
Guide to OpenIG

PaulBryan
MarkCraig

JamieNelson

,
, ,

Copyright © 2011-2012 ForgeRock AS

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock™ is the trademark of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING
THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO
NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute
the Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if
the fonts are renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software
without prior written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute
the modifications to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the
Font Software is furnished to do so, subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if
the fonts are renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from
Tavmjong Bah. For further information, contact: tavmjong @ free . fr.

Admonition graphics by Yannick Lung. Free for commerical use. Available at Freecns Cumulus.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://www.iconfinder.com/iconsets/freecns-cumulus

iii

Table of Contents
Preface .. v

1. Who Should Use this Guide ... v
2. Formatting Conventions .. v
3. Accessing Documentation Online .. vi
4. Joining the Open Identity Platform Community vii

1. Solutions Overview .. 1
1.1. Extend SSO To Any Application .. 1
1.2. Federate Enabling Applications .. 2
1.3. Implement Standards Based Policy Enforcement 2

2. How OpenIG Works ... 5
2.1. How It Works In A Nutshell ... 5
2.2. How It Works In Detail .. 5

3. Getting Started ... 9
3.1. Before You Begin ... 9
3.2. Installation Steps .. 9
3.3. Configuration Steps .. 11
3.4. Try It Out ... 11

4. Installing OpenIG .. 13
5. Configuring Deployment Containers .. 15

5.1. Tomcat ... 15
5.2. Jetty .. 17
5.3. JBoss .. 18

6. Detailed Use Cases ... 21
6.1. Portal Application Login ... 21
6.2. OpenAM Integration ... 22
6.3. Federation Gateway SP Initiated SAML2 SSO 23
6.4. Federation Gateway IDP Initiated SAML2 SSO 25
6.5. Standards Based SAML2 Agent .. 25

7. Tutorial With WordPress ... 27
7.1. Detailed Flow ... 27
7.2. Setup Summary .. 28
7.3. Installing OpenIG ... 29
7.4. Configuring the Browser Host .. 29
7.5. Configuring OpenIG & Trying It Out ... 29
7.6. Login with Hard Coded Credentials .. 30
7.7. Login with Credentials From a Flat File ... 31
7.8. Login with Credentials From MySQL .. 32

8. Tutorial On OpenAM Password Capture & Replay 33
8.1. Detailed Flow ... 33
8.2. Setup Summary .. 35
8.3. Setup Details .. 35

9. Using the Federation Gateway .. 39
9.1. Installation Overview .. 39

Guide to OpenIG

iv

9.2. Configuration File Overview ... 40
9.3. Configuring the Federation Service .. 41
9.4. Config.json Sample ... 41
9.5. Example Settings .. 43
9.6. Identity Provider Metadata ... 44

10. Tutorial For the Federation Gateway ... 45
10.1. Before You Start ... 45
10.2. Configuring OpenAM .. 45
10.3. Configuring OpenIG For Federation .. 46
10.4. Trying It Out .. 46

11. Configuration Templates .. 47
11.1. Proxy & Capture ... 48
11.2. Simple Login Form ... 50
11.3. Login Form With Cookie From Login Page 52
11.4. Login Form With Extract Filter & Cookie Filter 54
11.5. Login Which Requires a Hidden Value From the Login Page 56
11.6. HTTP & HTTPS Application .. 58
11.7. Multiple Applications .. 60
11.8. OpenAM Integration With Headers ... 62
11.9. Microsoft Online Outlook Web Access ... 64

12. Customizing OpenIG .. 67
12.1. Key Extension Points .. 67
12.2. Implementing a Filter ... 67
12.3. Implementing a Handler ... 68
12.4. Heap Object Configuration ... 68
12.5. Including Servlets and Servlet Filters ... 69
12.6. Sample Filter .. 69

13. Troubleshooting ... 71
13.1. Object not found in heap .. 71
13.2. Could not find local configuration file ... 71
13.3. Unexpected character (x) at position 1103 72
13.4. The values in the flat file are incorrect ... 72
13.5. Problem accessing URL .. 72
13.6. StaticResponseHandler results in a blank page 73
13.7. OpenIG is not logging users in ... 73

Index ... 75

v

Preface

This guide shows you how to install and configure OpenIG, a high-performance
reverse proxy server with specialized session management and credential replay
functionality.

1 Who Should Use this Guide
This guide is written for access management designers and administrators who
build, deploy, and maintain identity gateways for their organizations. This guide
covers the tasks you might perform once or repeat throughout the life cycle of an
OpenIG release used in your organization.

You do not need to be an OpenIG wizard to learn something from this guide,
though a background in access management and maintaining web application
software can help. You do need some background in managing services on your
operating systems and in your application servers. You can nevertheless get
started with this guide, and then learn more as you go along.

2 Formatting Conventions
Most examples in the documentation are created in GNU/Linux or Mac OS
X operating environments. If distinctions are necessary between operating
environments, examples are labeled with the operating environment name in
parentheses. To avoid repetition file system directory names are often given
only in UNIX format as in /path/to/server, even if the text applies to C:\path\to
\server as well.

Accessing Documentation Online

vi

Absolute path names usually begin with the placeholder /path/to/. This path
might translate to /opt/, C:\Program Files\, or somewhere else on your system.

Command line, terminal sessions are formatted as follows:

$ echo $JAVA_HOME
/path/to/jdk

Command output is sometimes formatted for narrower, more readable output
even though formatting parameters are not shown in the command. In the
following example, the query string parameter _prettyPrint=true is omitted and
some of the output is replaced with an ellipsis (...):

$ curl https://bjensen:hifalutin@opendj.example.com:8443/users/newuser
{
 "_rev" : "000000005b337348",
 "_id" : "newuser",
 ...
}

Program listings are formatted as follows:

class Test {
 public static void main(String [] args) {
 System.out.println("This is a program listing.");
 }
}

3 Accessing Documentation Online
Open Identity Platform core documentation, such as this document, aims to be
technically accurate and complete with respect to the software documented.

Core documentation therefore follows a three-phase review process designed to
eliminate errors:

• Product managers and software architects review project documentation
design with respect to the readers' software lifecycle needs.

• Subject matter experts review proposed documentation changes for technical
accuracy and completeness with respect to the corresponding software.

• Quality experts validate implemented documentation changes for technical
accuracy, completeness in scope, and usability for the readership.

The review process helps to ensure that documentation published for a Open
Identity Platform release is technically accurate and complete.

Joining the Open Identity
Platform Community

vii

Fully reviewed, published core documentation is available at https://
doc.openidentityplatform.org/. Use this documentation when working with a
Open Identity Platform release.

You can find pre-release draft documentation at the online community resource
center. Use this documentation when trying a nightly build.

4 Joining the Open Identity Platform Community
Visit the community resource center where you can find information about each
project, download nightly builds, browse the resource catalog, ask and answer
questions on the forums, find community events near you, and of course get the
source code as well.

https://doc.openidentityplatform.org/
https://doc.openidentityplatform.org/
https://github.com/OpenIdentityPlatform
https://github.com/OpenIdentityPlatform
https://github.com/OpenIdentityPlatform

viii

1

Chapter 1

Solutions Overview

ForgeRock's Open Identity Gateway (OpenIG) provides the answer to three
important challenges.

1.1 Extend SSO To Any Application
In today's enterprise, more than 30% of web applications are incompatible
with web access management (WAM) software. That is, unlike OpenAM with
OpenIG, most web access management products lack the agent to protect the
web applications, or the application is a legacy solution that does not follow
standard protocols for single sign-on. This limits the return on the enterprise
WAM investment and constrains what types of web applications can be protected.

ForgeRock's Open Identity Gateway addresses this problem by extending
access management to encompass all web applications. With OpenIG, OpenAM
deployments can now be extended to be inclusive of those applications that do
not integrate with policy agents alone. In addition, ForgeRock Open Identity
Gateway interoperates, out-of-the-box, with all management solutions. Most
importantly, your organization can on-board any web application without ever
modifying or touching the target application again, significantly reducing the
development and quality assurance required to protect web applications.

Federate Enabling Applications

2

1.2 Federate Enabling Applications
The expertise and cost required to add SAML2 support to web applications is
a problem for many businesses. Those businesses not moving to a standard
for exposing their applications to their customers see increased cost and
maintenance due to the complexity of one-off proprietary integrations. They may
also see a loss of business to those customers requiring a Federation standard
for authentication. Sometimes, deploying a full access mangaement solution just
to federate a few applications is is too complex and costly, and building out their
own solution by modifying their applications is just not possible.

OpenIG Federation Gateway allows businesses to add SAML2 support to their
applications with little to no knowledge of the standard. In addition, there is no
need to modify the application or install any plugin or agent on the application
container.

1.3 Implement Standards Based Policy Enforcement
In order to provide SSO, OpenAM policy enforcement points, the policy agents,
have traditionally functioned as plugins for each application. The policy agents
however use OpenAM specific APIs and protocols. In contrast, you can roll out

Implement Standards
Based Policy Enforcement

3

OpenIG as an independent policy enforcement point that is built on the SAML2
standard.

OpenIG Federation Gateway can replace policy agents with a standards based
SAML2 compliant enforcement point.

4

5

Chapter 2

How OpenIG Works

This chapter provides a detailed look at OpenIG's components and how they work
together.

2.1 How It Works In A Nutshell
The underlying core of ForgeRock Open Identity Gateway is based on a reverse
proxy architecture. All HTTP traffic to each protected application is routed
through OpenIG, enabling close inspection, transformation and filtering of each
request. By inspecting the traffic, OpenIG is able to intercept requests that would
normally require the user to authenticate, obtain the user's login credentials,
and send the necessary HTTP request to the target application, thereby logging
in the user without modifying or installing anything on the application. In its
simplest form and basic configuration, OpenIG is a Java-based reverse proxy
which runs as a web application. Enable the Form-Filter replay module and
OpenIG automatically log users in when a timeout or authentication page is
detected. Additionally, enable the SAML2 service and OpenIG becomes a SAML2
endpoint. In this mode of operation, OpenIG receives and verifies the SAML2
request and then logs the user directly into the target application.

2.2 How It Works In Detail
The following modules make up OpenIG.

http://en.wikipedia.org/wiki/Reverse_proxy
http://en.wikipedia.org/wiki/Reverse_proxy

OpenIG Core (Reverse Proxy)

6

2.2.1 OpenIG Core (Reverse Proxy)

OpenIG core is a standard Java EE servlet implementation of a reverse proxy.
The main function of OpenIG core is to act as a reverse proxy to the target
application. When deployed in its base configuration, OpenIG can be used as a
pure reverse proxy. The power of the OpenIG core comes in its ability to search,
transform, and process HTTP traffic to and from the target application. This
enables OpenIG to recognize login pages, submit login forms, transform or
filter content, and even function as a Federation endpoint for the application.
All these features are possible without making any changes to the application's
deployment container or the application itself.

2.2.2 Exchange

The Exchange is a wrapper around the HTTP request and response objects that
pass through OpenIG. Every request or response being processed in OpenIG can
be accessed or modified through the Exchange object. In addition, arbitrary data
can be set in the Exchange to facilitate the passing of data and state between
filters and handlers.

2.2.3 Dispatcher

The Dispatcher may be thought of as the internal router of OpenIG. Every
request that comes into OpenIG is analyzed and forwarded on to the configured
processing chain of filters and handlers. A request may be forwarded based on
the target host, URL, URL parameters, headers, cookies, or any other component
of the request.

2.2.4 Chain

A Chain is a combination of one or more Filters and a handler that process an
incoming request from the Dispatcher. For example, the Dispatcher can process
an incoming request with a URL parameter of action=login and forward the
request to the Login Chain. The Login Chain executes a list of Filters and then
calls a Handler. The Handler sends the request on to the target application or to
another Chain for further processing.

2.2.5 Handlers

The final processing of every Chain ends in a call to a Handler. A Handler can
simply call another Chain or it can send the request on to the target application.
The following Handlers are shipped with OpenIG:

• ClientHandler: Sends the final request to the target application.

Filters

7

• StaticResponseHandler: Used to send a response, such as a redirect, to a client
during request processing.

• SequenceHandler: Links together multiple handlers or chains during request
processing.

2.2.6 Filters
Filters are responsible for processing HTTP requests in OpenIG. Filters can
be chained together to act on the input stream coming from the browser, or
the output stream returned back from the target application. A filter can do
something as simple as logging the input and output stream or something
more complex, such as processing login pages, fetching user attributes, or
transforming content. There are multiple Filters shipped with OpenIG that can be
combined in chains to provide very extensible request and response processing
features. Custom filters can also be written using the Java SPIs. The following is a
list of Filters shipped with OpenIG:

• CookieFilter: The default behavior of OpenIG is to accept and forward all
cookies. Since this is not always the desirable behavior, the CookieFilter, when
configured, allows you to suppress, manage, and relay cookies.

