diff --git a/.gitignore b/.gitignore index ee19a2f..addb5db 100644 --- a/.gitignore +++ b/.gitignore @@ -1,5 +1,6 @@ Manifest.toml local/* +profiles/* docs/build/* .vscode/* .github/* diff --git a/README.md b/README.md index 8dc658d..119ff1b 100644 --- a/README.md +++ b/README.md @@ -10,7 +10,7 @@ Very early in the development cycle, version 0.2.0. ## Julia implementations of integer triangles. We give a framework for computing mathematical integer triangles and use -it to create "Integer Triangle Trait Cards"™. +it to create so called "Integer Triangle Trait Cards". A trait card is a compilation of the essential characteristics of an integer triangle, whereby we understand the characteristics of a triangle to be integer sequences that @@ -19,8 +19,7 @@ can be obtained from the triangle by elementary transformations. To see what you can expect start by executing using IntegerTriangles - dim = 8 - TraitCard(BinomialTriangle, BinomialTransform, dim) + TraitCard(BinomialTriangle, 8) Overview tables can be automatically generated for a variety of triangles and traits. @@ -35,10 +34,11 @@ Overview tables can be automatically generated for a variety of triangles and tr | nothing | Laguerre | Rev | TransNat1 | 1, 3, 15, 97, 753, 6771, 68983, 783945 | -Note that we assume all sequences to start at offset = 0. Also note that all A-numbers -are approximativ only, i.e. the first few terms may differ. +Important: Note that we assume all sequences to start at offset = 0. Also note that all +references to A-numbers are approximativ only, i.e. the first few terms of the sequence +may differ and the OEIS-'offset' is always disregarded. -To use this feature you have to download the file [stripped.gz]( http://oeis.org/stripped.gz) from oeis.org, expand it and put it in the directory ../data. +To use this feature you have to download the file [stripped.gz](http://oeis.org/stripped.gz) from oeis.org, expand it and put it in the directory ../data. You can also look at the demo [notebook](https://github.com/OpenLibMathSeq/IntegerTriangles.jl/blob/master/demos/IntegerTriangles.ipynb). diff --git a/data/0,0,1,8,64,5.json b/data/0,0,1,8,64,5.json new file mode 100644 index 0000000..519adf5 --- /dev/null +++ b/data/0,0,1,8,64,5.json @@ -0,0 +1,7 @@ +{ + "greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/", + "query": "0,0,1,8,64,540,4920,48720,524160,6108480,76809600,1037836800,", + "count": 0, + "start": 0, + "results": null +} \ No newline at end of file diff --git a/data/0,1,5,26,160.json b/data/0,1,5,26,160.json new file mode 100644 index 0000000..ed9656e --- /dev/null +++ b/data/0,1,5,26,160.json @@ -0,0 +1,7 @@ +{ + "greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/", + "query": "0,1,5,26,160,1140,9240,84000,846720,9374400,113097600,1476921600,", + "count": 0, + "start": 0, + "results": null +} \ No newline at end of file diff --git a/data/0,1,6,26,100.json b/data/0,1,6,26,100.json new file mode 100644 index 0000000..868a26e --- /dev/null +++ b/data/0,1,6,26,100.json @@ -0,0 +1,7 @@ +{ + "greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/", + "query": "0,1,6,26,100,361,1254,4245,14108,46247,149998,482412,", + "count": 0, + "start": 0, + "results": null +} \ No newline at end of file diff --git a/data/1,0,0,1,0,1,.json b/data/1,0,0,1,0,1,.json new file mode 100644 index 0000000..300e32d --- /dev/null +++ b/data/1,0,0,1,0,1,.json @@ -0,0 +1,7 @@ +{ + "greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/", + "query": "1,0,0,1,0,1,0,1,1,0,1,4,", + "count": 0, + "start": 0, + "results": null +} \ No newline at end of file diff --git a/data/1,0,1,0,1,1,.json b/data/1,0,1,0,1,1,.json new file mode 100644 index 0000000..caa0239 --- /dev/null +++ b/data/1,0,1,0,1,1,.json @@ -0,0 +1,7 @@ +{ + "greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/", + "query": "1,0,1,0,1,1,0,3,4,1,0,23,", + "count": 0, + "start": 0, + "results": null +} \ No newline at end of file diff --git a/data/1,0,1,1,2,5,.json b/data/1,0,1,1,2,5,.json new file mode 100644 index 0000000..f920c5c --- /dev/null +++ b/data/1,0,1,1,2,5,.json @@ -0,0 +1,7 @@ +{ + "greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/", + "query": "1,0,1,1,2,5,13,38,125,449,1742,7269,", + "count": 0, + "start": 0, + "results": null +} \ No newline at end of file diff --git a/data/1,0,2,0,5,0,.json b/data/1,0,2,0,5,0,.json new file mode 100644 index 0000000..52214ce --- /dev/null +++ b/data/1,0,2,0,5,0,.json @@ -0,0 +1,352 @@ +{ + "greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/", + "query": "1,0,2,0,5,0,14,0,42,0,132,0,", + "count": 5, + "start": 0, + "results": [ + { + "number": 126120, + "data": "1,0,1,0,2,0,5,0,14,0,42,0,132,0,429,0,1430,0,4862,0,16796,0,58786,0,208012,0,742900,0,2674440,0,9694845,0,35357670,0,129644790,0,477638700,0,1767263190,0,6564120420,0,24466267020,0,91482563640,0", + "name": "Catalan numbers (A000108) interpolated with 0's.", + "comment": [ + "Inverse binomial transform of A001006.", + "The Hankel transform of this sequence gives A000012 = [1,1,1,1,1,...].", + "Counts returning walks of length n on a 1-d integer lattice with step set {+1,-1} which stay in the chamber x \u003e= 0. - _Andrew V. Sutherland_, Feb 29 2008", + "Moment sequence of the trace of a random matrix in G=USp(2)=SU(2). If X=tr(A) is a random variable (A distributed according to the Haar measure on G) then a(n) = E[X^n]. - _Andrew V. Sutherland_, Feb 29 2008", + "Essentially the same as A097331. - _R. J. Mathar_, Jun 15 2008", + "Number of distinct proper binary trees with n nodes. - Chris R. Sims (chris.r.sims(AT)gmail.com), Jun 30 2010", + "Number of n-step walks that start and end at origin with the constraint that they are never negative. - _Benjamin Phillabaum_, Mar 07 2011", + "-a(n-1), with a(-1):=0, n\u003e=0, is the Z-sequence for the Riordan array A049310 (Chebyshev S). For the definition see that triangle. - _Wolfdieter Lang_, Nov 04 2011", + "See A180874 (also A238390 and A097610) and A263916 for relations to the general Bell A036040, cycle index A036039, and cumulant expansion polynomials A127671 through the Faber polynomials. - _Tom Copeland_, Jan 26 2016", + "Number of excursions (walks starting at the origin, ending on the x-axis, and never go below the x-axis in between) with n steps from {-1,1}. - _David Nguyen_, Dec 20 2016", + "A signed version is generated by evaluating polynomials in A126216 that are essentially the face polynomials of the associahedra. This entry's sequence is related to an inversion relation on p. 34 of Mizera, related to Feynman diagrams. - _Tom Copeland_, Dec 09 2019" + ], + "reference": [ + "Jerome Spanier and Keith B. Oldham, \"Atlas of Functions\", Ch. 49, Hemisphere Publishing Corp., 1987." + ], + "link": [ + "G. C. Greubel, \u003ca href=\"/A126120/b126120.txt\"\u003eTable of n, a(n) for n = 0..1000\u003c/a\u003e", + "V. E. Adler, \u003ca href=\"http://arxiv.org/abs/1510.02900\"\u003eSet partitions and integrable hierarchies\u003c/a\u003e, arXiv:1510.02900 [nlin.SI], 2015.", + "Martin Aigner, \u003ca href=\"http://dx.doi.org/10.1007/978-88-470-2107-5_15\"\u003eCatalan and other numbers: a recurrent theme\u003c/a\u003e, in Algebraic Combinatorics and Computer Science, a Tribute to Gian-Carlo Rota, pp.347-390, Springer, 2001.", + "Andrei Asinowski, Cyril Banderier, and Valerie Roitner, \u003ca href=\"https://lipn.univ-paris13.fr/~banderier/Papers/several_patterns.pdf\"\u003eGenerating functions for lattice paths with several forbidden patterns\u003c/a\u003e, (2019).", + "C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, \u003ca href=\"https://arxiv.org/abs/1609.06473\"\u003eExplicit formulas for enumeration of lattice paths: basketball and the kernel method\u003c/a\u003e, arXiv:1609.06473 [math.CO], 2016.", + "Radica Bojicic, Marko D. Petkovic and Paul Barry, \u003ca href=\"http://arxiv.org/abs/1112.1656\"\u003eHankel transform of a sequence obtained by series reversion II-aerating transforms\u003c/a\u003e, arXiv:1112.1656 [math.CO], 2011.", + "Colin Defant, \u003ca href=\"https://arxiv.org/abs/2004.11367\"\u003eTroupes, Cumulants, and Stack-Sorting\u003c/a\u003e, arXiv:2004.11367 [math.CO], 2020.", + "Isaac DeJager, Madeleine Naquin, Frank Seidl, \u003ca href=\"https://www.valpo.edu/mathematics-statistics/files/2019/08/Drube2019.pdf\"\u003eColored Motzkin Paths of Higher Order\u003c/a\u003e, VERUM 2019.", + "Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, \u003ca href=\"http://arxiv.org/abs/1110.6638\"\u003eSato-Tate distributions and Galois endomorphism modules in genus 2\u003c/a\u003e, arXiv:1110.6638 [math.NT], 2011.", + "Aoife Hennessy, \u003ca href=\"http://repository.wit.ie/1693/1/AoifeThesis.pdf\"\u003eA Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths\u003c/a\u003e, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.", + "Kiran S. Kedlaya and Andrew V. Sutherland, \u003ca href=\"http://dspace.mit.edu/handle/1721.1/64701\"\u003eHyperellipticCurves, L-Polynomials, and Random Matrices\u003c/a\u003e. In: Arithmetic, Geometry, Cryptography, and Coding Theory: International Conference, November 5-9, 2007, CIRM, Marseilles, France. (Contemporary Mathematics; v.487)", + "S. Mizera, \u003ca href=\"https://arxiv.org/abs/1706.08527\"\u003eCombinatorics and Topology of Kawai-Lewellen-Tye Relations\u003c/a\u003e, arXiv:1706.08527 [hep-th], 2017.", + "E. Rowland, \u003ca href=\"http://dx.doi.org/10.1016/j.jcta.201.03.004\"\u003ePattern avoidance in binary trees\u003c/a\u003e, J. Comb. Theory A 117 (6) (2010) 741-758, Sec. 3.1.", + "Yidong Sun and Fei Ma, \u003ca href=\"http://arxiv.org/abs/1305.2015\"\u003eMinors of a Class of Riordan Arrays Related to Weighted Partial Motzkin Paths\u003c/a\u003e, arXiv:1305.2015 [math.CO], 2013.", + "Y. Wang and Z.-H. Zhang, \u003ca href=\"https://cs.uwaterloo.ca/journals/JIS/VOL18/Wang/wang21.html\"\u003eCombinatorics of Generalized Motzkin Numbers\u003c/a\u003e, J. Int. Seq. 18 (2015) # 15.2.4." + ], + "formula": [ + "a(2*n) = A000108(n), a(2*n+1) = 0.", + "a(n) = A053121(n,0).", + "(1/Pi) Integral_{0 .. Pi} (2*cos(x))^n *2*sin^2(x) dx. - _Andrew V. Sutherland_, Feb 29 2008", + "G.f.: 1/(1-x^2/(1-x^2/(1-x^2/(1-x^2/(1-...(continued fraction). - _Philippe Deléham_, Nov 24 2009", + "G.f. A(x) satisfies A(x) = 1 + x^2*A(x)^2. - _Vladimir Kruchinin_, Feb 18 2011", + "E.g.f.: I_1(2x)/x Where I_n(x) is the modified Bessel function. - _Benjamin Phillabaum_, Mar 07 2011", + "Apart from the first term the e.g.f. is given by x*HyperGeom([1/2],[3/2,2], x^2). - _Benjamin Phillabaum_, Mar 07 2011", + "a(n) = Integral_{x=-2..2} x^n*sqrt((2-x)*(2+x)))/(2*Pi). - _Peter Luschny_, Sep 11 2011", + "E.g.f.: E(0)/(1-x) where E(k) = 1-x/(1-x/(x-(k+1)*(k+2)/E(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Apr 05 2013", + "G.f.: 3/2- sqrt(1-4*x^2)/2 = 1/x^2 + R(0)/x^2, where R(k) = 2*k-1 - x^2*(2*k-1)*(2*k+1)/R(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Oct 28 2013", + "G.f.: 1/Q(0), where Q(k) = 2*k+1 + x^2*(1-4*(k+1)^2)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Jan 09 2014", + "a(n) = n!*[x^n]hypergeom([],[2],x^2). - _Peter Luschny_, Jan 31 2015", + "a(n) = 2^n*hypergeom([3/2,-n],[3],2). - _Peter Luschny_, Feb 03 2015", + "a(n) = ((-1)^n+1)*2^(2*floor(n/2)-1)*Gamma(floor(n/2)+1/2)/(sqrt(Pi)* Gamma(floor(n/2)+2)). - _Ilya Gutkovskiy_, Jul 23 2016", + "D-finite with recurrence (n+2)*a(n) +4*(-n+1)*a(n-2)=0. - _R. J. Mathar_, Mar 21 2021" + ], + "example": [ + "G.f. = 1 + x^2 + 2*x^4 + 5*x^6 + 14*x^8 + 42*x^10 + 132*x^12 + 429*x^14 + ..." + ], + "maple": [ + "with(combstruct): grammar := { BB = Sequence(Prod(a,BB,b)), a = Atom, b = Atom }: seq(count([BB,grammar], size=n),n=0..47); # _Zerinvary Lajos_, Apr 25 2007", + "BB := {E=Prod(Z,Z), S=Union(Epsilon,Prod(S,S,E))}: ZL:=[S,BB,unlabeled]: seq(count(ZL, size=n), n=0..45); # _Zerinvary Lajos_, Apr 22 2007", + "BB := [T,{T=Prod(Z,Z,Z,F,F), F=Sequence(B), B=Prod(F,Z,Z)}, unlabeled]: seq(count(BB, size=n+1), n=0..45); # valid for n\u003e 0. # _Zerinvary Lajos_, Apr 22 2007", + "seq(n!*coeff(series(hypergeom([],[2],x^2),x,n+2),x,n),n=0..45); # _Peter Luschny_, Jan 31 2015" + ], + "mathematica": [ + "a[n_?EvenQ] := CatalanNumber[n/2]; a[n_] = 0; Table[a[n], {n, 0, 45}] (* _Jean-François Alcover_, Sep 10 2012 *)", + "a[ n_] := If[ n \u003c 0, 0, n! SeriesCoefficient[ BesselI[ 1, 2 x] / x, {x, 0, n}]]; (* _Michael Somos_, Mar 19 2014 *)" + ], + "program": [ + "(Sage)", + "def A126120_list(n) :", + " D = [0]*(n+2); D[1] = 1", + " b = True; h = 2; R = []", + " for i in range(2*n-1) :", + " if b :", + " for k in range(h,0,-1) : D[k] -= D[k-1]", + " h += 1; R.append(abs(D[1]))", + " else :", + " for k in range(1,h, 1) : D[k] += D[k+1]", + " b = not b", + " return R", + "A126120_list(46) # _Peter Luschny_, Jun 03 2012", + "(MAGMA) \u0026cat [[Catalan(n), 0]: n in [0..30]]; // _Vincenzo Librandi_, Jul 28 2016" + ], + "xref": [ + "Cf. A000108.", + "Cf. A036039, A036040, A097610, A127671, A180874, A238390, A263916.", + "Cf. A126216." + ], + "keyword": "nonn", + "offset": "0,5", + "author": "_Philippe Deléham_, Mar 06 2007", + "ext": [ + "An erroneous comment removed by _Tom Copeland_, Jul 23 2016" + ], + "references": 48, + "revision": 181, + "time": "2021-03-21T10:15:38-04:00", + "created": "2007-05-11T03:00:00-04:00" + }, + { + "number": 97331, + "data": "1,1,0,1,0,2,0,5,0,14,0,42,0,132,0,429,0,1430,0,4862,0,16796,0,58786,0,208012,0,742900,0,2674440,0,9694845,0,35357670,0,129644790,0,477638700,0,1767263190,0,6564120420,0,24466267020,0,91482563640,0,343059613650,0", + "name": "Expansion of 1 + 2x/(1 + sqrt(1 - 4x^2)).", + "comment": [ + "Binomial transform is A097332. Second binomial transform is A014318.", + "Essentially the same as A126120. - _R. J. Mathar_, Jun 15 2008", + "Hankel transform is A087960(n) = (-1)^binomial(n+1,2). - _Paul Barry_, Aug 10 2009" + ], + "link": [ + "Michael De Vlieger, \u003ca href=\"/A097331/b097331.txt\"\u003eTable of n, a(n) for n = 0..3340\u003c/a\u003e", + "Jean-Luc Baril, Sergey Kirgizov, Armen Petrossian, \u003ca href=\"http://math.colgate.edu/~integers/t46/t46.Abstract.html\"\u003eMotzkin paths with a restricted first return decomposition\u003c/a\u003e, Integers (2019) Vol. 19, A46." + ], + "formula": [ + "a(n) = 0^n + Catalan((n-1)/2)(1-(-1)^n)/2.", + "Unsigned version of A090192, A105523. - _Philippe Deléham_, Sep 29 2006", + "From _Paul Barry_, Aug 10 2009: (Start)", + "G.f.: 1+xc(x^2), c(x) the g.f. of A000108;", + "G.f.: 1/(1-x/(1+x/(1+x/(1-x/(1-x/(1+x/(1+x/(1-x/(1-x/(1+... (continued fraction);", + "G.f.: 1+x/(1-x^2/(1-x^2/(1-x^2/(1-x^2/(1-... (continued fraction). (End)", + "G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1+2*x) (continued fraction); more generally g.f. C(x/(1+2*x)) where C(x) is the g.f. for the Catalan numbers (A000108). - _Joerg Arndt_, Mar 18 2011", + "Conjecture: (n+1)*a(n) + n*a(n-1) + 4*(-n+2)*a(n-2) + 4*(-n+3)*a(n-3)=0. - _R. J. Mathar_, Dec 02 2012", + "Recurrence: (n+3)*a(n+2) = 4*n*a(n), a(0)=a(1)=1. For nonzero terms, a(n) ~ 2^(n+1)/((n+1)^(3/2)*sqrt(2*Pi)). - _Fung Lam_, Mar 17 2014" + ], + "maple": [ + "A097331_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;", + "for w from 1 to n do a[w]:=a[w-1]-(-1)^w*add(a[j]*a[w-j-1],j=1..w-1) od; convert(a,list)end: A097331_list(48); # _Peter Luschny_, May 19 2011" + ], + "mathematica": [ + "a[0] = 1; a[n_?OddQ] := CatalanNumber[(n-1)/2]; a[_] = 0; Table[a[n], {n, 0, 48}] (* _Jean-François Alcover_, Jul 24 2013 *)" + ], + "program": [ + "(Sage)", + "def A097331_list(n) :", + " D = [0]*(n+2); D[1] = 1", + " b = True; h = 1; R = []", + " for i in range(2*n-1) :", + " if b :", + " for k in range(h,0,-1) : D[k] -= D[k-1]", + " h += 1; R.append(abs(D[1]))", + " else :", + " for k in range(1,h, 1) : D[k] += D[k+1]", + " b = not b", + " return R", + "A097331_list(49) # _Peter Luschny_, Jun 03 2012" + ], + "keyword": "easy,nonn", + "offset": "0,6", + "author": "_Paul Barry_, Aug 05 2004", + "references": 12, + "revision": 36, + "time": "2020-01-28T18:48:36-05:00", + "created": "2004-09-22T03:00:00-04:00" + }, + { + "number": 90192, + "data": "1,1,0,-1,0,2,0,-5,0,14,0,-42,0,132,0,-429,0,1430,0,-4862,0,16796,0,-58786,0,208012,0,-742900,0,2674440,0,-9694845,0,35357670,0,-129644790,0,477638700,0,-1767263190,0,6564120420,0,-24466267020,0,91482563640,0,-343059613650,0", + "name": "Carlitz-Riordan q-Catalan numbers (recurrence version) for q = -1.", + "comment": [ + "Hankel transform is (-1)^C(n+1,2). - _Paul Barry_, Feb 15 2008" + ], + "link": [ + "Fung Lam and Seiichi Manyama, \u003ca href=\"/A090192/b090192.txt\"\u003eTable of n, a(n) for n = 0..3338\u003c/a\u003e (first 1002 terms from Fung Lam)" + ], + "formula": [ + "a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=-1 and a(0)=1.", + "G.f.: 1+x*c(-x^2), where c(x) is the g.f. of A000108; a(n) = 0^n+C((n-1)/2)(-1)^((n-1)/2)(1-(-1)^n)/2, where C(n) = A000108(n). - _Paul Barry_, Feb 15 2008", + "G.f.: 1/(1-x/(1+x/(1-x/(1+x/(1-x/(1+x/(1-.... (continued fraction). - _Paul Barry_, Jan 15 2009", + "a(n) = 2 * a(n-1) - Sum_{k=1..n} a(k-1) * a(n-k) if n\u003e0. - _Michael Somos_, Jul 23 2011", + "G.f.: (2*x-1+sqrt(1+4*x^2))/(2*x). - _Philippe Deléham_, Nov 07 2011", + "E.g.f.: x*hypergeom([1/2],[2,3/2],-x^2)=A(x)=x*(1-(x^2)/(Q(0)+(x^2)); Q(k)=2*(k^3)+9*(k^2)+(13-2*(x^2))*k-(x^2)+6+(x^2)*(k+1)*(k+2)*((2*k+3)^2)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Nov 22 2011", + "G.f.: 2 + (G(0)-1)/(2*x) where G(k)=1 - 4*x/(1 + 1/G(k+1) ); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Dec 08 2012", + "G.f.: 2 + (G(0) -1)/x, where G(k)= 1 - x/(1 + x/G(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Jul 17 2013", + "G.f.: 1 - 1/(2*x) + G(0)/(4*x), where G(k)= 1 + 1/(1 - 2*x^2*(2*k-1)/(2*x^2*(2*k-1) - (k+1)/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jul 17 2013", + "G.f.: 1- x/(Q(0) + 2*x^2), where Q(k)= (4*x^2 - 1)*k - 2*x^2 - 1 + 2*x^2*(k+1)*(2*k+1)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Jul 17 2013", + "G.f.: 1+ x/Q(0), where Q(k) = 2*k+1 - x^2*(1-4*(k+1)^2)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Jan 09 2014", + "D-finite with recurrence: (n+3)*a(n+2) = -4*n*a(n), a(0)=a(1)=1. For nonzero terms, a(n) ~ (-1)^((n+3)/2)/sqrt(2*Pi)*2^(n+1)/(n+1)^(3/2). - _Fung Lam_, Mar 17 2014", + "a(n) = hypergeom([-n+1,-n], [2], -1). - _Peter Luschny_, Sep 22 2014", + "G.f. A(x) satisfies A(x) = 1 / (1 - x * A(-x)). - _Michael Somos_, Dec 26 2016" + ], + "example": [ + "G.f. = 1 + x - x^3 + 2*x^5 - 5*x^7 + 14*x^9 - 42*x^11 + 132*x^13 - 429*x^15 + ..." + ], + "maple": [ + "A090192_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;", + "for w from 1 to n do a[w] := a[w-1]-add(a[j]*a[w-j-1], j=1..w-1) od;", + "convert(a, list) end: A090192_list(48); # _Peter Luschny_, May 19 2011", + "a := n -\u003e hypergeom([-n+1,-n],[2],-1); seq(round(evalf(a(n), 69)), n=0..48); # _Peter Luschny_, Sep 22 2014", + "a:= proc(n) if n::even then 0 else (-1)^((n-1)/2)*binomial(n+1,(n+1)/2)/(2*n) fi end proc: a(0):= 1:", + "seq(a(n), n=0..100); # _Robert Israel_, Sep 22 2014" + ], + "mathematica": [ + "CoefficientList[Series[(2 x - 1 + Sqrt[1 + 4*x^2])/(2 x), {x, 0, 50}],", + " x] (* _G. C. Greubel_, Dec 24 2016 *)", + "Table[Hypergeometric2F1[1 - n, -n, 2, -1], {n, 0, 48}] (* _Michael De Vlieger_, Dec 26 2016 *)" + ], + "program": [ + "(PARI) {a(n) = my(A); if( n\u003c0, 0, n++; A = vector(n); A[1] = 1; for( k=2, n, A[k] = 2 * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* _Michael Somos_, Jul 23 2011 */", + "(Sage)", + "def A090192_list(n) :", + " D = [0]*(n+2); D[1] = 1", + " b = True; h = 1; R = []", + " for i in range(2*n-1) :", + " if b :", + " for k in range(h,0,-1) : D[k] -= D[k-1]", + " h += 1; R.append(D[1])", + " else :", + " for k in range(1,h, 1) : D[k] += D[k+1]", + " b = not b", + " return R", + "A090192_list(49) # _Peter Luschny_, Jun 03 2012", + "(Ruby)", + "def A(q, n)", + " ary = [1]", + " (1..n).each{|i| ary \u003c\u003c (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}", + " ary", + "end", + "def A090192(n)", + " A(-1, n)", + "end # _Seiichi Manyama_, Dec 24 2016", + "(PARI) Vec((2*x - 1 + sqrt(1+4*x^2))/(2*x) + O(x^50)) \\\\ _G. C. Greubel_, Dec 24 2016" + ], + "xref": [ + "Cf. A227543.", + "Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), this sequence (q=-1), A000108 (q=1), A015083 (q=2), A015084 (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).", + "Column k=1 of A290789." + ], + "keyword": "sign", + "offset": "0,6", + "author": "_Philippe Deléham_, Jan 22 2004", + "references": 33, + "revision": 109, + "time": "2020-04-10T01:31:10-04:00", + "created": "2004-02-19T03:00:00-05:00" + }, + { + "number": 105523, + "data": "1,-1,0,1,0,-2,0,5,0,-14,0,42,0,-132,0,429,0,-1430,0,4862,0,-16796,0,58786,0,-208012,0,742900,0,-2674440,0,9694845,0,-35357670,0,129644790,0,-477638700,0,1767263190,0", + "name": "Expansion of 1-x*c(-x^2) where c(x) is the g.f. of A000108.", + "comment": [ + "Row sums of A105522. Row sums of inverse of A105438.", + "First column of number triangle A106180." + ], + "link": [ + "Vincenzo Librandi, \u003ca href=\"/A105523/b105523.txt\"\u003eTable of n, a(n) for n = 0..1000\u003c/a\u003e", + "R. J. Martin and M. J. Kearney, \u003ca href=\"http://dx.doi.org/10.1007/s00010-010-0051-0\"\u003eAn exactly solvable self-convolutive recurrence\u003c/a\u003e, Aequat. Math., 80 (2010), 291-318. see p. 313.", + "R. J. Martin and M. J. Kearney, \u003ca href=\"http://arXiv.org/abs/1103.4936\"\u003eAn exactly solvable self-convolutive recurrence\u003c/a\u003e, arXiv:1103.4936 [math.CO]" + ], + "formula": [ + "G.f.: (1 + 2*x - sqrt(1+4*x^2))/(2*x).", + "a(n) = 0^n + sin(Pi*(n-2)/2)(C((n-1)/2)(1-(-1)^n)/2).", + "G.f.: 1/(1+x/(1-x/(1+x/(1-x/(1+x/(1-x.... (continued fraction). - _Paul Barry_, Jan 15 2009", + "a(n) = Sum{k=0..n, A090181(n,k)*(-1)^k}. - _Philippe Deléham_, Feb 02 2009", + "a(n) = (1/n)*sum((-2)^i*binomial(n, i)*binomial(2*n-i-2, n-1), i=0..n-1). - _Vladimir Kruchinin_, Dec 26 2010", + "With offset 1, a(n) = -2 * a(n-1) + Sum_{k=1..n-1} a(k) * a(n-k), for n\u003e1. - _Michael Somos_, Jul 25 2011", + "D-finite with recurrence: (n+3)*a(n+2) = -4*n*a(n), a(0)=1, a(1)=-1. - _Fung Lam_, Mar 18 2014", + "For nonzero terms, a(n) ~ (-1)^((n+1)/2)/sqrt(2*Pi)*2^(n+1)/(n+1)^(3/2). - _Fung Lam_, Mar 17 2014", + "a(n) = -(sqrt(Pi)*2^(n-1))/(Gamma(1-n/2)*Gamma((n+3)/2)) for n odd. - _Peter Luschny_, Oct 31 2014" + ], + "example": [ + "G.f. = 1 - x + x^3 - 2*x^5 + 5*x^7 - 14*x^9 + 42*x^11 - 132*x^13 + 429*x^15 + ..." + ], + "maple": [ + "A105523_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;", + "for w from 1 to n do a[w]:=-a[w-1]+(-1)^w*add(a[j]*a[w-j-1],j=1..w-1) od; convert(a,list)end: A105523_list(40); # _Peter Luschny_, May 19 2011" + ], + "mathematica": [ + "a[n_?EvenQ] := 0; a[n_?OddQ] := 4^n*Gamma[n/2] / (Gamma[-n/2]*(n+1)!); a[0] = 1; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Nov 14 2011, after _Vladimir Kruchinin_ *)", + "CoefficientList[Series[(1 + 2 x - Sqrt[1 + 4 x^2])/(2 x), {x, 0, 50}], x] (* _Vincenzo Librandi_, Nov 01 2014 *)", + "a[ n_] := SeriesCoefficient[ (1 + 2 x - Sqrt[ 1 + 4 x^2]) / (2 x), {x, 0, n}]; (* _Michael Somos_, Jun 17 2015 *)", + "a[ n_] := If[ n \u003c 1, Boole[n == 0], a[n] = -2 a[n - 1] + Sum[ a[j] a[n - j - 1], {j, 0, n - 1}]]; (* _Michael Somos_, Jun 17 2015 *)" + ], + "program": [ + "(PARI) {a(n) = local(A); if( n\u003c0, 0, n++; A = vector(n); A[1] = 1; for( k=2, n, A[k] = -2 * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* _Michael Somos_, Jul 24 2011 */", + "(Sage)", + "def A105523(n):", + " if is_even(n): return 0 if n\u003e0 else 1", + " return -(sqrt(pi)*2^(n-1))/(gamma(1-n/2)*gamma((n+3)/2))", + "[A105523(n) for n in (0..29)] # _Peter Luschny_, Oct 31 2014", + "(MAGMA) m:=25; R\u003cx\u003e:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1 + 2*x - Sqrt(1+4*x^2))/(2*x))); // _G. C. Greubel_, Sep 16 2018" + ], + "xref": [ + "Cf. A000108, A097331, A090192, A090181, A105522, A105438." + ], + "keyword": "easy,sign", + "offset": "0,6", + "author": "_Paul Barry_, Apr 11 2005", + "ext": [ + "Typo in definition corrected by _Robert Israel_, Oct 31 2014" + ], + "references": 15, + "revision": 59, + "time": "2020-02-21T06:33:16-05:00", + "created": "2005-07-19T03:00:00-04:00" + }, + { + "number": 210628, + "data": "1,-1,0,-1,0,-2,0,-5,0,-14,0,-42,0,-132,0,-429,0,-1430,0,-4862,0,-16796,0,-58786,0,-208012,0,-742900,0,-2674440,0,-9694845,0,-35357670,0,-129644790,0,-477638700,0,-1767263190,0,-6564120420,0,-24466267020,0", + "name": "Expansion of (-1 + 2*x + sqrt( 1 - 4*x^2)) / (2*x) in powers of x.", + "comment": [ + "Except for the leading term, the sequence is equal to -A097331(n). - _Fung Lam_, Mar 22 2014" + ], + "link": [ + "Vincenzo Librandi, \u003ca href=\"/A210628/b210628.txt\"\u003eTable of n, a(n) for n = 0..1000\u003c/a\u003e" + ], + "formula": [ + "G.f.: 1 - (2*x) / (1 + sqrt( 1 - 4*x^2)) = 1 - (1 - sqrt( 1 - 4*x^2)) / (2*x).", + "G.f. A(x) satisfies 0 = f(x, A(x)) where f(x, y) = x*y^2 - (1 - 2*x) * (1 - y).", + "G.f. A(x) satisfies A( x / (1 + x^2) ) = 1 - x.", + "G.f. A(x) = 1 - x - x * (1 - A(x))^2 = 1 - 1/x + 1 / (1 - A(x)).", + "G.f. A(x) = 1 / (1 + x / (1 - 2*x + x * A(x))).", + "G.f. A(x) = 1 / (1 + x / (1 - x / (1 - x / (1 + x * A(x))))).", + "G.f. A(x) = 1 / (1 + x * A001405(x)). A126930(x) = 1 / (1 + x * A(x)).", + "G.f. A(x) = 1 - x / (1 - x^2 / (1 - x^2 / (1 - x^2 / ...))). - _Michael Somos_, Jan 02 2013", + "a(2*n) = 0 unless n=0, a(2*n + 1) = -A000108(n). a(n) = (-1)^n * A097331(n). a(n-1) = (-1)^floor(n/2) * A090192(n).", + "Convolution inverse of A210736. - _Michael Somos_, Jan 02 2013", + "G.f.: 2/( G(0) + 1), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1+2*x) - 2*x*(1+2*x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1+2*x)*(k+1)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 24 2013", + "D-finite with recurrence: (n+3)*a(n+2) = 4*n*a(n), a(0)=1, a(1)=-1. - _Fung Lam_, Mar 17 2014", + "For nonzero odd-power terms, a(n) = -2^(n+1)/(n+1)^(3/2)/sqrt(2*Pi)*(1+3/(4*n) + O(1/n^2)). (with contribution of Vaclav Kotesovec) - _Fung Lam_, Mar 17 2014" + ], + "example": [ + "G.f. = 1 - x - x^3 - 2*x^5 - 5*x^7 - 14*x^9 - 42*x^11 - 132*x^13 - 429*x^15 + ..." + ], + "mathematica": [ + "CoefficientList[Series[1 - 2 x/(1 + Sqrt[1 - 4 x^2]), {x, 0, 45}], x] (* _Bruno Berselli_, Mar 25 2012 *)", + "a[ n_] := SeriesCoefficient[ (-1 + 2 x + Sqrt[1 - 4 x^2]) / (2 x), {x, 0, n}];" + ], + "program": [ + "(PARI) {a(n) = polcoeff( (-1 + 2*x + sqrt( 1 - 4*x^2 + x^2 * O(x^n))) / (2*x), n)};", + "(PARI) {a(n) = if( n\u003c1, n==0, polcoeff( serreverse( -x / (1 + x^2) + x * O(x^n)), n))};", + "(PARI) {a(n) = my(A); if( n\u003c0, 0, A = 1 + O(x); for( k=1, n, A = 1 - x - x * (1 - A)^2); polcoeff( A, n))};", + "(Maxima) makelist(coeff(taylor(1-2*x/(1+sqrt(1-4*x^2)), x, 0, n), x, n), n, 0, 45); \\\\ _Bruno Berselli_, Mar 25 2012", + "(MAGMA) m:=50; R\u003cx\u003e:=PowerSeriesRing(Rationals(), m); Coefficients(R!