configuration
	5.3. Configuring an OpenIDM System for Production
	5.3.1. Configuring a Production Repository
	5.3.2. Disabling Automatic Configuration Updates
	5.3.3. Disabling the File-Based Configuration View

	5.4. Configuring OpenIDM Over REST
	5.5. Using Property Value Substitution in the Configuration
	5.5.1. Using Property Value Substitution With System Properties
	5.5.2. Limitations of Property Value Substitution

	5.6. Adding Custom Endpoints

	6 Accessing Data Objects
	6.1. Accessing Data Objects by Using Scripts
	6.2. Accessing Data Objects by Using the REST API
	6.3. Defining and Calling Queries
	6.3.1. Parameterized Queries
	6.3.2. Native Query Expressions
	6.3.3. Constructing Queries

	7 Using Policies to Validate Data
	7.1. Configuring the Default Policy
	7.1.1. Policy Script File
	7.1.1.1. Policy Configuration Object
	7.1.1.2. Policy Implementation Function

	7.1.2. Policy Configuration File

	7.2. Extending the Policy Service
	7.3. Disabling Policy Enforcement
	7.4. Managing Policies Over REST
	7.4.1. Listing the Defined Policies
	7.4.2. Validating Objects and Properties Over REST

	8 Configuring Server Logs
	9 Connecting to External Resources
	9.1. About OpenIDM & OpenICF
	9.2. Accessing Remote Connectors
	9.3. Configuring Connectors
	9.4. Connector Configuration Examples
	9.4.1. XML File Connector
	9.4.2. Generic LDAP Connector
	9.4.3. Active Directory Connector
	9.4.3.1. Installing and Configuring a .NET Connector
	9.4.3.2. Installing a Standalone Java Connector Server
	9.4.3.2.1. MySQL Database Example to Reconcile JCS Users

	9.4.3.3. XML Example to Reconcile JCS Users
	9.4.3.4. Configuring the Active Directory Connector
	9.4.3.5. Using PowerShell Scripts With the Active Directory Connector

	9.4.4. CSV File Connector
	9.4.5. Scripted SQL Connector

	9.5. Creating Default Connector Configurations

	10 Configuring Synchronization
	10.1. Types of Synchronization
	10.2. Managing Reconciliation Over REST
	10.2.1. Triggering a Reconciliation Run
	10.2.2. Canceling a Reconciliation Run
	10.2.3. Listing Reconciliation Runs
	10.2.4. Querying the Reconciliation Audit Log

	10.3. Triggering LiveSync Over REST
	10.4. Flexible Data Model
	10.5. Basic Data Flow Configuration
	10.5.1. Connector Configuration Files
	10.5.2. Synchronization Mappings File
	10.5.3. Using Encrypted Values
	10.5.4. Restricting HTTP Access to Sensitive Data
	10.5.5. Constructing and Manipulating Attributes
	10.5.6. Reusing Links

	10.6. Synchronization Situations and Actions
	10.6.1. Synchronization Situations
	10.6.2. Source Reconciliation
	10.6.3. Target Reconciliation
	10.6.4. Situations Specific to Automatic Synchronization and LiveSync
	10.6.5. Synchronization Actions
	10.6.6. Providing a Script as an Action

	10.7. Asynchronous Reconciliation
	10.8. Configuring Case Sensitivity for Data Stores
	10.9. Reconciliation Optimization
	10.9.1. Correlating Empty Target Sets
	10.9.2. Prefetching Links
	10.9.3. Parallel Reconciliation Threads

	10.10. Correlation Queries
	10.10.1. Managed Object as Correlation Query Target
	10.10.2. System Object as Correlation Query Target

	10.11. Advanced Data Flow Configuration
	10.12. Scheduling Synchronization
	10.12.1. Configuring Scheduled Synchronization
	10.12.2. Alternative Mappings

	11 Scheduling Tasks and Events
	11.1. Scheduler Configuration
	11.2. Configuring Persistent Schedules
	11.3. Schedule Examples
	11.4. Service Implementer Notes
	11.5. Scanning Data to Trigger Tasks
	11.5.1. Configuring the Task Scanner
	11.5.2. Managing Scanning Tasks Over REST
	11.5.2.1. Triggering a Scanning Task
	11.5.2.2. Canceling a Scanning Task
	11.5.2.3. Listing Scanning Tasks

	12 Managing Passwords
	12.1. Enforcing Password Policy
	12.2. Password Synchronization

	13 Managing Authentication, Authorization and RBAC
	13.1. OpenIDM Users
	13.1.1. Internal Users
	13.1.2. Managed Users

	13.2. Authentication
	13.3. Roles
	13.4. Authorization
	13.4.1. router-authz.js
	13.4.2. access.js
	13.4.3. Extending the Authorization Mechanism

	14 Securing & Hardening OpenIDM
	14.1. Use SSL and HTTPS
	14.2. Restrict REST Access to the HTTPS Port
	14.3. Encrypt Data Internally & Externally
	14.4. Use Message Level Security
	14.5. Replace Default Security Settings
	14.6. Secure Jetty
	14.7. Protect Sensitive REST Interface URLs
	14.8. Protect Sensitive Files & Directories
	14.9. Obfuscate Bootstrap Information
	14.10. Remove or Protect Development & Debug Tools
	14.11. Protect the OpenIDM Repository
	14.12. Adjust Log Levels
	14.13. Set Up Restart At System Boot

	15 Integrating Business Processes and Workflows
	15.1. BPMN 2.0 and the Activiti Tools
	15.2. Setting Up Activiti Integration With OpenIDM
	15.2.1. Setting Up Local Integration
	15.2.2. Setting Up Remote Integration
	15.2.3. Configuring the Activiti Engine
	15.2.3.1. Configuring the Activiti History Level