• CaptureFilter: Captures the HTTP requests being processed by OpenIG.
Capture can be used for audit purposes and may also be very useful when
analyzing an application or troubleshooting a misbehaving OpenIG. Logs are
written to a flat file on the OpenIG host.

• HeaderFilter: The default behavior of OpenIG is to accept and forward all
headers. The HeaderFilter can be configured to add additional headers or
remove headers on both the HTTP request and the response. It can also be
configured to parse and set header values in OpenIG context to allow filters
access to the header attributes. This feature is used most commonly when
OpenIG is integrated with OpenAM and being fronted by a policy agent.

• AssignmentFilter: Sets values in the HTTP request and response.

• StaticRequestFilter: Creates and sends HTTP GET and POST requests. The
request can be formed using parameters from previous processing or statically
configured values.

• EntityExtractFilter: Searches for specific content with the body of the requests.
For example, it can be used to extract hidden form parameters in a login page,
which are needed in the login request.

• ExceptionFilter: Sends users to configured URLs when errors or exceptions
occur during request processing or user interactions.

• SwitchFilter: Conditionally diverts the exchange to another handler.

Configuration

8

• HttpBasicAuthFilter: Performs HTTP basic authentication to the target
application per RFC 2617.

• FileAttributesFilter: Looks up attributes in a flat file with the specified key.
The attributes are added to the exchange to be used by subsequent filters or
handlers.

• SqlAttributesFilter: Executes an SQL prepared statement with configured
parameters. The result is added to the exchange to be used by subsequent
filters or handlers.

2.2.7 Configuration

The configuration of OpenIG was designed to be very modular and self-contained.
Each module within OpenIG stores its configuration in JSON representation,
which is stored in flat files. The features of OpenIG can be configured by directly
manipulating the JSON flat files.

2.2.8 Heaplets

Every OpenIG module which has JSON configuration also has a Heaplet
associated with it. Each module's Heaplet is responsible for reading the JSON
configuration and creating that module's configuration in OpenIG's runtime
heap. Each module can then read its configuration from the heap as well as make
shared configuration information available to other modules.

2.2.9 Services

The Services model was designed to allow the integration of value added
features, such as Federation, without requiring them to be tightly bound to the
OpenIG implementation. SAML2 is the add on service shipping with OpenIG
today.

2.2.10 Federation Service (Federation Gateway)

When the Federation Service is enabled, OpenIG acts as the Service Provider in a
Circle of Trust with a SAML2 compliant Identity Provider. The Federation service
supports both IDP and SP initiated SAML2 profiles. The Federation Gateway
may be a Service Provider in the classic Federation use case where the IDP and
SP are different companies or domains. The OpenIG SP can also be a standards
based alternative to an OpenAM policy agent for internal enterprise applications
that want to move away from installing agents with web and web application
servers.

http://www.ietf.org/rfc/rfc2617.txt

9

Chapter 3

Getting Started

This chapter provides instructions to get OpenIG up and running on Jetty,
configured to execute the WordPress samples at our hosted WordPress
deployment. This allows you to quickly see how OpenIG works and provides
hands on experience with a few key features. If you are looking for more general
installation and configuration instructions for your deployment or would like to
use a container other than Jetty, start with the chapter on Installing OpenIG.

3.1 Before You Begin
For the remainder of this chapter, $HOME is the location of the home directory
of the user running the web application container, where Jetty, OpenIG and the
Samples are unpacked.

Make sure you have the correct Java environment installed. If necessary,
download and install Sun Java SE JDK 6 Update 21 or later. At this time these are
the only versions of any JDK supported with OpenIG.

3.2 Installation Steps
1. Download and if necessary unpack the gateway .war file.

2. Download and unzip the OpenIG sample configuration files.

3. Download and unzip Jetty 7.1.6 Hightide.

http://www.oracle.com/technetwork/java/javase/downloads/jdk6-jsp-136632.html
http://www.forgerock.org/openig.html
http://openig.forgerock.org/forgerock-sample-configs.zip
http://dist.codehaus.org/jetty/jetty-hightide-7.1.6/jetty-hightide-7.1.6.v20100715.zip

Installation Steps

10

4. Copy the OpenIG .war file as root.war to the webapps/ directory in Jetty.

When copied to this location along with the root.xml file below, Jetty
automatically deploys OpenIG on startup.

$ cp $HOME/gateway-*.war $HOME/jetty-hightide-7.1.6/webapps/root.war

5. Copy the WordPressLogin.json gateway configuration file to $HOME/.ForgeRock/
OpenIG/config.json. By default, OpenIG looks for config.json in the
$HOME/.ForgeRock/OpenIG/ directory.

$ cp $HOME/forgerock-sample-configs/WordPressLogin.json
 $HOME/.ForgeRock/OpenIG/config.json

6. Create $HOME/jetty-hightide-7.1.6/contexts/root.xml with the following
content. This tells Jetty to deploy OpenIG in the root context:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Configure PUBLIC "-//Jetty//Configure//EN"
 "http://www.eclipse.org/jetty/configure.dtd">
<Configure class="org.eclipse.jetty.webapp.WebAppContext">
 <Set name="contextPath">/</Set>
 <Set name="war"><SystemProperty name="jetty.home"
 default="."/>/webapps/root.war</Set>
 <Set name="extractWAR">true</Set>
 <Set name="copyWebDir">false</Set>
 <Set name="defaultsDescriptor"><SystemProperty name="jetty.home"
 default="."/>/etc/webdefault.xml</Set>
</Configure>

7. If you are managing multiple applications in one domain you must turn on
domain cookies in Jetty. This can be done by adding the following property
to $JETTY_HOME/contexts/root.xml or to $JETTY_HOME/etc/jetty.xml. Note
that any changes to jetty.xml impact all web applications running in the
container.

<Get name="sessionHandler">
 <Get name="sessionManager">
 <Set name="sessionDomain">.forgerock.com<Set>
 <Get>
<Get>

8. Start Jetty in the background:

$ $HOME/jetty-hightide-7.1.6/bin/jetty.sh start

Or start Jetty in the foreground:

$ java -jar $HOME/jetty-hightide-7.1.6/start.jar

Configuration Steps

11

3.3 Configuration Steps
So far you have deployed the gateway web application in the root context of Jetty
on port 8080. Since the gateway is a reverse proxy you must make sure all traffic
from your browser to http://demo.forgerock.com:8080/wordpress/ goes through
the gateway. The quickest way to do this is to add an entry to your /etc/hosts file
on UNIX systems or %SystemRoot%\system32\drivers\etc\hosts on Windows. See
Wikipedia for more information on host files. If you are running OpenIG and the
browser on the same host, add this entry to the hosts file on the OpenIG host.

127.0.0.1 demo.forgerock.com

If you are running the browser and OpenIG on separate hosts, you must add the
IP address of the host running OpenIG. For example, if OpenIG is running on a
host with IP Address of 10.0.1.5:

10.0.1.5 demo.forgerock.com

Tip

Some browsers cache IP address resolutions, even after clearing
all browsing data. It might be necessary to restart the browser
if you are changing IP addresses of named hosts. The simplest
way to make sure you have configured your DNS or host
settings properly is to stop OpenIG and make sure you cannot
reach the target application. If you can still reach it, you should
double check your host settings. You should also make sure your
name resolution is configured to check your host files before
DNS. This configuration can be found in /etc/nsswitch.conf for
most UNIX systems. Make sure files is listed before dns.

3.4 Try It Out
http://demo.forgerock.com:8080/wordpress should take you to the WordPress
portal hosted at ForgeRock. When you click the login link, you are automatically
logged in by OpenIG with the user name george.

What's happening behind the scenes?

When your browser goes to http://demo.forgerock.com:8080/wordpress/, it is
actually connecting to OpenIG deployed on Jetty. OpenIG is configured to proxy
all traffic it receives to the target application at http://demo.forgerock.com:8080/

http://en.wikipedia.org/wiki/Hosts_(file)
http://demo.forgerock.com:8080/wordpress/

Try It Out

12

wordpress/. For this example, OpenIG is watching for the login page from
WordPress. When it sees the login page, it creates and POSTs the login form for
WordPress on behalf of the user. Since this is just a sample, the credentials for
the user are hard coded in the gateway configuration file. In a real deployment,
the credentials may come from a database, directory, flat file, HTTP headers,
SAML assertion,or an OpenAM policy agent.

13

Chapter 4

Installing OpenIG

Before you install OpenIG, make sure you have the right version of Java, and
install and configure the web container.

• Make sure you have the correct Java environment installed.

$ java -version
java version "1.6.0_24"
Java(TM) SE Runtime Environment (build 1.6.0_24-b07-334-9M3326)
Java HotSpot(TM) 64-Bit Server VM (build 19.1-b02-334, mixed mode)

• Refer to the chapter on Configuring Deployment Containers to ensure you
have properly installed and configured your web application container and are
running a supported version of Java.

For the remainder of this chapter $HOME refers to the home directory of the user
running the web container where you install OpenIG.

Procedure 4.1. Download, Install, & Configure

1. Download and if necessary unpack the gateway .war file.

2. Deploy the .war to the root context of the web application container.

3. Copy the proxy and capture template. You can jump straight to a
configuration template that best matches your application, but it is highly
recommended you start with the basic proxy template.

http://www.forgerock.org/openig.html

14

4. Copy the template to $HOME/.ForgeRock/OpenIG/config.json. Replace the
TARGETIP tag in config.json with the IP address and port number of your
target application.

5. Modify DNS or host file settings so the name of your target application
resolves to the IP address of OpenIG. Be sure to restart your browser after
making this change.

6. Start the web container where OpenIG is deployed and browse to the target
application. OpenIG should now proxy all traffic to the application.

7. To ensure the browser is going through OpenIG, stop the OpenIG web
container, and verify you cannot reach the application. You can also look in
the OpenIG capture log to verify the traffic is going through OpenIG. The
location for this log is set in config.json, by default /tmp/gateway.log.

15

Chapter 5

Configuring Deployment Containers

This section provides installation and configuration tips. The following containers
are supported.

• Tomcat 6.x and 7.x

• Jetty 6.x and 7.x

• Glassfish 2.x and 3.x

• JBoss 5.x

• Weblogic 10.x

5.1 Tomcat
Tomcat reference links:

• Tomcat Documentation

• Configuring Tomcat for HTTPS

• Hardening Tomcat for production

Download and install Sun Java SE JDK 6 Update 21 or later. At this time these are
the only versions of any JDK supported with OpenIG.

http://tomcat.apache.org/tomcat-6.0-doc
http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html
http://www.owasp.org/index.php/Securing_tomcat
http://www.oracle.com/technetwork/java/javase/downloads/jdk6-jsp-136632.html

Tomcat & MySQL/
JNDI Configuration

16

Download and install Tomcat 6 or Tomcat 7.

$TOMCAT_HOME refers to the location where you have installed Tomcat.

Configure Tomcat to listen on the same port and protocol of the application you
are protecting with OpenIG. If your application listens on both an HTTP and an
HTTPS port you must configure Tomcat to do so as well. If you are installing to
run the samples you do not have to modify the Tomcat port configuration since
both the Tomcat default and the samples use port 8080.

To configure Tomcat to use a port other than 8080 modify the defaults in
$TOMCAT_HOME/conf/server.xml. The quickest way to do this is to search for the
default value of 8080 and replace it with the new port number.

5.1.1 Tomcat & MySQL/JNDI Configuration

If OpenIG accesses an SQL database you must configure Tomcat for JNDI. Once
you have Tomcat configured you must add the jar for the database, and set up
a JNDI data source and a reference to that data source in your web application.
The following steps are for the MySQL Connector/J.

Download the MySQL JDBC Driver Connector/J. Add it to the class path by
copying it to $TOMCAT_HOME/lib.

Add a JNDI data source for your MySQL server and database in $TOMCAT_HOME/
conf/context.xml.

<Resource name="jdbc/forgerock" auth="Container" type="javax.sql.DataSource"
 maxActive="100" maxIdle="30" maxWait="10000"
 username="admin" password="11111111" driverClassName="com.mysql.jdbc.Driver"
 url="jdbc:mysql://localhost:3306/databasename"/>

Add a resource reference to the data source in $TOMCAT_HOME/conf/web.xml.

<resource-ref>
 <description>MySQL Connection<description>
 <res-ref-name>jdbc/forgerock<res-ref-name>
 <res-type>javax.sql.DataSource<res-type>
 <res-auth>Container<res-auth>
<resource-ref>

5.1.2 Tomcat & Cookie Domains

If you use OpenIG for more than a single application and those applications are
on different hosts, you must configure Tomcat to set domain cookies. To do this
add the following to your $TOMCAT_HOME/conf/Catalina/server/root.xml file.