((-1 + 2*x + Sqrt(1-4*x^2))/(2*x))); // _G. C. Greubel_, Aug 11 2018" + ], + "xref": [ + "Cf. A000108, A001405, A090192, A097331, A126930, A210736." + ], + "keyword": "sign", + "offset": "0,6", + "author": "_Michael Somos_, Mar 25 2012", + "references": 2, + "revision": 56, + "time": "2020-01-30T21:29:16-05:00", + "created": "2012-03-26T00:35:04-04:00" + } + ] +} \ No newline at end of file diff --git a/data/1,1,0,1,1,0,.json b/data/1,1,0,1,1,0,.json new file mode 100644 index 0000000..dd1986e --- /dev/null +++ b/data/1,1,0,1,1,0,.json @@ -0,0 +1,7 @@ +{ + "greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/", + "query": "1,1,0,1,1,0,1,4,3,0,1,11,", + "count": 0, + "start": 0, + "results": null +} \ No newline at end of file diff --git a/data/1,1,0,1,2,0,.json b/data/1,1,0,1,2,0,.json new file mode 100644 index 0000000..fc8cfe1 --- /dev/null +++ b/data/1,1,0,1,2,0,.json @@ -0,0 +1,87 @@ +{ + "greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/", + "query": "1,1,0,1,2,0,1,4,6,0,1,6,", + "count": 2, + "start": 0, + "results": [ + { + "number": 287318, + "data": "1,1,0,1,2,0,1,4,6,0,1,6,36,20,0,1,8,90,400,70,0,1,10,168,1860,4900,252,0,1,12,270,5120,44730,63504,924,0,1,14,396,10900,190120,1172556,853776,3432,0,1,16,546,19920,551950,7939008,32496156,11778624,12870,0", + "name": "Square array A(n,k) = (2*n)! [x^n] BesselI(0, 2*sqrt(x))^k read by antidiagonals.", + "formula": [ + "A(n,k) = A287316(n,k) * binomial(2*n,n)." + ], + "example": [ + "Arrays start:", + "k\\n| 0 1 2 3 4 5 6", + "---|---------------------------------------------------------", + "k=0| 1, 0, 0, 0, 0, 0, 0, ... A000007", + "k=1| 1, 2, 6, 20, 70, 252, 924, ... A000984", + "k=2| 1, 4, 36, 400, 4900, 63504, 853776, ... A002894", + "k=3| 1, 6, 90, 1860, 44730, 1172556, 32496156, ... A002896", + "k=4| 1, 8, 168, 5120, 190120, 7939008, 357713664, ... A039699", + "k=5| 1, 10, 270, 10900, 551950, 32232060, 2070891900, ... A287317", + "k=6| 1, 12, 396, 19920, 1281420, 96807312, 8175770064, ...", + "k=7| 1, 14, 546, 32900, 2570050, 238935564, 25142196156, ...", + "k=8| 1, 16, 720, 50560, 4649680, 514031616, 64941883776, ...", + "k=9| 1, 18, 918, 73620, 7792470, 999283068, 147563170524, ..." + ], + "maple": [ + "A287318_row := proc(k, len) local b, ser;", + "b := k -\u003e BesselI(0, 2*sqrt(x))^k: ser := series(b(k), x, len);", + "seq((2*i)!*coeff(ser,x,i), i=0..len-1) end:", + "for k from 0 to 6 do A287318_row(k, 9) od;" + ], + "mathematica": [ + "Table[Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^k, {x, 0, n}] (2 n)!, {n, 0, 6}], {k, 0, 6}]" + ], + "xref": [ + "Rows: A000007 (k=0), A000984 (k=1), A002894 (k=2), A002896 (k=3), A039699 (k=4), A287317 (k=5).", + "Columns: A005843 (n=1), A152746 (n=2), 20*A169711 (n=3), 70*A169712 (n=4), 252*A169713 (n=5).", + "Main diagonal gives A303503.", + "Cf. A287316." + ], + "keyword": "nonn,tabl", + "offset": "0,5", + "author": "_Peter Luschny_, May 23 2017", + "references": 3, + "revision": 19, + "time": "2018-05-02T11:50:20-04:00", + "created": "2017-05-23T09:39:37-04:00" + }, + { + "number": 329020, + "data": "1,1,0,1,2,0,1,4,6,0,1,6,44,20,0,1,8,146,580,70,0,1,10,344,4332,8092,252,0,1,12,670,18152,135954,116304,924,0,1,14,1156,55252,1012664,4395456,1703636,3432,0,1,16,1834,137292,4816030,58199208,144840476,25288120,12870,0", + "name": "Square array T(n,k), n\u003e=0, k\u003e=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ( Sum_{j=1..k} x_j^(2*j-1) + x_j^(-(2*j-1)) )^(2*n).", + "link": [ + "Seiichi Manyama, \u003ca href=\"/A329020/b329020.txt\"\u003eAntidiagonals n = 0..50, flattened\u003c/a\u003e" + ], + "formula": [ + "T(n,k) = Sum_{j=0..floor((2*k-1)*n/(2*k))} (-1)^j * binomial(2*n,j) * binomial((2*k+1)*n-2*k*j-1,(2*k-1)*n-2*k*j) for k \u003e 0." + ], + "example": [ + "(x^3 + x + 1/x + 1/x^3)^2 = x^6 + 2*x^4 + 3*x^2 + 4 + 3/x^2 + 2/x^4 + 1/x^6. So T(1,2) = 4.", + "Square array begins:", + " 1, 1, 1, 1, 1, 1, ...", + " 0, 2, 4, 6, 8, 10, ...", + " 0, 6, 44, 146, 344, 670, ...", + " 0, 20, 580, 4332, 18152, 55252, ...", + " 0, 70, 8092, 135954, 1012664, 4816030, ...", + " 0, 252, 116304, 4395456, 58199208, 432457640, ..." + ], + "xref": [ + "Columns k=0-3 give A000007, A000984, A005721, A063419.", + "Rows n=0-2 give A000012, A005843, 2*A143166.", + "Main diagonal gives A329021.", + "Cf. A077042." + ], + "keyword": "nonn,tabl", + "offset": "0,5", + "author": "_Seiichi Manyama_, Nov 02 2019", + "references": 2, + "revision": 34, + "time": "2019-11-04T02:21:15-05:00", + "created": "2019-11-02T20:00:59-04:00" + } + ] +} \ No newline at end of file diff --git a/data/1,1,1,0,1,1,.json b/data/1,1,1,0,1,1,.json new file mode 100644 index 0000000..9b64933 --- /dev/null +++ b/data/1,1,1,0,1,1,.json @@ -0,0 +1,7 @@ +{ + "greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/", + "query": "1,1,1,0,1,1,1,4,0,1,11,1,", + "count": 0, + "start": 0, + "results": null +} \ No newline at end of file diff --git a/data/1,1,1,1,2,0,.json b/data/1,1,1,1,2,0,.json new file mode 100644 index 0000000..c2ff6f5 --- /dev/null +++ b/data/1,1,1,1,2,0,.json @@ -0,0 +1,88 @@ +{ + "greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/", + "query": "1,1,1,1,2,0,1,3,1,1,1,4,", + "count": 3, + "start": 0, + "results": [ + { + "number": 78805, + "data": "1,1,1,1,2,0,1,3,1,1,1,4,3,2,0,1,5,6,4,2,1,1,6,10,8,6,2,0,1,7,15,15,13,6,3,1,1,8,21,26,25,16,9,2,0,1,9,28,42,45,36,22,9,4,1,1,10,36,64,77,72,50,28,12,2,0,1,11,45,93,126,133,106,70,34,13,5,1,1,12,55,130,198,232", + "name": "Triangular array T given by T(n,k)= number of 01-words of length n having exactly k 1's, every runlength of 1's odd and initial letter 0.", + "comment": [ + "Row sums: A028495." + ], + "reference": [ + "Clark Kimberling, Binary words with restricted repetitions and associated compositions of integers, in Applications of Fibonacci Numbers, vol.10, Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, William Webb, editor, Congressus Numerantium, Winnipeg, Manitoba 194 (2009) 141-151." + ], + "formula": [ + "T(n, k)=T(n-2, k)+T(n-2, k-1)+T(n-2, k-2)+T(n-3, k-1)-T(n-4, k-2) for 0\u003c=k\u003c=n, n\u003e=1. (All numbers T(i, j) not in the array are 0, by definition of T.)" + ], + "example": [ + "T(5,2) counts the words 01010, 01001, 00101. Top of triangle T:", + "1 = T(1,0)", + "1 1 = T(2,0) T(2,1)", + "1 2 0 = T(3,0) T(3,1) T(3,2)", + "1 3 1 1", + "1 4 3 2 0" + ], + "xref": [ + "Cf. A078804, A078806." + ], + "keyword": "nonn,tabl", + "offset": "1,5", + "author": "_Clark Kimberling_, Dec 07 2002", + "references": 2, + "revision": 6, + "time": "2012-03-30T18:57:05-04:00", + "created": "2003-05-16T03:00:00-04:00" + }, + { + "number": 65432, + "data": "1,1,-1,1,-2,0,1,-3,1,1,1,-4,3,2,0,1,-5,6,2,-2,-2,1,-6,10,0,-6,-4,0,1,-7,15,-5,-11,-3,5,5,1,-8,21,-14,-15,4,15,10,0,1,-9,28,-28,-15,19,26,6,-14,-14,1,-10,36,-48,-7,42,30,-16,-42,-28,0,1,-11,45,-75,14,70,16,-60,-70,-14,42,42,1,-12,55,-110,54,96,-28,-120", + "name": "Triangle related to Catalan triangle: recurrence related to A033877 (Schroeder numbers).", + "comment": [ + "Sums of odd rows are 0, of even rows are the Catalan numbers (A000108) with alternating signs. Row sums of unsigned version give A065441." + ], + "formula": [ + "a[0, 0] := 1; a[n_, k_] := 0/;(k \u003e n||n \u003c 0||k \u003c 0); a[n_, k_] := a[n, k] = a[n, k-1]-2a[n-1, k-1]+a[n-1, k]; Table[a[n, k], {n, 0, 16}, {k, 0, n}]" + ], + "example": [ + "{1},{1,-1},{1,-2,0},{1,-3,1,1},{1,-4,3,2,0}" + ], + "keyword": "sign,tabl", + "offset": "0,5", + "author": "_Wouter Meeussen_, Nov 16 2001", + "references": 2, + "revision": 6, + "time": "2016-04-25T13:17:22-04:00", + "created": "2003-05-16T03:00:00-04:00" + }, + { + "number": 94184, + "data": "1,1,1,1,2,0,1,3,1,-1,1,4,3,-2,0,1,5,6,-2,-2,2,1,6,10,0,-6,4,0,1,7,15,5,-11,3,5,-5,1,8,21,14,-15,-4,15,-10,0,1,9,28,28,-15,-19,26,-6,-14,14,1,10,36,48,-7,-42,30,16,-42,28,0,1,11,45,75,14,-70,16,60,-70,14,42,-42,1,12,55,110,54,-96,-28,120,-70,-56,126,-84,0,1", + "name": "Triangle read by rows in which each term equals the entry above minus the entry left plus twice the entry left-above.", + "comment": [ + "Row sums are A086990 or A090412. (Superseeker finds that the j-th coefficient of OGF(A090412)(z)*(1-z)^j equals A049122). Same absolute values as A065432. Even rows end in 0, odd rows end in Catalan numbers (A000118) with alternating sign." + ], + "formula": [ + "T(i, j)=T(i-1, j)-T(i, j-1)+2*T(i-1, j-1), with T(i, 0)=1 and T(i, j)=0 if j\u003ei." + ], + "example": [ + "Table starts {1},{1,1},{1,2,0},{1,3,1,-1},{1,4,3,-2,0},{1,5,6,-2,-2,2}" + ], + "mathematica": [ + "T[_, 0]:=1;T[0, 0]:=1;T[i_, j_]/;j\u003ei:=0;T[i_, j_]:=T[i, j]=T[i-1, j]-T[i, j-1]+2 T[i-1, j-1]" + ], + "xref": [ + "Cf. A086990, A090412, A049122, A009766, A065432, A065441." + ], + "keyword": "sign,tabl", + "offset": "0,5", + "author": "_Wouter Meeussen_, May 06 2004", + "references": 0, + "revision": 4, + "time": "2012-03-30T18:37:44-04:00", + "created": "2004-06-12T03:00:00-04:00" + } + ] +} \ No newline at end of file diff --git a/data/1,1,1,1,2,1,.json b/data/1,1,1,1,2,1,.json new file mode 100644 index 0000000..b3a2161 --- /dev/null +++ b/data/1,1,1,1,2,1,.json @@ -0,0 +1,591 @@ +{ + "greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/", + "query": "1,1,1,1,2,1,1,3,2,1,1,4,", + "count": 16, + "start": 0, + "results": [ + { + "number": 77592, + "data": "1,1,1,1,2,1,1,3,2,1,1,4,3,3,1,1,5,4,6,2,1,1,6,5,10,3,4,1,1,7,6,15,4,9,2,1,1,8,7,21,5,16,3,4,1,1,9,8,28,6,25,4,10,3,1,1,10,9,36,7,36,5,20,6,4,1,1,11,10,45,8,49,6,35,10,9,2,1,1,12,11,55,9,64,7,56,15,16,3,6,1", + "name": "Table by antidiagonals of tau_k(n), the k-th Piltz function (see A007425), or n-th term of the sequence resulting from applying the inverse Möbius transform (k-1) times to the all-ones sequence.", + "link": [ + "Alois P. Heinz, \u003ca href=\"/A077592/b077592.txt\"\u003eAntidiagonals n = 1..141, flattened\u003c/a\u003e", + "Adolf Piltz, \u003ca href=\"https://gdz.sub.uni-goettingen.de/id/PPN271032898\"\u003eUeber das Gesetz, nach welchem die mittlere Darstellbarkeit der natürlichen Zahlen als Produkte einer gegebenen Anzahl Faktoren mit der Grösse der Zahlen wächst\u003c/a\u003e, Doctoral Dissertation, Friedrich-Wilhelms-Universität zu Berlin, 1881; the k-th Piltz function tau_k(n) is denoted by phi(n,k) and its recurrence and Dirichlet series appear on p. 6.", + "Wikipedia, \u003ca href=\"https://de.wikipedia.org/wiki/Adolf_Piltz\"\u003eAdolf Piltz\u003c/a\u003e." + ], + "formula": [ + "If n = Product_i p_i^e_i, then T(n,k) = Product_i C(k+e_i-1, e_i). T(n,k) = sum_d{d|n} T(n-1,d) = A077593(n,k) - A077593(n-1,k).", + "Columns are multiplicative.", + "Dirichlet g.f. for column k: Zeta(s)^k. - _Geoffrey Critzer_, Feb 16 2015" + ], + "example": [ + "Rows start:", + " 1, 1, 1, 1, 1, 1, 1, ...", + " 1, 2, 3, 4, 5, 6, 7, ...", + " 1, 2, 3, 4, 5, 6, 7, ...", + " 1, 3, 6, 10, 15, 21, 28, ...", + " 1, 2, 3, 4, 5, 6, 7, ...", + " 1, 4, 9, 16, 25, 36, 49, ...", + " ...", + "T(6,3) = 9 because we have: 1*1*6, 1*2*3, 1*3*2, 1*6*1, 2*1*3, 2*3*1, 3*1*2, 3*2*1, 6*1*1. - _Geoffrey Critzer_, Feb 16 2015" + ], + "maple": [ + "with(numtheory):", + "A:= proc(n,k) option remember; `if`(k=1, 1,", + " add(A(d, k-1), d=divisors(n)))", + " end:", + "seq(seq(A(n, 1+d-n), n=1..d), d=1..14); # _Alois P. Heinz_, Feb 25 2015" + ], + "mathematica": [ + "tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] \u0026 /@ Divisors[n]); Table[tau[n - k + 1, k], {n, 14}, {k, n, 1, -1}] // Flatten (* _Robert G. Wilson v_ *)", + "tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#] + k - 1, k - 1] \u0026 /@ FactorInteger[n]); Table[tau[k, n - k + 1], {n, 1, 13}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Sep 13 2020 *)" + ], + "xref": [ + "Columns include: A000012, A000005, A007425, A007426, A061200, A034695, A111217, A111218, A111219, A111220, A111221, A111306.", + "Rows include (with multiplicity and some offsets) A000012, A000027, A000027, A000217, A000027, A000290, A000027, A000292, A000217, A000290, A000027, A002411, A000027, A000290, A000290, A000332 etc.", + "Main diagonal gives A163767.", + "Cf. A077593." + ], + "keyword": "mult,nonn,tabl,look", + "offset": "1,5", + "author": "_Henry Bottomley_, Nov 08 2002", + "ext": [ + "Typo in formula fixed by _Geoffrey Critzer_, Feb 16 2015" + ], + "references": 18, + "revision": 33, + "time": "2020-09-13T02:58:34-04:00", + "created": "2003-05-16T03:00:00-04:00" + }, + { + "number": 52509, + "data": "1,1,1,1,2,1,1,3,2,1,1,4,4,2,1,1,5,7,4,2,1,1,6,11,8,4,2,1,1,7,16,15,8,4,2,1,1,8,22,26,16,8,4,2,1,1,9,29,42,31,16,8,4,2,1,1,10,37,64,57,32,16,8,4,2,1,1,11,46,93,99,63,32,16,8,4,2,1", + "name": "Knights-move Pascal triangle: T(n,k), n \u003e= 0, 0 \u003c= k \u003c= n; T(n,0) = T(n,n) = 1, T(n,k) = T(n-1,k) + T(n-2,k-1) for k = 1,2,...,n-1, n \u003e= 2.", + "comment": [ + "Also square array T(n,k) (n \u003e= 0, k \u003e= 0) read by antidiagonals: T(n,k) = Sum_{i=0..k} binomial(n,i).", + "As a number triangle read by rows, this is T(n,k) = Sum_{i=n-2*k..n-k} binomial(n-k,i), with T(n,k) = T(n-1,k) + T(n-2,k-1). Row sums are A000071(n+2). Diagonal sums are A023435(n+1). It is the reverse of the Whitney triangle A004070. - _Paul Barry_, Sep 04 2005", + "Also, twice number of orthants intersected by a generic k-dimensional subspace of R^n [Naiman and Scheinerman, 2017]. - _N. J. A. Sloane_, Mar 03 2018" + ], + "link": [ + "Reinhard Zumkeller, \u003ca href=\"/A052509/b052509.txt\"\u003eRows n = 0..150 of triangle, flattened\u003c/a\u003e", + "C. Kimberling, \u003ca href=\"https://www.fq.math.ca/Scanned/40-4/kimberling.pdf\"\u003ePath-counting and Fibonacci numbers\u003c/a\u003e, Fib. Quart. 40 (4) (2002) 328-338, Example 1C.", + "Daniel Q. Naiman, Edward R. Scheinerman, \u003ca href=\"https://arxiv.org/abs/1709.07446\"\u003eArbitrage and Geometry\u003c/a\u003e, arXiv:1709.07446 [q-fin.MF], 2017 [Contains the square array multiplied by 2].", + "Richard L. Ollerton and Anthony G. Shannon, \u003ca href=\"http://www.fq.math.ca/Scanned/36-2/ollerton.pdf\"\u003eSome properties of generalized Pascal squares and triangles\u003c/a\u003e, Fib. Q., 36 (1998), 98-109. See Tables 5 and 14.", + "D. J. Price, \u003ca href=\"http://www.jstor.org/stable/3609091\"\u003eSome unusual series occurring in n-dimensional geometry\u003c/a\u003e, Math. Gaz., 30 (1946), 149-150.", + "\u003ca href=\"/index/Pas#Pascal\"\u003eIndex entries for triangles and arrays related to Pascal's triangle\u003c/a\u003e" + ], + "formula": [ + "T(n, k) = Sum_{m=0..n} binomial(n-k, k-m). - _Wouter Meeussen_, Oct 03 2002", + "From _Werner Schulte_, Feb 15 2018: (Start)", + "Referring to the square array T(i,j):", + "G.f. of row n: Sum_{k\u003e=0} T(n,k) * x^k = (1+x)^n / (1-x).", + "G.f. of T(i,j): Sum_{k\u003e=0, n\u003e=0} T(n,k) * x^k * y^n = 1 / ((1-x)*(1-y-x*y).", + "Let a_i(n) be multiplicative with a_i(p^e) = T(i, e), p prime and e \u003e= 0, then Sum_{n\u003e0} a_i(n)/n^s = (zeta(s))^(i+1) / (zeta(2*s))^i for i \u003e= 0.", + "(End)" + ], + "example": [ + "Triangle begins:", + " 1", + " 1, 1", + " 1, 2, 1", + " 1, 3, 2, 1", + " 1, 4, 4, 2, 1", + " 1, 5, 7, 4, 2, 1", + " 1, 6, 11, 8, 4, 2, 1", + "As a square array, this begins:", + " 1 1 1 1 1 1 ...", + " 1 2 2 2 2 2 ...", + " 1 3 4 4 4 4 ...", + " 1 4 7 8 8 8 ...", + " 1 5 11 15 16 ...", + " 1 6 16 26 31 32 ..." + ], + "maple": [ + "a := proc(n::nonnegint, k::nonnegint) option remember: if k=0 then RETURN(1) fi: if k=n then RETURN(1) fi: a(n-1,k)+a(n-2,k-1) end: for n from 0 to 11 do for k from 0 to n do printf(`%d,`,a(n,k)) od: od: # _James A. Sellers_, Mar 17 2000", + "with(combinat): for s from 0 to 11 do for n from s to 0 by -1 do if n=0 or s-n=0 then printf(`%d,`,1) else printf(`%d,`,sum(binomial(n, i), i=0..s-n)) fi; od: od: # _James A. Sellers_, Mar 17 2000" + ], + "mathematica": [ + "Table[Sum[Binomial[n-k, k-m], {m, 0, n}], {n, 0, 10}, {k, 0, n}]" + ], + "program": [ + "(PARI) T(n,k)=sum(m=0,n,binomial(n-k,k-m));", + "for(n=0,10,for(k=0,n,print1(T(n,k),\", \"););print();); /* show triangle */", + "(Haskell)", + "a052509 n k = a052509_tabl !! n !! k", + "a052509_row n = a052509_tabl !! n", + "a052509_tabl = [1] : [1,1] : f [1] [1,1] where", + " f row' row = rs : f row rs where", + " rs = zipWith (+) ([0] ++ row' ++ [1]) (row ++ [0])", + "-- _Reinhard Zumkeller_, Nov 22 2012", + "(GAP) A052509:=Flat(List([0..100],n-\u003eList([0..n],k-\u003eSum([0..n],m-\u003eBinomial(n-k,k-m))))); # _Muniru A Asiru_, Sat Feb 17 2018", + "(MAGMA) [[(\u0026+[Binomial(n-k, k-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, May 13 2019", + "(Sage) [[sum(binomial(n-k, k-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, May 13 2019" + ], + "xref": [ + "Cf. A054123, A054124, A007318, A008949.", + "Row sums A000071; Diagonal sums A023435; Mirror A004070.", + "Columns give A000027, A000124, A000125, A000127, A006261, ...", + "Cf. A052509, A054123, A054124, A007318, A008949, A052553.", + "Partial sums across rows of (extended) Pascal's triangle A052553." + ], + "keyword": "nonn,tabl,easy,nice", + "offset": "0,5", + "author": "_N. J. A. Sloane_, Mar 17 2000", + "ext": [ + "More terms from _James A. Sellers_, Mar 17 2000", + "Entry formed by merging two earlier entries. - _N. J. A. Sloane_, Jun 17 2007", + "Edited by _Johannes W. Meijer_, Jul 24 2011" + ], + "references": 17, + "revision": 65, + "time": "2019-05-14T02:04:42-04:00", + "created": "2000-05-08T03:00:00-04:00" + }, + { + "number": 172119, + "data": "1,1,1,1,2,1,1,3,2,1,1,4,4,2,1,1,5,7,4,2,1,1,6,12,8,4,2,1,1,7,20,15,8,4,2,1,1,8,33,28,16,8,4,2,1,1,9,54,52,31,16,8,4,2,1,1,10,88,96,60,32,16,8,4,2,1,1,11,143,177,116,63,32,16,8,4,2,1,1,12,232,326,224,124,64,32,16", + "name": "Sum the k preceding elements in the same column and add 1 every time.", + "comment": [ + "Columns are related to Fibonacci n-step numbers. Are there closed forms for the sequences in the columns?", + "We denote by a(n,k) the number which is in the (n+1)-th row and (k+1)-th-column. With help of the definition, we also have the recurrence relation: a(n+k+1, k) = 2*a(n+k, k) - a(n, k). We see on the main diagonal the numbers 1,2,4, 8, ..., which is clear from the formula for the general term d(n)=2^n. - _Richard Choulet_, Jan 31 2010", + "Most of the paper by Dunkel (1925) is a study of the columns of this table. - _Petros Hadjicostas_, Jun 14 2019" + ], + "link": [ + "O. Dunkel, \u003ca href=\"http://www.jstor.org/stable/2298801\"\u003eSolutions of a probability difference equation\u003c/a\u003e, Amer. Math. Monthly, 32 (1925), 354-370; see p. 356.", + "T. Langley, J. Liese, and J. Remmel, \u003ca href=\"https://cs.uwaterloo.ca/journals/JIS/VOL14/Langley/langley2.html\"\u003eGenerating Functions for Wilf Equivalence Under Generalized Factor Order\u003c/a\u003e, J. Int. Seq. 14 (2011), # 11.4.2.", + "Eric Weisstein's World of Mathematics, \u003ca href=\"http://mathworld.wolfram.com/Fibonaccin-StepNumber.html\"\u003eFibonacci n-Step Number\u003c/a\u003e.", + "Wikipedia, \u003ca href=\"http://en.wikipedia.org/wiki/Fibonacci_number\"\u003eFibonacci number\u003c/a\u003e." + ], + "formula": [ + "T(n,0) = 1.", + "T(n,1) = n.", + "T(n,2) = A000071(n+1).", + "T(n,3) = A008937(n-2).", + "The general term in the n-th row and k-th column is given by: a(n, k) = Sum_{j=0..floor(n/(k+1))} ((-1)^j binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j)). For example: a(5,3) = binomial(5,5)*2^5 - binomial(2,1)*2^1 = 28. The generating function of the (k+1)-th column satisfies: psi(k)(z)=1/(1-2*z+z^(k+1)) (for k=0 we have the known result psi(0)(z)=1/(1-z)). - _Richard Choulet_, Jan 31 2010 [By saying \"(k+1)-th column\" the author actually means \"k-th column\" for k = 0, 1, 2, ... - _Petros Hadjicostas_, Jul 26 2019]" + ], + "example": [ + "Triangle begins:", + "n\\k|....0....1....2....3....4....5....6....7....8....9...10", + "---|-------------------------------------------------------", + "0..|....1", + "1..|....1....1", + "2..|....1....2....1", + "3..|....1....3....2....1", + "4..|....1....4....4....2....1", + "5..|....1....5....7....4....2....1", + "6..|....1....6...12....8....4....2....1", + "7..|....1....7...20...15....8....4....2....1", + "8..|....1....8...33...28...16....8....4....2....1", + "9..|....1....9...54...52...31...16....8....4....2....1", + "10.