	15.2.4. Defining Activiti Workflows
	15.2.5. Invoking Activiti Workflows
	15.2.6. Querying Activiti Workflows

	15.3. Managing Workflows Over the REST Interface
	15.4. Example Activiti Workflows With OpenIDM
	15.4.1. Example Email Notification Workflow
	15.4.2. Sample Workflow - Provisioning User Accounts
	15.4.2.1. Overview of the Sample
	15.4.2.2. Running the Sample

	16 Using Audit Logs
	16.1. Audit Log Types
	16.2. Audit Log File Formats
	16.3. Audit Configuration
	16.3.1. Event Types
	16.3.2. Log To List
	16.3.3. Exception Formatter

	16.4. Generating Reports

	17 Sending Email
	17.1. Sending Mail Over REST
	17.2. Sending Mail From a Script

	18 OpenIDM Project Best Practices
	18.1. Implementation Phases
	18.1.1. Initiation
	18.1.2. Definition
	18.1.3. Design
	18.1.4. Build
	18.1.5. Production

	19 Troubleshooting
	19.1. OpenIDM Stopped in Background
	19.2. Internal Server Error During Reconciliation or Synchronization
	19.3. The scr list Command Shows Sync Service As Unsatisfied
	19.4. JSON Parsing Error
	19.5. System Not Available
	19.6. Bad Connector Host Reference in Provisioner Configuration
	19.7. Missing Name Attribute

	Appendix A. File Layout
	Appendix B. Ports Used
	Appendix C. Data Models and Objects Reference
	C.1. Managed Objects
	C.1.1. Managed Object Schema
	C.1.1.1. Managed Object Reserved Properties
	C.1.1.2. Managed Object Schema Validation
	C.1.1.3. Managed Object Derived Properties

	C.1.2. Data Consistency
	C.1.3. Managed Object Triggers
	C.1.3.1. State Triggers
	C.1.3.2. Object Storage Triggers
	C.1.3.3. Property Storage Triggers
	C.1.3.4. Storage Trigger Sequences

	C.1.4. Managed Object Encryption
	C.1.5. Managed Object Configuration
	C.1.6. Custom Managed Objects
	C.1.6.1. Setting Up a Managed Object Type
	C.1.6.2. Manipulating Managed Objects Declaratively
	C.1.6.3. Manipulating Managed Objects Programmatically
	C.1.6.3.1. Creating Objects
	C.1.6.3.2. Updating Objects
	C.1.6.3.3. Patching Objects
	C.1.6.3.4. Deleting Objects
	C.1.6.3.5. Reading Objects
	C.1.6.3.6. Querying Object Sets

	C.1.7. Accessing Managed Objects Through the REST API

	C.2. Configuration Objects
	C.2.1. When To Use Custom Configuration Objects
	C.2.2. Custom Configuration Object Naming Conventions
	C.2.3. Mapping Configuration Objects To Configuration Files
	C.2.4. Configuration Objects File & REST Payload Formats
	C.2.5. Accessing Configuration Objects Through the REST API
	C.2.6. Accessing Configuration Objects Programmatically
	C.2.7. Creating Objects
	C.2.8. Updating Objects
	C.2.9. Deleting Objects
	C.2.10. Reading Objects

	C.3. System Objects
	C.4. Audit Objects
	C.5. Links

	Appendix D. Synchronization Reference
	D.1. Object-Mapping Objects
	D.1.1. Property Objects
	D.1.2. Policy Objects
	D.1.2.1. Script Object

	D.2. Links
	D.3. Queries
	D.4. Reconciliation
	D.5. REST API

	Appendix E. REST API Reference
	E.1. URI Scheme
	E.2. Object Identifiers
	E.3. Content Negotiation
	E.4. Conditional Operations
	E.5. Supported Methods

	Appendix F. Scripting Reference
	F.1. Scripting Configuration
	F.2. Examples
	F.3. Function Reference
	F.3.1. openidm.create(id, value)
	F.3.2. openidm.patch(id, rev, value)
	F.3.3. openidm.read(id)
	F.3.4. openidm.update(id, rev, value)
	F.3.5. openidm.delete(id, rev)
	F.3.6. openidm.query(id, params)
	F.3.7. openidm.action(id, params, value)
	F.3.8. openidm.encrypt(value, cipher, alias)
	F.3.9. openidm.decrypt(value)
	F.3.10. logger.debug(string message, object... params)
	F.3.11. logger.error(string message, object... params)
	F.3.12. logger.info(string message, object... params)
	F.3.13. logger.trace(string message, object... params)
	F.3.14. logger.warn(string message, object... params)

	F.4. Places to Trigger Scripts
	F.5. Variables Available in Scripts
	F.6. Debugging OpenIDM Scripts

	Appendix G. Router Service Reference
	G.1. Configuration
	G.1.1. Filter Objects
	G.1.2. Script Execution Sequence
	G.1.3. Script Scope

	G.2. Example

	Appendix H. Embedded Jetty Configuration
	H.1. Using OpenIDM Configuration Properties in the Jetty Configuration
	H.1.1. Accessing Explicit Bean Properties
	H.1.2. Accessing Generic Properties

	H.2. Jetty Default Settings
	H.3. Registering Additional Servlet Filters

	Appendix I. Release Levels & Interface Stability
	I.1. Open Identity Platform Product Release Levels
	I.2. Open Identity Platform Product Interface Stability

	OpenIDM Glossary
	Index