<Context sessionCookieDomain=".forgerock.com" />

http://tomcat.apache.org/download-60.cgi
http://tomcat.apache.org/download-70.cgi
http://tomcat.apache.org/tomcat-6.0-doc/jndi-resources-howto.html
http://dev.mysql.com/downloads/connector/j

Tomcat & SSL

17

5.1.3 Tomcat & SSL

To get Tomcat up quickly on an SSL port you can add an entry similar to the
following in $TOMCAT_HOME/conf/server.xml.

<Connector port="443" protocol="HTTP/1.1" SSLEnabled="true"
 maxThreads="150" scheme="https" secure="true"
 address="10.0.1.6"
 clientAuth="false" sslProtocol="TLS" keystorePass="11111111"/>

You must also have to make sure you have create a key store along with a self-
signed certificate. You can do that with the following UNIX command:

$ keytool -genkey -alias tomcat -keyalg RSA

5.2 Jetty
Jetty reference links:

• Jetty Documentation

• Running Jetty on port 80

• Deploying Web Applications

Download and install Sun Java SE JDK 6 Update 21 or later. At this time these are
the only versions of any JDK supported with OpenIG.

Download and install Jetty. The install directory is referred to as $JETTY_HOME from
now on.

Configure Jetty to listen on the same port and protocol of the application you are
protecting with OpenIG. If you are configuring OpenIG for the samples you do
not have to modify the Jetty port configuration since the default for Jetty is 8080
and the samples use port 8080.

To configure Jetty to use a port other than 8080 you must modify the default
$JETTY_HOME/etc/jetty.xml. The quickest way to do that is to search for the
default value of 8080 and replace it with the new port number. The simplest way
to get Jetty running on ports below 1024 is to run the Jetty process as root. This
is only appropriate for sample purposes. Do not run Jetty as root in production.

If the application your are protecting is configured on an HTTPS port, you must
configure Jetty for HTTPS as well.

If you are managing multiple applications in one domain you will need to turn
on domain cookies in Jetty. This can be done by adding the following property to

http://wiki.eclipse.org/Jetty/Starting
http://wiki.eclipse.org/Jetty/Howto/Port80
http://wiki.eclipse.org/Jetty/Howto/Deploy_Web_Applications
http://www.oracle.com/technetwork/java/javase/downloads/jdk6-jsp-136632.html
http://wiki.eclipse.org/Jetty/Starting/Downloads

JBoss

18

$JETTY_HOME/contexts/root.xml or to $JETTY_HOME/etc/jetty.xml. Note that any
changes to jetty.xml impact all web applications running in the container.

<Get name="sessionHandler">
 <Get name="sessionManager">
 <Set name="sessionDomain">example.com<Set>
 <Get>
<Get>

If OpenIG accesses an SQL database you must configure Jetty for JNDI or use the
Jetty Hightide distribution, which comes pre-configured for JNDI. Once you have
Jetty configured you must add the jar for the database, and set up a JNDI data
source and a reference to that data source in your web application. The following
steps are for the MySQL Connector/J.

Download the MySQL JDBC Driver Connector/J Add it to the Jetty class path by
copying it to $JETTY_HOME/lib/jndi.

Add a JNDI data source for your MySQL server and database in $JETTY_HOME/etc/
jetty.xml.

<New id="jdbc/forgerock" class="org.eclipse.jetty.plus.jndi.Resource">
 <Arg><Arg>
 <Arg>jdbc/forgerock<Arg>
 <Arg>
 <New class="com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource">
 <Set name="Url">jdbc:mysql://localhost:3306/databasename<Set>
 <Set name="User">mysqladmin<Set>
 <Set name="Password">11111111<Set>
 <New>
 <Arg>
<New>

Add a resource reference to the data source in $JETTY_HOME/etc/webdefault.xml.

<resource-ref>
 <description>My DataSource Reference<description>
 <res-ref-name>jdbc/forgerock<res-ref-name>
 <res-type>javax.sql.DataSource<res-type>
 <res-auth>Container<res-auth>
 <resource-ref>

5.3 JBoss
JBoss reference links:

• JBOSS 5 Documentation

• JBOSS 6 Documentation

• Admin Console Quick Start Guide

http://wiki.eclipse.org/Jetty/Feature/JNDI
http://docs.codehaus.org/display/JETTY/Hightide+Documentation
http://dev.mysql.com/downloads/connector/j
http://www.jboss.org/jbossas/docs/5-x
http://www.jboss.org/jbossas/docs/6-x
http://www.jboss.org/jbossas/docs/5-x/admin-console-quick-start.html

JBoss

19

Download and install Sun Java SE JDK 6 Update 21 or later. At this time these are
the only versions of any JDK supported with OpenIG.

Download and install the community version of JBoss 5.1. $JBOSS_HOME refers
to the location you have installed JBoss. The assumption in this chapter is that
you run the default server configuration.

Configure JBoss to listen on the same port and protocol of the application you
are protecting with OpenIG. If your application listens on both an HTTP and an
HTTPS port you must configure JBoss to do so as well. If you are installing to run
the samples you do not have to modify the JBoss port configuration since both the
Joss default and the samples use port 8080.

To configure JBoss to use a port other than 8080 modify server.xml under
your server configuration. For example, if you are using the default server
configuration, server.xml is $JBOSS_HOME/server/default/deploy/jbossweb.sar/
server.xml. The quickest way to do this is to search for the default value of 8080
and replace it with the new port number.

If OpenIG accesses an SQL database you must configure JBoss for JNDI. Once
you have JBOSS configured you must add the jar for the database, and set up a
JNDI data source and a reference to that data source in your web application.
The following steps are for the MySQL Connector/J.

Download the MySQL JDBC Driver Connector/J Add it to the JBoss class path by
copying it to $JBOSS_HOME/server/default/lib.

Add a JNDI data source for your MySQL server and database in $JBOSS_HOME/
server/default/deploy/mysql-ds.xml.

<datasources>
 <local-tx-datasource>
 <jndi-name>jdbc/forgerock<jndi-name>
 <connection-url>jdbc:mysql://localhost:3306/databasename<connection-url>
 <driver-class>com.mysql.jdbc.Driver<driver-class>
 <user-name>admin<user-name>
 <password>11111111<password>
 <min-pool-size>5<min-pool-size>
 <max-pool-size>20<max-pool-size>
 <idle-timeout-minutes>5<idle-timeout-minutes>
 <exception-sorter-class-name>
com.mysql.jdbc.integration.jboss.ExtendedMysqlExceptionSorter
 <exception-sorter-class-name>
 <valid-connection-checker-class-name>
com.mysql.jdbc.integration.jboss.MysqlValidConnectionChecker
 <valid-connection-checker-class-name>
 <local-tx-datasource>
<datasources>

Add a resource reference to the data source in $JBOSS_HOME/server/default/
deployers/jbossweb.deployer/web.xml.

http://www.oracle.com/technetwork/java/javase/downloads/jdk6-jsp-136632.html
http://sourceforge.net/projects/jboss/files/JBoss/JBoss-5.1.0.GA
http://dev.mysql.com/downloads/connector/j

JBoss

20

<resource-ref>
 <description>MySQL Connection<description>
 <res-ref-name>jdbc/forgerock<res-ref-name>
 <res-type>javax.sql.DataSource<res-type>
 <res-auth>Container<res-auth>
<resource-ref>

21

Chapter 6

Detailed Use Cases

This chapter diagrams and describes common use case request and response
flows.

6.1 Portal Application Login
The figure below illustrates a sample flow with a description of each request
from the browser to the back end application. This flow is taken from the Tutorial
With WordPress. Try the tutorial yourself to learn how OpenIG works. The Flat-
File attribute store contains only one set of credentials. OpenIG makes the
assumption this user is logging into the sample application. In a real deployment
OpenIG would look up the user credentials using its own session, a SAML2
assertion, or a header from an OpenAM policy agent. Use cases that follow show
examples of these types of deployments.

OpenAM Integration

22

1. User accesses the Portal.

2. Gateway intercepts request, finds no login page and passes it through.

3. Portal finds no local session and redirects to its login page for authentication.

4. Gateway intercepts the redirect, finds a match for the login page, fetches the
credentials from the flat file.

5. Gateway creates the login form and POSTs it to the Portal login page.

6. Portal validates the credentials and redirects to the user's home page.

7. Gateway passes the request through to the browser.

6.2 OpenAM Integration
The figure below illustrates OpenIG integrated into an OpenAM deployment.
In this deployment OpenIG is running in a container that is protected by an
OpenAM policy agent. The agent is configured to forward a header, with the
subject (user) of the single sign-on session, to OpenIG. OpenIG then uses the
subject as the login credentials, or uses the subject as a reference to look up the
login credentials in a database or directory. The HR application is integrated into
the SSO deployment without an agent or any modification to the application or its
deployment configuration.

Federation Gateway SP
Initiated SAML2 SSO

23

1. User browses to the Portal.

2. OpenAM plugin intercepts the request, finds no valid OpenAM session,
redirects the user to the OpenAM login pages.

3. OpenAM logs in the user and redirects back to the Portal.

4. OpenAM plugin finds a valid session, request goes through, OpenIG passes
the request through to the Portal.

5. Portal finds no local session, redirects to the Portal login page.

6. OpenIG inspects the redirect, finds a match for the login page, creates the
login form, and POSTs it to the Portal.

7. Portal validates the credentials and redirects to the Portal page.

8. Gateway passes the request through to the browser.

6.3 Federation Gateway SP Initiated SAML2 SSO
The figure below illustrates the OpenIG Federation Gateway providing SAML2
endpoint features acting as Service Provider in an SP initiated single sign-on

Federation Gateway SP
Initiated SAML2 SSO

24

configuration. In this sample, company myHR is an outsourced provider of HR
services and has started seeing increased demand for SAML2 support in their
core application. The companies to which they outsource are refusing proprietary
means of authentication and demanding the widely accepted SAML2 standard.
myHR is not in a position to modify their application to support SAML2 nor do
they have the time or money to integrate and deploy all of OpenAM. With OpenIG
Federation Gateway, myHR deploys OpenIG in front of their HR application,
configures it as a SAML2 endpoint for SP initiated SSO, and configures it to log
users into the HR application upon successful verification of the SAML2 assertion
from their customers.

1. The user accesses the HR application through a bookmark in the browser.

2. Federation Gateway inspects the request, no match is found for the HR
application's login page so the request goes through.

3. HR application finds no HR session, sends a redirect to its login page.

4. Federation Gateway intercepts the redirect, finds a match for the login page,
issues an SP initiated SSO SAML2 request to Company.com's IDP.

5. The IDP at Company.com receives the SAML2 AuthN request and
authenticates the user.

6. After authenticating the user the IDP sends a SAML2 POST to OpenIG.

Federation Gateway IDP
Initiated SAML2 SSO

25

7. Federation Gateway validates the assertion and makes the assertion
attributes available to the OpenIG login chain.

8. OpenIG login chain gets the user credentials and POSTs the login form to the
application.

9. The HR application verifies the credentials and redirects to its home page.

6.4 Federation Gateway IDP Initiated SAML2 SSO
The figure below illustrates the Federation Gateway providing SAML2
endpoint features acting as a Service Provider in a IDP initiated single sign-on
configuration.

1. User clicks the HR link on the company portal and is redirected to the
company IDP for authentication.

2. IDP sends an AuthN Response to the HR application.

3. Federation Gateway receives the POST, validates the assertion, and makes
the attributes available to the OpenIG login chain.

4. OpenIG login chain retrieves the user credentials and POSTs the login form to
the myHR application.

5. HR application validates the credentials and redirects to the main page of the
application.

6.5 Standards Based SAML2 Agent

Standards Based SAML2 Agent

26

The figure below illustrates the Federation Gateway as a standards based
replacement for OpenAM policy agents.

1. The user accesses an internal Payroll application.

2. Federation Gateway inspects the request, no match is found for the Payroll
application's login page so the request goes through.

3. Payroll application finds no Payroll session, sends a redirect to its login page.

4. Federation Gateway intercepts the redirect, finds a match for the login page,
issues an SP initiated SSO SAML2 request to OpenAM at Company.com.

5. OpenAM at Company.com receives the SAML2 AuthN and authenticates the
user.

6. After authenticating the user OpenAM sends a SAML2 POST to OpenIG.

7. Federation Gateway validates the assertion and makes the assertion
attributes available to the OpenIG login chain.

8. OpenIG login chain gets the user credentials and POSTs the login form to the
application.

9. The Payroll application verifies the credentials and redirects to its home page.

27

Chapter 7

Tutorial With WordPress

This tutorial gives you hands on experience with the basic features of OpenIG.
You install the Gateway in your network and point it to an installation of the
WordPress Portal hosted at http://demo.forgerock.com:8080/wordpress. The
tutorial progresses through the following steps and explains what is happening
by walking you through OpenIG configuration.