|....1...10...88...96...60...32...16....8....4....2....1" + ], + "maple": [ + "for k from 0 to 20 do for n from 0 to 20 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od: seq(b(n),n=0..20):od; # _Richard Choulet_, Jan 31 2010", + "A172119 := proc(n,k)", + " option remember;", + " if k = 0 then", + " 1;", + " elif k \u003e n then", + " 0;", + " else", + " 1+add(procname(n-k+i,k),i=0..k-1) ;", + " end if;", + "end proc:", + "seq(seq(A172119(n,k),k=0..n),n=0..12) ; # _R. J. Mathar_, Sep 16 2017" + ], + "mathematica": [ + "T[_, 0] = 1; T[n_, n_] = 1; T[n_, k_] /; k\u003en = 0; T[n_, k_] := T[n, k] = Sum[T[n-k+i, k], {i, 0, k-1}] + 1;", + "Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten", + "Table[Sum[(-1)^j*2^(n-k-(k+1)*j)*Binomial[n-k-k*j, n-k-(k+1)*j], {j, 0, Floor[(n-k)/(k+1)]}], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jul 27 2019 *)" + ], + "program": [ + "(PARI) T(n,k) = if(k\u003c0 || k\u003en, 0, k==1 \u0026\u0026 k==n, 1, 1 + sum(j=1,k, T(n-j,k)));", + "for(n=1,12, for(k=0,n, print1(T(n,k), \", \"))) \\\\ _G. C. Greubel_, Jul 27 2019", + "(MAGMA)", + "T:= func\u003c n,k | (\u0026+[(-1)^j*2^(n-k-(k+1)*j)*Binomial(n-k-k*j, n-k-(k+1)*j): j in [0..Floor((n-k)/(k+1))]]) \u003e;", + "[[T(n,k): k in [0..n]]: n in [0..12]]; // _G. C. Greubel_, Jul 27 2019", + "(Sage)", + "@CachedFunction", + "def T(n, k):", + " if (k==0 and k==n): return 1", + " elif (k\u003c0 or k\u003en): return 0", + " else: return 1 + sum(T(n-j, k) for j in (1..k))", + "[[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Jul 27 2019", + "(GAP)", + "T:= function(n,k)", + " if k=0 and k=n then return 1;", + " elif k\u003c0 or k\u003en then return 0;", + " else return 1 + Sum([1..k], j-\u003e T(n-j,k));", + " fi;", + " end;", + "Flat(List([0..12], n-\u003e List([0..n], k-\u003e T(n,k) ))); # _G. C. Greubel_, Jul 27 2019" + ], + "xref": [ + "Cf. A000071, A008937, A144428.", + "Cf. (1-((-1)^T(n, k)))/2 = A051731, see formula by _Hieronymus Fischer_ in A022003." + ], + "keyword": "nonn,tabl", + "offset": "0,5", + "author": "_Mats Granvik_, Jan 26 2010", + "references": 15, + "revision": 38, + "time": "2019-07-28T17:05:15-04:00", + "created": "2010-06-01T03:00:00-04:00" + }, + { + "number": 112739, + "data": "1,1,1,1,2,1,1,3,2,1,1,4,5,2,1,1,5,10,7,2,1,1,6,17,22,9,2,1,1,7,26,53,46,11,2,1,1,8,37,106,161,94,13,2,1,1,9,50,187,426,485,190,15,2,1,1,10,65,302,937,1706,1457,382,17,2,1,1,11,82,457,1814,4687,6826,4373,766,19", + "name": "Array counting nodes in rooted trees of height n in which the root and internal nodes have valency k (and the leaf nodes have valency one).", + "comment": [ + "Rows of the square array have g.f. (1+x)/((1-x)(1-kx)). They are the partial sums of the coordination sequences for the infinite tree of valency k. Row sums are A112740.", + "Rows of the square array are successively: A000012, A040000, A005408, A033484, A048473, A020989, A057651, A061801, A238275, A238276, A138894, A090843, A199023. - _Philippe Deléham_, Feb 22 2014" + ], + "reference": [ + "L. He, X. Liu and G. Strang, (2003) Trees with Cantor Eigenvalue Distribution. Studies in Applied Mathematics 110 (2), 123-138.", + "L. He, X. Liu and G. Strang, Laplacian eigenvalues of growing trees, Proc. Conf. on Math. Theory of Networks and Systems, Perpignan (2000)." + ], + "formula": [ + "As a square array read by antidiagonals, T(n, k)=sum{j=0..k, (2-0^j)*(n-1)^(k-j)}; T(n, k)=(n(n-1)^k-2)/(n-2), n\u003c\u003e2, T(2, n)=2n+1; T(n, k)=sum{j=0..k, (n(n-1)^j-0^j)/(n-1)}, j\u003c\u003e1. As a triangle read by rows, T(n, k)=if(k\u003c=n, sum{j=0..k, (2-0^j)*(n-k-1)^(k-j)}, 0)." + ], + "example": [ + "As a square array, rows begin", + "1,1,1,1,1,1,... (A000012)", + "1,2,2,2,2,2,... (A040000)", + "1,3,5,7,9,11,... (A005408)", + "1,4,10,22,46,94,... (A033484)", + "1,5,17,53,161,485,... (A048473)", + "1,6,26,106,426,1706,... (A020989)", + "1,7,37,187,937,4687,... (A057651)", + "1,8,50,302,1814,10886,... (A061801)", + "As a number triangle, rows start", + "1;", + "1,1;", + "1,2,1;", + "1,3,2,1;", + "1,4,5,2,1;", + "1,5,10,7,2,1;" + ], + "xref": [ + "Cf. A112468, A000012, A040000, A005408, A033484, A048473, A020989, A057651, A061801, A238275, A238276, A138894, A090843, A199023." + ], + "keyword": "easy,nonn,tabl", + "offset": "0,5", + "author": "_Paul Barry_, Sep 16 2005", + "references": 10, + "revision": 10, + "time": "2014-02-23T12:39:14-05:00", + "created": "2005-09-21T03:00:00-04:00" + }, + { + "number": 194005, + "data": "1,1,1,1,2,1,1,3,2,1,1,4,3,3,1,1,5,4,6,3,1,1,6,5,10,6,4,1,1,7,6,15,10,10,4,1,1,8,7,21,15,20,10,5,1,1,9,8,28,21,35,20,15,5,1,1,10,9,36,28,56,35,35,15,6,1,1,11,10,45,36,84,56,70,35,21,6,1", + "name": "Triangle of the coefficients of an (n+1)-th order differential equation associated with A103631.", + "comment": [ + "This triangle is a companion to Parks' triangle A103631.", + "The coefficients of triangle A103631(n,k) appear in appendix 2 of Park’s remarkable article “A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov” if we assume that the b(n) coefficients are all equal to 1, see the second Maple program.", + "The a(n,k) coefficients of the triangle given above are related to the coefficients of a linear (n+1)-th order differential equation for the case b(n)=1, see the examples.", + "a(n,k) is also the number of symmetric binary strings of odd length n with Hamming weight k\u003e0 and no consecutive 1's. - _Christian Barrientos_ and _Sarah Minion_, Feb 27 2018" + ], + "link": [ + "Reinhard Zumkeller, \u003ca href=\"/A194005/b194005.txt\"\u003eRows n = 0..150 of triangle, flattened\u003c/a\u003e", + "Henry W. Gould, \u003ca href=\"http://www.fq.math.ca/3-4.html\"\u003e A Variant of Pascal's Triangle \u003c/a\u003e, The Fibonacci Quarterly, Vol. 3, Nr. 4, Dec. 1965, p. 257-271.", + "P.C. Parks, \u003ca href=\"https://doi.org/10.1017/S030500410004072X\"\u003e A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov \u003c/a\u003e, Math. Proc. of the Cambridge Philosophical Society, Vol. 58, Issue 04 (1962) p. 694-702.", + "Chris Zheng, Jeffrey Zheng, \u003ca href=\"https://doi.org/10.1007/978-981-13-2282-2_4\"\u003eTriangular Numbers and Their Inherent Properties\u003c/a\u003e, Variant Construction from Theoretical Foundation to Applications, Springer, Singapore, 51-65.", + "\u003ca href=\"/index/Pas#Pascal\"\u003eIndex entries for triangles and arrays related to Pascal's triangle\u003c/a\u003e" + ], + "formula": [ + "a(n,k) = binomial(floor((2*n+1-k)/2), n-k).", + "a(n,k) = sum(A103631(n1,k), n1=k..n), 0\u003c=k\u003c=n and n\u003e=0.", + "a(n,k) = sum(binomial(floor((2*n1-k-1)/2), n1-k), n1=k..n).", + "T(n,0) = T(n,n) = 1, T(n,k) = T(n-2,k-2) + T(n-1,k), 0 \u003c k \u003c n. - _Reinhard Zumkeller_, Nov 23 2012" + ], + "example": [ + "For the 5th-order linear differential equation the coefficients a(k) are: a(0) = 1, a(1) = a(4,0) = 1, a(2) = a(4,1) = 4, a(3) = a(4,2) = 3, a(4) = a(4,3) = 3 and a(5) = a(4,4) = 1.", + "The corresponding Hurwitz matrices A(k) are, see Parks: A(5) = Matrix([[a(1),a(0),0,0,0], [a(3),a(2),a(1),a(0),0], [a(5),a(4),a(3),a(2),a(1)], [0,0,a(5),a(4),a(3)], [0,0,0,0,a(5)]]), A(4) = Matrix([[a(1),a(0),0,0], [a(3),a(2),a(1),a(0)], [a(5),a(4),a(3),a(2)], [0,0,a(5),a(4)]]), A(3) = Matrix([[a(1),a(0),0], [a(3),a(2),a(1)], [a(5),a(4),a(3)]]), A(2) = Matrix([[a(1),a(0)], [a(3),a(2)]]) and A(1) = Matrix([[a(1)]]).", + "The values of b(k) are, see Parks: b(1) = d(1), b(2) = d(2)/d(1), b(3) = d(3)/(d(1)*d(2)), b(4) = d(1)*d(4)/(d(2)*d(3)) and b(5) = d(2)*d(5)/(d(3)*d(4)).", + "These a(k) values lead to d(k) = 1 and subsequently to b(k) = 1 and this confirms our initial assumption, see the comments." + ], + "maple": [ + "A194005 := proc(n,k): binomial(floor((2*n+1-k)/2),n-k) end: for n from 0 to 11 do seq(A194005(n,k), k=0..n) od; seq(seq(A194005(n,k), k=0..n), n=0..11);", + "nmax:=11: for n from 0 to nmax+1 do b(n):=1 od: A103631 := proc(n,k) option remember: local j: if k=0 and n=0 then b(1) elif k=0 and n\u003e=1 then 0 elif k=1 then b(n+1) elif k=2 then b(1)*b(n+1) elif k\u003e=3 then expand(b(n+1)*add(procname(j,k-2), j=k-2..n-2)) fi: end: for n from 0 to nmax do for k from 0 to n do A194005(n,k):= add(A103631(n1,k), n1=k..n) od: od: seq(seq(A194005(n,k),k=0..n), n=0..nmax);" + ], + "mathematica": [ + "Flatten[Table[Binomial[Floor[(2n+1-k)/2],n-k],{n,0,20},{k,0,n}]] (* _Harvey P. Dale_, Apr 15 2012 *)" + ], + "program": [ + "(Haskell)", + "a194005 n k = a194005_tabl !! n !! k", + "a194005_row n = a194005_tabl !! n", + "a194005_tabl = [1] : [1,1] : f [1] [1,1] where", + " f row' row = rs : f row rs where", + " rs = zipWith (+) ([0,1] ++ row') (row ++ [0])", + "-- _Reinhard Zumkeller_, Nov 22 2012" + ], + "xref": [ + "Cf. A065941 and A103631.", + "Triangle sums (see A180662): A000071 (row sums; alt row sums), A075427 (Kn22), A000079 (Kn3), A109222(n+1)-1 (Kn4), A000045 (Fi1), A034943 (Ca3), A001519 (Gi3), A000930 (Ze3)", + "Interesting diagonals: T(n,n-4) = A189976(n+5) and T(n,n-5) = A189980(n+6)", + "Cf. A052509." + ], + "keyword": "nonn,easy,tabl", + "offset": "0,5", + "author": "_Johannes W. Meijer_ \u0026 A. Hirschberg (a.hirschberg(AT)tue.nl), Aug 11 2011", + "references": 9, + "revision": 48, + "time": "2019-02-07T19:31:52-05:00", + "created": "2011-08-11T17:58:56-04:00" + }, + { + "number": 308813, + "data": "1,1,1,1,2,1,1,3,2,1,1,4,5,3,1,1,5,10,11,2,1,1,6,17,31,17,4,1,1,7,26,69,82,39,2,1,1,8,37,131,257,256,65,4,1,1,9,50,223,626,1045,730,139,3,1,1,10,65,351,1297,3156,4097,2218,261,4,1", + "name": "Square array A(n,k), n \u003e= 1, k \u003e= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} k^(d-1).", + "link": [ + "Seiichi Manyama, \u003ca href=\"/A308813/b308813.txt\"\u003eAntidiagonals n = 1..140, flattened\u003c/a\u003e" + ], + "formula": [ + "G.f. of column k: Sum_{j\u003e=1} x^j/(1 - k*x^j)." + ], + "example": [ + "Square array begins:", + " 1, 1, 1, 1, 1, 1, 1, ...", + " 1, 2, 3, 4, 5, 6, 7, ...", + " 1, 2, 5, 10, 17, 26, 37, ...", + " 1, 3, 11, 31, 69, 131, 223, ...", + " 1, 2, 17, 82, 257, 626, 1297, ...", + " 1, 4, 39, 256, 1045, 3156, 7819, ...", + " 1, 2, 65, 730, 4097, 15626, 46657, ..." + ], + "xref": [ + "Columns k=0..10 give A000012, A000005, A034729, A034730, A339684, A339685, A339686, A339687, A339688, A339689, A113999.", + "Row n=1..3 give A000012, A000027(n+1), A002522.", + "A(n,n) gives A308814." + ], + "keyword": "nonn,tabl", + "offset": "1,5", + "author": "_Seiichi Manyama_, Jun 26 2019", + "references": 7, + "revision": 31, + "time": "2020-12-14T09:36:44-05:00", + "created": "2019-06-26T18:07:35-04:00" + }, + { + "number": 55794, + "data": "1,1,1,1,2,1,1,3,2,1,1,4,4,2,0,1,5,7,4,1,0,1,6,11,8,3,0,0,1,7,16,15,7,1,0,0,1,8,22,26,15,4,0,0,0,1,9,29,42,30,11,1,0,0,0,1,10,37,64,56,26,5,0,0,0,0,1,11,46,93,98,56,16,1,0,0,0,0,1,12,56,130,162,112,42,6,0,0,0,0,0", + "name": "Triangle T read by rows: T(i,0)=1 for i \u003e= 0; T(i,i)=0 for i=0,1,2,3; T(i,i)=0 for i \u003e= 4; T(i,j) = T(i-1,j) + T(i-2,j-1) for 1\u003c=j\u003c=i-1.", + "comment": [ + "T(i+j,j) is the number of strings (s(1),...,s(i+1)) of nonnegative integers s(k) such that 0\u003c=s(k)-s(k-1)\u003c=1 for k=2,3,...,i+1 and s(i+1)=j.", + "T(i+j,j) is the number of compositions of j consisting of i parts, all of in {0,1}." + ], + "link": [ + "G. C. Greubel, \u003ca href=\"/A055794/b055794.txt\"\u003eRows n = 0..100 of triangle, flattened\u003c/a\u003e", + "C. Kimberling, \u003ca href=\"https://www.fq.math.ca/Scanned/40-4/kimberling.pdf\"\u003ePath-counting and Fibonacci numbers\u003c/a\u003e, Fib. Quart. 40 (4) (2002) 328-338, Example 1B." + ], + "example": [ + "Triangle begins:", + " 1;", + " 1, 1;", + " 1, 2, 1;", + " 1, 3, 2, 1;", + " 1, 4, 4, 2, 0;", + " 1, 5, 7, 4, 1, 0;", + " ...", + "T(7,4) counts the strings 3334, 3344, 3444, 2234, 2334, 2344, 1234.", + "T(7,4) counts the compositions 001, 010, 100, 011, 101, 110, 111." + ], + "maple": [ + "T:= proc(n, k) option remember;", + " if k=0 then 1", + " elif k=n and n\u003c4 then 1", + " elif k=n then 0", + " else T(n-1, k) + T(n-2, k-1)", + " fi; end:", + "seq(seq(T(n, k), k=0..n), n=0..12); # _G. C. Greubel_, Jan 25 2020" + ], + "mathematica": [ + "T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==n \u0026\u0026 n\u003c4, 1, If[k==n, 0, T[n-1, k] + T[n-2, k-1] ]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jan 25 2020 *)" + ], + "program": [ + "(PARI) T(n,k) = if(k==0, 1, if(k==n \u0026\u0026 n\u003c4, 1, if(k==n, 0, T(n-1, k) + T(n-2, k-1) )));", + "for(n=0,12, for(k=0,n, print1(T(n,k), \", \"))) \\\\ _G. C. Greubel_, Jan 25 2020", + "(MAGMA)", + "function T(n,k)", + " if k eq 0 then return 1;", + " elif k eq n and n lt 4 then return 1;", + " elif k eq n then return 0;", + " else return T(n-1,k) + T(n-2, k-1);", + " end if; return T; end function;", + "[T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jan 25 2020", + "(Sage)", + "@CachedFunction", + "def T(n, k):", + " if (k==0): return 1", + " elif (k==n and n\u003c4): return 1", + " elif (k==n): return 0", + " else: return T(n-1, k) + T(n-2, k-1)", + "[[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Jan 25 2020", + "(GAP)", + "T:= function(n,k)", + " if k=0 then return 1;", + " elif k=n and n\u003c4 then return 1;", + " elif k=n then return 0;", + " else return T(n-1,k) + T(n-2,k-1);", + " fi; end;", + "Flat(List([0..12], n-\u003e List([0..n], k-\u003e T(n,k) ))); # _G. C. Greubel_, Jan 25 2020" + ], + "xref": [ + "Row sums: A000032 (Lucas numbers, 1, 2, 4, 7, 11, 18, ...).", + "T(2n, n)=A000125(n) (Cake numbers, 1, 2, 4, 8, 15, 26, ...).", + "T(2n+2, n)=A027660(n)." + ], + "keyword": "nonn,tabl", + "offset": "0,5", + "author": "_Clark Kimberling_, May 28 2000", + "references": 6, + "revision": 15, + "time": "2020-01-25T20:57:23-05:00", + "created": "2000-06-15T03:00:00-04:00" + }, + { + "number": 92905, + "data": "1,1,1,1,2,1,1,3,2,1,1,4,4,2,1,1,5,6,4,2,1,1,6,9,7,4,2,1,1,7,12,11,7,4,2,1,1,8,16,16,12,7,4,2,1,1,9,20,23,18,12,7,4,2,1,1,10,25,31,27,19,12,7,4,2,1,1,11,30,41,38,29,19,12,7,4,2,1,1,12,36,53,53,42,30,19,12,7,4,2,1", + "name": "Triangle, read by rows, such that the partial sums of the n-th row form the n-th diagonal, for n\u003e=0, where each row begins with 1.", + "comment": [ + "Row sums form A000070, which is the partial sums of the partition numbers (A000041). Rows read backwards converge to the row sums (A000070).", + "Contribution from _Alford Arnold_, Feb 07 2010: (Start)", + "The table can also be generated by summing sequences embedded within Table A008284", + "For example,", + "1 1 1 1 ... yields 1 2 3 4 ...", + "1 1 2 2 3 3 ... yields 1 2 4 6 9 12 ...", + "1 1 2 3 4 5 7 ... yields 1 2 4 7 11 16 ...", + "(End)", + "T(n,k) is also count of all 'replacable' cells in the (Ferrers plots of) the partitions on n in exactly k parts. [From _Wouter Meeussen_, Sep 16 2010]", + "From _Wolfdieter Lang_, Dec 03 2012 (Start)", + "The triangle entry T(n,k) is obtained from triangle A072233 by summing the entries of column k up to n (see the partial sum type o.g.f. given by Vladeta Jovovic in the formula section).", + " Therefore, the o.g.f. for the sequence in column k is x^k/((1-x)* product(1-x^j,j=1..k)).", + "The triangle with entry a(n,m) = T(n-1,m-1), n \u003e= 1, m = 1, ..., n, is obtained from the partition array A103921 when in row n all entries belonging to part number m are summed (a conjecture). (End)" + ], + "link": [ + "V. V. Kruchinin, \u003ca href=\"https://doi.org/10.1134/S0001434609090260\"\u003eThe number of partitions of a natural number n into parts each of which is not less than m\u003c/a\u003e, Math. Notes 86 (4) (2009) 505-509", + "R. J. Mathar, \u003ca href=\"http://www.mpia.de/~mathar/public/mathar20171110.pdf\"\u003eSize of the set of residues of integer powers of fixed exponent\u003c/a\u003e, (2017), Table 11." + ], + "formula": [ + "T(n, k) = sum_{j=0..k} T(n-k, j), with T(n, 0) = 1 for all n\u003e=0. A000070(n) = sum_{k=0..n} T(n, k).", + "O.g.f.: (1/(1-y))*(1/Product(1-x*y^k, k=1..infinity)). - _Vladeta Jovovic_, Jan 29 2005" + ], + "example": [ + "The fourth row (n=3) is {1,3,2,1} and the fourth diagonal is the partial sums of the fourth row: {1,4,6,7,7,7,7,7,...}.", + "The triangle T(n,k) begins:", + "n\\k 0 1 2 3 4 5 6 7 8 9 10 11 12 ...", + "0 1", + "1 1 1", + "2 1 2 1", + "3 1 3 2 1", + "4 1 4 4 2 1", + "5 1 5 6 4 2 1", + "6 1 6 9 7 4 2 1", + "7 1 7 12 11 7 4 2 1", + "8 1 8 16 16 12 7 4 2 1", + "9 1 9 20 23 18 12 7 4 2 1", + "10 1 10 25 31 27 19 12 7 4 2 1", + "11 1 11 30 41 38 29 19 12 7 4 2 1", + "12 1 12 36 53 53 42 30 19 12 7 4 2 1", + "... Reformatted by _Wolfdieter Lang_, Dec 03 2012", + "T(5,3)=4 because the partitions of 5 in exactly 3 parts are 221 and 311, and they give rise to partitions of 4 in four ways: 221-\u003e22 and 211, 311-\u003e211 and 31, since both their Ferrers plots have 2 'mobile cells' each. [From _Wouter Meeussen_, Sep 16 2010]", + "T(5,3) = a(6,4) = 4 because the partitions of 6 with 4 parts are 1113 and 1122, with the number of distinct parts 2 and 2, respectively, summing to 4 (see the array A103921). An example for the conjecture given as comment above. - _Wolfdieter Lang_, Dec 03 2012" + ], + "maple": [ + "T(n,k)=if(n\u003ck|k\u003c0,0,if(n==k|k==0,1,sum(j=0,min(k,n-k),T(n-k,j))))" + ], + "mathematica": [ + "(*Needs[\"DiscreteMath`Combinatorica`\"]; partitionexact[n_, m_] := TransposePartition /@ (Prepend[ #1, m] \u0026 ) /@ Partitions[n - m, m] *); mobile[p_?PartitionQ]:=1+Count[Drop[p,-1]-Rest[p],_?Positive]; Table[Tr[mobile/@partitionexact[n,k]],{n,12},{k,n}] [From _Wouter Meeussen_, Sep 16 2010]" + ], + "xref": [ + "Antidiagonal sums form the partition numbers (A000041).", + "Cf. A000070.", + "Cf. A008284 [From _Alford Arnold_, Feb 07 2010]", + "Columns: A087811, A000601, A002621, A002622, A288341 - A288345." + ], + "keyword": "nonn,tabl", + "offset": "0,5", + "author": "_Paul D. Hanna_, Mar 12 2004", + "ext": [ + "Several corrections by _Wolfdieter Lang_, Dec 03 2012." + ], + "references": 6, + "revision": 25, + "time": "2019-03-28T10:19:35-04:00", + "created": "2004-06-12T03:00:00-04:00" + }, + { + "number": 228125, + "data": "1,1,1,1,2,1,1,3,2,1,1,4,4,2,1,1,5,7,5,2,1,1,6,10,9,5,2,1,1,7,14,16,10,5,2,1,1,8,19,24,19,11,5,2,1,1,9,24,37,32,21,11,5,2,1,1,10,30,51,52,38,22,11,5,2,1,1,11,37,71,79,66,41,23,11,5,2,1,1,12,44,93,117,106,74,43,23,11,5,2,1,1,13,52,122,166,166,125,80,44,23,11,5,2,1,1,14,61,153,231,251,204,139,83,45,23,11,5,2,1,1,15,70,193,311,367,322,236,147,85,45,23,11,5,2,1", + "name": "Triangle read by rows: T(n,k) = number of semistandard Young tableaux with sum of entries equal to n and shape of tableau a partition of k.", + "comment": [ + "Row sums equal A003293.", + "Reverse of rows seem to converge to A005986: 1, 2, 5, 11, 23, 45, 87, 160, ..." + ], + "example": [ + "T(6,3) = 7 since the 7 SSYT with sum of entries = 6 and shape any partition of 3 are", + "114 , 123 , 222 , 11 , 12 , 13 , 1", + " 4 3 2 2", + " 3", + "Triangle starts:", + "1;", + "1, 1;", + "1, 2, 1;", + "1, 3, 2, 1;", + "1, 4, 4, 2, 1;", + "1, 5, 7, 5, 2, 1;", + "1, 6, 10, 9, 5, 2, 1;", + "1, 7, 14, 16, 10, 5, 2, 1;", + "1, 8, 19, 24, 19, 11, 5, 2, 1;", + "1, 9, 24, 37, 32, 21, 11, 5, 2, 1;", + "1, 10, 30, 51, 52, 38, 22, 11, 5, 2, 1;" + ], + "mathematica": [ + "hooklength[(par_)?PartitionQ]:=Table[Count[par,q_ /; q\u003e=j] +1-i +par[[i]] -j, {i,Length[par]}, {j,par[[i]]} ];", + "Table[Tr[(SeriesCoefficient[q^(#1 . Range[Length[#1]])/Times @@ (1-q^#1\u0026) /@ Flatten[hooklength[#1]],{q,0,w}]\u0026) /@ Partitions[n]],{w,24},{n,w}]" + ], + "xref": [ + "Cf. A003293, A005986." + ], + "keyword": "nonn,tabl", + "offset": "1,5", + "author": "_Wouter Meeussen_, Aug 11 2013", + "references": 5, + "revision": 21, + "time": "2016-07-31T09:03:15-04:00", + "created": "2013-08-13T03:37:46-04:00" + }, + { + "number": 227588, + "data": "1,1,1,1,2,1,1,3,2,1,1,4,4,2,1,1,5,7,5,2,1,1,6,12,12,6,2,1,1,7,18,24,16,7,2,1,1,8,26,46,42,23,8,2,1,1,9,35,83,101,73,29,9,2,1", + "name": "Maximum label within a minimal labeling of k \u003e= 0 identical n-sided dice (n \u003e= 1) yielding the most possible sums; square array A(n,k), read by antidiagonals.", + "link": [ + "The \u003ca href=\"http://domino.research.ibm.com/Comm/wwwr_ponder.nsf/Challenges/July2013.html\"\u003eIBM Ponder This July 2013\u003c/a\u003e challenge asks for A(8,3)." + ], + "example": [ + "Three tetrahedra labeled (1, 2, 8, 12) yield the 20 possible sums 3, 4, 5, 6, 10, 11, 12, 14, 15, 16, 17, 18, 21, 22, 24, 25, 26, 28, 32, 36. No more sums can be obtained by different labelings, and no labeling with labels \u003c 12 yields 20 possible sums. Therefore A(4,3) = 12.", + "Square array A(n,k) begins:", + "1, 1, 1, 1, 1, 1, 1, 1, ...", + "1, 2, 2, 2, 2, 2, 2, ...", + "1, 3, 4, 5, 6, 7, ...", + "1, 4, 7, 12, 16, ...", + "1, 5, 12, 24, ...", + "1, 6, 18, ...", + "1, 7, ...", + "1, ..." + ], + "xref": [ + "Cf. A227589, A227590, A227358." + ], + "keyword": "nonn,tabl,more", + "offset": "1,5", + "author": "_Jens Voß_, Jul 17 2013", + "references": 4, + "revision": 18, + "time": "2013-09-13T21:00:37-04:00", + "created": "2013-07-18T10:56:21-04:00" + } + ] +} \ No newline at end of file diff --git a/data/1,1,2,1,6,2,.json b/data/1,1,2,1,6,2,.json new file mode 100644 index 0000000..50e9bf6 --- /dev/null +++ b/data/1,1,2,1,6,2,.json @@ -0,0 +1,7 @@ +{ + "greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/", + "query": "1,1,2,1,6,2,24,6,1,120,24,3,", + "count": 0, + "start": 0, + "results": null +} \ No newline at end of file diff --git a/data/1,1,3,6,15,3.json b/data/1,1,3,6,15,3.json new file mode 100644 index 0000000..972bade --- /dev/null +++ b/data/1,1,3,6,15,3.json @@ -0,0 +1,287 @@ +{ + "greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/", + "query": "1,1,3,6,15,36,91,232,603,1585,4213,11298,", + "count": 3, + "start": 0, + "results": [ + { + "number": 5043, + "id": "M2587", + "data": "1,0,1,1,3,6,15,36,91,232,603,1585,4213,11298,30537,83097,227475,625992,1730787,4805595,13393689,37458330,105089229,295673994,834086421,2358641376,6684761125,18985057351,54022715451,154000562758,439742222071,1257643249140", + "name": "Riordan numbers: a(n) = (n-1)*(2*a(n-1) + 3*a(n-2))/(n+1).", + "comment": [ + "Also called Motzkin summands or ring numbers.", + "The old name was \"Motzkin sums\", used in certain publications. The sequence has the property that Motzkin(n) = A001006(n) = a(n) + a(n+1), e.g., A001006(4) = 9 = 3 + 6 = a(4) + a(5).", + "Number of 'Catalan partitions', that is partitions of a set 1,2,3,...,n into parts that are not singletons and whose convex hulls are disjoint when the points are arranged on a circle (so when the parts are all pairs we get Catalan numbers). - Aart Blokhuis (aartb(AT)win.tue.nl), Jul 04 2000", + "Number of ordered trees with n edges and no vertices of outdegree 1. For n \u003e 1, number of dissections of a convex polygon by nonintersecting diagonals with a total number of n+1 edges. - _Emeric Deutsch_, Mar 06 2002", + "Number of Motzkin paths of length n with no horizontal steps at level 0. - _Emeric Deutsch_, Nov 09 2003", + "Number of Dyck paths of semilength n with no peaks at odd level. Example: a(4)=3 because we have UUUUDDDD, UUDDUUDD and UUDUDUDD, where U=(1,1), D=(1,-1). Number of Dyck paths of semilength n with no ascents of length 1 (an ascent in a Dyck path is a maximal string of up steps). Example: a(4)=3 because we have UUUUDDDD, UUDDUUDD and UUDUUDDD. - _Emeric Deutsch_, Dec 05 2003", + "Arises in Schubert calculus as follows. Let P = complex projective space of dimension n+1. Take n projective subspaces of codimension 3 in P in general position. Then a(n) is the number of lines of P intersecting all these subspaces. - F. Hirzebruch, Feb 09 2004", + "Difference between central trinomial coefficient and its predecessor. Example: a(6) = 15 = 141 - 126 and (1 + x + x^2)^6 = ... + 126*x^5 + 141*x^6 + ... (Catalan number A000108(n) is the difference between central binomial coefficient and its predecessor.) - _David Callan_, Feb 07 2004", + "a(n) = number of 321-avoiding permutations on [n] in which each left-to-right maximum is a descent (i.e., is followed by a smaller number). For example, a(4) counts 4123, 3142, 2143. - _David Callan_, Jul 20 2005", + "The Hankel transform of this sequence give A000012 = [1, 1, 1, 1, 1, 1, 1, ...]; example: Det([1, 0, 1, 1; 0, 1, 1, 3; 1, 1, 3, 6; 1, 3, 6, 15]) = 1. - _Philippe Deléham_, May 28 2005", + "The number of projective invariants of degree 2 for n labeled points on the projective line. - Benjamin J. Howard (bhoward(AT)ima.umn.edu), Nov 24 2006", + "Define a random variable X=trA^2, where A is a 2 X 2 unitary symplectic matrix chosen from USp(2) with Haar measure. The n-th central moment of X is E[(X+1)^n] = a(n). - _Andrew V. Sutherland_, Dec 02 2007", + "Let V be the adjoint representation of the complex Lie algebra sl(2). The dimension of the invariant subspace of the n-th tensor power of V is a(n). - Samson Black (sblack1(AT)uoregon.edu), Aug 27 2008", + "Starting with offset 3 = iterates of M * [1,1,1,...], where M = a tridiagonal matrix with [0,1,1,1,...] in the main diagonal and [1,1,1,...] in the super and subdiagonals. - _Gary W. Adamson_, Jan 08 2009", + "a(n) has the following standard-Young-tableaux (SYT) interpretation: binomial(n+1,k)*binomial(n-k-1,k-1)/(n+1)=f^(k,k,1^{n-2k}) where f^lambda equals the number of SYT of shape lambda. - Amitai Regev (amotai.regev(AT)weizmann.ac.il), Mar 02 2010", + "a(n) is also the sum of the numbers of standard Young tableaux of shapes (k,k,1^{n-2k}) for all 1 \u003c= k \u003c= floor(n/2). - Amitai Regev (amotai.regev(AT)weizmann.ac.il), Mar 10 2010", + "a(n) is the number of derangements of {1,2,...,n} having genus 0. The genus g(p) of a permutation p of {1,2,...,n} is defined by g(p)=(1/2)[n+1-z(p)-z(cp')], where p' is the inverse permutation of p, c = 234...n1 = (1,2,...,n), and z(q) is the number of cycles of the permutation q. Example: a(3)=1 