• Pure reverse proxy mode to the Portal

• Login with hard coded credentials

• Login with credentials from a flat file

• Login with credentials from MySQL

Before you begin the tutorial, read the chapter on How OpenIG Works.

7.1 Detailed Flow
The figure and the steps below detail the flow between the browser, OpenIG and
the portal for a basic login sequence to the portal. The key concept to understand
is all requests to the application are routed through OpenIG by modifying the
DNS entry for the target application. OpenIG can then be configured to intercept
specific pages, such as login pages, and create requests to log the user in.

http://demo.forgerock.com:8080/wordpress

Setup Summary

28

1. User browses to the Portal, browser host makes a DNS request to get the IP
address for demo.forgerock.com, DNS returns the IP address of OpenIG.

2. Browser sends the request to OpenIG.

3. OpenIG inspects the request, finds no login page match.

4. OpenIG forwards the original request to the Portal.

5. Portal finds no local application session and redirects to the Portal login page.

6. OpenIG intercepts the redirect, inspects the request, finds a login page
match.

7. OpenIG creates the login form.

8. OpenIG POSTs the login form to the Portal.

9. Portal validates the login and redirects to the Portal end user page.

10. OpenIG receives the final redirect and passes it back to the Browser.

7.2 Setup Summary
To keep things simple, these instructions assume you are running OpenIG and
the Browser on a single host. If they are on separate hosts, make sure the host or

Installing OpenIG

29

DNS changes impact the Browser host. This tutorial also assumes Jetty 7 for the
container, but you can use any supported container.

• OpenIG IP address 10.0.1.1 (substitute your OpenIG's IP address)

• Jetty 7 listening on port 8080

• OpenIG deployed under the root context

• DNS or /etc/hosts pointing demo.forgerock.com to 10.0.1.1 (substitute your
OpenIG's IP address)

7.3 Installing OpenIG
See Getting Started for instructions, and have your container listen on port 8080.

7.4 Configuring the Browser Host
With OpenIG running, configure the browser to go through OpenIG to get to
the Portal. To do this we need to modify DNS or /etc/hosts so demo.forgerock.
com points to the IP address of the host running OpenIG. If you are using /etc/
hosts be sure to check that the naming services for your host check checking files
before DNS. On UNIX systems this is configured in /etc/nsswitch.conf. Assuming
OpenIG is running on 10.0.1.1, the /etc/hosts entry should be the following:

10.0.1.1 demo.forgerock.com

Before continuing please verify your name to IP address changes are working
properly. The simplest way to do this is to ping demo.forgerock.com. You should
see the following if you have properly configured your name to IP mapping:

$ ping demo.forgerock.com
ping demo.forgerock.com
PING demo.forgerock.com (10.0.1.1): 56 data bytes
64 bytes from 10.0.1.1: icmp_seq=0 ttl=64 time=0.053 ms

If the ping command returns the actual address of demo.forgerock.com, you need
to recheck your settings.

7.5 Configuring OpenIG & Trying It Out
For the remainder of this document, $HOME refers to the location where you
unzipped your sample configuration files.

Login with Hard
Coded Credentials

30

Download and unzip the sample configuration files. If you installed through quick
start you already have the configuration files downloaded and installed.

Copy WordPressProxyOnly.json to $HOME/.ForgeRock/OpenIG/config.json.
By default, OpenIG looks for $HOME/.ForgeRock/OpenIG/config.json for its
configuration. You must restart the OpenIG container when making any change
to the configuration file.

$ cp $HOME/forgerock-sample-configs/WordPressProxyOnly.json
 $HOME/.ForgeRock/OpenIG/config.json
$ jetty.sh restart

To try out the first sample browse to http://demo.forgerock.com:8080/wordpress.
You should see the WordPress Portal home page. If you click on the login link
you should be prompted to login to the application as if you were accessing
it directly. To verify you are actually going through OpenIG, stop the OpenIG
container, refresh your browser and try to access the application again. If you
still see the application, make sure your DNS or host files are configured to
point to OpenIG instead of the Portal. You can login to the Portal with user name
george and password costanza. The next section shows how to configure OpenIG
to intercept the login page and automatically log you in when it sees that you
have clicked the login link.

To see what is happening behind the scenes, take a look at $HOME/.ForgeRock/
OpenIG/config.json. Look for the HandlerServlet. This is the servlet entry point to
OpenIG. The HandlerServlet passes the request off to another handler which may
be a chain of filters and handlers. In the pure proxy case there is no special logic
to execute so it hands off to the ClientHandler. The job of the ClientHandler is
to send the request on to the target. Since there are no chains called before the
ClientHandler, the request passes through to the target untouched.

7.6 Login with Hard Coded Credentials
Now that OpenIG can proxy all traffic to and from the application, the next step is
to configure OpenIG to intercept the login page, and POST the login form to the
Portal.

$ cp $HOME/forgerock-sample-configs/WordPressLogin.json
 $HOME/.ForgeRock/OpenIG/config.json
$ jetty.sh restart

As you changed the OpenIG configuration file, you must restart the
OpenIG container. After restarting you should be able to go to http://
demo.forgerock.com:8080/wordpress, click on the login link, and be logged in as
the user george without entering your credentials. OpenIG has intercepted the
request for the login page, created the login form, and POSTed the request to the
Portal.

http://openig.forgerock.org/forgerock-sample-configs.zip
http://demo.forgerock.com:8080/wordpress
http://demo.forgerock.com:8080/wordpress
http://demo.forgerock.com:8080/wordpress

Login with Credentials
From a Flat File

31

To see what is happening behind the scenes, take a look at $HOME/.ForgeRock/
OpenIG/config.json. This time you notice the HandlerServlet is calling
the DispatchHandler. The DispatchHandler has a condition which checks
for the presence of wp-login.php (the login page) in the URI path. If the
condition is false (no login page), the ClientHandler is called sending the
request on to the Portal. If the condition is true, OpenIG has found the login
page, and calls the LoginChain for further processing. The LoginChain calls
its filter, the LoginRequestFilter, which creates the login form, and then
calls the ClientHandler to send the form to the Portal. If you look at the
LoginRequestFilter, you notice it defines the method, URI, and form parameters
for the request which is sent by the ClientHandler. In the form parameters you
see the hard coded credentials, which are used to log you in as the user george.

7.7 Login with Credentials From a Flat File
Hard coding login credentials is great for a sample, but not realistic when it
comes to a production deployment. In this next section you see how OpenIG
can be configured to fetch the user's credentials from an external source,
such as a directory or a database. For this sample, you use a flat file and the
FileAttributesFilter. The key to look up the user in the flat file is hard coded, but
you can understand how the key could come from something in the incoming
request, such as an HTTP header, a session cookie, or even a SAML assertion.

For this sample you must modify the file attribute in the FileAttributesFilter
object in config.json to reflect the location of the sample flat file. The location of
the user file shipped with the samples is forgerock-sample-configs/userfile.

$ cp $HOME/forgerock-sample-configs/WordPressLoginFile.json
 $HOME/.ForgeRock/OpenIG/config.json
$ jetty.sh restart

After restarting the container, check that you can go to http://
demo.forgerock.com:8080/wordpress and be logged in as the user george without
seeing the login page. To verify the login credentials are being picked up from
the flat file, change george's password, restart OpenIG, and try the login page
again. You should get a login failed page. If you would like to log in as a different
user, look for the value attribute in config.json, replace george@seinfeld.com with
kramer@seinfeld.com. Both george and kramer have accounts on the Portal so you
can log in with either.

To see what is happening behind the scenes, take a look at $HOME/.ForgeRock/
OpenIG/config.json. For this sample, you added one additional filter to the
LoginChain and made a slight modification to the LoginRequestFilter. Take a
look at the LoginChain and you can see the filters attribute now has the value
of ["FileAttributesFilter","LoginRequestFilter"]. When the LoginChain is
executed the FileAttributesFilter will be called prior to the LoginRequestFilter.

http://demo.forgerock.com:8080/wordpress
http://demo.forgerock.com:8080/wordpress

Login with Credentials
From MySQL

32

The FileAttributesFilter sets the results of its lookup in the Exchange accessible
through the Expressions ${exchange.credentials.xxx} where xxx is the name of
any one of the values from the flat file. Now take a look at the form attribute
in the LoginRequestFilter. The hard coded values for log and password have
been replaced with ["${exchange.credentials.username}"] and ["${exchange.
credentials.password}"].

7.8 Login with Credentials From MySQL
This sample fetches the login credentials from MySQL. You must have access to
an instance of MySQL in order to execute this sample. If you do not have access
or just want to see how the SqlAttributesFilter works, just read the rest of this
section.

For this sample you must configure your container for JNDI and MySQL. See the
chapter on Configuring Deployment Containers for instructions on configuring
containers for use with JNDI and MySQL. You also must create an entry for a
user and create a query which returns a result with user name and password
attributes. The query in the sample assumes there is a table named users, with
attributes username and password. The parameter passed into the prepared
statement is email=george@seinfeld.com.

$ cp $HOME/forgerock-sample-configs/WordPressLoginSQL.json
 $HOME/.ForgeRock/OpenIG/config.json
$ jetty.sh restart

To see what is happening behind the scenes, take a look at $HOME/.ForgeRock/
OpenIG/config.json. For this sample, you replaced the FileAttributesFilter with
the SqlAttributesFilter. The only difference between the filters is how they
retrieve the attribute value pairs to set in the Exchange. Once the values are set
in the Exchange, the LoginRequestFilter accesses them in the exact same way.

33

Chapter 8

Tutorial On OpenAM Password
Capture & Replay

This tutorial walks you through an OpenAM integration with OpenAM's password
capture and replay feature. This feature of OpenAM is typically used to integrate
with Outlook Web Access or Sharepoint by capturing the password during
OpenAM authentication, encrypting it, adding to the session, which is later
decrypted and used for Basic Authentication to OWA or Sharepoint. This tutorial
shows how you can configure OpenIG to use the user name and password from
the OpenAM Authentication to log the user into WordPress. This is also how you
would achieve OWA or Sharepoint integration.

8.1 Detailed Flow
The figure below illustrates the flow of requests for a user logging into OpenAM
and then being logged into WordPress with the user name and password from the
OpenAM login session.

Detailed Flow

34

1. User authenticates to OpenAM establishing a session, OpenAM is configured
to capture the password, encrypt it, and then store it in the user's session.

2. User browses to a WordPress page requiring authentication.

3. OpenAM Agent intercepts the request, validates the user session, and
populates HTTP headers with the user name and encrypted password from
the session.

4. Agent passes the original request with populated headers to OpenIG.

5. OpenIG inspects the request, does not find a match for the WordPress login
page, so forwards the request on.

6. WordPress finds no application session and redirects to its login page.

7. OpenIG intercepts, sees the login page, creates the login form with the user
name and decrypted password from the headers inserted by the Agent.

8. WordPress validates the login form, returns an application session and the
user's home page.

9. WordPress home page returned to the user.

Setup Summary

35

8.2 Setup Summary
OpenAM is installed on http://www.idp.com:8888/openam. WordPress hosted
on the ForgeRock demo site at http://demo.forgerock.com:8080/wordpress,
populated with a sample user george with password costanza. OpenIG is deployed
on an instance of Tomcat protected by an OpenAM J2EE agent. The J2EE agent is
configured for cross domain SSO, and to add the user name and replay password
headers to the HTTP requests.

8.3 Setup Details
This section assumes you are familiar with the components involved.

8.3.1 OpenAM server

Install and configure OpenAM on http://www.idp.com:8888/openam with the
default configuration. You can install OpenAM with your configuration, but be
sure to substitute in the tutorial accordingly.

Create a sample user with user name george and password constanza.

To test, startup OpenAM and make sure you can login with the user name george
and password constanza.

8.3.2 Tomcat Agent Profile

Create the J2EE agent profile with the following settings:

• Server URL http://www.idp.com:8888/openam

• Agent URL http://demo.forgerock.com:8080/agentapp

• Under Global settings change the Agent filter mode from ALL to SSO_ONLY

• Under Application > Session Attributes Processing change the Session
Attribute Fetch Mode from none to HTTP_Header

• Under Application > Session Attributes Processing > Session Attribute
Mappings add UserToken=username and sunIdentityUserPassword=password

• Under SSO > Cross Domain SSO select the Enabled checkbox. If you have
installed OpenAM in the forgerock.com domain you do not need to enable cross
domain SSO.

http://demo.forgerock.com:8080/wordpress

Password Capture Configuration

36

8.3.3 Password Capture Configuration

• In the OpenAM console under Access Control > Realm > Authentication click
"All Core Settings" and add com.sun.identity.authentication.spi.ReplayPasswd
to the Authentication Post Processing Classes.