because p=231=(123) is the only derangement of {1,2,3} with genus 0. Indeed, cp'=231*312=123=(1)(2)(3) and so g(p)= (1/2)(3+1-1-3)=0. - _Emeric Deutsch_, May 29 2010", + "Apparently: Number of Dyck 2n-paths with all ascents length 2 and no descent length 2. - _David Scambler_, Apr 17 2012", + "This is true. Proof: The mapping \"insert a peak (UD) after each upstep (U)\" is a bijection from all Dyck n-paths to those Dyck (2n)-paths in which each ascent is of length 2. It sends descents of length 1 in the n-path to descents of length 2 in the (2n)-path. But Dyck n-paths with no descents of length 1 are equinumerous with Riordan n-paths (Motzkin n-paths with no flatsteps at ground level) as follows. Given a Dyck n-path with no descents of length 1, split it into consecutive step pairs, then replace UU with U, DD with D, UD with a blue flatstep (F), DU with a red flatstep, and concatenate the new steps to get a colored Motzkin path. Each red F will be (immediately) preceded by a blue F or a D. In the latter case, transfer the red F so that it precedes the matching U of the D. Finally, erase colors to get the required Riordan path. For example, with lowercase f denoting a red flatstep, U^5 D^2 U D^4 U^4 D^3 U D^2 -\u003e (U^2, U^2, UD, DU, D^2, D^2, U^2, U^2 D^2, DU, D^2) -\u003e UUFfDDUUDfD -\u003e UUFFDDUFUDD. - _David Callan_, Apr 25 2012", + "From _Nolan Wallach_, Aug 20 2014: (Start)", + "Let ch[part1, part2] be the value of the character of the symmetric group on n letters corresponding to the partition part1 of n on the conjucgacy class given by part2. Let A[n] be the set of (n+1) partitions of 2n with parts 1 or 2. Then deleting the first term of the sequence one has a(n) = Sum_{k=1..n+1} binomial(n,k-1)*ch[[n,n], A[n][[k]]])/2^n. This via the Frobenius Character Formula can be interpreted as the dimension of the SL(n,C) invariants in tensor^n (wedge^2 C^n).", + "Explanation: Let p_j denote sum (x_i)^j the sum in k variables. Then the Frobenius formula says then (p_1)^j_1 (p_2)^j_2 ... (p_r)^j_r is equal to sum(lambda, ch[lambda, 1^j_12^j_2 ... r^j_r] S_lambda) with S_lambda the Shur function corresponding to lambda. This formula implies that the coefficient of S([n,n]) in (((p_1)^1+p_2)/2)^n in its expansion in terms of Shur functions is the right hand side of our formula. If we specialize the number of variables to 2 then S[n,n](x,y)=(xy)^n. Which when restricted to y=x^(-1) is 1. That is it is 1 on SL(2).", + "On the other hand ((p_1)^2+p_2)/2 is the complete homogeneous symmetric function of degree 2 that is tr(S^2(X)). Thus our formula for a(n) is the same as that of Samson Black above since his V is the same as S^2(C^2) as a representation of SL(2). On the other hand, if we multiply ch(lambda) by sgn you get ch(Transpose(lambda)). So ch([n,n]) becomes ch([2,...,2]) (here there are n 2's). The formula for a(n) is now (1/2^n)*Sum_{j=0..n} ch([2,..,2], 1^(2n-2j) 2^j])*(-1)^j)*binomial(n,j), which calculates the coefficient of S_(2,...,2) in (((p_1)^2-p_2)/2)^n. But ((p_1)^2-p_2)/2 in n variables is the second elementary symmetric function which is the character of wedge^2 C^n and S_(2,...,2) is 1 on SL(n).", + "(End)", + "a(n) = number of noncrossing partitions (A000108) of [n] that contain no singletons, also number of nonnesting partitions (A000108) of [n] that contain no singletons. - _David Callan_, Aug 27 2014", + "From _Tom Copeland_, Nov 02 2014: (Start)", + "Let P(x) = x/(1+x) with comp. inverse Pinv(x) = x/(1-x) = -P[-x], and C(x)= [1-sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108, with inverse Cinv(x) = x * (1-x).", + "Fin(x) = P[C(x)] = C(x)/[1 + C(x)] is an o.g.f. for the Fine numbers, A000957 with inverse Fin^(-1)(x) = Cinv[Pinv(x)] = Cinv[-P(-x)].", + "Mot(x) = C[P(x)] = C[-Pinv(-x)] gives an o.g.f. for shifted A005043, the Motzkin or Riordan numbers with comp. inverse Mot^(-1)(x) = Pinv[Cinv(x)] = (x - x^2) / (1 - x + x^2) (cf. A057078).", + "BTC(x) = C[Pinv(x)] gives A007317, a binomial transform of the Catalan numbers, with BTC^(-1)(x) = P[Cinv(x)].", + "Fib(x) = -Fin[Cinv(Cinv(-x))] = -P[Cinv(-x)] = x + 2 x^2 + 3 x^3 + 5 x^4 + ... = (x+x^2)/[1-x-x^2] is an o.g.f. for the shifted Fibonacci sequence A000045, so the comp. inverse is Fib^(-1)(x) = -C[Pinv(-x)] = -BTC(-x) and Fib(x) = -BTC^(-1)(-x).", + "Various relations among the o.g.f.s may be easily constructed, such as Fib[-Mot(-x)] = -P[P(-x)] = x/(1-2*x) a generating fct for 2^n.", + "Generalizing to P(x,t) = x /(1 + t*x) and Pinv(x,t) = x /(1 - t*x) = -P(-x,t) gives other relations to lattice paths, such as the o.g.f. for A091867, C[P[x,1-t]], and that for A104597, Pinv[Cinv(x),t+1]. (End)", + "Consistent with David Callan's comment above, A249548, provides a refinement of the Motzkin sums into the individual numbers for the non-crossing partitions he describes. - _Tom Copeland_, Nov 09 2014", + "The number of lattice paths from (0,0) to (n,0) that do not cross below the x-axis and use up-step=(1,1) and down-steps=(1,-k) where k is a positive integer. For example, a(4) = 3: [(1,1)(1,1)(1,-1)(1,-1)], [(1,1)(1,-1)(1,1)(1,-1)] and [(1,1)(1,1)(1,1)(1,-3)]. - _Nicholas Ham_, Aug 19 2015", + "A series created using 2*(a(n) + a(n+1)) + (a(n+1) + a(n+2)) has Hankel transform of F(2n), offset 3, F being a Fibonacci number, A001906 (Empirical observation). - _Tony Foster III_, Jul 30 2016", + "The series a(n) + A001006(n) has Hankel transform F(2n+1), offset n=1, F being the Fibonacci bisection A001519 (empirical observation). - _Tony Foster III_, Sep 05 2016", + "The Rubey and Stump reference proves a refinement of a conjecture of René Marczinzik, which they state as: \"The number of 2-Gorenstein algebras which are Nakayama algebras with n simple modules and have an oriented line as associated quiver equals the number of Motzkin paths of length n. Moreover, the number of such algebras having the double centraliser property with respect to a minimal faithful projective-injective module equals the number of Riordan paths, that is, Motzkin paths without level-steps at height zero, of length n.\" - _Eric M. Schmidt_, Dec 16 2017", + "A connection to the Thue-Morse sequence: (-1)^a(n) = (-1)^A010060(n) * (-1)^A010060(n+1) = A106400(n) * A106400(n+1). - _Vladimir Reshetnikov_, Jul 21 2019", + "Named by Bernhart (1999) after the American mathematician John Riordan (1903-1988). - _Amiram Eldar_, Apr 15 2021" + ], + "reference": [ + "N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).", + "D. N. Verma, Towards Classifying Finite Point-Set Configurations, preprint, 1997. [Apparently unpublished]" + ], + "link": [ + "G. C. Greubel, \u003ca href=\"/A005043/b005043.txt\"\u003eTable of n, a(n) for n = 0..1000\u003c/a\u003e (terms 0..200 from T. D. Noe)", + "Prarit Agarwal and June Nahmgoong, \u003ca href=\"https://arxiv.org/abs/2001.10826\"\u003eSinglets in the tensor product of an arbitrary number of Adjoint representations of SU(3)\u003c/a\u003e, arXiv:2001.10826 [math.RT], 2020.", + "O. Aichholzer, A. Asinowski, and T. Miltzow, \u003ca href=\"http://arxiv.org/abs/1403.5546\"\u003eDisjoint compatibility graph of non-crossing matchings of points in convex position\u003c/a\u003e, arXiv preprint arXiv:1403.5546 [math.CO], 2014.", + "M. Aigner, \u003ca href=\"http://dx.doi.org/10.1016/j.disc.2007.06.012\"\u003eEnumeration via ballot numbers\u003c/a\u003e, Discrete Math., 308 (2008), 2544-2563.", + "Gert Almkvist, Warren Dicks, and Edward Formanek, \u003ca href=\"http://dx.doi.org/10.1016/0021-8693(85)90183-8\"\u003eHilbert series of fixed free algebras and noncommutative classical invariant theory\u003c/a\u003e, J. Algebra 93 (1985), no. 1, 189-214.", + "D. L. Andrews, \u003ca href=\"/A005043/a005043.pdf\"\u003eLetter to N. J. A. Sloane\u003c/a\u003e, Apr 10 1978.", + "D. L. Andrews and T. Thirunamachandran, \u003ca href=\"http://dx.doi.org/10.1063/1.434725\"\u003eOn three-dimensional rotational averages\u003c/a\u003e, J. Chem. Phys., 67 (1977), 5026-5033.", + "D. L. Andrews and T. Thirunamachandran, \u003ca href=\"/A005043/a005043_1.pdf\"\u003eOn three-dimensional rotational averages\u003c/a\u003e, J. Chem. Phys., 67 (1977), 5026-5033. [Annotated scanned copy]", + "J.-L. Baril, \u003ca href=\"http://www.combinatorics.org/ojs/index.php/eljc/article/view/v18i1p178\"\u003eClassical sequences revisited with permutations avoiding dotted pattern\u003c/a\u003e, Electronic Journal of Combinatorics, 18 (2011), #P178.", + "Paul Barry, \u003ca href=\"https://arxiv.org/abs/1802.03443\"\u003eOn a transformation of Riordan moment sequences\u003c/a\u003e, arXiv:1802.03443 [math.CO], 2018.", + "Paul Barry, \u003ca href=\"https://arxiv.org/abs/1912.01126\"\u003eRiordan arrays, the A-matrix, and Somos 4 sequences\u003c/a\u003e, arXiv:1912.01126 [math.CO], 2019.", + "Paul Barry, \u003ca href=\"https://cs.uwaterloo.ca/journals/JIS/VOL23/Barry/barry444.html\"\u003eOn the Central Antecedents of Integer (and Other) Sequences\u003c/a\u003e, J. Int. Seq., Vol. 23 (2020), Article 20.8.3.", + "Paul Barry and Aoife Hennessy, \u003ca href=\"https://cs.uwaterloo.ca/journals/JIS/VOL15/Barry1/barry202.html\"\u003eFour-term Recurrences, Orthogonal Polynomials and Riordan Arrays\u003c/a\u003e, Journal of Integer Sequences, 2012, article 12.4.2. - From _N. J. A. Sloane_, Sep 21 2012", + "Frank R. Bernhart, \u003ca href=\"http://dx.doi.org/10.1016/S0012-365X(99)00054-0\"\u003eCatalan, Motzkin and Riordan numbers\u003c/a\u003e, Discr. Math., 204 (1999) 73-112.", + "Frank R. Bernhart, \u003ca href=\"/A000296/a000296_1.pdf\"\u003eFundamental chromatic numbers\u003c/a\u003e, Unpublished. (Annotated scanned copy)", + "Frank R. Bernhart \u0026 N. J. A. Sloane, \u003ca href=\"/A001683/a001683.pdf\"\u003eCorrespondence, 1977\u003c/a\u003e", + "Frank R. Bernhart \u0026 N. J. A. Sloane, \u003ca href=\"/A006343/a006343.pdf\"\u003eEmails, April-May 1994\u003c/a\u003e", + "Tom Braden and Artem Vysogorets, \u003ca href=\"https://arxiv.org/abs/1909.09888\"\u003eKazhdan-Lusztig polynomials of matroids under deletion\u003c/a\u003e, arXiv:1909.09888 [math.CO], 2019.", + "David Callan, \u003ca href=\"http://www.stat.wisc.edu/~callan/papersother/\"\u003eRiordan numbers are differences of trinomial coefficients\u003c/a\u003e, September 25, 2006.", + "D. Callan, \u003ca href=\"http://dx.doi.org/10.1016/j.disc.2008.11.019\"\u003ePattern avoidance in \"flattened\" partitions\u003c/a\u003e, Discrete Math., 309 (2009), 4187-4191.", + "David Callan, \u003ca href=\"https://arxiv.org/abs/1702.06150\"\u003eBijections for Dyck paths with all peak heights of the same parity\u003c/a\u003e, arXiv:1702.06150 [math.CO], 2017.", + "Xiang-Ke Chang, X.-B. Hu, H. Lei, and Y.-N. Yeh, \u003ca href=\"http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i1p8\"\u003eCombinatorial proofs of addition formulas\u003c/a\u003e, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.", + "W. Y. C. Chen, E. Y. P. Deng and L. L. M. Yang, \u003ca href=\"https://arxiv.org/abs/math/0602298\"\u003eRiordan paths and derangements\u003c/a\u003e, arXiv:math/0602298 [math.CO], 2006.", + "Johann Cigler and Christian Krattenthaler, \u003ca href=\"https://arxiv.org/abs/2003.01676\"\u003eHankel determinants of linear combinations of moments of orthogonal polynomials\u003c/a\u003e, arXiv:2003.01676 [math.CO], 2020.", + "Eliahu Cohen, Tobias Hansen, and Nissan Itzhaki, \u003ca href=\"http://arxiv.org/abs/1511.06623\"\u003eFrom Entanglement Witness to Generalized Catalan Numbers\u003c/a\u003e, arXiv:1511.06623 [quant-ph], 2015 (see equation (23)).", + "Benoit Collins, Ion Nechita, and Deping Ye, \u003ca href=\"http://arxiv.org/abs/1108.1935\"\u003eThe absolute positive partial transpose property for random induced states\u003c/a\u003e, arXiv preprint arXiv:1108.1935 [math-ph], 2011.", + "R. De Castro, A. L. Ramírez and J. L. Ramírez, \u003ca href=\"http://arxiv.org/abs/1310.2449\"\u003eApplications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs\u003c/a\u003e, arXiv preprint arXiv:1310.2449 [cs.DM], 2013.", + "D. E. Davenport, L. W. Shapiro and L. C. Woodson, \u003ca href=\"http://www.combinatorics.org/ojs/index.php/eljc/article/view/v18i2p33\"\u003eThe Double Riordan Group\u003c/a\u003e, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From _N. J. A. Sloane_, May 11 2012", + "E. Deutsch and B. E. Sagan, \u003ca href=\"https://arxiv.org/abs/math/0407326\"\u003eCongruences for Catalan and Motzkin numbers and related sequences\u003c/a\u003e, arXiv:math/0407326 [math.CO], 2004; J. Num. Theory 117 (2006), 191-215.", + "I. Dolinka, J. East, and R. D. Gray, \u003ca href=\"http://arxiv.org/abs/1512.02279\"\u003eMotzkin monoids and partial Brauer monoids\u003c/a\u003e, arXiv preprint arXiv:1512.02279 [math.GR], 2015.", + "R. Donaghey and L. W. Shapiro, \u003ca href=\"http://dx.doi.org/10.1016/0097-3165(77)90020-6\"\u003eMotzkin numbers\u003c/a\u003e, J. Combin. Theory, Series A, 23 (1977), 291-301.", + "S. Dulucq and R. Simion, \u003ca href=\"http://dx.doi.org/10.1023/A:1008689811936\"\u003eCombinatorial statistics on alternating permutations\u003c/a\u003e, J. Algebraic Combinatorics, 8, 1998, 169-191.", + "Mauricio Fernández, \u003ca href=\"https://doi.org/10.1007/s10659-019-09754-8\"\u003eOn the Orientation Average Based on Central Orientation Density Functions for Polycrystalline Materials\u003c/a\u003e, Journal of Elasticity (2019).", + "Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, \u003ca href=\"http://arxiv.org/abs/1110.6638\"\u003eSato-Tate distributions and Galois endomorphism modules in genus 2\u003c/a\u003e, arXiv preprint arXiv:1110.6638 [math.NT], 2011.", + "Yibo Gao, \u003ca href=\"https://arxiv.org/abs/1910.08872\"\u003ePrincipal specializations of Schubert polynomials and pattern containment\u003c/a\u003e, arXiv:1910.08872 [math.CO], 2019.", + "Juan B. Gil and Jordan O. Tirrell, \u003ca href=\"https://arxiv.org/abs/1806.09065\"\u003eA simple bijection for classical and enhanced k-noncrossing partitions\u003c/a\u003e, arXiv:1806.09065 [math.CO], 2018. Also Discrete Mathematics (2019) Article 111705. doi:10.1016/j.disc.2019.111705", + "Phil Hanlon, \u003ca href=\"http://dx.doi.org/10.1090/S0002-9947-1982-0662044-8\"\u003eCounting interval graphs\u003c/a\u003e, Trans. Amer. Math. Soc. 272 (1982), no. 2, 383-426.", + "B. Howard, J. Millson, A. Snowden and R. Vakil, \u003ca href=\"http://arXiv.org/abs/math.AG/0505096\"\u003eThe projective invariants of ordered points on the line\u003c/a\u003e, arXiv:math.AG/0505096, 2005.", + "INRIA Algorithms Project, \u003ca href=\"http://ecs.inria.fr/services/structure?nbr=423\"\u003eEncyclopedia of Combinatorial Structures 423\u003c/a\u003e", + "Kiran S. Kedlaya and Andrew V. Sutherland, \u003ca href=\"http://arXiv.org/abs/0803.4462\"\u003eHyperelliptic curves, L-polynomials and random matrices\u003c/a\u003e, arXiv:0803.4462 [math.NT], 2008-2010.", + "Hana Kim and R. P. Stanley, \u003ca href=\"http://www-math.mit.edu/~rstan/papers/hextrees.pdf\"\u003eA refined enumeration of hex trees and related polynomials\u003c/a\u003e, Preprint 2015, European Journal of Combinatorics, Volume 54, May 2016, Pages 207-219..", + "Sergey Kitaev, Pavel Salimov, Christopher Severs, and Henning Ulfarsson, \u003ca href=\"http://arxiv.org/abs/1202.1790\"\u003eRestricted rooted non-separable planar maps\u003c/a\u003e, arXiv preprint arXiv:1202.1790 [math.CO], 2012.", + "S. Kitaev, P. Salimov, C. Severs and H. Ulfarsson, \u003ca href=\"http://staff.ru.is/henningu/papers/maps/maps.pdf\"\u003eRestricted non-separable planar maps and some pattern avoiding permutations\u003c/a\u003e, 2012. - From _N. J. A. Sloane_, Jan 01 2013", + "D. E. Knuth, \u003ca href=\"/A001006/a001006_3.pdf\"\u003eLetter to L. W. Shapiro, R. K. Guy. N. J. A. Sloane, R. P. Stanley, H. Wilf regarding A001006 and A005043\u003c/a\u003e", + "J. W. Layman, \u003ca href=\"http://www.cs.uwaterloo.ca/journals/JIS/VOL4/LAYMAN/hankel.html\"\u003eThe Hankel Transform and Some of its Properties\u003c/a\u003e, J. Integer Sequences, 4 (2001), #01.1.5.", + "Boyu Li, \u003ca href=\"https://uwspace.uwaterloo.ca/bitstream/handle/10012/8179/Boyu_Li.pdf?sequence=1\"\u003eAsymptotic Distributions for Block Statistics on Non-crossing Partitions\u003c/a\u003e, Master's Thesis, Univ. Waterloo, 2013.", + "Nanna Holmgaard List, Timothé Romain Léo Melin, Martin van Horn, and Trond Saue, \u003ca href=\"https://arxiv.org/abs/2001.10738\"\u003eBeyond the electric-dipole approximation in simulations of X-ray absorption spectroscopy: Lessons from relativistic theory\u003c/a\u003e, arXiv:2001.10738 [physics.chem-ph], 2020.", + "Piera Manara and Claudio Perelli Cippo, \u003ca href=\"http://www.mat.unisi.it/newsito/puma/public_html/22_2/manara_perelli-cippo.pdf\"\u003eThe fine structure of 4321 avoiding involutions and 321 avoiding involutions\u003c/a\u003e, PU. M. A. Vol. 22 (2011), 227-238.", + "Peter McCalla and Asamoah Nkwanta, \u003ca href=\"https://arxiv.org/abs/1901.07092\"\u003eCatalan and Motzkin Integral Representations\u003c/a\u003e, arXiv:1901.07092 [math.NT], 2019.", + "Zhousheng Mei and Suijie Wang, \u003ca href=\"https://arxiv.org/abs/1804.06265\"\u003ePattern Avoidance of Generalized Permutations\u003c/a\u003e, arXiv:1804.06265 [math.CO], 2018.", + "J. Menashe, \u003ca href=\"https://www.whitman.edu/mathematics/SeniorProjectArchive/2007/menashjv.pdf\"\u003eBijections on Riordan objects\u003c/a\u003e [From Tom Copeland, Nov 07 2014]", + "D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, \u003ca href=\"http://dx.doi.org/10.4153/CJM-1997-015-x\"\u003eOn some alternative characterizations of Riordan arrays\u003c/a\u003e, Canad. J. Math., 49 (1997), 301-320.", + "S. Morrison, E. Peters, and N. Snyder, \u003ca href=\"http://arxiv.org/abs/1501.06869\"\u003eCategories generated by a trivalent vertex\u003c/a\u003e, arXiv preprint arXiv:1501.06869 [math.QA], 2015.", + "Jocelyn Quaintance and Harris Kwong, \u003ca href=\"http://www.emis.de/journals/INTEGERS/papers/n29/n29.Abstract.html\"\u003eA combinatorial interpretation of the Catalan and Bell number difference tables\u003c/a\u003e, Integers, 13 (2013), #A29.", + "J. Riordan, \u003ca href=\"http://dx.doi.org/10.1016/S0097-3165(75)80010-0\"\u003eEnumeration of plane trees by branches and endpoints\u003c/a\u003e, J. Combinat. Theory, Ser A, 19, 214-222, 1975.", + "E. Rowland and R. Yassawi, \u003ca href=\"http://arxiv.org/abs/1310.8635\"\u003eAutomatic congruences for diagonals of rational functions\u003c/a\u003e, arXiv preprint arXiv:1310.8635 [math.NT], 2013.", + "E. Royer, \u003ca href=\"http://www.carva.org/emmanuel.royer\"\u003eInterpretation combinatoire des moments negatifs des valeurs de fonctions L au bord de la bande critique\u003c/a\u003e", + "E. Royer, \u003ca href=\"http://dx.doi.org/10.1016/S0012-9593(03)00024-7\"\u003eInterprétation combinatoire des moments négatifs des valeurs de fonctions L au bord de la bande critique\u003c/a\u003e, Ann. Sci. Ecole Norm. Sup. (4) 36 (2003), no. 4, 601-620.", + "Martin Rubey and Christian Stump, \u003ca href=\"https://arxiv.org/abs/1708.05092\"\u003eDouble deficiencies of Dyck paths via the Billey-Jockusch-Stanley bijection\u003c/a\u003e, arXiv:1708.05092 [math.CO], 2017.", + "J. Salas and A. D. Sokal, \u003ca href=\"http://arxiv.org/abs/0711.1738\"\u003eTransfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial\u003c/a\u003e, J. Stat. Phys. 135 (2009) 279-373, arXiv:0711.1738 [math.QA]. Mentions this sequence. - _N. J. A. Sloane_, Mar 14 2014", + "L. W. Shapiro \u0026 N. J. A. Sloane, \u003ca href=\"/A006318/a006318_1.pdf\"\u003eCorrespondence, 1976\u003c/a\u003e", + "L. W. Shapiro and C. J. Wang, \u003ca href=\"https://cs.uwaterloo.ca/journals/JIS/VOL12/Shapiro/shapiro7.html\"\u003eA bijection between 3-Motzkin paths and Schroder paths with no peak at odd height\u003c/a\u003e, JIS 12 (2009) 09.3.2.", + "M. Shattuck, \u003ca href=\"http://ami.ektf.hu/uploads/papers/finalpdf/AMI_42_from93to101.pdf\"\u003eOn the zeros of some polynomials with combinatorial coefficients\u003c/a\u003e, Annales Mathematicae et Informaticae, 42 (2013) pp. 93-101.", + "H. C. H. Schubert, \u003ca href=\"http://dx.doi.org/10.1007/BF01446537\"\u003eAllgemeine Anzahlfunctionen für Kegelschnitte, Flächen und Räume zweiten Grades in n Dimensionen\u003c/a\u003e, Math. Annalen, June 1894, Volume 45, Issue 2, pp 153-206.", + "Hua Sun and Yi Wang, \u003ca href=\"https://cs.uwaterloo.ca/journals/JIS/VOL17/Wang/wang11.html\"\u003eA Combinatorial Proof of the Log-Convexity of Catalan-Like Numbers\u003c/a\u003e, J. Int. Seq. 17 (2014) # 14.5.2", + "Yidong Sun and Fei Ma, \u003ca href=\"http://arxiv.org/abs/1305.2015\"\u003eMinors of a Class of Riordan Arrays Related to Weighted Partial Motzkin Paths\u003c/a\u003e, arXiv preprint arXiv:1305.2015 [math.CO], 2013.", + "Chao-Jen Wang, \u003ca href=\"http://people.brandeis.edu/~gessel/homepage/students/wangthesis.pdf\"\u003eApplications of the Goulden-Jackson cluster method to counting Dyck paths by occurrences of subwords\u003c/a\u003e.", + "Eric Weisstein's World of Mathematics, \u003ca href=\"http://mathworld.wolfram.com/IsotropicTensor.html\"\u003eIsotropic Tensor.\u003c/a\u003e", + "F. Yano and H. Yoshida, \u003ca href=\"http://dx.doi.org/10.1016/j.disc.2007.03.050\"\u003eSome set partition statistics in non-crossing partitions and generating functions\u003c/a\u003e, Discr. Math., 307 (2007), 3147-3160." + ], + "formula": [ + "a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*A000108(k). a(n) = (1/(n+1)) * Sum_{k=0..ceiling(n/2)} binomial(n+1, k)*binomial(n-k-1, k-1), for n \u003e 1. - _Len Smiley_. [Comment from Amitai Regev (amitai.regev(AT)weizmann.ac.il), Mar 02 2010: the latter sum should be over the range k=1..floor(n/2).]", + "G.f.: (1 + x - sqrt(1-2*x-3*x^2))/(2*x*(1+x)).", + "G.f.: 2/(1+x+sqrt(1-2*x-3*x^2)). - Paul Peart (ppeart(AT)fac.howard.edu), May 27 2000", + "a(n+1) + (-1)^n = a(0)*a(n) + a(1)*a(n-1) + ... + a(n)*a(0). - Bernhart", + "a(n) = (1/(n+1)) * Sum_{i} (-1)^i*binomial(n+1, i)*binomial(2*n-2*i, n-i). - Bernhart", + "G.f. A(x) satisfies A = 1/(1+x) + x*A^2.", + "E.g.f.: exp(x)*(BesselI(0, 2*x) - BesselI(1, 2*x)). - _Vladeta Jovovic_, Apr 28 2003", + "a(n) = A001006(n-1) - a(n-1).", + "a(n+1) = Sum_{k=0..n} (-1)^k*A026300(n, k), where A026300 is the Motzkin triangle.", + "a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*binomial(k, floor(k/2)). - _Paul Barry_, Jan 27 2005", + "a(n) = Sum_{k\u003e=0} A086810(n-k, k). - _Philippe Deléham_, May 30 2005", + "a(n+2) = Sum_{k\u003e=0} A064189(n-k, k). - _Philippe Deléham_, May 31 2005", + "Moment representation: a(n) = (1/(2*Pi))*Int(x^n*sqrt((1+x)(3-x))/(1+x),x,-1,3). - _Paul Barry_, Jul 09 2006", + "Inverse binomial transform of A000108 (Catalan numbers). - _Philippe Deléham_, Oct 20 2006", + "a(n) = (2/Pi)* Integral_{t_0..Pi} (4*cos^2(x)-1)^n*sin^2(x) dx. - _Andrew V. Sutherland_, Dec 02 2007", + "G.f.: 1/(1-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-.....(continued fraction). - _Paul Barry_, Jan 22 2009", + "G.f.: 1/(1+x-x/(1-x/(1+x-x/(1-x/(1+x-x/(1-... (continued fraction). - _Paul Barry_, May 16 2009", + "G.f.: 1/(1-x^2/(1-x/(1-x/(1-x^2/(1-x/(1-x/(1-x^2/(1-x/(1-... (continued fraction). - _Paul Barry_, Mar 02 2010", + "a(n) = -(-1)^n * hypergeom([1/2, n+2],[2],4/3) / sqrt(-3). - _Mark van Hoeij_, Jul 02 2010", + "a(n) = (-1)^n*hypergeometric([-n,1/2],[2],4). - _Peter Luschny_, Aug 15 2012", + "Let A(x) be the g.f., then x*A(x) is the reversion of x/(1 + x^2*Sum_{k\u003e=0} x^k); see A215340 for the correspondence to Dyck paths without length-1 ascents. - _Joerg Arndt_, Aug 19 2012 and Apr 16 2013", + "a(n) ~ 3^(n+3/2)/(8*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 02 2012", + "G.f.: 2/(1+x+1/G(0)), where G(k)= 1 + x*(2+3*x)*(4*k+1)/( 4*k+2 - x*(2+3*x)*(4*k+2)*(4*k+3)/(x*(2+3*x)*(4*k+3) + 4*(k+1)/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jul 05 2013", + "D-finite (an alternative): (n+1)*a(n) = 3*(n-2)*a(n-3) + (5*n-7)*a(n-2) + (n-2)*a(n-1), n \u003e= 3. - _Fung Lam_, Mar 22 2014", + "Asymptotics: a(n) = 3^(n+2)/sqrt(3*n*Pi)/(8*n)*(1-21/(16*n) + O(1/n^2)) (with contribution by Vaclav Kotesovec). - _Fung Lam_, Mar 22 2014", + "a(n) = T(2*n-1,n)/n, where T(n,k) = triangle of A180177. - _Vladimir Kruchinin_, Sep 23 2014", + "a(n) = (-1)^n*JacobiP(n,1,-n-3/2,-7)/(n+1). - _Peter Luschny_, Sep 23 2014", + "a(n) = Sum_{k=0..n} C(n,k)*(C(k,n-k)-C(k,n-k-1)). - _Peter Luschny_, Oct 01 2014", + "a(n) = A002426(n) - A005717(n), n \u003e 0. - _Mikhail Kurkov_, Feb 24 2019", + "a(n) = A309303(n) + A309303(n+1). - _Vladimir Reshetnikov_, Jul 22 2019" + ], + "example": [ + "a(5)=6 because the only dissections of a polygon with a total number of 6 edges are: five pentagons with one of the five diagonals and the hexagon with no diagonals.", + "G.f. = 1 + x^2 + x^3 + 3*x^4 + 6*x^5 + 15*x^6 + 36*x^7 + 91*x^8 + 232*x^9 + ..." + ], + "maple": [ + "A005043 := proc(n) option remember; if n \u003c= 1 then 1-n else (n-1)*(2*A005043(n-1)+3*A005043(n-2))/(n+1); fi; end;", + "Order := 20: solve(series((x-x^2)/(1-x+x^2),x)=y,x); # outputs g.f." + ], + "mathematica": [ + "a[0]=1; a[1]=0; a[n_]:= a[n] = (n-1)*(2*a[n-1] + 3*a[n-2])/(n+1); Table[ a[n], {n, 0, 30}] (* _Robert G. Wilson v_, Jun 14 2005 *)", + "Table[(-3)^(1/2)/6 * (-1)^n*(3*Hypergeometric2F1[1/2,n+1,1,4/3]+ Hypergeometric2F1[1/2,n+2,1,4/3]), {n,0,32}] (* cf. _Mark van Hoeij_ in A001006 *) (* _Wouter Meeussen_, Jan 23 2010 *)", + "RecurrenceTable[{a[0]==1,a[1]==0,a[n]==(n-1) (2a[n-1]+3a[n-2])/(n+1)},a,{n,30}] (* _Harvey P. Dale_, Sep 27 2013 *)", + "a[ n_]:= SeriesCoefficient[2/(1+x +Sqrt[1-2x-3x^2]), {x, 0, n}]; (* _Michael Somos_, Aug 21 2014 *)", + "a[ n_]:= If[n\u003c0, 0, 3^(n+3/2) Hypergeometric2F1[3/2, n+2, 2, 4]/I]; (* _Michael Somos_, Aug 21 2014 *)", + "Table[3^(n+3/2) CatalanNumber[n] (4(5+2n)Hypergeometric2F1[3/2, 3/2, 1/2-n, 1/4] -9 Hypergeometric2F1[3/2, 5/2, 1/2 -n, 1/4])/(4^(n+3) (n+1)), {n, 0, 31}] (* _Vladimir Reshetnikov_, Jul 21 2019 *)" + ], + "program": [ + "(PARI) {a(n) = if( n\u003c0, 0, n++; polcoeff( serreverse( (x - x^3) / (1 + x^3) + x * O(x^n)), n))}; /* _Michael Somos_, May 31 2005 */", + "(Maxima) a[0]:1$", + "a[1]:0$", + "a[n]:=(n-1)*(2*a[n-1]+3*a[n-2])/(n+1)$", + "makelist(a[n],n,0,12); /* _Emanuele Munarini_, Mar 02 2011 */", + "(Haskell)", + "a005043 n = a005043_list !! n", + "a005043_list = 1 : 0 : zipWith div", + " (zipWith (*) [1..] (zipWith (+)", + " (map (* 2) $ tail a005043_list) (map (* 3) a005043_list))) [3..]", + "-- _Reinhard Zumkeller_, Jan 31 2012", + "(PARI) N=66; Vec(serreverse(x/(1+x*sum(k=1,N,x^k))+O(x^N))) \\\\ _Joerg Arndt_, Aug 19 2012", + "(Sage)", + "A005043 = lambda n: (-1)^n*jacobi_P(n,1,-n-3/2,-7)/(n+1)", + "[simplify(A005043(n)) for n in (0..29)]", + "# _Peter Luschny_, Sep 23 2014", + "(Sage)", + "def ms():", + " a, b, c, d, n = 0, 1, 1, -1, 1", + " yield 1", + " while True:", + " yield -b + (-1)^n*d", + " n += 1", + " a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)/((n+1)*(n-1))", + " c, d = d, (3*(n-1)*c-(2*n-1)*d)/n", + "A005043 = ms()", + "print([next(A005043) for _ in range(32)]) # _Peter Luschny_, May 16 2016" + ], + "xref": [ + "Row sums of triangle A020474, first differences of A082395.", + "First diagonal of triangular array in A059346.", + "Binomial transform of A126930. - _Philippe Deléham_, Nov 26 2009", + "The Hankel transform of a(n+1) is A128834. The Hankel transform of a(n+2) is floor((2*n+4)/3) = A004523(n+2). - _Paul Barry_, Mar 08 2011", + "The Kn11 triangle sums of triangle A175136 lead to A005043(n+2), while the Kn12(n) = A005043(n+4)-2^(n+1), Kn13(n) = A005043(n+6)-(n^2+9*n+56)*2^(n-2) and the Kn4(n) = A005043(2*n+2) = A099251(n+1) triangle sums are related to the sequence given above. For the definitions of these triangle sums see A180662. - _Johannes W. Meijer_, May 06 2011", + "The self-convolution of A005043 gives A187306. - _Philippe Deléham_, Jan 28 2014", + "Cf. A000045, A000108, A000957, A001006, A007317, A057078, A091867, A104597, A126120, A178514, A249548, A309303.", + "Bisections: A099251, A099252." + ], + "keyword": "nonn,easy,nice,changed", + "offset": "0,5", + "author": "_N. J. A. Sloane_", + "ext": [ + "Thanks to Laura L. M. Yang (yanglm(AT)hotmail.com) for a correction, Aug 29 2004", + "Name changed to Riordan numbers following a suggestion from _Ira M. Gessel_. - _N. J. A. Sloane_, Jul 24 2020" + ], + "references": 130, + "revision": 412, + "time": "2021-04-15T05:26:09-04:00", + "created": "1991-07-11T03:00:00-04:00" + }, + { + "number": 99323, + "data": "1,1,0,1,-1,3,-6,15,-36,91,-232,603,-1585,4213,-11298,30537,-83097,227475,-625992,1730787,-4805595,13393689,-37458330,105089229,-295673994,834086421,-2358641376,6684761125,-18985057351,54022715451,-154000562758,439742222071,-1257643249140", + "name": "Expansion of (sqrt(1+3*x) + sqrt(1-x))/(2*sqrt(1-x)).", + "comment": [ + "Binomial transform is A072100. Signed Motzkin numbers with an additional leading 1.", + "Inverse binomial transform of A001405 gives this without the initial 1. So does the binomial transform of (-1)^n*A000108(n) = [1,-1,2,-5,14,-42,...]. - _Philippe Deléham_, Mar 20 2007" + ], + "link": [ + "C. Banderier and D. Merlini, \u003ca href=\"http://algo.inria.fr/banderier/Papers/infjumps.ps\"\u003eLattice paths with an infinite set of jumps\u003c/a\u003e, FPSAC'02 Melbourne, 2002." + ], + "formula": [ + "a(n) = 0^n + Sum_{k=0..n-1} binomial(n-1,k)*(-1)^k*C(k), where C(k) is the k-th Catalan number.", + "G.f.: 1 + x/(1-sqrt(x))/G(0), where G(k)= 1 + sqrt(x)/(1 - sqrt(x)/(1 + x/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jul 28 2013", + "D-finite with recurrence: n*a(n) + 2*(n-2)*a(n-1) + 3*(-n+2)*a(n-2) = 0. - _R. J. Mathar_, Oct 10 2014", + "a(n) ~ -(-1)^n * 3^(n + 1/2) / (8*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 31 2017" + ], + "maple": [ + "with(PolynomialTools): CoefficientList(convert(taylor((sqrt(1 + 3*x) + sqrt(1 - x))/2/sqrt(1 - x), x = 0, 33), polynom), x); # _Taras Goy_, Aug 07 2017" + ], + "mathematica": [ + "CoefficientList[Series[(Sqrt[1+3x]+Sqrt[1-x])/(2Sqrt[1-x]),{x,0,40}],x] (* _Harvey P. Dale_, Feb 06 2015 *)" + ], + "xref": [ + "Cf. A000108, A005043." + ], + "keyword": "easy,sign", + "offset": "0,6", + "author": "_Paul Barry_, Oct 12 2004", + "ext": [ + "Edited by _N. J. A. Sloane_, Oct 05 2009" + ], + "references": 15, + "revision": 35, + "time": "2020-01-30T21:29:15-05:00", + "created": "2005-02-20T03:00:00-05:00" + }, + { + "number": 174297, + "data": "1,-1,-1,0,-1,1,-3,6,-15,36,-91,232,-603,1585,-4213,11298,-30537,83097,-227475,625992,-1730787,4805595,-13393689,37458330,-105089229,295673994,-834086421,2358641376,-6684761125,18985057351,-54022715451", + "name": "First column of A174295.", + "comment": [ + "First 6 terms as in Mobius function A008683. Signed version of A099323 with an additional leading 1." + ], + "formula": [ + "a(n) = -(-3)^(n-3/2)*hypergeom([3/2, n-1],[2],4) for n \u003e 2 (guessed formula) [From _Mark van Hoeij_, Jul 02 2010]" + ], + "xref": [ + "Cf. A112468, A112467, A174294, A174295, A174296, A174297." + ], + "keyword": "sign", + "offset": "1,7", + "author": "_Mats Granvik_, Mar 15 2010", + "references": 6, + "revision": 4, + "time": "2012-03-31T10:24:32-04:00", + "created": "2010-06-01T03:00:00-04:00" + } + ] +} \ No newline at end of file diff --git a/data/1,2,3,4,5,6,.json b/data/1,2,3,4,5,6,.json new file mode 100644 index 0000000..f6e3372 --- /dev/null +++ b/data/1,2,3,4,5,6,.json @@ -0,0 +1,957 @@ +{ + "greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/", + "query": "1,2,3,4,5,6,7,8,9,10,", + "count": 1807, + "start": 0, + "results": [ + { + "number": 27, + "id": "M0472 N0173", + "data": "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77", + "name": "The positive integers. Also called the natural numbers, the whole numbers or the counting numbers, but these terms are ambiguous.", + "comment": [ + "For some authors, the terms \"natural numbers\" and \"counting numbers\" include 0, i.e., refer to the nonnegative integers A001477; the term \"whole numbers\" frequently also designates the whole set of (signed) integers A001057.", + "a(n) is smallest positive integer which is consistent with sequence being monotonically increasing and satisfying a(a(n)) = n (cf. A007378).", + "Inverse Euler transform of A000219.", + "The rectangular array having A000027 as antidiagonals is the dispersion of the complement of the triangular numbers, A000217 (which triangularly form column 1 of this array). The array is also the transpose of A038722. - _Clark Kimberling_, Apr 05 2003", + "For nonzero x, define f(n) = floor(nx) - floor(n/x). Then f=A000027 if and only if x=tau or x=-tau. - _Clark Kimberling_, Jan 09 2005", + "Numbers of form (2^i)*k for odd k (i.e., n = A006519(n)*A000265(n)); thus n corresponds uniquely to an ordered pair (i,k) where i=A007814, k=A000265 (with A007814(2n)=A001511(n), A007814(2n+1)=0). - _Lekraj Beedassy_, Apr 22 2006", + "If the offset were changed to 0, we would have the following pattern: a(n)=binomial(n,0) + binomial(n,1) for the present sequence (number of regions in 1-space defined by n points), A000124 (number of regions in 2-space defined by n straight lines), A000125 (number of regions in 3-space defined by n planes), A000127 (number of regions in 4-space defined by n hyperplanes), A006261, A008859, A008860, A008861, A008862 and A008863, where the last six sequences are interpreted analogously and in each \"... by n ...\" clause an offset of 0 has been assumed, resulting in a(0)=1 for all of them, which corresponds to the case of not cutting with a hyperplane at all and therefore having one region. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006", + "Define a number of points on a straight line to be in general arrangement when no two points coincide. Then these are the numbers of regions defined by n points in general arrangement on a straight line, when an offset of 0 is assumed. For instance, a(0)=1, since using no point at all leaves one region. The sequence satisfies the recursion a(n) = a(n-1) + 1. This has the following geometrical interpretation: Suppose there are already n-1 points in general arrangement, thus defining the maximal number of regions on a straight line obtainable by n-1 points, and now one more point is added in general arrangement. Then it will coincide with no other point and act as a dividing wall thereby creating one new region in addition to the a(n-1)=(n-1)+1=n regions already there, hence a(n)=a(n-1)+1. Cf. the comments on A000124 for an analogous interpretation. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006", + "The sequence a(n)=n (for n=1,2,3) and a(n)=n+1 (for n=4,5,...) gives to the rank (minimal cardinality of a generating set) for the semigroup I_n\\S_n, where I_n and S_n denote the symmetric inverse semigroup and symmetric group on [n]. - _James East_, May 03 2007", + "The sequence a(n)=n (for n=1,2), a(n)=n+1 (for n=3) and a(n)=n+2 (for n=4,5,...) gives the rank (minimal cardinality of a generating set) for the semigroup PT_n\\T_n, where PT_n and T_n denote the partial transformation semigroup and transformation semigroup on [n]. - _James East_, May 03 2007", + "\"God made the integers; all else is the work of man.\" This famous quotation is a translation of \"Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk,\" spoken by Leopold Kronecker in a lecture at the Berliner Naturforscher-Versammlung in 1886. Possibly the first publication of the statement is in Heinrich Weber's \"Leopold Kronecker,\" Jahresberichte D.M.V. 2 (1893) 5-31. - _Clark Kimberling_, Jul 07 2007", + "Binomial transform of A019590, inverse binomial transform of A001792. - _Philippe Deléham_, Oct 24 2007", + "Writing A000027 as N, perhaps the simplest one-to-one correspondence between N X N and N is this: f(m,n) = ((m+n)^2 - m - 3n + 2)/2. Its inverse is given by I(k)=(g,h), where g = k - J(J-1)/2, h = J + 1 - g, J = floor((1 + sqrt(8k - 7))/2). Thus I(1)=(1,1), I(2)=(1,2), I(3)=(2,1) and so on; the mapping I fills the first-quadrant lattice by successive antidiagonals. - _Clark Kimberling_, Sep 11 2008", + "A000007(a(n)) = 0; A057427(a(n)) = 1. - _Reinhard Zumkeller_, Oct 12 2008", + "a(n) is also the mean of the first n odd integers. - _Ian Kent_, Dec 23 2008", + "Equals INVERTi transform of A001906, the even-indexed Fibonacci numbers starting (1, 3, 8, 21, 55, ...). - _Gary W. Adamson_, Jun 05 2009", + "These are also the 2-rough numbers: positive integers that have no prime factors less than 2. - _Michael B. Porter_, Oct 08 2009", + "Totally multiplicative sequence with a(p) = p for prime p. Totally multiplicative sequence with a(p) = a(p-1) + 1 for prime p. - _Jaroslav Krizek_, Oct 18 2009", + "Triangle T(k,j) of natural numbers, read by rows, with T(k,j) = binomial(k,2) + j = (k^2-k)/2 + j where 1\u003c=j\u003c=k. In other words, a(n) = n = binomial(k,2) + j where k is the largest integer such that binomial(k,2) \u003c n and j = n - binomial(k,2). For example, T(4,1)=7, T(4,2)=8, T(4,3)=9, and T(4,4)=10. Note that T(n,n)=A000217(n), the n-th triangular number. - _Dennis P. Walsh_, Nov 19 2009", + "Hofstadter-Conway-like sequence (see A004001): a(n) = a(a(n-1)) + a(n-a(n-1)) with a(1) = 1, a(2) = 2. - _Jaroslav Krizek_, Dec 11 2009", + "a(n) is also the dimension of the irreducible representations of the Lie algebra sl(2). - _Leonid Bedratyuk_, Jan 04 2010", + "Floyd's triangle read by rows. - _Paul Muljadi_, Jan 25 2010", + "Number of numbers between k and 2k where k is an integer. - _Giovanni Teofilatto_, Mar 26 2010", + "Generated from a(2n) = r*a(n), a(2n+1) = a(n) + a(n+1), r = 2; in an infinite set, row 2 of the array shown in A178568. - _Gary W. Adamson_, May 29 2010", + "1/n = continued fraction [n]. Let barover[n] = [n,n,n,...] = 1/k. Then k - 1/k = n. Example: [2,2,2,...] = (sqrt(2) - 1) = 1/k, with k = (sqrt(2) + 1). Then 2 = k - 1/k. - _Gary W. Adamson_, Jul 15 2010", + "Number of n-digit numbers the binary expansion of which contains one run of 1's. - _Vladimir Shevelev_, Jul 30 2010", + "From _Clark Kimberling_, Jan 29 2011: (Start)", + "Let T denote the \"natural number array A000027\":", + " 1 2 4 7 ...", + " 3 5 8 12 ...", + " 6 9 13 18 ...", + " 10 14 19 25 ...", + "T(n,k) = n+(n+k-2)*(n+k-1)/2. See A185787 for a list of sequences based on T, such as rows, columns, diagonals, and sub-arrays. (End)", + "The Stern polynomial B(n,x) evaluated at x=2. See A125184. - _T. D. Noe_, Feb 28 2011", + "The denominator in the Maclaurin series of log(2), which is 1 - 1/2 + 1/3 - 1/4 + .... - _Mohammad K. Azarian_, Oct 13 2011", + "As a function of Bernoulli numbers B_n (cf. A027641: (1, -1/2, 1/6, 0, -1/30, 0, 1/42, ...)): let V = a variant of B_n changing the (-1/2) to (1/2). Then triangle A074909 (the beheaded Pascal's triangle) * [1, 1/2, 1/6, 0, -1/30, ...] = the vector [1, 2, 3, 4, 5, ...]. - _Gary W. Adamson_, Mar 05 2012", + "Number of partitions of 2n+1 into exactly two parts. - _Wesley Ivan Hurt_, Jul 15 2013", + "Integers n dividing u(n) = 2u(n-1) - u(n-2); u(0)=0, u(1)=1 (Lucas sequence A001477). - _Thomas M. Bridge_, Nov 03 2013", + "For this sequence, the generalized continued fraction a(1)+a(1)/(a(2)+a(2)/(a(3)+a(3)/(a(4)+...))), evaluates to 1/(e-2) = A194807. - _Stanislav Sykora_, Jan 20 2014", + "Engel expansion of e-1 (A091131 = 1.71828...). - _Jaroslav Krizek_, Jan 23 2014", + "a(n) is the number of permutations of length n simultaneously avoiding 213, 231 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - _Manda Riehl_, Aug 05 2014", + "a(n) is also the number of permutations simultaneously avoiding 213, 231 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - _Manda Riehl_ Aug 07 2014", + "a(n) = least k such that 2*Pi - Sum_{h=1..k} 1/(h^2 - h + 3/16) \u003c 1/n. - _Clark Kimberling_, Sep 28 2014", + "a(n) = least k such that Pi^2/6 - Sum_{h=1..k} 1/h^2 \u003c 1/n. - _Clark Kimberling_, Oct 02 2014", + "Determinants of the spiral knots S(2,k,(1)). a(k) = det(S(2,k,(1))). These knots are also the torus knots T(2,k). - _Ryan Stees_, Dec 15 2014", + "As a function, the restriction of the identity map on the nonnegative integers {0,1,2,3...}, A001477, to the positive integers {1,2,3,...}. - _M. F. Hasler_, Jan 18 2015", + "See also A131685(k) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^k+ k) / k! takes integral values for all i\u003e=0: For k=1, A131685(k)=1, which implies that this is a well defined integer sequence. - _Alexander R. Povolotsky_, Apr 24 2015", + "a(n) is the number of compositions of n+2 into n parts avoiding the part 2. - _Milan Janjic_, Jan 07 2016", + "Does not satisfy Benford's law [Berger-Hill, 2017] - _N. J. A. Sloane_, Feb 07 2017", + "Parametrization for the finite multisubsets of the positive integers, where, for p_j the j-th prime, n = Prod_j p_j^{e_j} corresponds to the multiset containing e_j copies of j ('Heinz encoding' -- see A056239, A003963, A289506, A289507, A289508, A289509) - _Christopher J. Smyth_, Jul 31 2017", + "The arithmetic function v_1(n,1) as defined in A289197. - _Robert Price_, Aug 22 2017", + "For n\u003e=3, a(n)=n is the least area that can be obtained for an irregular octagon drawn in a square of n units side, whose sides are parallel to the axes, with 4 vertices that coincide with the 4 vertices of the square, and the 4 remaining vertices having integer coordinates. See Affaire de Logique link. - _Michel Marcus_, Apr 28 2018", + "a(n+1) is the order of rowmotion on a poset defined by a disjoint union of chains of length n. - _Nick Mayers_, Jun 08 2018", + "Number of 1's in n-th generation of 1-D Cellular Automata using Rules 50, 58, 114, 122, 178, 186, 206, 220, 238, 242, 250 or 252 in the Wolfram numbering scheme, started with a single 1. - _Frank Hollstein_, Mar 25 2019", + "(1, 2, 3, 4, 5,...) is the fourth INVERT transform of (1, -2, 3, -4, 5,...). - Gary W. Adamson_, Jul 15 2019" + ], + "reference": [ + "T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 1.", + "T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 25.", + "W. Fulton and J. Harris, Representation theory: a first course, (1991), page 149. [From _Leonid Bedratyuk_, Jan 04 2010]", + "I. S. Gradstein and I. M. Ryshik, Tables of series, products , and integrals, Volume 1, Verlag Harri Deutsch, 1981.", + "R. E. Schwartz, You Can Count on Monsters: The First 100 numbers and Their Characters, A. K. Peters and MAA, 2010.", + "N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).", + "N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence)." + ], + "link": [ + "N. J. A. Sloane, \u003ca href=\"/A000027/b000027.txt\"\u003eTable of n, a(n) for n = 1..500000\u003c/a\u003e [a large file]", + "Archimedes Laboratory, \u003ca href=\"http://www.archimedes-lab.org/numbers/Num1_200.html\"\u003eWhat's special about this number?\u003c/a\u003e", + "Affaire de Logique, \u003ca href=\"http://www.affairedelogique.com/espace_probleme.php?corps=probleme\u0026amp;num=1051\"\u003ePick et Pick et Colegram\u003c/a\u003e (in French), No. 1051, 18-04-2018.", + "Paul Barry, \u003ca href=\"http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Barry/barry84.html\"\u003eA Catalan Transform and Related Transformations on Integer Sequences\u003c/a\u003e, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.", + "James Barton, \u003ca href=\"http://www.virtuescience.com/number-list.html\"\u003eThe Numbers\u003c/a\u003e", + "A. Berger and T. P. Hill, \u003ca href=\"http://www.ams.org/publications/journals/notices/201702/rnoti-p132.pdf\"\u003eWhat is Benford's Law?\u003c/a\u003e, Notices, Amer. Math. Soc., 64:2 (2017), 132-134.", + "A. Breiland, L. Oesper, and L. Taalman, \u003ca href=\"http://educ.jmu.edu/~taalmala/breil_oesp_taal.pdf\"\u003ep-Coloring classes of torus knots\u003c/a\u003e, Online Missouri J. Math. Sci., 21 (2009), 120-126.", + "N. Brothers, S. Evans, L. Taalman, L. Van Wyk, D. Witczak, and C. Yarnall, \u003ca href=\"http://projecteuclid.org/euclid.mjms/1312232716\"\u003eSpiral knots\u003c/a\u003e, Missouri J. of Math. Sci., 22 (2010).", + "C. K. Caldwell, \u003ca href=\"http://primes.utm.edu/curios\"\u003ePrime Curios\u003c/a\u003e", + "Case and Abiessu, \u003ca href=\"http://everything2.net/index.pl?node_id=17633\u0026amp;displaytype=printable\u0026amp;lastnode_id=17633\"\u003einteresting number\u003c/a\u003e", + "S. Crandall, \u003ca href=\"http://tingilinde.typepad.com/starstuff/2005/11/significant_int.html\"\u003enotes on interesting digital ephemera\u003c/a\u003e", + "O. Curtis, \u003ca href=\"http://users.pipeline.com.au/owen/Numbers.html\"\u003eInteresting Numbers\u003c/a\u003e", + "M. DeLong, M. Russell, and J. Schrock, \u003ca href=\"http://dx.doi.org/10.2140/involve.2015.8.361\"\u003eColorability and determinants of T(m,n,r,s) twisted torus knots for n equiv. +/-1(mod m)\u003c/a\u003e, Involve, Vol. 8 (2015), No. 3, 361-384.", + "Walter Felscher, \u003ca href=\"http://sunsite.utk.edu/math_archives/.http/hypermail/historia/may99/0210.html\"\u003eHistoria Matematica Mailing List Archive.\u003c/a\u003e", + "P. Flajolet and R. Sedgewick, \u003ca href=\"http://algo.inria.fr/flajolet/Publications/books.html\"\u003eAnalytic Combinatorics\u003c/a\u003e, 2009; see page 371", + "Robert R. Forslund, \u003ca href=\"http://www.emis.de/journals/SWJPAM/Vol1_1995/rrf01.ps\"\u003eA logical alternative to the existing positional number system\u003c/a\u003e, Southwest Journal of Pure and Applied Mathematics, Vol. 1 1995 pp. 27-29.", + "E. Friedman, \u003ca href=\"https://erich-friedman.github.io/numbers.html\"\u003eWhat's Special About This Number?