• Run java -classpath amserver.jar:opensso-sharedlib.jar
com.sun.identity.common.DESGenKey to generate a shared key for the
OpenAM Authentication plugin and OpenIG. As an example, if you have
OpenAM installed under $HOME on Tomcat you would run the command
java -classpath $HOME/tomcat7/webapps/openam/WEB-INF/lib/amserver.jar:
$HOME/tomcat7/webapps/openam/WEB-INF/lib/opensso-sharedlib.jar
com.sun.identity.common.DESGenKey.

• In the OpenAM console under Configuration > Servers and Sites click on your
server name, go to Advanced and add com.sun.am.replaypasswd.key with the
value of the key generated in the previous step.

You must restart the OpenAM server after changing Advanced properties.

8.3.4 Tomcat Installation

Install on OpenIG host listening on port 8080.

/etc/hosts or equivalent with a mapping of demo.forgerock.com to 127.0.0.1.
This example assumes the browser and OpenIG are on the same host. If the
browser is on a different host you must create a mapping so that all requests to
demo.forgerock.com are resolved to the OpenIG host.

To test, startup Tomcat and make sure you can browse to http://
demo.forgerock.com:8080 and get the Tomcat home page. If you get a
different page, then you have not modified your host file settings correctly.
demo.forgerock.com should resolve to either localhost or the host OpenIG where
is running.

8.3.5 Policy Agent installation

Install on the OpenIG host on Tomcat at http://demo.forgerock.com:8080

OpenSSO server URL: http://www.idp.com:8888/openam

Install agent filter in global web.xml true

Agent URL: http://demo.forgerock.com:8080/agentapp

To test, startup Tomcat and browse to the request headers example at http://
demo.forgerock.com:8080/examples/servlets/servlet/RequestHeaderExample.

Gateway Configuration

37

You should be redirected to OpenAM for authentication. Once logged in as user
george with password constanza you should be redirected back to the examples
page and be able to see the user name and replay password headers. The user
name header should be george, the password header should be encrypted.

8.3.6 Gateway Configuration

See Installing OpenIG for instructions, and have your container listen on port
8080. Install OpenIG in the root context by removing the existing root context
directory $HOME/tomcat/webapps/ROOT/ and then renaming the OpenIG .war to
$HOME/tomcat/webapps/ROOT.war.

Download the WordPressDecryptHeaderLogin.json configuration file, and use it
to replace $HOME/.ForgeRock/OpenIG/config.json.

Search for and replace DESKEY with the key generated when you enabled the
password capture feature in OpenAM.

Restart OpenIG after making changes to config.json.

8.3.7 Trying It Out

Browse to WordPress. If you are not already logged into OpenAM you should
be redirected to the OpenAM login page. You should login with user name
george and password constanza. After login you should be redirected back to the
WordPress portal homepage. Now click on the login link and OpenIG logs you in
as George Costanza.

To see what is happening behind the scenes, take a look at $HOME/.ForgeRock/
OpenIG/config.json. Look for the HandlerServlet. This is the servlet entry point
to OpenIG. Notice it is calling the DispatchHandler. The DispatchHandler has a
condition which checks for the presence of wp-login.php (the login page) in the
URI path. If the condition is false (no login page), the ClientHandler is called
sending the request on to the WordPress. If the condition is true, the Gateway
has found the login page, and calls the LoginChain for further processing. The
LoginChain calls its filters, the CryptoFilter, which looks for the replay password
header and decrypts it, the LoginRequestFilter, which creates the login form,
and then calls the ClientHandler to send the form to the WordPress. If you look
at the LoginRequestFilter, you notice it defines the method, URI, and form
parameters for the request which is sent by the ClientHandler. In the form
parameters you see the user name and password retrieved from the user name
and replay password headers in the HTTP request. These headers are created
by the OpenAM agent from the user's OpenAM session and the replay password
header is decrypted by the CryptoFilter prior to the LoginRequestFilter being
executed.

http://openig.forgerock.org/WordPressDecryptHeaderLogin.json

38

39

Chapter 9

Using the Federation Gateway

The Federation component of OpenIG is a standards based authentication service
used by OpenIG to validate a user and retrieve key attributes of the user in order
to log them into the target applications.

There are two ways the Federation Service can be invoked:

1. IDP initiated SSO, where the remote Identity Provider sends an unsolicited
Authentication statement to OpenIG

2. SP initiated SSO where OpenIG calls the Federation Service to initiate
Federated SSO with the Identity provider

In either case, the job of the Federation Service is to validate the user and pass
the required attributes to OpenIG to log the user into target applications.

See the Tutorial For the Federation Gateway for hands on experience with the
Federation Gateway.

9.1 Installation Overview
This section is a summary of the steps needed to prepare OpenIG to act as a
Federation endpoint for your target application.

• Install the OpenIG Federation .war.

Configuration File Overview

40

• Configure OpenIG to log users into the target application. Getting this to work
before configuring Federation makes the process much simpler to troubleshoot
if anything goes wrong.

• Add Federation configuration to the OpenIG configuration file.

• Add the assertion and subject mappings, optional redirect URI and optional
logout URI to the Federation configuration.

• Export the Identity Provider MetaData from the remote Identity Provider or use
the meta data from the OpenAM generated fedlet.

• Import OpenIG metadata to your Identity Provider.

9.2 Configuration File Overview
The Federation service is configured by modifying the OpenIG config.json and
Federation specific XML files located in the home directory of the effective user
running the web application container housing OpenIG. The home directory
of this user is referred to as $HOME_DIR in this document. By default, the
Federation service looks in $HOME_DIR/.ForgeRock/OpenIG/ for config.json and
$HOME_DIR/.ForgeRock/SAML/ for the Federation XML configuration.

The following is a description of the files:

$HOME_DIR/.ForgeRock/OpenIG/config.json

This is the core configuration file for OpenIG. You must configure both this
file and the XML files specific to the Federation Service. The reason there
are two sets of configuration files is the Federation Service is based on the
openFed library from the OpenAM open source project. The openFed library
and the Federation configuration files are taken directly from the OpenFM
release. In order to get the Federation Service configured you must tag
swap the XML files. If you are familiar with the workflow in the OpenAM
console you can generate a Fedlet and directly copy the configuration files
into $HOME_DIR/.ForgeRock/SAML/.

$HOME_DIR/.ForgeRock/SAML/FederationConfig.properties

Advanced features of the openFed library. The defaults suffice in most
deployments.

$HOME_DIR/.ForgeRock/SAML/gateway.cot

Circle of trust for OpenIG and the Identity Provider.

Configuring the Federation Service

41

$HOME_DIR/.ForgeRock/SAML/idp.xml

This file is not included with the Federation Service XML. It must be
generated by the Identity Provider and copied into the configuration
directory.

$HOME_DIR/.ForgeRock/SAML/idp-extended.xml

Standard extensions for the Identity Provider.

$HOME_DIR/.ForgeRock/SAML/sp.xml
$HOME_DIR/.ForgeRock/SAML/sp-extended.xml

These are the standard metadata and metadata extensions for the OpenIG
Federation Service.

9.3 Configuring the Federation Service
The simplest way to configure the OpenIG Federation Gateway is to use the
OpenAM task wizard to generate a Fedlet and then use the Fedlet configuration
files in the Gateway configuration directory. If you use the Fedlet configuration
files, simply unpack Fedlet.war and copy all the files listed above into
$HOME_DIR/.ForgeRock/SAML/. You do not have to modify the files to do basic IDP
and SP initiated SSO with OpenIG. Note that the sample Federation Gateway
config.json templates uses /saml as the URI so your Fedlet endpoint should be
specified as protocol://host.domain:port/saml.

If you do not use the Fedlet wizard, then follow the instructions for the
unconfigured Fedlet and then copy the Fedlet configuration files to the
$HOME_DIR/.ForgeRock/SAML/ directory. You must also export the metadata from
the IDP and copy it to idp.xml in the same directory.

9.4 Config.json Sample
The following sample configuration is from the tutorial on federating WordPress.
The sample configuration receives a SAML assertion from OpenAM and then logs
the user into WordPress using the user name and password from the assertion.

The following excerpt of the Federation Service JSON is from the OpenIG
config.json file. All fields are mandatory except logoutURI. The logoutURI is only
necessary if your configuration uses the single logout feature.

Config.json Sample

42

{
 "name": "FederationServlet",
 "type": "org.forgerock.openig.saml.FederationServlet",
 "config": {
 "assertionMapping": {
 "userName":"uid",
 "password":"userPassword"
 },
 "subjectMapping":"subjectName",
 "sessionIndexMapping":"sessionIndex",
 "redirectURI":"/login",
 "logoutURI":"/logout"
 "assertionConsumerEndpoint":"fedletapplication",
 "SPinitiatedSSOEndpoint":"SPInitiatedSSO",
 "singleLogoutEndpoint":"fedletSlo"
 }
}

name

Name of the Federation Service within the OpenIG runtime. This value
should not be modified.

type

Classname of the Federation Servlet. This value should not be modified.

asertionMapping

The assertionMapping defines how to transform the attributes from the
incoming assertion to attribute value pairs in the session. Each entry in the
assertionMapping is of the form attributeName:assertionName. The attributeName
represents the name of the attribute set in the session. The assertionName is
used to fetch the value from the incoming assertion, which becomes the value
in the session. The following statements correspond to the sample shown
above.

If the incoming assertion contains the statement:

uid = jojo

userPassword = 123456789

Then the following values are set in the session:

userName = jojo

password = 123456789

Notice that you must also modify attributeMap in the $HOME_DIR/.ForgeRock/
SAML/sp-extended.xml to match the assertion mapping configured in the IDP
metadata.

Example Settings

43

subjectMapping

The value contained in the assertion subject is set as the value of the
attribute subjectName in the session.

redirectURI

The redirectURI should be set to the page the Form-Filter recognizes as the
login page for the target application. This is how OpenIG and the Federation
service work together to provide single sign-on. When OpenIG detects the
target application's login page, it redirects to the Federation Service. Once
the Federation Service validates the SAML exchanges with the IDP and sets
the required session attributes, it redirect back to the target application's
login page. This allows the Form-Filter to finish the job of logging in the user
by retrieving the necessary user data from the session and creating a login
form for the application.

logoutURI

The logoutURI should be set to the URI which logs the user out of the target
application. This attribute is only needed if your application uses the single
log-out feature of the Identity Provider.

assertionConsumerEndpoint

The default value of fedletapplication is the same as the Fedlet. If you
modify this attribute you must change the metadata to match.

SPinitiatedSSOEndpoint

The default value is SPInitiatedSSO. If you modify this attribute you must
change the metadata to match.

singleLogoutEndpoint

The default value of fedletSLO is the same as the Fedlet. If you modify this
attribute you must change the metadata to match.

9.5 Example Settings
Application myportal requires a form with userName and password for login.
The userName for myportal is the mail attribute at the user's Identity Provider.
The password for myportal is the mailPassword at the Identity Provider. The
incoming SAML2 assertion sent by the Identity Provider contains the mail
and mailPassword attributes. The Federation Service validates the incoming
assertion, sets the userName and password in the HttpSession to the values of
mail and mailPassword from the assertion, and redirects the user to /myportal/

Identity Provider Metadata

44

login. The LoginRequest Filter then retrieves the login values from the session
and creates the form to log the user into myportal.

{
 "name": "FederationServlet",
 "type": "org.forgerock.openig.saml.FederationServlet",
 "config": {
 "assertionMapping": {
 "userName":"mail",
 "password":"mailPassword"
 }
 "redirectURI":"/myportal/login",
 "logoutURI":"/myportal/logout"
 }
}

{
 "name": "LoginRequest",
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "https://10.10.0.5/login",
 "form": {
 "userName": [${exchange.session.userName}],
 "password": [${exchange.session.password}],
 }
 }
}

9.6 Identity Provider Metadata
The Identity Provider metadata must be in $HOME_DIR/.ForgeRock/SAML/idp.xml
directory. See the documentation for your Identity Provider for instructions on
how to get the metadata.

To export Identity Provider metadata from OpenAM, run a command such as the
following.

$ ssoadm
 export-entity
 -u amadmin
 -f /tmp/pass
 -y http://www.idp.com:8080/openam
 -m /tmp/idp.xml

45

Chapter 10

Tutorial For the Federation Gateway

This tutorial expands on the Tutorial With WordPress by showing you how
to configure OpenIG as a SAML2 Federation endpoint to log the user into
WordPress. When you complete this tutorial you will have configured OpenAM
to send a SAML2 assertion to OpenIG and configured OpenIG to validate the
assertion and to use the mail and employeenumber attribute values from the
assertion to log the user into WordPress.

10.1 Before You Start
Follow the Tutorial With WordPress, and make sure you can login to WordPress
before continuing this tutorial.

10.2 Configuring OpenAM
For this sample and the test URIs, OpenAM is configured on http://www.
idp.com:8888/openam. You can of course use any configuration, but be sure to
substitute the proper values for the test URLs.

Use the OpenAM Console task wizard to create a Fedlet with the Name gateway
and the Destination URL http://demo.forgerock.com:8080/saml. Configure the
Attributes Mapping to contain the mail and employeenumber attributes.

Create a user with mail attribute george and employeenumber costanza.

Configuring OpenIG
For Federation

46

10.3 Configuring OpenIG For Federation
Download the Federation to WordPress Sample Config File and copy it to
$HOME/.ForgeRock/OpenIG/config.json, overwriting the config.json from the
WordPress tutorial.

Assuming Fedlet.zip from the previous step is found in $HOME/openam/myfedlets/
Fedlet.zip extract the Fedlet configuration files using the following commands:

$ cd $HOME/openam/myfedlets
$ unzip Fedlet.zip
$ jar xvf Fedlet.war conf

Create a $HOME/.ForgeRock/SAML/ directory, and copy the Fedlet configuration to
the new directory.

$ mkdir $HOME/.ForgeRock/SAML
$ cp conf/* $HOME/.ForgeRock/SAML
$ ls $HOME/.ForgeRock/SAML
FederationConfig.properties idp-extended.xml sp-extended.xml
fedlet.cot idp.xml sp.xm

10.4 Trying It Out
For IDP initiated SSO click this link

For SP initiated SSO either browse to http://demo.forgerock.com:8080/
wordpress/ and click the login link, or click this link

To understand what is happening behind the scenes, take a look at
$HOME/.ForgeRock/OpenIG/config.json. The HandlerServlet is no longer the entry
point to OpenIG processing. If you look for the servletObject at the end of the
file you see the HandlerServlet has been replaced by the DispatchServlet. The
DispatchServlet provides an internal routing mechanism based on the incoming
URI. The DispatchServlet looks at the incoming URI and dispatches to the
FederationServlet when the SAML URI is found, otherwise it dispatches to the
HandlerServlet as in the previous sample. This allows the FederationServlet
to process the incoming assertion, set the attributes from the assertion in the
HTTPSession, which then allows the normal chain of filter processing, through
the HandlerServlet, to pick up the credentials and log the user into the target
application.

http://openig.forgerock.org/FederationWordpress.json
http://www.idp.com:8888/openam/idpssoinit?NameIDFormat=urn:oasis:names:tc:SAML:2.0:nameid-format:transient&metaAlias=/idp&spEntityID=gateway&binding=urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST
http://demo.forgerock.com:8080/wordpress/
http://demo.forgerock.com:8080/wordpress/
http://demo.forgerock.com:8080/saml/SPInitiatedSSO?metaAlias=/sp&idpEntityID=http://www.idp.com:8888/openam&binding=urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST

47

Chapter 11

Configuration Templates

This chapter contains templates of common configurations. Start with one of
our templates and then modify to suit your deployment. Read the summary of
each template to find the right match for your application. If you are not sure
about the characteristics of your application, start with the basic Application
Capture template. This template allows you to setup basic proxying and capture
the traffic of the login sequence in a flat file, which then allows you to analyze
the application and subsequently choose the right template or add your own
configuration.

Note

• All templates have the CaptureFilter enabled by default.
Remove the capture filter from the outgoing chain before
running the gateway in production. Capturing is typically used
only for initial development or debugging and may rapidly fill
up your available disk space if left enabled.

• Substitute the TARGETIP tag with the IP address of your
application.

• Modify the LoginRequest filter to match the form required for
login by your target application.

Proxy & Capture

48

11.1 Proxy & Capture
Proxies all requests and captures them in a flat file. Use this template if you need
to analyze the traffic for your application. Simply change the baseURI to be that
of the target application, restart OpenIG, and login to the application. The entire
sequence is logged to the flat file.

Proxy & Capture

49

{
 "heap": {
 "objects": [
 {
 "name": "HandlerServlet",
 "comment": "Transforms Servlet request to handler request.",
 "type": "HandlerServlet",
 "config": {
 "handler": "DispatchHandler"
 }
 },
 {
 "name": "DispatchHandler",
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${exchange.request.uri.scheme == 'http'}",
 "handler": "OutgoingChain",
 "baseURI": "http://TARGETIP"
 },
 {
 "condition": "${exchange.request.uri.path == '/login'}",
 "handler": "LoginChain",
 "baseURI": "https://TARGETIP"
 },
 {
 "handler": "OutgoingChain",
 "baseURI": "https://TARGETIP"
 }
]
 }
 },
 {
 "name": "LoginChain",
 "type": "Chain",
 "config": {
 "filters": [],
 "handler": "OutgoingChain"
 }
 },
 {
 "name": "OutgoingChain",
 "type": "Chain",
 "config": {
 "filters": [
 "CaptureFilter"
],
 "handler": "ClientHandler"
 }
 },
 {
 "name": "CaptureFilter",
 "type": "CaptureFilter",
 "config": {
 "captureEntity": false,
 "file": "/tmp/gateway.log"
 }
 },
 {
 "name": "ClientHandler",
 "comment": "Sends all requests to remote servers.",
 "type": "ClientHandler",
 "config": {}
 }
]
 },
 "servletObject": "HandlerServlet"
}

Simple Login Form

50

11.2 Simple Login Form
Logs the user into the target application with hard-coded user name and
password. This template intercepts the login page request and replaces it with
the login form.

Simple Login Form

51

{
 "heap": {
 "objects": [
 {
 "name": "HandlerServlet",
 "comment": "Entry point that transforms Servlet request to handler request.",
 "type": "HandlerServlet",
 "config": {
 "handler": "DispatchHandler",
 "baseURI":"http://TARGETIP"
 }
 },
 {
 "name": "DispatchHandler",
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${exchange.request.uri.path == '/login'}",
 "handler": "LoginChain",
 },
 {
 "handler": "OutgoingChain",
 },
]
 }
 },
 {
 "name": "LoginChain",
 "type": "Chain",
 "config": {
 "filters": ["LoginRequest"],
 "handler": "OutgoingChain"
 }
 },
 {
 "name": "LoginRequest",
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "https://TARGETIP/login",
 "form": {
 "USER": ["myusername"],
 "PASSWORD": ["mypassword"],
 }
 }
 },
 {
 "name": "OutgoingChain",
 "type": "Chain",
 "config": {
 "filters": ["CaptureFilter"],
 "handler": "ClientHandler"
 }
 },
 {
 "name": "CaptureFilter",
 "type": "CaptureFilter",
 "config": {
 "captureEntity": false,
 "file": "/tmp/gateway.log",
 }
 },
 {
 "name": "ClientHandler",
 "comment": "Responsible for sending all requests to remote servers.",
 "type": "ClientHandler",
 "config": {
 }
 }
]
 },
 "servletObject": "HandlerServlet",
}

Login Form With Cookie
From Login Page

52

11.3 Login Form With Cookie From Login Page
For applications that expect a cookie from the login page to be sent in the login
request form. This templates allows the login page request to go through to
the target, intercepts the response, then creates the login form and adds the
intercepted cookie to the POST.

Login Form With Cookie
From Login Page

53

{
 "heap": {
 "objects": [
 {
 "name": "HandlerServlet",
 "comment": "Entry point that transforms Servlet request to handler request.",
 "type": "HandlerServlet",
 "config": {
 "handler": "DispatchHandler",
 "baseURI":"http://TARGETIP"
 }
 },
 {
 "name": "DispatchHandler",
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${exchange.request.uri.path == '/eum/login'}",
 "handler": "LoginChain",
 },
 {
 "handler": "OutgoingChain",
 },
]
 }
 },
 {
 "name": "LoginChain",
 "type": "Chain",
 "config": {
 "filters": ["SwitchFilter"],
 "handler": "OutgoingChain"
 }
 },
 {
 "name": "SwitchFilter",
 "type": "SwitchFilter",
 "config": {
 "onResponse": [
 {
 "handler": "LoginRequestHandler"
 }
]
 }
 },
 {
 "name": "LoginRequestHandler",
 "type": "Chain",
 "config": {
 "filters": ["LoginRequest"],
 "handler": "OutgoingChain"
 }
 },
 {
 "name": "LoginRequest",
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "https://TARGETIP/login",
 "form": {
 "USER": ["myusername"],
 "PASSWORD": ["mypassword"],
 }
 "headers": {
 "cookie": ["${exchange.response.headers['Set-Cookie'][0]}"],
 }
 }
 },
 {
 "name": "OutgoingChain",
 "type": "Chain",
 "config": {
 "filters": ["CaptureFilter"],
 "handler": "ClientHandler"
 }
 },
 {
 "name": "CaptureFilter",
 "type": "CaptureFilter",
 "config": {
 "captureEntity": false,
 "file": "/tmp/gateway.log",
 }
 },
 {
 "name": "ClientHandler",
 "comment": "Responsible for sending all requests to remote servers.",
 "type": "ClientHandler",
 "config": {
 }
 }
]
 },
 "servletObject": "HandlerServlet",
}

Login Form With Extract
Filter & Cookie Filter

54

11.4 Login Form With Extract Filter & Cookie Filter
For applications that return the login page when the user tries to access a page
without a valid session. This template shows how to use the ExtractFilter to find
the login page on the response and use the CookieFilter to ensure the cookies
from the application are replayed on each request. The sample application in
this template is OpenAM. If you change the TARGETIP:PORT to be the IP address of
OpenAM, the TARGETDN:PORT to be the fully qualified name and port of OpenAM
and modify USERNAME and PASSWORD in the LoginRequest you automatically log
USERNAME into OpenAM.

Note

Without the CookieFilter in the OutgoingChain the cookie set in
the login page response would not get set in the browser since
that request is intercepted before it gets to the browser. The
simplest way to deal with this situation is to let OpenIG manage
all the cookies by enabling the CookieFilter. The side effect of
OpenIG managing cookies is none of the cookies are sent to the
browser, but are managed locally by OpenIG.

Login Form With Extract
Filter & Cookie Filter

55

{
 "heap": {
 "objects": [
 {
 "name": "HandlerServlet",
 "comment": "Entry point that transforms Servlet request to handler request.",
 "type": "HandlerServlet",
 "config": {
 "handler": "FindLoginPageChain",
 "baseURI":"http://TARGETIP:PORT"
 }
 },
 {
 "name": "FindLoginPageChain",
 "type": "Chain",
 "config": {
 "filters": ["IsLoginPage","FindLoginPage"],
 "handler": "OutgoingChain"
 }
 },
 {
 "name": "FindLoginPage",
 "type": "EntityExtractFilter",
 "config": {
 "messageType": "response",
 "target": "${exchange.isLoginPage}",
 "bindings": [
 {
 "key": "found",
 "pattern": "OpenAM\s\(Login\)",
 "template": "true"
 }
]
 }
 },
 {
 "name": "IsLoginPage",
 "type": "SwitchFilter",
 "config": {
 "onResponse": [
 {
 "condition": "${exchange.isLoginPage.found == 'true'}",
 "handler": "LoginChain"
 }
]
 }
 },
 {
 "name": "LoginChain",
 "type": "Chain",
 "config": {
 "filters": ["LoginRequest"],
 "handler": "OutgoingChain"
 }
 },
 {
 "name": "LoginRequest",
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://TARGETIP:PORT/openam/UI/Login"
 "form": {
 "IDToken0":[""]
 "IDToken1":["USERNAME"]
 "IDToken2":["PASSWORD"]
 "IDButton":["Log+In"]
 "encoded":["false"]
 },
 "headers": {
 "host":["TARGETFQDN:PORT"]
 }

 }
 },
 {
 "name": "OutgoingChain",
 "type": "Chain",
 "config": {
 "filters": ["CookieFilter","CaptureFilter"],
 "handler": "ClientHandler"
 }
 },
 {
 "name": "CookieFilter",
 "type": "CookieFilter",
 "config": {
 }
 },

 {
 "name": "CaptureFilter",
 "type": "CaptureFilter",
 "config": {
 "captureEntity": true,
 "file": "/tmp/gateway.log",
 }
 },
 {
 "name": "LogSink",
 "comment": "Default sink for logging information.",
 "type": "ConsoleLogSink",
 "config": {
 "level": "DEBUG",
 }
}
 {
 "name": "ClientHandler",
 "comment": "Responsible for sending all requests to remote servers.",
 "type": "ClientHandler",
 "config": {
 }
 }
]
 },
 "servletObject": "HandlerServlet",
}

Login Which Requires a Hidden
Value From the Login Page

56

11.5 Login Which Requires a Hidden Value From the
Login Page
Extracts a hidden value from the login page and includes it in the login form
POSTed to the target application.