\u003c/a\u003e", + "R. K. Guy, \u003ca href=\"/A000346/a000346.pdf\"\u003eLetter to N. J. A. Sloane\u003c/a\u003e", + "Milan Janjic, \u003ca href=\"http://www.pmfbl.org/janjic/\"\u003eEnumerative Formulas for Some Functions on Finite Sets\u003c/a\u003e", + "Kival Ngaokrajang, \u003ca href=\"/A000027/a000027_2.pdf\"\u003eIllustration about relation to many other sequences\u003c/a\u003e, when the sequence is considered as a triangular table read by its antidiagonals. \u003ca href=\"/A000027/a000027_3.pdf\"\u003eAdditional illustrations\u003c/a\u003e when the sequence is considered as a centered triangular table read by rows.", + "M. Keith, \u003ca href=\"http://users.aol.com/s6sj7gt/interest.htm\"\u003eAll Numbers Are Interesting: A Constructive Approach\u003c/a\u003e", + "Leonardo of Pisa [Leonardo Pisano], \u003ca href=\"/A000027/a000027.jpg\"\u003eIllustration of initial terms\u003c/a\u003e, from Liber Abaci [The Book of Calculation], 1202 (photo by David Singmaster).", + "R. Munafo, \u003ca href=\"http://www.mrob.com/pub/math/numbers.html\"\u003eNotable Properties of Specific Numbers\u003c/a\u003e", + "G. Pfeiffer, \u003ca href=\"http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Pfeiffer/pfeiffer6.html\"\u003eCounting Transitive Relations\u003c/a\u003e, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.", + "R. Phillips, \u003ca href=\"http://richardphillips.org.uk/number/Num1.htm\"\u003eNumbers from one to thirty-one\u003c/a\u003e", + "J. Striker, \u003ca href=\"http://www.ams.org/publications/journals/notices/201706/rnoti-p543.pdf\"\u003eDynamical Algebraic Combinatorics: Promotion, Rowmotion, and Resonance\u003c/a\u003e, Notices of the AMS, June/July 2017, pp. 543-549.", + "G. Villemin's Almanac of Numbers, \u003ca href=\"http://villemin.gerard.free.fr/aNombre/Nb0a50.htm\"\u003eNOMBRES en BREF (in French)\u003c/a\u003e", + "Eric Weisstein's World of Mathematics, \u003ca href=\"http://mathworld.wolfram.com/NaturalNumber.html\"\u003eNatural Number\u003c/a\u003e, \u003ca href=\"http://mathworld.wolfram.com/PositiveInteger.html\"\u003ePositive Integer\u003c/a\u003e, \u003ca href=\"http://mathworld.wolfram.com/CountingNumber.html\"\u003eCounting Number\u003c/a\u003e \u003ca href=\"http://mathworld.wolfram.com/Composition.html\"\u003eComposition\u003c/a\u003e, \u003ca href=\"http://mathworld.wolfram.com/Davenport-SchinzelSequence.html\"\u003eDavenport-Schinzel Sequence\u003c/a\u003e, \u003ca href=\"http://mathworld.wolfram.com/IdempotentNumber.html\"\u003eIdempotent Number\u003c/a\u003e, \u003ca href=\"http://mathworld.wolfram.com/N.html\"\u003eN\u003c/a\u003e, \u003ca href=\"http://mathworld.wolfram.com/SmarandacheCeilFunction.html\"\u003eSmarandache Ceil Function\u003c/a\u003e, \u003ca href=\"http://mathworld.wolfram.com/WholeNumber.html\"\u003eWhole Number\u003c/a\u003e, \u003ca href=\"http://mathworld.wolfram.com/EngelExpansion.html\"\u003eEngel Expansion\u003c/a\u003e, and \u003ca href=\"http://mathworld.wolfram.com/TrinomialCoefficient.html\"\u003eTrinomial Coefficient\u003c/a\u003e", + "Wikipedia, \u003ca href=\"http://en.wikipedia.org/wiki/List_of_numbers\"\u003eList of numbers\u003c/a\u003e, \u003ca href=\"http://en.wikipedia.org/wiki/Interesting_number_paradox\"\u003eInteresting number paradox\u003c/a\u003e, and \u003ca href=\"http://en.wikipedia.org/wiki/Floyd%27s_triangle\"\u003eFloyd's triangle\u003c/a\u003e", + "Robert G. Wilson v, \u003ca href=\"/A000027/a000027.txt\"\u003eEnglish names for the numbers from 0 to 11159 without spaces or hyphens \u003c/a\u003e", + "Robert G. Wilson v, \u003ca href=\"/A001477/a001477.txt\"\u003eAmerican English names for the numbers from 0 to 100999 without spaces or hyphens\u003c/a\u003e", + "\u003ca href=\"/index/Cor#core\"\u003eIndex entries for \"core\" sequences\u003c/a\u003e", + "\u003ca href=\"/index/Aa#aan\"\u003eIndex entries for sequences of the a(a(n)) = 2n family\u003c/a\u003e", + "\u003ca href=\"/index/Per#IntegerPermutation\"\u003eIndex entries for sequences that are permutations of the natural numbers\u003c/a\u003e", + "\u003ca href=\"/index/Par#partN\"\u003eIndex entries for related partition-counting sequences\u003c/a\u003e", + "\u003ca href=\"/index/Rec#order_02\"\u003eIndex entries for linear recurrences with constant coefficients\u003c/a\u003e, signature (2,-1).", + "\u003ca href=\"/index/Di#divseq\"\u003eIndex to divisibility sequences\u003c/a\u003e", + "\u003ca href=\"/index/Be#Benford\"\u003eIndex entries for sequences related to Benford's law\u003c/a\u003e" + ], + "formula": [ + "a(2k+1) = A005408(k), k \u003e= 0, a(2k) = A005843(k), k \u003e= 1.", + "Multiplicative with a(p^e) = p^e. - _David W. Wilson_, Aug 01 2001", + "Another g.f.: Sum_{n\u003e0} phi(n)*x^n/(1-x^n) (Apostol).", + "When seen as an array: T(k, n) = n+1 + (k+n)*(k+n+1)/2. Main diagonal is 2n*(n+1)+1 (A001844), antidiagonal sums are n*(n^2+1)/2 (A006003). - _Ralf Stephan_, Oct 17 2004", + "Dirichlet generating function: zeta(s-1). - _Franklin T. Adams-Watters_, Sep 11 2005", + "G.f.: x/(1-x)^2. E.g.f.: x*exp(x). a(n)=n. a(-n)=-a(n).", + "Series reversion of g.f. A(x) is x*C(-x)^2 where C(x) is the g.f. of A000108. - _Michael Somos_, Sep 04 2006", + "G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 4*u*v. - _Michael Somos_, Oct 03 2006", + "Convolution of A000012 (the all-ones sequence) with itself. - _Tanya Khovanova_, Jun 22 2007", + "a(n) = 2*a(n-1)-a(n-2); a(1)=1, a(2)=2. a(n)=1+a(n-1). - _Philippe Deléham_, Nov 03 2008", + "a(n) = A000720(A000040(n)). - _Juri-Stepan Gerasimov_, Nov 29 2009", + "a(n+1) = Sum_{k=0..n} A101950(n,k). - _Philippe Deléham_, Feb 10 2012", + "a(n) = Sum_{d | n} phi(d) = Sum_{d | n} A000010(d). - _Jaroslav Krizek_, Apr 20 2012", + "G.f.: x * Product_{j\u003e=0} (1+x^(2^j))^2 = x * (1+2*x+x^2) * (1+2*x^2+x^4) * (1+2*x^4+x^8) * ... = x + 2x^2 + 3x^3 + ... . - _Gary W. Adamson_, Jun 26 2012", + "a(n) = det(binomial(i+1,j), 1 \u003c= i,j \u003c= n). - _Mircea Merca_, Apr 06 2013", + "E.g.f.: x*E(0), where E(k)= 1 + 1/(x - x^3/(x^2 + (k+1)/E(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Aug 03 2013", + "From _Wolfdieter Lang_, Oct 09 2013: (Start)", + "a(n) = Product_{k=1..n-1} 2*sin(Pi*k/n), n \u003e 1.", + "a(n) = Product_{k=1..n-1} (2*sin(Pi*k/(2*n)))^2, n \u003e 1.", + "These identities are used in the calculation of products of ratios of lengths of certain lines in a regular n-gon. For the first identity see the Gradstein-Ryshik reference, p. 62, 1.392 1., bringing the first factor there to the left hand side and taking the limit x -\u003e 0 (L'Hôpital). The second line follows from the first one. Thanks to _Seppo Mustonen_ who led me to consider n-gon lengths products. (End)", + "a(n) = Sum_{j=0..k} (-1)^(j-1)*j*binomial(n,j)*binomial(n-1+k-j,k-j), k\u003e=0. - _Mircea Merca_, Jan 25 2014", + "a(n) = A052410(n)^A052409(n). - _Reinhard Zumkeller_, Apr 06 2014", + "a(n) = Sum_{k=1..n^2+2*n} 1/(sqrt(k)+sqrt(k+1)). - _Pierre CAMI_, Apr 25 2014", + "a(n) = floor(1/sin(1/n)) = floor(cot(1/(n+1))) = ceiling(cot(1/n)). - _Clark Kimberling_, Oct 08 2014", + "a(n) = floor(1/(log(n+1)-log(n))). - _Thomas Ordowski_, Oct 10 2014", + "a(k) = det(S(2,k,1)). - _Ryan Stees_, Dec 15 2014", + "a(n) = 1/(1/(n+1)+1/(n+1)^2+1/(n+1)^3+.... - _Pierre CAMI_, Jan 22 2015", + "a(n) = Sum_{m=0..n-1} Stirling1(n-1,m)*Bell(m+1), for n \u003e= 1. This corresponds to Bell(m+1) = Sum_{k=0..m} Stirling2(m, k)*(k+1), for m \u003e= 0, from the fact that Stirling2*Stirling1 = identity matrix. See A048993, A048994 and A000110. - _Wolfdieter Lang_, Feb 03 2015", + "a(n) = Sum_{k=1...2n-1}(-1)^(k+1)*k*(2n-k). In addition, surprisingly, a(n) = Sum_{k=1...2n-1}(-1)^(k+1)*k^2*(2n-k)^2. - _Charlie Marion_, Jan 05 2016", + "G.f.: x/(1-x)^2 = (x * r(x) *r(x^3) * r(x^9) * r(x^27) *...), where r(x) = (1 + x + x^2)^2 = (1 + 2x + 3x^2 + 2x^3 + x^4). - _Gary W. Adamson_, Jan 11 2017", + "a(n) = floor(1/(Pi/2-arctan(n))). - _Clark Kimberling_, Mar 11 2020", + "a(n) = Sum_{d|n} mu(n/d)*sigma(d). - _Ridouane Oudra_, Oct 03 2020" + ], + "maple": [ + "A000027 := n-\u003en; seq(A000027(n), n=1..100);" + ], + "mathematica": [ + "Range@ 77 (* _Robert G. Wilson v_, Mar 31 2015 *)" + ], + "program": [ + "(MAGMA) [ n : n in [1..100]];", + "(PARI) {a(n) = n};", + "(R) 1:100", + "(Shell) seq 1 100", + "(Haskell)", + "a000027 = id", + "a000027_list = [1..] -- _Reinhard Zumkeller_, May 07 2012", + "(Maxima) makelist(n, n, 1, 30); /* _Martin Ettl_, Nov 07 2012 */" + ], + "xref": [ + "A001477 = nonnegative numbers.", + "Partial sums of A000012.", + "Cf. A001478, A001906, A007931, A007932, A027641, A074909, A089353 (multisets), A178568, A194807.", + "Cf. A026081 = integers in reverse alphabetical order in U.S. English, A107322 = English name for number and its reverse have the same number of letters, A119796 = zero through ten in alphabetical order of English reverse spelling, A005589, etc. Cf. A185787 (includes a list of sequences based on the natural number array A000027).", + "Cf. Boustrophedon transforms: A000737, A231179;", + "Cf. A038722 (mirrored when seen as triangle), A056011 (boustrophedon).", + "Cf. A048993, A048994, A000110 (see the Feb 03 2015 formula).", + "Cf. A289187," + ], + "keyword": "core,nonn,easy,mult,tabl", + "offset": "1,2", + "author": "_N. J. A. Sloane_", + "ext": [ + "Links edited by _Daniel Forgues_, Oct 07 2009" + ], + "references": 1823, + "revision": 558, + "time": "2020-11-28T11:01:13-05:00", + "created": "1991-04-30T03:00:00-04:00" + }, + { + "number": 7953, + "data": "0,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,10,2,3,4,5,6,7,8,9,10,11,3,4,5,6,7,8,9,10,11,12,4,5,6,7,8,9,10,11,12,13,5,6,7,8,9,10,11,12,13,14,6,7,8,9,10,11,12,13,14,15,7,8,9,10,11,12,13,14,15,16,8,9,10,11,12,13,14,15", + "name": "Digital sum (i.e., sum of digits) of n; also called digsum(n).", + "comment": [ + "Do not confuse with the digital root of n, A010888 (first term that differs is a(19)).", + "Also the fixed point of the morphism 0 -\u003e {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 1 -\u003e {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 2 -\u003e {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, etc. - _Robert G. Wilson v_, Jul 27 2006", + "For n \u003c 100 equal to (floor(n/10) + n mod 10) = A076314(n). - _Hieronymus Fischer_, Jun 17 2007", + "a(n) = A138530(n, 10) for n \u003e 9. - _Reinhard Zumkeller_, Mar 26 2008", + "a(A058369(n)) = A004159(A058369(n)); a(A000290(n)) = A004159(n). - _Reinhard Zumkeller_, Apr 25 2009", + "a(n) mod 2 = A179081(n). - _Reinhard Zumkeller_, Jun 28 2010" + ], + "reference": [ + "Krassimir Atanassov, On the 16th Smarandache Problem, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 1, 36-38." + ], + "link": [ + "N. J. A. Sloane, \u003ca href=\"/A007953/b007953.txt\"\u003eTable of n, a(n) for n = 0..10000\u003c/a\u003e", + "Krassimir Atanassov, \u003ca href=\"http://www.gallup.unm.edu/~smarandache/Atanassov-SomeProblems.pdf\"\u003eOn Some of Smarandache's Problems\u003c/a\u003e", + "Jean-Luc Baril, \u003ca href=\"http://www.combinatorics.org/ojs/index.php/eljc/article/view/v18i1p178\"\u003eClassical sequences revisited with permutations avoiding dotted pattern\u003c/a\u003e, Electronic Journal of Combinatorics, 18 (2011), #P178.", + "Ernesto Estrada and Puri Pereira-Ramos, \u003ca href=\"https://doi.org/10.1155/2018/9893867\"\u003eSpatial 'Artistic' Networks: From Deconstructing Integer-Functions to Visual Arts\u003c/a\u003e, Complexity, Vol. 2018 (2018), Article ID 9893867.", + "A. O. Gel'fond, \u003ca href=\"http://matwbn.icm.edu.pl/ksiazki/aa/aa13/aa13115.pdf\"\u003eSur les nombres qui ont des propriétés additives et multiplicatives données\u003c/a\u003e (French) Acta Arith. 13 1967/1968 259--265. MR0220693 (36 #3745)", + "Christian Mauduit and András Sárközy, \u003ca href=\"http://dx.doi.org/10.1006/jnth.1998.2229\"\u003eOn the arithmetic structure of sets characterized by sum of digits properties\u003c/a\u003e J. Number Theory 61(1996), no. 1, 25--38. MR1418316 (97g:11107)", + "Christian Mauduit and András Sárközy, \u003ca href=\"http://matwbn.icm.edu.pl/ksiazki/aa/aa81/aa8122.pdf\"\u003e On the arithmetic structure of the integers whose sum of digits is fixed\u003c/a\u003e, Acta Arith. 81 (1997), no. 2, 145--173. MR1456239 (99a:11096)", + "Kerry Mitchell, \u003ca href=\"http://kerrymitchellart.com/articles/Spirolateral-Type_Images_from_Integer_Sequences.pdf\"\u003eSpirolateral-Type Images from Integer Sequences\u003c/a\u003e, 2013", + "Kerry Mitchell, \u003ca href=\"/A007953/a007953.jpg\"\u003eSpirolateral image for this sequence\u003c/a\u003e [taken, with permission, from the Spirolateral-Type Images from Integer Sequences article]", + "Jan-Christoph Puchta and Jürgen Spilker, \u003ca href=\"http://dx.doi.org/10.1007/s00591-002-0048-4\"\u003eAltes und Neues zur Quersumme\u003c/a\u003e, Mathematische Semesterberichte, 49 (2002), 209-226.", + "Jan-Christoph Puchta and Jürgen Spilker, \u003ca href=\"http://www.math.uni-rostock.de/~schlage-puchta/papers/Quersumme.pdf\"\u003eAltes und Neues zur Quersumme\u003c/a\u003e", + "Maxwell Schneider and Robert Schneider, \u003ca href=\"https://arxiv.org/abs/1807.06710\"\u003eDigit sums and generating functions\u003c/a\u003e, arXiv:1807.06710 [math.NT], 2018.", + "Vladimir Shevelev, \u003ca href=\"http://journals.impan.pl/aa/Inf/126-3-1.html\"\u003eCompact integers and factorials\u003c/a\u003e, Acta Arith. 126 (2007), no.3,195-236 (cf. pp.205-206).", + "Robert Walker, \u003ca href=\"http://robertinventor.com/ftswiki/Self_Similar_Sloth_Canon_Number_Sequences\"\u003eSelf Similar Sloth Canon Number Sequences\u003c/a\u003e", + "Eric Weisstein's World of Mathematics, \u003ca href=\"http://mathworld.wolfram.com/DigitSum.html\"\u003eDigit Sum\u003c/a\u003e", + "Wikipedia, \u003ca href=\"http://en.wikipedia.org/wiki/Digit_sum\"\u003eDigit sum\u003c/a\u003e", + "\u003ca href=\"/index/Coi#Colombian\"\u003eIndex entries for Colombian or self numbers and related sequences\u003c/a\u003e" + ], + "formula": [ + "a(n) \u003c= 9(log_10(n)+1). - _Stefan Steinerberger_, Mar 24 2006", + "a(0) = 0, a(10n+i) = a(n) + i 0 \u003c= i \u003c= 9; a(n) = n - 9*(sum(k \u003e 0, floor(n/10^k)) = n - 9*A054899(n). - _Benoit Cloitre_, Dec 19 2002", + "From _Hieronymus Fischer_, Jun 17 2007: (Start)", + "G.f. g(x) = sum{k \u003e 0, (x^k - x^(k+10^k) - 9x^(10^k))/(1-x^(10^k))}/(1-x).", + "a(n) = n - 9*sum{10 \u003c= k \u003c= n, sum{j|k, j \u003e= 10, floor(log_10(j)) - floor(log_10(j-1))}}. (End)", + "From _Hieronymus Fischer_, Jun 25 2007: (Start)", + "The g.f. can be expressed in terms of a Lambert series, in that g(x) = (x/(1-x) - 9*L[b(k)](x))/(1-x) where L[b(k)](x) = sum{k \u003e= 0, b(k)*x^k/(1-x^k)} is a Lambert series with b(k) = 1, if k \u003e 1 is a power of 10, else b(k) = 0.", + "G.f.: g(x) = sum{k \u003e 0, (1 - 9*c(k))*x^k}/(1-x), where c(k) = sum{j \u003e 1, j|k, floor(log_10(j)) - floor(log_10(j-1))}.", + "a(n) = n - 9*sum_{0 \u003c k \u003c= floor(log_10(n))} a(floor(n/10^k))*10^(k-1). (End)", + "From _Hieronymus Fischer_, Oct 06 2007: (Start)", + "a(n) \u003c= 9*(1 + floor(log_10(n)), equality holds for n = 10^m - 1, m \u003e 0.", + "lim sup (a(n) - 9*log_10(n)) = 0 for n --\u003e infinity.", + "lim inf (a(n+1) - a(n) + 9*log_10(n)) = 1 for n --\u003e infinity. (End)", + "a(A051885(n)) = n.", + "a(n) \u003c= 9*log_10(n+1). - _Vladimir Shevelev_, Jun 01 2011", + "a(n) = a(n-1) + a(n-10) - a(n-11), for n \u003c 100. - _Alexander R. Povolotsky_, Oct 09 2011", + "a(n) = Sum_k \u003e= 0 {A031298(n, k)}. - _Philippe Deléham_, Oct 21 2011", + "a(n) = a(n mod b^k) + a(floor(n/b^k)), for all k \u003e= 0. - _Hieronymus Fischer_, Mar 24 2014" + ], + "example": [ + "a(123) = 1 + 2 + 3 = 6, a(9875) = 9 + 8 + 7 + 5 = 29." + ], + "maple": [ + "A007953 := proc(n) add(d,d=convert(n,base,10)) ; end proc: # _R. J. Mathar_, Mar 17 2011" + ], + "mathematica": [ + "Table[Sum[DigitCount[n][[i]] * i, {i, 9}], {n, 50}] (* _Stefan Steinerberger_, Mar 24 2006 *)", + "Table[Plus @@ IntegerDigits @ n, {n, 0, 87}] (* or *)", + "Nest[Flatten[# /. a_Integer -\u003e Array[a + # \u0026, 10, 0]] \u0026, {0}, 2] (* _Robert G. Wilson v_, Jul 27 2006 *)", + "Table[Sum[Floor[n/10^k] - 10 * Floor[n/10^(k + 1)], {k, 0, Floor[Log[10, n]]}], {n, 300}] (* _José de Jesús Camacho Medina_, Mar 31 2014 *)", + "Total/@IntegerDigits[Range[0,90]] (* _Harvey P. Dale_, May 10 2016 *)" + ], + "program": [ + "/* The next few PARI programs are kept for historical and pedagogical reasons.", + " For practical use, the suggested and most efficient code is: A007953=sumdigits */", + "(PARI) a(n)=if(n\u003c1, 0, if(n%10, a(n-1)+1, a(n/10))) \\\\ Recursive, very inefficient. A more efficient recursive variant: a(n)=if(n\u003e9, n=divrem(n, 10); n[2]+a(n[1]), n)", + "(PARI) a(n, b=10)={my(s=(n=divrem(n, b))[2]); while(n[1]\u003e=b, s+=(n=divrem(n[1], b))[2]); s+n[1]} \\\\ _M. F. Hasler_, Mar 22 2011", + "(PARI) a(n)=sum(i=1, #n=digits(n), n[i]) \\\\ Twice as fast. Not so nice but faster:", + "(PARI) a(n)=sum(i=1,#n=Vecsmall(Str(n)),n[i])-48*#n \\\\ - _M. F. Hasler_, May 10 2015", + "/* Since PARI 2.7, one can also use: a(n)=vecsum(digits(n)), or better: A007953=sumdigits. [Edited and commented by _M. F. Hasler_, Nov 09 2018] */", + "(PARI) a(n) = sumdigits(n); \\\\ _Altug Alkan_, Apr 19 2018", + "(Haskell)", + "a007953 n | n \u003c 10 = n", + " | otherwise = a007953 n' + r where (n',r) = divMod n 10", + "-- _Reinhard Zumkeller_, Nov 04 2011, Mar 19 2011", + "(MAGMA) [ \u0026+Intseq(n): n in [0..87] ]; // _Bruno Berselli_, May 26 2011", + "(Smalltalk)", + "\"Recursive version for general bases. Set base = 10 for this sequence.\"", + "digitalSum: base", + "| s |", + "base = 1 ifTrue: [^self].", + "(s := self // base) \u003e 0", + " ifTrue: [^(s digitalSum: base) + self - (s * base)]", + " ifFalse: [^self]", + "\"by _Hieronymus Fischer_, Mar 24 2014\"", + "(Python)", + "def A007953(n):", + " return sum(int(d) for d in str(n)) # _Chai Wah Wu_, Sep 03 2014", + "(Scala) (0 to 99).map(_.toString.map(_.toInt - 48).sum) // _Alonso del Arte_, Sep 15 2019", + "(Swift 5)", + "A007953(n): String(n).compactMap{$0.wholeNumberValue}.reduce(0, +) // _Egor Khmara_, Jun 15 2021" + ], + "xref": [ + "Cf. A003132, A055012, A055013, A055014, A055015, A010888, A007954, A031347, A055017, A076313, A076314, A054899, A138470, A138471, A138472, A000120, A004426, A004427, A054683, A054684, A069877, A179082-A179085, A108971, A179987, A179988, A180018, A180019, A217928, A216407, A037123, A074784, A231688, A231689, A225693, A254524 (ordinal transform).", + "For n + digsum(n) see A062028." + ], + "keyword": "nonn,base,nice,easy,look", + "offset": "0,3", + "author": "R. Muller", + "ext": [ + "More terms from _Hieronymus Fischer_, Jun 17 2007", + "Edited by _Michel Marcus_, Nov 11 2013" + ], + "references": 948, + "revision": 239, + "time": "2021-02-25T02:39:48-05:00", + "created": "1996-03-15T03:00:00-05:00" + }, + { + "number": 1477, + "data": "0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77", + "name": "The nonnegative integers.", + "comment": [ + "Although this is a list, and lists normally have offset 1, it seems better to make an exception in this case. - _N. J. A. Sloane_, Mar 13 2010", + "The subsequence 0,1,2,3,4 gives the known values of n such that 2^(2^n)+1 is a prime (see A019434, the Fermat primes). - _N. J. A. Sloane_, Jun 16 2010", + "a(n) = A007966(n)*A007967(n). - _Reinhard Zumkeller_, Jun 18 2011", + "Also: The identity map, defined on the set of nonnegative integers. The restriction to the positive integers yields the sequence A000027. - _M. F. Hasler_, Nov 20 2013", + "The number of partitions of 2n into exactly 2 parts. - _Colin Barker_, Mar 22 2015", + "The number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 8960 or 168.- _Philippe A.J.G. Chevalier_, Dec 29 2015", + "Partial sums give A000217. - _Omar E. Pol_, Jul 26 2018", + "First differences are A000012 (the \"all 1's\" sequence). - _M. F. Hasler_, May 30 2020" + ], + "link": [ + "N. J. A. Sloane, \u003ca href=\"/A001477/b001477.txt\"\u003eTable of n, a(n) for n = 0..500000\u003c/a\u003e", + "Paul Barry, \u003ca href=\"https://cs.uwaterloo.ca/journals/JIS/VOL8/Barry/barry84.html\"\u003eA Catalan Transform and Related Transformations on Integer Sequences\u003c/a\u003e, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.", + "David Corneth, \u003ca href=\"https://www.youtube.com/watch?v=_rinkM0PCOQ\"\u003eCounting to 13999 visualized | showing changes per digit\u003c/a\u003e, YouTube video, 2019.", + "Hans Havermann, \u003ca href=\"/A001477/a001477.txt\"\u003eTable giving n and American English name for n, for 0 \u003c= n \u003c= 100999, without spaces or hyphens\u003c/a\u003e", + "Hans Havermann, \u003ca href=\"http://chesswanks.com/num/NumberNames.txt\"\u003eAmerican English number names to one million, without spaces or hyphens\u003c/a\u003e", + "Tanya Khovanova, \u003ca href=\"http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html\"\u003eRecursive Sequences\u003c/a\u003e", + "Luis Manuel Rivera, \u003ca href=\"http://arxiv.org/abs/1406.3081\"\u003eInteger sequences and k-commuting permutations\u003c/a\u003e, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.", + "László Németh, \u003ca href=\"https://cs.uwaterloo.ca/journals/JIS/VOL21/Nemeth/nemeth6.html\"\u003eThe trinomial transform triangle\u003c/a\u003e, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also \u003ca href=\"https://arxiv.org/abs/1807.07109\"\u003earXiv:1807.07109\u003c/a\u003e [math.NT], 2018.", + "Eric Weisstein's World of Mathematics, \u003ca href=\"http://mathworld.wolfram.com/NaturalNumber.html\"\u003eNatural Number\u003c/a\u003e", + "Eric Weisstein's World of Mathematics, \u003ca href=\"http://mathworld.wolfram.com/NonnegativeInteger.html\"\u003eNonnegative Integer\u003c/a\u003e", + "\u003ca href=\"/index/Cor#core\"\u003eIndex entries for \"core\" sequences\u003c/a\u003e", + "\u003ca href=\"/index/Per#IntegerPermutation\"\u003eIndex entries for sequences that are permutations of the natural numbers\u003c/a\u003e", + "\u003ca href=\"/index/Rec#order_02\"\u003eIndex entries for linear recurrences with constant coefficients\u003c/a\u003e, signature (2,-1)." + ], + "formula": [ + "a(n) = n.", + "a(0) = 0, a(n) = a(n-1) + 1.", + "G.f.: x/(1-x)^2.", + "Multiplicative with a(p^e) = p^e. - _David W. Wilson_, Aug 01 2001", + "When seen as array: T(k, n) = n + (k+n)*(k+n+1)/2. Main diagonal is 2*n*(n+1) (A046092), antidiagonal sums are n*(n+1)*(n+2)/2 (A027480). - _Ralf Stephan_, Oct 17 2004", + "Dirichlet generating function: zeta(s-1). - _Franklin T. Adams-Watters_, Sep 11 2005", + "E.g.f.: x*e^x. - _Franklin T. Adams-Watters_, Sep 11 2005", + "a(0)=0, a(1)=1, a(n) = 2*a(n-1) - a(n-2). - _Jaume Oliver Lafont_, May 07 2008", + "Alternating partial sums give A001057 = A000217 - 2*(A008794). - _Eric Desbiaux_, Oct 28 2008", + "a(n) = 2*A080425(n) + 3*A008611(n-3), n\u003e1. - _Eric Desbiaux_, Nov 15 2009", + "a(n) = Sum_{k\u003e=0} A030308(n,k)*2^k. - _Philippe Deléham_, Oct 20 2011", + "a(n) = 2*A028242(n-1) + (-1)^n*A000034(n-1). - _R. J. Mathar_, Jul 20 2012", + "a(n+1) = det(C(i+1,j), 1 \u003c= i, j \u003c= n), where C(n,k) are binomial coefficients. - _Mircea Merca_, Apr 06 2013", + "a(n-1) = floor(n/e^(1/n)) for n \u003e 0. - _Richard R. Forberg_, Jun 22 2013", + "a(n) = A000027(n) for all n\u003e0.", + "a(n) = floor(cot(1/(n+1))). - _Clark Kimberling_, Oct 08 2014", + "a(0)=0, a(n\u003e0) = 2*z(-1)^[( |z|/z + 3 )/2] + ( |z|/z - 1 )/2 for z = A130472(n\u003e0); a 1 to 1 correspondence between integers and naturals. - _Adriano Caroli_, Mar 29 2015" + ], + "example": [ + "Triangular view:", + " 0", + " 1 2", + " 3 4 5", + " 6 7 8 9", + " 10 11 12 13 14", + " 15 16 17 18 19 20", + " 21 22 23 24 25 26 27", + " 28 29 30 31 32 33 34 35", + " 36 37 38 39 40 41 42 43 44", + " 45 46 47 48 49 50 51 52 53 54" + ], + "maple": [ + "[ seq(n,n=0..100) ];" + ], + "mathematica": [ + "Table[n, {n, 0, 100}] (* _Stefan Steinerberger_, Apr 08 2006 *)", + "LinearRecurrence[{2, -1}, {0, 1}, 77] (* _Robert G. Wilson v_, May 23 2013 *)", + "CoefficientList[ Series[x/(x - 1)^2, {x, 0, 76}], x] (* _Robert G. Wilson v_, May 23 2013 *)" + ], + "program": [ + "(MAGMA) [ n : n in [0..100]];", + "(PARI) A001477(n)=n /* first term is a(0) */", + "(Haskell)", + "a001477 = id", + "a001477_list = [0..] -- _Reinhard Zumkeller_, May 07 2012" + ], + "xref": [ + "Cf. A000027 (n\u003e=1).", + "Cf. A000012 (first differences).", + "Partial sums of A057427. - _Jeremy Gardiner_, Sep 08 2002", + "Cf. A038608 (alternating signs), A001787 (binomial transform).", + "Cf. A055112.", + "Cf. Boustrophedon transforms: A231179, A000737.", + "Cf. A245422.", + "Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A000217.", + "When written as an array, the rows/columns are A000217, A000124, A152948, A152950, A145018, A167499, A166136, A167487... and A000096, A034856, A055998, A046691, A052905, A055999... (with appropriate offsets); cf. analogous lists for A000027 in A185787.", + "Cf. A000290." + ], + "keyword": "core,nonn,easy,mult,tabl", + "offset": "0,3", + "author": "_N. J. A. Sloane_", + "references": 727, + "revision": 273, + "time": "2021-02-15T22:43:26-05:00", + "created": "1991-04-30T03:00:00-04:00" + }, + { + "number": 2260, + "data": "1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,1,2,3,4,5,6,1,2,3,4,5,6,7,1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,11,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,13,1,2,3,4,5,6,7,8,9,10,11,12,13,14", + "name": "Triangle read by rows: T(n,k) = k for n \u003e= 1, k = 1..n.", + "comment": [ + "Old name: integers 1 to k followed by integers 1 to k+1 etc. (a fractal sequence).", + "Start counting again and again.", + "This is a \"doubly fractal sequence\" - see the _Franklin T. Adams-Watters_ link.", + "The PARI functions t1, t2 can be used to read a square array T(n,k) (n \u003e= 1, k \u003e= 1) by antidiagonals downwards: n -\u003e T(t1(n), t2(n)). - _Michael Somos_, Aug 23 2002", + "Reading this sequence as the antidiagonals of a rectangular array, row n is (n,n,n,...); this is the weight array (Cf. A144112) of the array A127779 (rectangular). - _Clark Kimberling_, Sep 16 2008", + "The upper trim of an arbitrary fractal sequence s is s, but the lower trim of s, although a fractal sequence, need not be s itself. However, the lower trim of A002260 is A002260. (The upper trim of s is what remains after the first occurrence of each term is deleted; the lower trim of s is what remains after all 0's are deleted from the sequence s-1.) - _Clark Kimberling_, Nov 02 2009", + "Eigensequence of the triangle = A001710 starting (1, 3, 12, 60, 360,...). - _Gary W. Adamson_, Aug 02 2010", + "The triangle sums, see A180662 for their definitions, link this triangle of natural numbers with twenty-three different sequences, see the crossrefs. The mirror image of this triangle is A004736. - _Johannes W. Meijer_, Sep 22 2010", + "From _Paul Curtz_, Jul 25 2011: (Start)", + "Akiyama-Tanigawa algorithm from A000027(n) gives", + " 1, 2, 3, 4, 5, 6, 7, 8,", + " -1, -2, -3, -4, -5, -6, -7, -8,", + " 1, 2, 3, 4, 5, 6, 7, 8,", + " -1, -2, -3, -4, -5, -6, -7, -8.", + "By antidiagonals:", + " 1,", + " -1, 2,", + " 1, -2, 3,", + " -1, 2, -3, 4,", + " 1, -2, 3, -4, 5,", + " -1, 2, -3, 4, -5, 6.", + "Row sum = A016116. (End)", + "A002260 is the self-fission of the polynomial sequence (q(n,x)), where q(n,x) = x^n + x^(n-1) + ... + x + 1. See A193842 for the definition of fission. - _Clark Kimberling_, Aug 07 2011", + "Sequence B is called a reluctant sequence of sequence A, if B is triangle array read by rows: row number k coincides with first k elements of the sequence A. Sequence A002260 is reluctant sequence of sequence 1,2,3,... (A000027). - _Boris Putievskiy_, Dec 12 2012", + "This is the maximal sequence of positive integers, such that once an integer k has occurred, the number of k's always exceeds the number of (k+1)'s for the remainder of the sequence, with the first occurrence of the integers being in order. - _Franklin T. Adams-Watters_, Oct 23 2013", + "A002260 are the k antidiagonal numerators of rationals in Cantor's proof of 1-to-1 correspondence between rationals and naturals; the denominators are k-numerator+1. - _Adriano Caroli_, Mar 24 2015", + "T(n,k) gives the distance to the largest triangular number \u003c n. - _Ctibor O. Zizka_, Apr 09 2020" + ], + "reference": [ + "Clark Kimberling, \"Fractal sequences and interspersions,\" Ars Combinatoria 45 (1997) 157-168. (Introduces upper trimming, lower trimming, and signature sequences.)", + "M. Myers, Smarandache Crescendo Subsequences, R. H. Wilde, An Anthology in Memoriam, Bristol Banner Books, Bristol, 1998, p. 19.", + "F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, Phoenix, 2006." + ], + "link": [ + "N. J. A. Sloane, \u003ca href=\"/A002260/b002260.txt\"\u003eTable of n, a(n) for n = 1..11325\u003c/a\u003e", + "Franklin T. Adams-Watters, \u003ca href=\"/A002260/a002260.txt\"\u003eDoubly Fractal Sequences\u003c/a\u003e", + "Matin Amini and Majid Jahangiri, \u003ca href=\"https://arxiv.org/abs/1612.09481\"\u003eA Novel Proof for Kimberling’s Conjecture on Doubly Fractal Sequences\u003c/a\u003e, arXiv:1612.09481 [math.NT], 2017.", + "Bruno Berselli, \u003ca href=\"/A002260/a002260.jpg\"\u003eIllustration of the initial terms\u003c/a\u003e", + "Jerry Brown et al., \u003ca href=\"https://doi.org/10.1111/j.1949-8594.1997.tb17373.x\"\u003eProblem 4619\u003c/a\u003e, School Science and Mathematics (USA), Vol. 97(4), 1997, pp. 221-222.", + "Glen Joyce C. Dulatre, Jamilah V. Alarcon, Vhenedict M. Florida, and Daisy Ann A. Disu, \u003ca href=\"http://docplayer.net/87034980-Vol-15-no-2-april-2017-dmmmsu-cas-science-monitor.html\"\u003eOn Fractal Sequences\u003c/a\u003e, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 109-113.", + "Clark Kimberling, \u003ca href=\"http://faculty.evansville.edu/ck6/integer/fractals.html\"\u003eFractal sequences\u003c/a\u003e", + "Clark Kimberling, \u003ca href=\"http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7321.pdf\"\u003eNumeration systems and fractal sequences\u003c/a\u003e, Acta Arithmetica 73 (1995) 103-117.", + "Boris Putievskiy, \u003ca href=\"http://arxiv.org/abs/1212.2732\"\u003eTransformations Integer Sequences And Pairing Functions\u003c/a\u003e arXiv:1212.2732 [math.CO], 2012.", + "F. Smarandache, \u003ca href=\"http://www.gallup.unm.edu/~smarandache/Sequences-book.pdf\"\u003eSequences of Numbers Involved in Unsolved Problems\u003c/a\u003e.", + "Aaron Snook, \u003ca href=\"http://www.cs.cmu.edu/afs/cs/user/mjs/ftp/thesis-program/2012/theses/snook.pdf\"\u003eAugmented Integer Linear Recurrences\u003c/a\u003e, 2012. - _N. J. A. Sloane_, Dec 19 2012", + "Michael Somos, \u003ca href=\"/A073189/a073189.txt\"\u003eSequences used for indexing triangular or square arrays\u003c/a\u003e", + "Eric Weisstein's World of Mathematics, \u003ca href=\"http://mathworld.wolfram.com/SmarandacheSequences.html\"\u003eSmarandache Sequences.