Login Which Requires a Hidden
Value From the Login Page

57

{
 "heap": {
 "objects": [
 {
 "name": "HandlerServlet",
 "comment": "Entry point that transforms Servlet request to handler request.",
 "type": "HandlerServlet",
 "config": {
 "handler": "DispatchHandler",
 "baseURI":"http://TARGETIP"
 }
 },
 {
 "name": "DispatchHandler",
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${exchange.request.uri.path == '/login'}",
 "handler": "LoginChain",
 },
 {
 "handler": "OutgoingChain",
 },
]
 }
 },
 {
 "name": "LoginChain",
 "type": "Chain",
 "config": {
 "filters": ["HiddenValueExtract","LoginRequest"],
 "handler": "OutgoingChain"
 }
 },
 {
 "name": "HiddenValueExtract",
 "type": "EntityExtractFilter",
 "config": {
 "messageType": "response",
 "target": "${exchange.hiddenValue}",
 "bindings": [
 {
 "key": "value",
 "pattern": "wpLoginToken\"\s.*value=\"(.*)\"",
 "template": "$1"
 }
]
 }
 },
 {
 "name": "LoginRequest",
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "https://TARGETIP/login",
 "form": {
 "USER": ["myusername"],
 "PASSWORD": ["mypassword"],
 "hiddenValue": ["${exchange.hiddenValue.value}"],
 }
 }
 },
 {
 "name": "OutgoingChain",
 "type": "Chain",
 "config": {
 "filters": ["CaptureFilter"],
 "handler": "ClientHandler"
 }
 },
 {
 "name": "CaptureFilter",
 "type": "CaptureFilter",
 "config": {
 "captureEntity": false,
 "file": "/tmp/gateway.log",
 }
 },
 {
 "name": "ClientHandler",
 "comment": "Responsible for sending all requests to remote servers.",
 "type": "ClientHandler",
 "config": {
 }
 }
]
 },
 "servletObject": "HandlerServlet",
}

HTTP & HTTPS Application

58

11.6 HTTP & HTTPS Application
Proxies traffic to an application listening on ports 80 and 443. The assumption
is the application uses HTTPS for authentication and HTTP for the general
application features. Assuming the login will all take place on port 443, you
will need to add the login filters and handlers to the LoginChain. To get started
quickly, modify the baseURI to be the IPAddress of your target application. This
should allow you to proxy all traffic to the application. Then add the logic for the
LoginChain using the flow from one of the login templates.

HTTP & HTTPS Application

59

{
 "heap": {
 "objects": [
 {
 "name": "HandlerServlet",
 "comment": "Entry point that transforms Servlet request to handler request.",
 "type": "HandlerServlet",
 "config": {
 "handler": "DispatchHandler",
 }
 },
 {
 "name": "DispatchHandler",
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${exchange.request.uri.scheme == 'http'}",
 "handler": "OutgoingChain",
 "baseURI":"http://TARGETIP"
 },
 {
 "condition": "${exchange.request.uri.path == '/login'}",
 "handler": "LoginChain",
 "baseURI":"https://TARGETIP"
 },
 {
 "handler": "OutgoingChain",
 "baseURI":"https://TARGETIP"
 },
]
 }
 },
 {
 "name": "LoginChain",
 "type": "Chain",
 "config": {
 "filters": [],
 "handler": "OutgoingChain"
 }
 },
 {
 "name": "OutgoingChain",
 "type": "Chain",
 "config": {
 "filters": ["CaptureFilter"],
 "handler": "ClientHandler"
 }
 },
 {
 "name": "CaptureFilter",
 "type": "CaptureFilter",
 "config": {
 "captureEntity": false,
 "file": "/tmp/gateway.log",
 }
 },
 {
 "name": "ClientHandler",
 "comment": "Responsible for sending all requests to remote servers.",
 "type": "ClientHandler",
 "config": {
 }
 }
]
 },
 "servletObject": "HandlerServlet",
}

Multiple Applications

60

11.7 Multiple Applications
Shows how a single OpenIG configuration can proxy to multiple applications on
different IPs and ports. This template is setup to proxy to both the WordPress and
MediaWiki hosted samples. OpenIG must be setup to listen on both ports 8080
and 8181. The DispatchHandler is used to route each incoming request to either
the WordPress chain or the MediaWiki chain.

Multiple Applications

61

{
 "heap": {
 "objects": [
 {
 "name": "HandlerServlet",
 "type": "HandlerServlet",
 "config": {
 "handler": "DispatchHandler"
 }
 },
 {
 "name": "DispatchHandler",
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${exchange.request.uri.host == 'demo.forgerock.com'}",
 "handler": "WordPressLoginChain",
 "baseURI":"http://109.73.67.52:8080",
 },
 {
 "condition": "${exchange.request.uri.host == 'demo.forgerock.com'}",
 "handler": "MediaWikiLoginChain",
 "baseURI":"http://109.73.67.52:8181"
 }
]
 }
 },
 {
 "name": "WordPressLoginChain",
 "type": "Chain",
 "config": {
 "filters": [],
 "handler": "OutgoingChain"
 }
 },
 {
 "name": "MediaWikiLoginChain",
 "type": "Chain",
 "config": {
 "filters": [],
 "handler": "OutgoingChain"
 }
 },
 {
 "name": "OutgoingChain",
 "type": "Chain",
 "config": {
 "filters": ["CaptureFilter"],
 "handler": "ClientHandler"
 }
 },
 {
 "name": "CaptureFilter",
 "type": "CaptureFilter",
 "config": {
 "captureEntity": false,
 "file": "/tmp/gateway.log"
 }
 },
 {
 "name": "ClientHandler",
 "comment": "Responsible for sending all requests to remote servers.",
 "type": "ClientHandler",
 "config": {
 }
 }
]
},
 "servletObject": "HandlerServlet",
}

OpenAM Integration With Headers

62

11.8 OpenAM Integration With Headers
Logs the user into the target application using the headers passed down from an
OpenAM policy agent. This template assumes the user name and password are
passed down by the OpenAM policy agent as headers. If the header passed in
contains only a user name or subject and requires a lookup to an external data
source, you must add an attribute filter to the chain to retrieve the credentials.

OpenAM Integration With Headers

63

{
 "heap": {
 "objects": [
 {
 "name": "HandlerServlet",
 "comment": "Entry point that transforms Servlet request to handler request.",
 "type": "HandlerServlet",
 "config": {
 "handler": "DispatchHandler",
 "baseURI":"http://TARGETIP"
 }
 },
 {
 "name": "DispatchHandler",
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${exchange.request.uri.path == '/login'}",
 "handler": "LoginChain",
 },
 {
 "handler": "OutgoingChain",
 },
]
 }
 },
 {
 "name": "LoginChain",
 "type": "Chain",
 "config": {
 "filters": ["LoginRequest"],
 "handler": "OutgoingChain"
 }
 },
 {
 "name": "LoginRequest",
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "https://TARGETIP/login",
 "form": {
 "USER": ["${exchange.request.headers['username'][0]}"],
 "PASSWORD": ["${exchange.request.headers['password'][0]}"],
 }
 }
 },
 {
 "name": "OutgoingChain",
 "type": "Chain",
 "config": {
 "filters": ["CaptureFilter"],
 "handler": "ClientHandler"
 }
 },
 {
 "name": "CaptureFilter",
 "type": "CaptureFilter",
 "config": {
 "captureEntity": false,
 "file": "/tmp/gateway.log",
 }
 },
 {
 "name": "ClientHandler",
 "comment": "Responsible for sending all requests to remote servers.",
 "type": "ClientHandler",
 "config": {
 }
 }
]
 },
 "servletObject": "HandlerServlet",
}

Microsoft Online
Outlook Web Access

64

11.9 Microsoft Online Outlook Web Access
A sample template used to log a user into Microsoft Online Outlook Web Access.
This template shows how you would use the Gateway and the OpenAM password
capture feature to integrate with OWA. You can follow the Tutorial On Password
Capture & Replay tutorial and substitute this template.

Microsoft Online
Outlook Web Access

65

{
 "heap": {
 "objects": [
 {
 "name": "LogSink",
 "comment": "Default sink for logging information.",
 "type": "ConsoleLogSink",
 "config": {
 "level": "DEBUG",
 }
 },
 {
 "name": "HandlerServlet",
 "type": "HandlerServlet",
 "config": {
 "handler": "DispatchHandler",
 "baseURI":"https://65.55.171.158"
 }
 },
 {
 "name": "DispatchHandler",
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${exchange.request.uri.path == '/owa/auth/logon.aspx'}",
 "handler": "LoginChain",
 },
 {
 "handler": "OutgoingChain",
 }
]
 }
 },
 {
 "name": "LoginChain",
 "type": "Chain",
 "config": {
 "filters": ["CryptoHeaderFilter","LoginRequest"],
 "handler": "OutgoingChain"
 }
 },
 {
 "name": "CryptoHeaderFilter",
 "type": "CryptoHeaderFilter",
 "config": {
 "messageType":"REQUEST",
 "operation":"DECRYPT",
 "algorithm":"DES/ECB/NoPadding",
 "key":"DESKEY",
 "keyType":"DES",
 "charSet":"utf-8",
 "headers": ["password"],
 },
 },
 {
 "name": "LoginRequest",
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "https://65.55.171.158/owa/auth/owaauth.dll",
 "headers" : {
 "Host": ["red001.mail.microsoftonline.com"],
 "Content-Type": ["Content-Type:application/x-www-form-urlencoded"],
 }
 "form": {
 "destination": ["https://red001.mail.microsoftonline.com/owa/"],
 "forcedownlevel": ["0"],
 "trusted": ["0"],
 "username": ["${exchange.request.headers['username'][0]}"],
 "password": ["${exchange.request.headers['password'][0]}"],
 "isUtf8": ["1"],
 }
 }
 },
 {
 "name": "OutgoingChain",
 "type": "Chain",
 "config": {
 "filters": ["HeaderFilter","CaptureFilter"],
 "handler": "ClientHandler"
 }
 },
 {
 "name": "HeaderFilter",
 "type": "HeaderFilter",
 "config": {
 "messageType":"REQUEST",
 "remove": ["password","username"],
 }
 },
 {
 "name": "CaptureFilter",
 "type": "CaptureFilter",
 "config": {
 "captureEntity": false,
 "file": "/tmp/gateway.log",
 }
 },
 {
 "name": "ClientHandler",
 "type": "ClientHandler",
 "config": {
 }
 },
]
 },
 "servletObject": "HandlerServlet",
}

66

67

Chapter 12

Customizing OpenIG

OpenIG includes a complete, stable application programming interface, designed
to allow you to customize OpenIG as required. Customizing OpenIG can be
necessary if you need to perform complex server interactions or intensive data
transformations, and stock handlers, filters and expressions provided by the
gateway are too basic to meet the task.

12.1 Key Extension Points
The two primary extension points are the interfaces: Filter (for processing a
request and/or response en route) and Handler (for generating responses from
requests). These interfaces are similar to the Java Enterprise Edition Filter and
Servlet interfaces, with some differences in the semantics of messages. While
you can simply implement these interfaces, there are also included convenience
classes: GenericFilter and GenericHandler that you can use if you intend to make
your extensions configurable through the OpenIG configuration resource.

OpenIG also allows standard Java Enterprise Edition servlets and servlet filters
to be embedded in the gateway, with initialization parameters supplied through
through the OpenIG configuration resource.

12.2 Implementing a Filter
The Filter interface exposes a filter method, which takes an Exchange
object and the Chain of remaining filters and handler to dispatch to. Initially,

http://openig.forgerock.org/apidocs/index.html
http://openig.forgerock.org/apidocs/org/forgerock/openig/filter/Filter.html
http://openig.forgerock.org/apidocs/org/forgerock/openig/handler/Handler.html
http://openig.forgerock.org/apidocs/org/forgerock/openig/filter/GenericFilter.html
http://openig.forgerock.org/apidocs/org/forgerock/openig/handler/GenericHandler.html
http://openig.forgerock.org/apidocs/org/forgerock/openig/filter/Filter.html#filter(org.forgerock.openig.http.Exchange,%20org.forgerock.openig.handler.Handler)
http://openig.forgerock.org/apidocs/org/forgerock/openig/http/Exchange.html
http://openig.forgerock.org/apidocs/org/forgerock/openig/filter/Chain.html

Implementing a Handler

68

exchange.request contains the request to be filtered. To pass the request to the
next filter or handler in the chain, the filter calls chain.handle(exchange). After
this call, exchange.response contains the response that can be filtered.

A filter might elect not to pass the request to the next filter or handler, and
instead handle the request itself. It can achieve this by merely avoiding a call to
chain.handle(exchange) and creating its own response object in the exchange.
The filter is also at liberty to replace a response with another of its own. A filter
can exist in more than one chain, therefore should make no assumptions or
correlations using the chain it is supplied. The only valid use of a chain by a filter
is to call its handle method to dispatch the exchange to the rest of the chain.

Note

If an existing response exists in the exchange object and the
filter intends to replace it with its own, it must first check to see
if the existing response has an entity, and if it does, must call
its close method in order to signal that the processing of the
response from a remote server is complete.

12.3 Implementing a Handler
The Handler interface exposes a handle method, which takes an Exchange
object. It processes the request in exchange.request and produces a response
in exchange.response. A handler can elect to dispatch the exchange to another
handler or chain.

Note

If an existing response exists in the exchange object and the
filter intends to replace it with its own, it must first check to see
if the existing response has an entity, and if it does, must call
its close method in order to signal that the processing of the
response from a remote server is complete.

12.4 Heap Object Configuration

http://openig.forgerock.org/apidocs/org/forgerock/openig/http/Exchange.html#request
http://openig.forgerock.org/apidocs/org/forgerock/openig/filter/Chain.html#handle(org.forgerock.openig.http.Exchange)
http://openig.forgerock.org/apidocs/org/forgerock/openig/http/Exchange.html#response
http://openig.forgerock.org/apidocs/org/forgerock/openig/http/Message.html#entity
http://openig.forgerock.org/apidocs/org/forgerock/openig/io/BranchingInputStream.html#close()
http://openig.forgerock.org/apidocs/org/forgerock/openig/handler/Handler.html#handle(org.forgerock.openig.http.Exchange)
http://openig.forgerock.org/apidocs/org/forgerock/openig/http/Exchange.html#response
http://openig.forgerock.org/apidocs/org/forgerock/openig/http/Exchange.html#request
http://openig.forgerock.org/apidocs/org/forgerock/openig/http/Exchange.html#response
http://openig.forgerock.org/apidocs/org/forgerock/openig/http/Message.html#entity
http://openig.forgerock.org/apidocs/org/forgerock/openig/io/BranchingInputStream.html#close()

Including Servlets
and Servlet Filters

69

Objects are added to the heap and supplied with configuration artifacts at
initialization time. To be integrated with the configuration, a class must have an
accompanying implementation of the Heaplet interface. The easiest and most
common way of exposing the heaplet is to extend the NestedHeaplet class in a
nested class in the class you want to create and initialize and implementing its
create method.

Within the create method, you can access the object's configuration through the
config field.

12.5 Including Servlets and Servlet Filters
A servlet or servlet filter can be added as a heap object by including it in
the classpath, and identifying it in the OpenIG heap configuration as an
javax.servlet.http.HttpServlet or javax.servlet.Filter type, providing any
appropriate initialization parameters. A servlet can be dispatched directly by the
gateway servlet, and servlets and filters can be flexibly dispatched to through a
DispatchServlet.

12.6 Sample Filter
The following sample filter sets an arbitrary header in the incoming request and
outgoing response.

package com.example.filter;

// Java Standard Edition
import java.io.IOException;

// OpenIG Core Library
import org.forgerock.openig.filter.Chain;
import org.forgerock.openig.filter.GenericFilter;
import org.forgerock.openig.handler.HandlerException;
import org.forgerock.openig.heap.HeapException;
import org.forgerock.openig.heap.NestedHeaplet;
import org.forgerock.openig.http.Exchange;
import org.forgerock.openig.model.ModelException;

public class HelloWorldFilter extends GenericFilter {

 public String name;
 public String value;

 @Override
 public void filter(Exchange exchange, Chain chain)
 throws HandlerException, IOException {
 exchange.request.headers.put(name, value); // set header in request
 chain.handle(exchange); // pass to remaining filters & handler in chain
 exchange.response.headers.put(name, value); // set header in response
 }

http://openig.forgerock.org/apidocs/org/forgerock/openig/heap/Heaplet.html
http://openig.forgerock.org/apidocs/org/forgerock/openig/heap/NestedHeaplet.html
http://openig.forgerock.org/apidocs/org/forgerock/openig/heap/GenericHeaplet.html#create()
http://openig.forgerock.org/apidocs/org/forgerock/openig/heap/GenericHeaplet.html#config
http://openig.forgerock.org/apidocs/org/forgerock/openig/gateway/GatewayServlet.html
http://openig.forgerock.org/apidocs/org/forgerock/openig/servlet/DispatchServlet.html

Sample Filter

70

 public static class Heaplet extends NestedHeaplet {

 @Override
 public Object create() throws HeapException, ModelException {
 HelloWorldFilter filter = new HelloWorldFilter();
 filter.name = config.get("name").required().asString(); // required
 filter.value = config.get("value").required().asString(); // req'd
 return filter;
 }
 }
}

The corresponding heap object configuration is as follows.

{
 "name": "HelloWorldFilter",
 "type": "com.example.filter.HelloWorldFilter",
 "config": {
 "name": "X-Hello",
 "value": "World"
 }
}

71

Chapter 13

Troubleshooting

This chapter covers common problems and their solutions.

13.1 Object not found in heap
HTTP ERROR 500
org.forgerock.openig.model.NodeException:
 ['file:/Users/george/.ForgeRock/OpenIG/config.json'].heap.objects[2]
 .config.filterObjects[0]: object not found in heap
at org.forgerock.openig.heaplet.HeapUtil.getRequiredObject(HeapUtil.java:54)
at org.forgerock.openig.filter.Chain$Heaplet.create(Chain.java:49)

You have a filter specified in the filterObjects list in the Chain object that is not in
config.json. Make sure you have added an entry for the Filter and have correctly
spelled its name in the filterObjects list.

13.2 Could not find local configuration file
HTTP ERROR 500
Problem accessing /. Reason:

 could not find local configuration file at
 /var/root/.ForgeRock/OpenIG/config.json or bootstrap file at
 /var/root/.ForgeRock/OpenIG/_private_var_folders_...webinf.json

Unexpected character
(x) at position 1103

72

OpenIG could not find its configuration file in the home directory of the
user running the container where OpenIG is deployed, in this case /var/
root/.ForgeRock/OpenIG/config.json. As you can see from the error message,
OpenIG looks in a secondary location determined at runtime by the container.
The secondary location is only necessary if you are running more than one
OpenIG on a single host and your instances do not share a single configuration.

13.3 Unexpected character (x) at position 1103
HTTP ERROR 500
Problem accessing /. Reason:

Unexpected character (x) at position 1103

This error usually means a missing double quote or a missing bracket in the
configuration file. Use a JSON editor or JSON validation tool such as JSONLint to
make sure your JSON is valid.

13.4 The values in the flat file are incorrect
Ensure the flat file is readable by the user running the container for OpenIG.
Values are all characters, including space and tabs, between the separator, so
make sure the values are not padded with spaces.

13.5 Problem accessing URL
HTTP ERROR 500

Problem accessing /myURL . Reason:

java.lang.String cannot be cast to java.util.List
Caused by:
java.lang.ClassCastException: java.lang.String cannot be cast to java.util.List
at org.forgerock.openig.filter.LoggingFilter.writeHeaders(LoggingFilter.java:132
at org.forgerock.openig.filter.LoggingFilter.logResponse(LoggingFilter.java:119)
at org.forgerock.openig.filter.LoggingFilter.filter(LoggingFilter.java:86)
at org.forgerock.openig.filter.Chain.handle(Chain.java:54)

This error is typically encountered when using the AssignmentFilter and setting a
string value for one of the Headers. All headers are stored in Lists so the header
must be addressed with a subscript. For example, if you try to set exchange.
request.headers['Location'] for a redirect in the response object, you should
instead set exchange.request.headers['Location'][0]. A header without a
subscript leads to the error above.

http://jsonlint.com/

StaticResponseHandler
results in a blank page

73

13.6 StaticResponseHandler results in a blank page
You must define an entity for the response. For example:

{
 "name": "AccessDeniedHandler",
 "type": "org.forgerock.openig.handler.StaticResponseHandler",
 "config": {
 "status": 403,
 "reason": "Forbidden",
 "entity": "<html><h2>User does not have permission<h2>html>"
 }
}

13.7 OpenIG is not logging users in
If you are proxying to more than one application in multiple DNS domains, you
must make sure your container is enabled for domain cookies. See the chapter on
Configuring Deployment Containers for details on your specific container.

74

75

Index

A
Architecture, 5

C
Configuration

Federation, 40, 41
HTTP & HTTPS, 58
Login with cookie, 52
Login with filter, 54
Login with hidden value, 56
Microsoft Online Outlook Web Access, 64
Multiple applications, 60
Proxy & capture, 48
Simple login form, 50

Containers
JBoss, 18
Jetty, 17
Supported, 15
Tomcat, 15

Customizations
Extension points, 67
Filters, 67
Handlers, 68
Heap objects, 68
Servlets, 69

I
Installation, 13

Federation, 39

T
Troubleshooting, 71
Tutorials

Basic features, 27
Capture & relay passwords, 33
Federation, 45

U
Use cases, 21, 22, 23, 25, 25

76

	Guide to OpenIG
	Table of Contents
	Preface
	1. Who Should Use this Guide
	2. Formatting Conventions
	3. Accessing Documentation Online
	4. Joining the Open Identity Platform Community

	1 Solutions Overview
	1.1. Extend SSO To Any Application
	1.2. Federate Enabling Applications
	1.3. Implement Standards Based Policy Enforcement

	2 How OpenIG Works
	2.1. How It Works In A Nutshell
	2.2. How It Works In Detail
	2.2.1. OpenIG Core (Reverse Proxy)
	2.2.2. Exchange
	2.2.3. Dispatcher
	2.2.4. Chain
	2.2.5. Handlers
	2.2.6. Filters
	2.2.7. Configuration
	2.2.8. Heaplets
	2.2.9. Services
	2.2.10. Federation Service (Federation Gateway)

	3 Getting Started
	3.1. Before You Begin
	3.2. Installation Steps
	3.3. Configuration Steps
	3.4. Try It Out

	4 Installing OpenIG
	5 Configuring Deployment Containers
	5.1. Tomcat
	5.1.1. Tomcat & MySQL/JNDI Configuration
	5.1.2. Tomcat & Cookie Domains
	5.1.3. Tomcat & SSL

	5.2. Jetty
	5.3. JBoss

	6 Detailed Use Cases
	6.1. Portal Application Login
	6.2. OpenAM Integration
	6.3. Federation Gateway SP Initiated SAML2 SSO
	6.4. Federation Gateway IDP Initiated SAML2 SSO
	6.5. Standards Based SAML2 Agent

	7 Tutorial With WordPress
	7.1. Detailed Flow
	7.2. Setup Summary
	7.3. Installing OpenIG
	7.4. Configuring the Browser Host
	7.5. Configuring OpenIG & Trying It Out
	7.6. Login with Hard Coded Credentials
	7.7. Login with Credentials From a Flat File
	7.8. Login with Credentials From MySQL

	8 Tutorial On OpenAM Password Capture & Replay
	8.1. Detailed Flow
	8.2. Setup Summary
	8.3. Setup Details
	8.3.1. OpenAM server
	8.3.2. Tomcat Agent Profile
	8.3.3. Password Capture Configuration
	8.3.4. Tomcat Installation
	8.3.5. Policy Agent installation
	8.3.6. Gateway Configuration
	8.3.7. Trying It Out

	9 Using the Federation Gateway
	9.1. Installation Overview
	9.2. Configuration File Overview
	9.3. Configuring the Federation Service
	9.4. Config.json Sample
	9.5. Example Settings
	9.6. Identity Provider Metadata

	10 Tutorial For the Federation Gateway
	10.1. Before You Start
	10.2. Configuring OpenAM
	10.3. Configuring OpenIG For Federation
	10.4. Trying It Out

	11 Configuration Templates
	11.1. Proxy & Capture
	11.2. Simple Login Form
	11.3. Login Form With Cookie From Login Page
	11.4. Login Form With Extract Filter & Cookie Filter
	11.5. Login Which Requires a Hidden Value From the Login Page
	11.6. HTTP & HTTPS Application
	11.7. Multiple Applications
	11.8. OpenAM Integration With Headers
	11.9. Microsoft Online Outlook Web Access

	12 Customizing OpenIG
	12.1. Key Extension Points
	12.2. Implementing a Filter
	12.3. Implementing a Handler
	12.4. Heap Object Configuration
	12.5. Including Servlets and Servlet Filters
	12.6. Sample Filter

	13 Troubleshooting
	13.1. Object not found in heap
	13.2. Could not find local configuration file
	13.3. Unexpected character (x) at position 1103
	13.4. The values in the flat file are incorrect
	13.5. Problem accessing URL
	13.6. StaticResponseHandler results in a blank page
	13.7. OpenIG is not logging users in

	Index