\u003c/a\u003e", + "Eric Weisstein's World of Mathematics, \u003ca href=\"http://mathworld.wolfram.com/UnitFraction.html\"\u003eUnit Fraction.\u003c/a\u003e" + ], + "formula": [ + "a(n) = 1 + A002262(n).", + "n-th term is n - m*(m+1)/2 + 1, where m = floor((sqrt(8*n+1) - 1) / 2).", + "The above formula is for offset 0; for offset 1, use a(n) = n-m*(m+1)/2 where m = floor((-1+sqrt(8*n-7))/2). - _Clark Kimberling_, Jun 14 2011", + "a(k * (k + 1) / 2 + i) = i for k \u003e= 0 and 0 \u003c i \u003c= k + 1. - _Reinhard Zumkeller_, Aug 14 2001", + "a(n) = (2*n + round(sqrt(2*n)) - round(sqrt(2*n))^2)/2. - _Brian Tenneson_, Oct 11 2003", + "a(n) = n - binomial(floor((1+sqrt(8*n))/2), 2). - _Paul Barry_, May 25 2004", + "T(n,k) = A001511(A118413(n,k)); T(n,k) = A003602(A118416(n,k)). - _Reinhard Zumkeller_, Apr 27 2006", + "a(A000217(n)) = A000217(n) - A000217(n-1), a(A000217(n-1) + 1) = 1, a(A000217(n) - 1) = A000217(n) - A000217(n-1) - 1. - _Alexander R. Povolotsky_, May 28 2008", + "a(A169581(n)) = A038566(n). - _Reinhard Zumkeller_, Dec 02 2009", + "T(n,k) = Sum_{i=1..k} i*binomial(k,i)*binomial(n-k,n-i) (regarded as triangle, see the example). - _Mircea Merca_, Apr 11 2012", + "T(n,k) = Sum_{i=max(0,n+1-2*k)..n-k+1} (i+k)*binomial(i+k-1,i)*binomial(k,n-i-k+1)*(-1)^(n-i-k+1). - _Vladimir Kruchinin_, Oct 18 2013", + "G.f.: x*y / ((1 - x) * (1 - x*y)^2) = Sum_{n,k\u003e0} T(n,k) * x^n * y^k. - _Michael Somos_, Sep 17 2014" + ], + "example": [ + "First six rows:", + " 1", + " 1 2", + " 1 2 3", + " 1 2 3 4", + " 1 2 3 4 5", + " 1 2 3 4 5 6" + ], + "maple": [ + "at:=0; for n from 1 to 150 do for i from 1 to n do at:=at+1; lprint(at,i); od: od: # _N. J. A. Sloane_, Nov 01 2006", + "seq(seq(i,i=1..k),k=1..13); # _Peter Luschny_, Jul 06 2009" + ], + "mathematica": [ + "FoldList[{#1, #2} \u0026, 1, Range[2, 13]] // Flatten (* _Robert G. Wilson v_, May 10 2011 *)", + "Flatten[Table[Range[n],{n,20}]] (* _Harvey P. Dale_, Jun 20 2013 *)" + ], + "program": [ + "(PARI) t1(n)=n-binomial(floor(1/2+sqrt(2*n)),2) /* this sequence */", + "(Haskell)", + "a002260 n k = k", + "a002260_row n = [1..n]", + "a002260_tabl = iterate (\\row -\u003e map (+ 1) (0 : row)) [1]", + "-- _Reinhard Zumkeller_, Aug 04 2014, Jul 03 2012", + "(Maxima) T(n,k):=sum((i+k)*binomial(i+k-1,i)*binomial(k,n-i-k+1)*(-1)^(n-i-k+1),i,max(0,n+1-2*k),n-k+1); /* _Vladimir Kruchinin_, Oct 18 2013 */", + "(PARI) A002260(n)=n-binomial((sqrtint(8*n)+1)\\2,2) \\\\ _M. F. Hasler_, Mar 10 2014" + ], + "xref": [ + "Cf. A000217, A001710, A002262, A003056, A004736 (ordinal transform), A025581, A056534, A094727, A127779.", + "Triangle sums (see the comments): A000217 (Row1, Kn11); A004526 (Row2); A000096 (Kn12); A055998 (Kn13); A055999 (Kn14); A056000 (Kn15); A056115 (Kn16); A056119 (Kn17); A056121 (Kn18); A056126 (Kn19); A051942 (Kn110); A101859 (Kn111); A132754 (Kn112); A132755 (Kn113); A132756 (Kn114); A132757 (Kn115); A132758 (Kn116); A002620 (Kn21); A000290 (Kn3); A001840 (Ca2); A000326 (Ca3); A001972 (Gi2); A000384 (Gi3).", + "Cf. A108872." + ], + "keyword": "nonn,easy,nice,tabl,look", + "offset": "1,3", + "author": "Angele Hamel (amh(AT)maths.soton.ac.uk)", + "ext": [ + "More terms from _Reinhard Zumkeller_, Apr 27 2006", + "Incorrect program removed by _Franklin T. Adams-Watters_, Mar 19 2010", + "New name from _Omar E. Pol_, Jul 15 2012" + ], + "references": 417, + "revision": 192, + "time": "2021-02-05T12:04:16-05:00", + "created": "1996-12-11T03:00:00-05:00" + }, + { + "number": 5349, + "id": "M0481", + "data": "1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42,45,48,50,54,60,63,70,72,80,81,84,90,100,102,108,110,111,112,114,117,120,126,132,133,135,140,144,150,152,153,156,162,171,180,190,192,195,198,200,201,204", + "name": "Niven (or Harshad) numbers: numbers that are divisible by the sum of their digits.", + "comment": [ + "z-Niven numbers are numbers n which are divisible by (A*s(n) + B) where A, B are integers and s(n) is sum of digits of n. Niven numbers have A = 1, B = 0. - _Ctibor O. Zizka_, Feb 23 2008", + "A070635(a(n)) = 0. A038186 is a subsequence. - _Reinhard Zumkeller_, Mar 10 2008", + "A049445 is a subsequence of this sequence. - _Ctibor O. Zizka_, Sep 06 2010", + "Complement of A065877; A188641(a(n)) = 1; A070635(a(n)) = 0. - _Reinhard Zumkeller_, Apr 07 2011", + "A001101, the Moran numbers, are a subsequence. - _Reinhard Zumkeller_, Jun 16 2011", + "A140866 gives the number of terms \u003c= 10^k. - _Robert G. Wilson v_, Oct 16 2012", + "The asymptotic density of this sequence is 0 (Cooper and Kennedy, 1984). - _Amiram Eldar_, Jul 10 2020" + ], + "reference": [ + "Paul Dahlenberg and T. Edgar, Consecutive factorial base Niven numbers, Fib. Q., 56:2 (2018), 163-166.", + "R. E. Kennedy and C. N. Cooper, On the natural density of the Niven numbers, Abstract 816-11-219, Abstracts Amer. Math. Soc., 6 (1985), 17.", + "N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).", + "D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 171." + ], + "link": [ + "N. J. A. Sloane, \u003ca href=\"/A005349/b005349.txt\"\u003eTable of n, a(n) for n = 1..11872\u003c/a\u003e (all a(n) \u003c= 100000)", + "C. N. Cooper, R. E. Kennedy, \u003ca href=\"http://www.jstor.org/stable/2323194\"\u003eChebyshev's inequality and natural density\u003c/a\u003e, Amer. Math. Monthly 96 (1989), no. 2, 118-124.", + "Paul Dalenberg, Tom Edgar, \u003ca href=\"https://www.fq.math.ca/56-2.html\"\u003eConsecutive factorial base Niven numbers\u003c/a\u003e, Fibonacci Quart. (2018) Vol. 56, No. 2, 163-166.", + "Jean-Marie De Koninck and Nicolas Doyon, \u003ca href=\"https://cs.uwaterloo.ca/journals/JIS/VOL6/Doyon/doyon.html\"\u003eLarge and Small Gaps Between Consecutive Niven Numbers\u003c/a\u003e, J. Integer Seqs., Vol. 6, 2003, Article 03.2.5.", + "R. K. Guy, \u003ca href=\"http://www.jstor.org/stable/2691503\"\u003eThe Second Strong Law of Small Numbers\u003c/a\u003e, Math. Mag, 63 (1990), no. 1, 3-20.", + "R. K. Guy, \u003ca href=\"/A005347/a005347.pdf\"\u003eThe Second Strong Law of Small Numbers\u003c/a\u003e, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]", + "R. E. Kennedy, \u003ca href=\"http://www.trottermath.net/numthry/nivennos.html\"\u003eNiven Numbers for Fun and Profit\u003c/a\u003e [Warning: As of March 2018 this site appears to have been hacked. Proceed with great caution. The original content should be retrieved from the Wayback machine and added here. - _N. J. A. Sloane_, Mar 29 2018]", + "R. E. Kennedy and C. N. Cooper, \u003ca href=\"http://www.jstor.org/stable/2686395\"\u003eOn the natural density of the Niven numbers\u003c/a\u003e, The College Mathematics Journal, Vol. 15, No. 4 (Sep., 1984), pp. 309-312.", + "Project Euler, \u003ca href=\"https://projecteuler.net/problem=387\"\u003eHarshard Numbers: Problem 387\u003c/a\u003e", + "Gérard Villemin, \u003ca href=\"http://villemin.gerard.free.fr/Wwwgvmm/Decompos/Harshad.htm\"\u003eNombres de Harshad\u003c/a\u003e (French)", + "Elaine E. Visitacion, Renalyn T. Boado, Mary Ann V. Doria, Eduard M. Albay, \u003ca href=\"http://www.dmmmsu-sluc.com/wp-content/uploads/2018/03/CAS-Monitor-2016-2017-1.pdf\"\u003eOn Harshad Number\u003c/a\u003e, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 134-138.", + "Eric Weisstein's World of Mathematics, \u003ca href=\"http://mathworld.wolfram.com/Digit.html\"\u003eDigit\u003c/a\u003e and \u003ca href=\"http://mathworld.wolfram.com/HarshadNumber.html\"\u003eHarshad Numbers\u003c/a\u003e", + "Wikipedia, \u003ca href=\"http://en.wikipedia.org/wiki/Harshad_number\"\u003eHarshad number\u003c/a\u003e" + ], + "example": [ + "195 is a term of the sequence because it is divisible by 15 (= 1 + 9 + 5)." + ], + "maple": [ + "s:=proc(n) local N:N:=convert(n,base,10):sum(N[j],j=1..nops(N)) end:p:=proc(n) if floor(n/s(n))=n/s(n) then n else fi end: seq(p(n),n=1..210); # _Emeric Deutsch_" + ], + "mathematica": [ + "harshadQ[n_] := Mod[n, Plus @@ IntegerDigits@ n] == 0; Select[ Range[1000], harshadQ] (* _Alonso del Arte_, Aug 04 2004 and modified by _Robert G. Wilson v_, Oct 16 2012 *)", + "Select[Range[300],Divisible[#,Total[IntegerDigits[#]]]\u0026] (* _Harvey P. Dale_, Sep 07 2015 *)" + ], + "program": [ + "(Haskell)", + "a005349 n = a005349_list !! (n-1)", + "a005349_list = filter ((== 0) . a070635) [1..]", + "-- _Reinhard Zumkeller_, Aug 17 2011, Apr 07 2011", + "(MAGMA) [n: n in [1..250] | n mod \u0026+Intseq(n) eq 0]; // _Bruno Berselli_, May 28 2011", + "(MAGMA) [n: n in [1..250] | IsIntegral(n/\u0026+Intseq(n))]; // _Bruno Berselli_, Feb 09 2016", + "(PARI) is(n)=n%sumdigits(n)==0 \\\\ _Charles R Greathouse IV_, Oct 16 2012", + "(Python)", + "A005349 = [n for n in range(1,10**6) if not n % sum([int(d) for d in str(n)])] # _Chai Wah Wu_, Aug 22 2014", + "(Sage)", + "[n for n in (1..10^4) if sum(n.digits(base=10)).divides(n)] # _Freddy Barrera_, Jul 27 2018", + "(GAP) Filtered([1..230],n-\u003e n mod List(List([1..n],ListOfDigits),Sum)[n]=0); # _Muniru A Asiru_" + ], + "xref": [ + "Cf. A001101, A007602, A007953, A028834, A038186, A049445, A052018, A052019, A052020, A052021, A052022, A065877, A070635, A113315, A188641.", + "Cf. A001102 (a subsequence).", + "Cf. A118363 (for factorial-base analog)." + ], + "keyword": "nonn,base,nice,easy", + "offset": "1,2", + "author": "_N. J. A. Sloane_, _Robert G. Wilson v_", + "references": 267, + "revision": 145, + "time": "2020-07-10T03:50:09-04:00", + "created": "1991-07-11T03:00:00-04:00" + }, + { + "number": 2262, + "data": "0,0,1,0,1,2,0,1,2,3,0,1,2,3,4,0,1,2,3,4,5,0,1,2,3,4,5,6,0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,10,0,1,2,3,4,5,6,7,8,9,10,11,0,1,2,3,4,5,6,7,8,9,10,11,12,0,1,2,3,4,5,6,7,8,9,10,11,12,13", + "name": "Triangle read by rows: T(n,k), 0 \u003c= k \u003c= n, in which row n lists the first n+1 nonnegative integers.", + "comment": [ + "The point with coordinates (x = A025581(n), y = A002262(n)) sweeps out the first quadrant by upwards antidiagonals. _N. J. A. Sloane_, Jul 17 2018", + "Old name: Integers 0 to n followed by integers 0 to n+1 etc.", + "a(n) = n - the largest triangular number \u003c= n. - _Amarnath Murthy_, Dec 25 2001", + "The PARI functions t1, t2 can be used to read a square array T(n,k) (n \u003e= 0, k \u003e= 0) by antidiagonals downwards: n -\u003e T(t1(n), t2(n)). - _Michael Somos_, Aug 23 2002", + "Values x of unique solution pair (x,y) to equation T(x+y) + x = n, where T(k)=A000217(k). - _Lekraj Beedassy_, Aug 21 2004", + "a(A000217(n)) = 0; a(A000096(n)) = n. - _Reinhard Zumkeller_, May 20 2009", + "Concatenation of the set representation of ordinal numbers, where the n-th ordinal number is represented by the set of all ordinals preceding n, 0 being represented by the empty set. - _Daniel Forgues_, Apr 27 2011", + "An integer sequence is nonnegative if and only if it is a subsequence of this sequence. - _Charles R Greathouse IV_, Sep 21 2011", + "a(A195678(n)) = A000040(n) and a(m) \u003c\u003e A000040(n) for m \u003c A195678(n), an example of the preceding comment. - _Reinhard Zumkeller_, Sep 23 2011", + "A sequence B is called a reluctant sequence of sequence A, if B is triangle array read by rows: row number k coincides with first k elements of the sequence A. A002262 is reluctant sequence of 0,1,2,3,... The nonnegative integers, A001477. - _Boris Putievskiy_, Dec 12 2012" + ], + "link": [ + "Charles R Greathouse IV, \u003ca href=\"/A002262/b002262.txt\"\u003eRows n = 0..100, flattened\u003c/a\u003e", + "Boris Putievskiy, \u003ca href=\"http://arxiv.org/abs/1212.2732\"\u003eTransformations [Of] Integer Sequences And Pairing Functions\u003c/a\u003e, arXiv preprint arXiv:1212.2732 [math.CO], 2012.", + "Michael Somos, \u003ca href=\"/A073189/a073189.txt\"\u003eSequences used for indexing triangular or square arrays\u003c/a\u003e" + ], + "formula": [ + "a(n) = A002260(n) - 1.", + "a(n) = n - (trinv(n)*(trinv(n)-1))/2; trinv := n -\u003e floor((1+sqrt(1+8*n))/2) (cf. A002024); # gives integral inverses of triangular numbers", + "a(n) = n - A000217(A003056(n)) = n - A057944(n). - _Lekraj Beedassy_, Aug 21 2004", + "a(n) = A140129(A023758(n+2)). - _Reinhard Zumkeller_, May 14 2008", + "a(n) = f(n,1) with f(n,m) = if n\u003cm then n else f(n-m,m+1). - _Reinhard Zumkeller_, May 20 2009", + "a(n) = (1/2)*(t - t^2 + 2*n), where t = floor(sqrt(2*n+1) + 1/2) = round(sqrt(2*n+1)). - _Ridouane Oudra_, Dec 01 2019" + ], + "example": [ + "From _Daniel Forgues_, Apr 27 2011: (Start)", + "Examples of set-theoretic representation of ordinal numbers:", + " 0: {}", + " 1: {0} = {{}}", + " 2: {0, 1} = {0, {0}} = {{}, {{}}}", + " 3: {0, 1, 2} = {{}, {0}, {0, 1}} = ... = {{}, {{}}, {{}, {{}}}} (End)", + "From _Omar E. Pol_, Jul 15 2012: (Start)", + " 0;", + " 0, 1;", + " 0, 1, 2;", + " 0, 1, 2, 3;", + " 0, 1, 2, 3, 4;", + " 0, 1, 2, 3, 4, 5;", + " 0, 1, 2, 3, 4, 5, 6;", + " 0, 1, 2, 3, 4, 5, 6, 7;", + " 0, 1, 2, 3, 4, 5, 6, 7, 8;", + " 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;", + " 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;", + "(End)" + ], + "maple": [ + "seq(seq(i,i=0..n),n=0..14); # _Peter Luschny_, Sep 22 2011", + "A002262 := n -\u003e n - binomial(floor((1/2)+sqrt(2*(1+n))),2);" + ], + "mathematica": [ + "m[n_]:= Floor[(-1 + Sqrt[8n - 7])/2]", + "b[n_]:= n - m[n] (m[n] + 1)/2", + "Table[m[n], {n, 1, 105}] (* A003056 *)", + "Table[b[n], {n, 1, 105}] (* A002260 *)", + "Table[b[n] - 1, {n, 1, 120}] (* A002262 *)", + "(* _Clark Kimberling_, Jun 14 2011 *)", + "Flatten[Table[k, {n, 0, 14}, {k, 0, n}]] (* _Alonso del Arte_, Sep 21 2011 *)", + "Flatten[Table[Range[0,n], {n,0,15}]] (* _Harvey P. Dale_, Jan 31 2015 *)" + ], + "program": [ + "(PARI) a(n)=n-binomial(round(sqrt(2+2*n)),2)", + "(PARI) t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)),2) /* A002262, this sequence */", + "(PARI) t2(n)=binomial(floor(3/2+sqrt(2+2*n)),2)-(n+1) /* A025581, cf. comment by Somos for reading arrays by antidiagonals */", + "(PARI) concat(vector(15,n,vector(n,i,i-1))) \\\\ _M. F. Hasler_, Sep 21 2011", + "(Haskell)", + "a002262 n k = a002262_tabl !! n !! k", + "a002262_row n = a002262_tabl !! n", + "a002262_tabl = map (enumFromTo 0) [0..]", + "a002262_list = concat a002262_tabl", + "-- _Reinhard Zumkeller_, Aug 05 2015, Jul 13 2012, Mar 07 2011", + "(Python)", + "for i in range(16):", + " for j in range(i):", + " print(j, end=\", \") # _Mohammad Saleh Dinparvar_, May 13 2020" + ], + "xref": [ + "Cf. A002024, A002260, A004736, A025581, A025675, A025682.", + "Cf. A025691, A048645, A053186, A053645, A056558, A127324.", + "As a sequence, essentially same as A048151." + ], + "keyword": "nonn,tabl,easy,nice", + "offset": "0,6", + "author": "Angele Hamel (amh(AT)maths.soton.ac.uk)", + "ext": [ + "New name from _Omar E. Pol_, Jul 15 2012", + "Typo in definition fixed by _Reinhard Zumkeller_, Aug 05 2015" + ], + "references": 225, + "revision": 131, + "time": "2020-05-27T10:26:43-04:00", + "created": "1996-12-11T03:00:00-05:00" + }, + { + "number": 2473, + "id": "M0477 N0177", + "data": "1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,21,24,25,27,28,30,32,35,36,40,42,45,48,49,50,54,56,60,63,64,70,72,75,80,81,84,90,96,98,100,105,108,112,120,125,126,128,135,140,144,147,150,160,162,168,175,180,189,192", + "name": "7-smooth numbers: positive numbers whose prime divisors are all \u003c= 7.", + "comment": [ + "Also called humble numbers; sometimes also called highly composite numbers, but this usually refers to A002182.", + "Successive numbers k such that phi(210k) = 48k. - _Artur Jasinski_, Nov 05 2008", + "The divisors of 10! (A161466) are a finite subsequence. - _Reinhard Zumkeller_, Jun 10 2009", + "Numbers n such that A198487(n) \u003e 0 and A107698(n) \u003e 0. - _Jaroslav Krizek_, Nov 04 2011", + "A262401(a(n)) = a(n). - _Reinhard Zumkeller_, Sep 25 2015", + "Numbers which are products of single-digit numbers. - _N. J. A. Sloane_, Jul 02 2017", + "Phi(a(n)) is 7-smooth. In fact, the Euler Phi function applied to p-smooth numbers, for any prime p, is p-smooth. - _Richard Locke Peterson_, May 09 2020" + ], + "reference": [ + "B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 52.", + "N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).", + "N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence)." + ], + "link": [ + "Reinhard Zumkeller, \u003ca href=\"/A002473/b002473.txt\"\u003eTable of n, a(n) for n = 1..10000\u003c/a\u003e (first 5841 terms from N. J. A. Sloane)", + "Raphael Schumacher, \u003ca href=\"https://arxiv.org/abs/1608.06928\"\u003eThe Formulas for the Distribution of the 3-Smooth, 5-Smooth, 7-Smooth and all other Smooth Numbers\u003c/a\u003e, arXiv preprint arXiv:1608.06928 [math.NT], 2016.", + "University of Ulm, \u003ca href=\"http://www.informatik.uni-ulm.de/acm/Locals/1996/number.sol\"\u003eThe first 5842 terms\u003c/a\u003e.", + "Eric Weisstein's World of Mathematics, \u003ca href=\"http://mathworld.wolfram.com/SmoothNumber.html\"\u003eSmooth Number\u003c/a\u003e." + ], + "formula": [ + "A006530(a(n)) \u003c= 7. - _Reinhard Zumkeller_, Apr 01 2012", + "Sum_{n\u003e=1} 1/a(n) = Product_{primes p \u003c= 7} p/(p-1) = (2*3*5*7)/(1*2*4*6) = 35/8. - _Amiram Eldar_, Sep 22 2020" + ], + "mathematica": [ + "Select[Range[250], Max[Transpose[FactorInteger[ # ]][[1]]]\u003c=7\u0026]", + "aa = {}; Do[If[EulerPhi[210 n] == 48 n, AppendTo[aa, n]], {n, 1, 1200}]; aa (* _Artur Jasinski_, Nov 05 2008 *)", + "mxExp = 8; Select[Union[Times @@@ Flatten[Table[Tuples[{2, 3, 5, 7}, n], {n, mxExp}], 1]], # \u003c= 2^mxExp \u0026] (* _Harvey P. Dale_, Aug 13 2012 *)", + "mx = 200; Sort@ Flatten@ Table[ 2^i*3^j*5^k*7^l, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}, {k, 0, Log[5, mx/(2^i*3^j)]}, {l, 0, Log[7, mx/(2^i*3^j*5^k)]}] (* _Robert G. Wilson v_, Aug 17 2012 *)" + ], + "program": [ + "(PARI) test(n)=m=n; forprime(p=2,7, while(m%p==0,m=m/p)); return(m==1)", + "for(n=1,200,if(test(n),print1(n\",\")))", + "(PARI) is_A002473(n)=n\u003c11||vecmax(factor(n,7)[,1])\u003c8 \\\\ _M. F. Hasler_, Jan 16 2015", + "(PARI) list(lim)=my(v=List(),t); for(a=0,logint(lim\\1,7), for(b=0,logint(lim\\7^a,5), for(c=0,logint(lim\\7^a\\5^b,3), t=3^c*5^b*7^a; while(t\u003c=lim, listput(v,t); t\u003c\u003c=1)))); Set(v) \\\\ _Charles R Greathouse IV_, Feb 22 2017", + "(Haskell)", + "import Data.Set (singleton, deleteFindMin, fromList, union)", + "a002473 n = a002473_list !! (n-1)", + "a002473_list = f $ singleton 1 where", + " f s = x : f (s' `union` fromList (map (* x) [2,3,5,7]))", + " where (x, s') = deleteFindMin s", + "-- _Reinhard Zumkeller_, Mar 08 2014, Apr 02 2012, Apr 01 2012", + "(MAGMA) [n: n in [1..200] | PrimeDivisors(n) subset PrimesUpTo(7)]; // _Bruno Berselli_, Sep 24 2012" + ], + "xref": [ + "Subsequence of A080672, complement of A068191. Subsequences: A003591, A003594, A003595, A195238, A059405.", + "Not the same as A063938. For p-smooth numbers with other values of p, see A003586, A051037, A051038, A080197, A080681, A080682, A080683.", + "Cf. A002182, A067374, A210679, A238985 (zeroless terms), A006530.", + "Cf. A262401." + ], + "keyword": "nonn,easy,nice", + "offset": "1,2", + "author": "_N. J. A. Sloane_", + "ext": [ + "More terms from _James A. Sellers_, Dec 23 1999", + "Additional comments from Michel Lecomte, Jun 09 2007", + "Edited by _M. F. Hasler_, Jan 16 2015" + ], + "references": 122, + "revision": 99, + "time": "2020-09-22T02:28:38-04:00", + "created": "1991-04-30T03:00:00-04:00" + }, + { + "number": 72774, + "data": "1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,19,21,22,23,25,26,27,29,30,31,32,33,34,35,36,37,38,39,41,42,43,46,47,49,51,53,55,57,58,59,61,62,64,65,66,67,69,70,71,73,74,77,78,79,81,82,83,85,86,87,89,91,93,94,95,97", + "name": "Powers of squarefree numbers.", + "comment": [ + "a(n) = A072775(n)^A072776(n); complement of A059404.", + "Essentially the same as A062770. - _R. J. Mathar_, Sep 25 2008", + "Numbers m such that in canonical prime factorization all prime exponents are identical: A124010(m,k) = A124010(m,1) for k = 2..A000005(m). - _Reinhard Zumkeller_, Apr 06 2014", + "Heinz numbers of uniform partitions. An integer partition is uniform if all parts appear with the same multiplicity. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - _Gus Wiseman_, Apr 16 2018" + ], + "link": [ + "Reinhard Zumkeller, \u003ca href=\"/A072774/b072774.txt\"\u003eTable of n, a(n) for n = 1..10000\u003c/a\u003e" + ], + "mathematica": [ + "Select[Range[100], Length[Union[FactorInteger[#][[All, 2]]]] == 1 \u0026] (* _Geoffrey Critzer_, Mar 30 2015 *)" + ], + "program": [ + "(Haskell)", + "import Data.Map (empty, findMin, deleteMin, insert)", + "import qualified Data.Map.Lazy as Map (null)", + "a072774 n = a072774_list !! (n-1)", + "(a072774_list, a072775_list, a072776_list) = unzip3 $", + " (1, 1, 1) : f (tail a005117_list) empty where", + " f vs'@(v:vs) m", + " | Map.null m || xx \u003e v = (v, v, 1) :", + " f vs (insert (v^2) (v, 2) m)", + " | otherwise = (xx, bx, ex) :", + " f vs' (insert (bx*xx) (bx, ex+1) $ deleteMin m)", + " where (xx, (bx, ex)) = findMin m", + "-- _Reinhard Zumkeller_, Apr 06 2014", + "(PARI) is(n)=ispower(n,,\u0026n); issquarefree(n) \\\\ _Charles R Greathouse IV_, Oct 16 2015" + ], + "xref": [ + "Cf. A072777 (subsequence), A005117, A072778, A329332 (tabular arrangement).", + "A subsequence of A242414.", + "Cf. A000009, A000837, A007916, A047966, A052409, A052410, A072774, A078374, A289023, A289509, A300486, A302491, A302796, A302979." + ], + "keyword": "nonn", + "offset": "1,2", + "author": "_Reinhard Zumkeller_, Jul 10 2002", + "references": 89, + "revision": 33, + "time": "2020-01-09T10:43:18-05:00", + "created": "2003-05-16T03:00:00-04:00" + }, + { + "number": 38566, + "data": "1,1,1,2,1,3,1,2,3,4,1,5,1,2,3,4,5,6,1,3,5,7,1,2,4,5,7,8,1,3,7,9,1,2,3,4,5,6,7,8,9,10,1,5,7,11,1,2,3,4,5,6,7,8,9,10,11,12,1,3,5,9,11,13,1,2,4,7,8,11,13,14,1,3,5,7,9,11,13,15,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16", + "name": "Numerators in canonical bijection from positive integers to positive rationals \u003c= 1: arrange fractions by increasing denominator then by increasing numerator.", + "comment": [ + "Row n has length A000010(n).", + "Also numerators in canonical bijection from positive integers to all positive rational numbers: arrange fractions in triangle in which in the n-th row the phi(n) numbers are the fractions i/j with gcd(i,j) = 1, i+j=n, i=1..n-1, j=n-1..1. n\u003e=2. Denominators (A020653) are obtained by reversing each row.", + "Also triangle in which n-th row gives phi(n) numbers between 1 and n that are relatively prime to n.", + "a(n) = A002260(A169581(n)). - _Reinhard Zumkeller_, Dec 02 2009", + "A038610(n) = least common multiple of n-th row. - _Reinhard Zumkeller_, Sep 21 2013", + "Row n has sum A023896(n). - _Jamie Morken_, Dec 17 2019", + "This irregular triangle gives in row n the smallest positive reduced residue system modulo n, for n \u003e= 1. If one takes 0 for n = 1 it becomes the smallest nonnegative residue system modulo n. - _Wolfdieter Lang_, Feb 29 2020" + ], + "reference": [ + "Richard Courant and Herbert Robbins. What Is Mathematics?, Oxford, 1941, pp. 79-80.", + "H. Lauwerier, Fractals, Princeton Univ. Press, p. 23." + ], + "link": [ + "David Wasserman, \u003ca href=\"/A038566/b038566.txt\"\u003eTable of n, a(n) for n = 1..100001\u003c/a\u003e", + "Wolfdieter Lang, \u003ca href=\"/A038566/a038566.pdf\"\u003eRows of rationals, n=2..25.\u003c/a\u003e", + "\u003ca href=\"/index/Cor#core\"\u003eIndex entries for \"core\" sequences\u003c/a\u003e", + "\u003ca href=\"/index/Ra#rational\"\u003eIndex entries for sequences related to enumerating the rationals\u003c/a\u003e", + "\u003ca href=\"/index/St#Stern\"\u003eIndex entries for sequences related to Stern's sequences\u003c/a\u003e" + ], + "formula": [ + "The n-th \"clump\" consists of the phi(n) integers \u003c= n and prime to n.", + "a(n+1) = A020652(n) for n \u003e 1. - _Georg Fischer_, Oct 27 2020" + ], + "example": [ + "The beginning of the list of positive rationals \u003c= 1: 1/1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, .... This is A038566/A038567.", + "The beginning of the triangle giving all positive rationals: 1/1; 1/2, 2/1; 1/3, 3/1; 1/4, 2/3, 3/2, 4/1; 1/5, 5/1; 1/6, 2/5, 3/4, 4/3, 5/2, 6/1; .... This is A020652/A020653, with A020652(n) = A038566(n+1). [Corrected by _M. F. Hasler_, Mar 06 2020]", + "The beginning of the triangle in which n-th row gives numbers between 1 and n that are relatively prime to n:", + "n\\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18", + "1: 1", + "2: 1", + "3: 1 2", + "4: 1 3", + "5: 1 2 3 4", + "6: 1 5", + "7: 1 2 3 4 5 6", + "8: 1 3 5 7", + "9: 1 2 4 5 7 8", + "10: 1 3 7 9", + "11: 1 2 3 4 5 6 7 8 9 10", + "12: 1 5 7 11", + "13: 1 2 3 4 5 6 7 8 9 10 11 12", + "14: 1 3 5 9 11 13", + "15: 1 2 4 7 8 11 13 14", + "16: 1 3 5 7 9 11 13 15", + "17: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16", + "18: 1 5 7 11 13 17", + "19: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18", + "20: 1 3 7 9 11 13 17 19", + "... Reformatted. - _Wolfdieter Lang_, Jan 18 2017", + "------------------------------------------------------" + ], + "maple": [ + "s := proc(n) local i,j,k,ans; i := 0; ans := [ ]; for j while i\u003cn do for k to j do if gcd(j,k) = 1 then ans := [ op(ans),k ]; i := i+1 fi od od; RETURN(ans); end; s(100);" + ], + "mathematica": [ + "Flatten[Table[Flatten[Position[GCD[Table[Mod[j, w], {j, 1, w-1}], w], 1]], {w, 1, 100}], 2]" + ], + "program": [ + "(Haskell)", + "a038566 n k = a038566_tabf !! (n-1) !! (k-1)", + "a038566_row n = a038566_tabf !! (n-1)", + "a038566_tabf=", + " zipWith (\\v ws -\u003e filter ((== 1) . (gcd v)) ws) [1..] a002260_tabl", + "a038566_list = concat a038566_tabf", + "-- _Reinhard Zumkeller_, Sep 21 2013, Feb 23 2012", + "(PARI) first(n)=my(v=List(),i,j);while(i\u003cn,for(k=1,j,if(gcd(j,k)==1, listput(v,k);i++));j++);Vec(v) \\\\ _Charles R Greathouse IV_, Feb 07 2013", + "(PARI) row(n) = select(x-\u003egcd(n, x)==1, [1..n]); \\\\ _Michel Marcus_, May 05 2020", + "(SageMath)", + "def aRow(n):", + " if n == 1: return 1", + " return [k for k in ZZ(n).coprime_integers(n+1)]", + "print(flatten([aRow(n) for n in range(1, 18)])) # _Peter Luschny_, Aug 17 2020" + ], + "xref": [ + "Cf. A020652, A020653, A038566, A038567, A038568, A038569, A000010 (row lengths), A002088, A060837, A071970, A002260.", + "A054424 gives mapping to Stern-Brocot tree.", + "Row sums give rationals A111992(n)/A069220(n), n\u003e=1.", + "A112484 (primes, rows n \u003e=3)." + ], + "keyword": "nonn,frac,core,nice,tabf", + "offset": "1,4", + "author": "_N. J. A. Sloane_", + "ext": [ + "More terms from _Erich Friedman_", + "Offset corrected by _Max Alekseyev_, Apr 26 2010" + ], + "references": 82, + "revision": 78, + "time": "2020-10-27T13:16:40-04:00", + "created": "1999-12-11T03:00:00-05:00" + }, + { + "number": 28310, + "data": "1,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71", + "name": "Expansion of (1 - x + x^2) / (1 - x)^2 in powers of x.", + "comment": [ + "1 followed by the natural numbers.", + "Molien series for ring of Hamming weight enumerators of self-dual codes (with respect to Euclidean inner product) of length n over GF(4).", + "Engel expansion of e (see A006784 for definition) [when offset by 1]. - _Henry Bottomley_, Dec 18 2000", + "Also the denominators of the series expansion of log(1+x). Numerators are A062157. - _Robert G. Wilson v_, Aug 14 2015", + "The right-shifted sequence (with a(0)=0) is an autosequence (of the first kind - see definition in links). - _Jean-François Alcover_, Mar 14 2017" + ], + "link": [ + "Andrei Asinowski, Cyril Banderier, Valerie Roitner, \u003ca href=\"https://lipn.univ-paris13.fr/~banderier/Papers/several_patterns.pdf\"\u003eGenerating functions for lattice paths with several forbidden patterns\u003c/a\u003e, (2019).", + "Olivia Nabawanda and Fanja Rakotondrajao, \u003ca href=\"https://arxiv.org/abs/2011.07304\"\u003eThe sets of flattened partitions with forbidden patterns\u003c/a\u003e, arXiv:2011.07304 [math.CO], 2020.", + "G. Nebe, E. M. Rains and N. J. A. Sloane, \u003ca href=\"http://neilsloane.com/doc/cliff2.html\"\u003eSelf-Dual Codes and Invariant Theory\u003c/a\u003e, Springer, Berlin, 2006.", + "Oeis Wiki, \u003ca href=\"https://oeis.org/wiki/Autosequence\"\u003eAutosequence\u003c/a\u003e", + "E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (\u003ca href=\"http://neilsloane.com/doc/self.txt\"\u003eAbstract\u003c/a\u003e, \u003ca href=\"http://neilsloane.com/doc/self.pdf\"\u003epdf\u003c/a\u003e, \u003ca href=\"http://neilsloane.com/doc/self.ps\"\u003eps\u003c/a\u003e).", + "Michael Somos, \u003ca href=\"http://cis.csuohio.edu/~somos/rfmc.txt\"\u003eRational Function Multiplicative Coefficients\u003c/a\u003e", + "\u003ca href=\"/index/Rec#order_02\"\u003eIndex entries for linear recurrences with constant coefficients\u003c/a\u003e, signature (2,-1).", + "\u003ca href=\"/index/Mo#Molien\"\u003eIndex entries for Molien series\u003c/a\u003e", + "\u003ca href=\"/index/El#Engel\"\u003eIndex entries for sequences related to Engel expansions\u003c/a\u003e" + ], + "formula": [ + "Binomial transform is A005183. - _Paul Barry_, Jul 21 2003", + "G.f.: (1 - x + x^2) / (1 - x)^2 = (1 - x^6) /((1 - x) * (1 - x^2) * (1 - x^3)) = (1 + x^3) / ((1 - x) * (1 - x^2)). a(0) = 1, a(n) = n if n\u003e0.", + "Euler transform of length 6 sequence [ 1, 1, 1, 0, 0, -1]. - _Michael Somos_ Jul 30 2006", + "G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 - x)))). - _Michael Somos_, Apr 05 2012", + "G.f. of A112934(x) = 1 / (1 - a(0)*x / (1 - a(1)*x / ...)). - _Michael Somos_, Apr 05 2012", + "a(n) = A000027(n) unless n=0.", + "a(n) = Sum_{k, 0\u003c=k\u003c=n} A123110(n,k). - _Philippe Deléham_, Oct 06 2009", + "E.g.f: 1+x*exp(x). - _Wolfdieter Lang_, May 03 2010", + "a(n) = sqrt(floor[A204503(n+3)/9]). - _M. F. Hasler_, Jan 16 2012", + "E.g.f.: 1-x + x*E(0), where E(k) = 2 + x/(2*k+1 - x/E(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Dec 24 2013", + "a(n) = A001477(n) + A000007(n). - _Miko Labalan_, Dec 12 2015 (See the first comment.)" + ], + "example": [ + "1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 8*x^8 + 9*x^9 + ..." + ], + "maple": [ + "a:= n-\u003e `if`(n=0, 1, n):", + "seq(a(n), n=0..60);" + ], + "mathematica": [ + "f[0] = 0; f[1] = 1; f[2] = 1; f[3] = 1;", + "f[n_] := f[n] = f[f[n - 1]] + f[n - f[n - 3]];", + "Table[f[n], {n, 0, 50}] (* _Roger L. Bagula_, Feb 13 2010 *)", + "Denominator@ CoefficientList[ Series[ Log[1 + x], {x, 0, 75}], x] (* or *)", + "CoefficientList[ Series[(1 - x + x^2)/(1 - x)^2, {x, 0, 75}], x] (* _Robert G. Wilson v_, Aug 14 2015 *)" + ], + "program": [ + "(PARI) {a(n) = (n==0) + max(n, 0)} /* _Michael Somos_, Feb 02 2004 */", + "(PARI) A028310(n)=n+!n \\\\ _M. F. Hasler_, Jan 16 2012", + "(Haskell)", + "a028310 n = 0 ^ n + n", + "a028310_list = 1 : [1..] -- _Reinhard Zumkeller_, Nov 06 2012" + ], + "xref": [ + "Cf. A000027, A112934, A004001, A005229, A212393, A000660 (boustrophedon transform)." + ], + "keyword": "nonn,easy,mult", + "offset": "0,3", + "author": "_N. J. A. Sloane_", + "references": 79, + "revision": 117, + "time": "2021-03-12T22:24:41-05:00", + "created": "1999-12-11T03:00:00-05:00" + } + ] +} \ No newline at end of file diff --git a/data/1,4,17,73,31.json b/data/1,4,17,73,31.json new file mode 100644 index 0000000..946e311 --- /dev/null +++ b/data/1,4,17,73,31.json @@ -0,0 +1,7 @@ +{ + "greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/", + "query": "1,4,17,73,315,1362,5895,25528,110579,479068,2075683,8993897,", + "count": 0, + "start": 0, + "results": null +} \ No newline at end of file diff --git a/data/BIGLIST.txt b/data/BIGLIST.txt new file mode 100644 index 0000000..c558e15 --- /dev/null +++ b/data/BIGLIST.txt @@ -0,0 +1,749 @@ +================= +BinomialTriangle + +Triangle: A007318 [1, 1, 1, 1, 2, 1, 1, 3, 3, 1] +Reverse: A007318 [1, 1, 1, 1, 2, 1, 1, 3, 3, 1] +Inverse: A007318 [1, -1, 1, 1, -2, 1, -1, 3, -3, 1] +RevInv: A007318 [1, 1, -1, 1, -2, 1, 1, -3, 3, -1] +InvRev: A007318 [1, -1, 1, 1, -2, 1, -1, 3, -3, 1] +Diagonal: A011973 [1, 1, 1, 1, 1, 2, 1, 3, 1, 1] +Sum: A000079 [1, 2, 4, 8, 16, 32, 64, 128, 256, 512] +EvenSum: A011782 [1, 1, 2, 4, 8, 16, 32, 64, 128, 256] +OddSum: A131577 [0, 1, 2, 4, 8, 16, 32, 64, 128, 256] +AltSum: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +DiagSum: C000045 [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] +Central: A000984 [1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620] +LeftSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A000244 [1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683] +NegHalf: A000012 [1, -1, 1, -1, 1, -1, 1, -1, 1, -1] +TransUnos: A000079 [1, 2, 4, 8, 16, 32, 64, 128, 256, 512] +TransAlts: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +TransSqrs: A001788 [0, 1, 6, 24, 80, 240, 672, 1792, 4608, 11520] +TransNat0: A001787 [0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304] +TransNat1: A001792 [1, 3, 8, 20, 48, 112, 256, 576, 1280, 2816] +PolyVal2: A000244 [1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683] +PolyVal3: A000302 [1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144] + +================= +CatalanTriangle + +Triangle: A053121 [1, 0, 1, 1, 0, 1, 0, 2, 0, 1] +Reverse: A052173 [1, 1, 0, 1, 0, 1, 1, 0, 2, 0] +Inverse: A049310 [1, 0, 1, -1, 0, 1, 0, -2, 0, 1] +RevInv: A053119 [1, 1, 0, 1, 0, -1, 1, 0, -2, 0] +Diagonal: nothing [1, 0, 1, 1, 0, 0, 2, 2, 1, 0] +Sum: A001405 [1, 1, 2, 3, 6, 10, 20, 35, 70, 126] +EvenSum: A126869 [1, 0, 2, 0, 6, 0, 20, 0, 70, 0] +OddSum: A138364 [0, 1, 0, 3, 0, 10, 0, 35, 0, 126] +AltSum: A001405 [1, -1, 2, -3, 6, -10, 20, -35, 70, -126] +DiagSum: nothing [1, 0, 2, 0, 5, 0, 14, 0, 42, 0] +Central: nothing [1, 0, 3, 0, 20, 0, 154, 0, 1260, 0] +LeftSide: A126120 [1, 0, 1, 0, 2, 0, 5, 0, 14, 0] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A121724 [1, 1, 5, 9, 45, 97, 485, 1145, 5725, 14289] +NegHalf: A121724 [1, 1, 5, 9, 45, 97, 485, 1145, 5725, 14289] +TransUnos: A001405 [1, 1, 2, 3, 6, 10, 20, 35, 70, 126] +TransAlts: A001405 [1, -1, 2, -3, 6, -10, 20, -35, 70, -126] +TransSqrs: nothing [0, 1, 4, 11, 28, 66, 152, 339, 748, 1622] +TransNat0: A045621 [0, 1, 2, 5, 10, 22, 44, 93, 186, 386] +TransNat1: A000079 [1, 2, 4, 8, 16, 32, 64, 128, 256, 512] +PolyVal2: A054341 [1, 2, 5, 12, 30, 74, 185, 460, 1150, 2868] +PolyVal3: A126931 [1, 3, 10, 33, 110, 366, 1220, 4065, 13550, 45162] + +================= +EulerianTriangle + +Triangle: A173018 [1, 1, 0, 1, 1, 0, 1, 4, 1, 0] +Reverse: A123125 [1, 0, 1, 0, 1, 1, 0, 1, 4, 1] +InvRev: nothing [1, 0, 1, 0, -1, 1, 0, 3, -4, 1] +Diagonal: nothing [1, 1, 1, 0, 1, 1, 1, 4, 0, 1] +Sum: A000142 [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880] +EvenSum: A128103 [1, 1, 1, 2, 12, 68, 360, 2384, 20160, 185408] +OddSum: A262745 [0, 0, 1, 4, 12, 52, 360, 2656, 20160, 177472] +AltSum: A009006 [1, 1, 0, -2, 0, 16, 0, -272, 0, 7936] +DiagSum: A000800 [1, 1, 1, 2, 5, 13, 38, 125, 449, 1742] +Central: A180056 [1, 1, 11, 302, 15619, 1310354, 162512286, 27971176092, 6382798925475, 1865385657780650] +LeftSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +RightSide: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +PosHalf: A000670 [1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261] +NegHalf: A087674 [1, 1, -1, -3, 15, 21, -441, 477, 19935, -101979] +TransUnos: A000142 [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880] +TransAlts: A009006 [1, 1, 0, -2, 0, 16, 0, -272, 0, 7936] +TransSqrs: nothing [0, 0, 1, 8, 64, 540, 4920, 48720, 524160, 6108480] +TransNat0: B180119 [0, 0, 1, 6, 36, 240, 1800, 15120, 141120, 1451520] +TransNat1: C001710 [1, 1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400] +PolyVal2: A000670 [1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261] +PolyVal3: A122704 [1, 1, 4, 22, 160, 1456, 15904, 202672, 2951680, 48361216] + +================= +FibonacciTriangle + +Triangle: A193737 [1, 1, 1, 1, 2, 1, 2, 4, 3, 1] +Reverse: A193736 [1, 1, 1, 1, 2, 1, 1, 3, 4, 2] +Inverse: nothing [1, -1, 1, 1, -2, 1, -1, 2, -3, 1] +RevInv: nothing [1, 1, -1, 1, -2, 1, 1, -3, 2, -1] +Diagonal: B119473 [1, 1, 1, 1, 2, 2, 3, 4, 1, 5] +Sum: A052542 [1, 2, 4, 10, 24, 58, 140, 338, 816, 1970] +EvenSum: A215928 [1, 1, 2, 5, 12, 29, 70, 169, 408, 985] +OddSum: A000129 [0, 1, 2, 5, 12, 29, 70, 169, 408, 985] +AltSum: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +DiagSum: A011782 [1, 1, 2, 4, 8, 16, 32, 64, 128, 256] +Central: A330793 [1, 2, 8, 36, 170, 826, 4088, 20496, 103752, 529100] +LeftSide: A324969 [1, 1, 1, 2, 3, 5, 8, 13, 21, 34] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A330795 [1, 3, 9, 39, 153, 615, 2457, 9831, 39321, 157287] +NegHalf: B006131 [1, -1, 1, -5, 9, -29, 65, -181, 441, -1165] +TransUnos: A052542 [1, 2, 4, 10, 24, 58, 140, 338, 816, 1970] +TransAlts: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +TransSqrs: nothing [0, 1, 6, 25, 92, 313, 1010, 3137, 9464, 27905] +TransNat0: A119915 [0, 1, 4, 13, 40, 117, 332, 921, 2512, 6761] +TransNat1: A331321 [1, 3, 8, 23, 64, 175, 472, 1259, 3328, 8731] +PolyVal2: A052906 [1, 3, 9, 30, 99, 327, 1080, 3567, 11781, 38910] +PolyVal3: nothing [1, 4, 16, 68, 288, 1220, 5168, 21892, 92736, 392836] + +================= +LaguerreTriangle + +Triangle: A021009 [1, 1, 1, 2, 4, 1, 6, 18, 9, 1] +Reverse: A021010 [1, 1, 1, 1, 4, 2, 1, 9, 18, 6] +Inverse: A021009 [1, -1, 1, 2, -4, 1, -6, 18, -9, 1] +RevInv: A021010 [1, 1, -1, 1, -4, 2, 1, -9, 18, -6] +Diagonal: A084950 [1, 1, 2, 1, 6, 4, 24, 18, 1, 120] +Sum: A002720 [1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114] +EvenSum: A331325 [1, 1, 3, 15, 97, 745, 6571, 65359, 723969, 8842257] +OddSum: A331326 [0, 1, 4, 19, 112, 801, 6756, 65563, 717760, 8729857] +AltSum: A009940 [1, 0, -1, -4, -15, -56, -185, -204, 6209, 112400] +DiagSum: C001040 [1, 1, 3, 10, 43, 225, 1393, 9976, 81201, 740785] +Central: A295383 [1, 4, 72, 2400, 117600, 7620480, 614718720, 59364264960, 6678479808000, 857813628672000] +LeftSide: A000142 [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A025167 [1, 3, 17, 139, 1473, 19091, 291793, 5129307, 101817089, 2250495523] +NegHalf: A025166 [1, -1, 1, 7, -127, 1711, -23231, 334391, -5144063, 84149983] +TransUnos: A002720 [1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114] +TransAlts: A009940 [1, 0, -1, -4, -15, -56, -185, -204, 6209, 112400] +TransSqrs: A105219 [0, 1, 8, 63, 544, 5225, 55656, 653023, 8379008, 116780049] +TransNat0: A103194 [0, 1, 6, 39, 292, 2505, 24306, 263431, 3154824, 41368977] +TransNat1: C000262 [1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, 58941091] +PolyVal2: A087912 [1, 3, 14, 86, 648, 5752, 58576, 671568, 8546432, 119401856] +PolyVal3: A277382 [1, 4, 23, 168, 1473, 14988, 173007, 2228544, 31636449, 490102164] + +================= +LahTriangle + +Triangle: A111596 [1, 0, 1, 0, 2, 1, 0, 6, 6, 1] +Reverse: nothing [1, 1, 0, 1, 2, 0, 1, 6, 6, 0] +Inverse: A111596 [1, 0, 1, 0, -2, 1, 0, 6, -6, 1] +RevInv: nothing [1, 1, 0, 1, -2, 0, 1, -6, 6, 0] +Diagonal: A330609 [1, 0, 0, 1, 0, 2, 0, 6, 1, 0] +Sum: A000262 [1, 1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553] +EvenSum: A088312 [1, 0, 1, 6, 37, 260, 2101, 19362, 201097, 2326536] +OddSum: A088313 [0, 1, 2, 7, 36, 241, 1950, 18271, 193256, 2270017] +AltSum: A111884 [1, -1, -1, -1, 1, 19, 151, 1091, 7841, 56519] +DiagSum: A001053 [1, 0, 1, 2, 7, 30, 157, 972, 6961, 56660] +Central: A187535 [1, 2, 36, 1200, 58800, 3810240, 307359360, 29682132480, 3339239904000, 428906814336000] +LeftSide: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A025168 [1, 1, 5, 37, 361, 4361, 62701, 1044205, 19748177, 417787921] +NegHalf: A318223 [1, 1, -3, 13, -71, 441, -2699, 9157, 206193, -8443151] +TransUnos: A000262 [1, 1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553] +TransAlts: A111884 [1, -1, -1, -1, 1, 19, 151, 1091, 7841, 56519] +TransSqrs: A103194 [0, 1, 6, 39, 292, 2505, 24306, 263431, 3154824, 41368977] +TransNat0: A052852 [0, 1, 4, 21, 136, 1045, 9276, 93289, 1047376, 12975561] +TransNat1: A002720 [1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114] +PolyVal2: A052897 [1, 2, 8, 44, 304, 2512, 24064, 261536, 3173888, 42483968] +PolyVal3: A255806 [1, 3, 15, 99, 801, 7623, 83079, 1017495, 13808097, 205374123] + +================= +MotzkinTriangle + +Triangle: A064189 [1, 1, 1, 2, 2, 1, 4, 5, 3, 1] +Reverse: A026300 [1, 1, 1, 1, 2, 2, 1, 3, 5, 4] +Inverse: A101950 [1, -1, 1, 0, -2, 1, 1, 1, -3, 1] +RevInv: nothing [1, 1, -1, 1, -2, 0, 1, -3, 1, 1] +Diagonal: A106489 [1, 1, 2, 1, 4, 2, 9, 5, 1, 21] +Sum: C005773 [1, 2, 5, 13, 35, 96, 267, 750, 2123, 6046] +EvenSum: A002426 [1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139] +OddSum: B005717 [0, 1, 2, 6, 16, 45, 126, 357, 1016, 2907] +AltSum: A005043 [1, 0, 1, 1, 3, 6, 15, 36, 91, 232] +DiagSum: nothing [1, 1, 3, 6, 15, 36, 91, 232, 603, 1585] +Central: A026302 [1, 2, 9, 44, 230, 1242, 6853, 38376, 217242, 1239980] +LeftSide: A001006 [1, 1, 2, 4, 9, 21, 51, 127, 323, 835] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A330799 [1, 3, 13, 59, 285, 1419, 7245, 37659, 198589, 1059371] +NegHalf: A330800 [1, -1, 5, -17, 77, -345, 1653, -8097, 40733, -208553] +TransUnos: C005773 [1, 2, 5, 13, 35, 96, 267, 750, 2123, 6046] +TransAlts: A005043 [1, 0, 1, 1, 3, 6, 15, 36, 91, 232] +TransSqrs: nothing [0, 1, 6, 26, 100, 361, 1254, 4245, 14108, 46247] +TransNat0: A330796 [0, 1, 4, 14, 46, 147, 462, 1437, 4438, 13637] +TransNat1: A000244 [1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683] +PolyVal2: A059738 [1, 3, 10, 34, 117, 405, 1407, 4899, 17083, 59629] +PolyVal3: nothing [1, 4, 17, 73, 315, 1362, 5895, 25528, 110579, 479068] + +================= +NarayanaTriangle + +Triangle: A090181 [1, 0, 1, 0, 1, 1, 0, 1, 3, 1] +Reverse: A131198 [1, 1, 0, 1, 1, 0, 1, 3, 1, 0] +Inverse: nothing [1, 0, 1, 0, -1, 1, 0, 2, -3, 1] +RevInv: nothing [1, 1, 0, 1, -1, 0, 1, -3, 2, 0] +Diagonal: nothing [1, 0, 0, 1, 0, 1, 0, 1, 1, 0] +Sum: A000108 [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862] +EvenSum: B071688 [1, 0, 1, 3, 7, 20, 66, 217, 715, 2424] +OddSum: B071684 [0, 1, 1, 2, 7, 22, 66, 212, 715, 2438] +AltSum: A090192 [1, -1, 0, 1, 0, -2, 0, 5, 0, -14] +DiagSum: nothing [1, 0, 1, 1, 2, 4, 8, 17, 37, 82] +Central: A125558 [1, 1, 6, 50, 490, 5292, 60984, 736164, 9202050, 118195220] +LeftSide: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A001003 [1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049] +NegHalf: A154825 [1, 1, -1, -1, 5, -3, -21, 51, 41, -391] +TransUnos: A000108 [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862] +TransAlts: A090192 [1, -1, 0, 1, 0, -2, 0, 5, 0, -14] +TransSqrs: B141222 [0, 1, 5, 22, 95, 406, 1722, 7260, 30459, 127270] +TransNat0: B001700 [0, 1, 3, 10, 35, 126, 462, 1716, 6435, 24310] +TransNat1: A189176 [1, 2, 5, 15, 49, 168, 594, 2145, 7865, 29172] +PolyVal2: A006318 [1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098] +PolyVal3: A047891 [1, 3, 12, 57, 300, 1686, 9912, 60213, 374988, 2381322] + +================= +SchröderBTriangle + +Triangle: A122538 [1, 0, 1, 0, 2, 1, 0, 6, 4, 1] +Reverse: nothing [1, 1, 0, 1, 2, 0, 1, 4, 6, 0] +Inverse: A122542 [1, 0, 1, 0, -2, 1, 0, 2, -4, 1] +RevInv: A266213 [1, 1, 0, 1, -2, 0, 1, -4, 2, 0] +Diagonal: nothing [1, 0, 0, 1, 0, 2, 0, 6, 1, 0] +Sum: A001003 [1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049] +EvenSum: nothing [1, 0, 1, 4, 17, 76, 353, 1688, 8257, 41128] +OddSum: B010683 [0, 1, 2, 7, 28, 121, 550, 2591, 12536, 61921] +AltSum: B001003 [1, -1, -1, -3, -11, -45, -197, -903, -4279, -20793] +DiagSum: nothing [1, 0, 1, 2, 7, 26, 107, 468, 2141, 10124] +Central: A103885 [1, 2, 16, 146, 1408, 14002, 142000, 1459810, 15158272, 158611106] +LeftSide: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: B330802 [1, 1, 5, 33, 253, 2121, 18853, 174609, 1667021, 16290969] +NegHalf: B330803 [1, 1, -3, 17, -123, 1001, -8739, 79969, -756939, 7349657] +TransUnos: A001003 [1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049] +TransAlts: B001003 [1, -1, -1, -3, -11, -45, -197, -903, -4279, -20793] +TransSqrs: A065096 [0, 1, 6, 31, 156, 785, 3978, 20335, 104856, 545073] +TransNat0: B239204 [0, 1, 4, 17, 76, 353, 1688, 8257, 41128, 207905] +TransNat1: A010683 [1, 2, 7, 28, 121, 550, 2591, 12536, 61921, 310954] +PolyVal2: A109980 [1, 2, 8, 36, 172, 852, 4324, 22332, 116876, 618084] +PolyVal3: nothing [1, 3, 15, 81, 453, 2583, 14907, 86733, 507561, 2982987] + +================= +SchröderLTriangle + +Triangle: A172094 [1, 1, 1, 3, 4, 1, 11, 17, 7, 1] +Reverse: nothing [1, 1, 1, 1, 4, 3, 1, 7, 17, 11] +Inverse: A331969 [1, -1, 1, 1, -4, 1, -1, 11, -7, 1] +RevInv: nothing [1, 1, -1, 1, -4, 1, 1, -7, 11, -1] +Diagonal: nothing [1, 1, 3, 1, 11, 4, 45, 17, 1, 197] +Sum: A109980 [1, 2, 8, 36, 172, 852, 4324, 22332, 116876, 618084] +EvenSum: B225887 [1, 1, 4, 18, 86, 426, 2162, 11166, 58438, 309042] +OddSum: B225887 [0, 1, 4, 18, 86, 426, 2162, 11166, 58438, 309042] +AltSum: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +DiagSum: nothing [1, 1, 4, 15, 63, 280, 1297, 6193, 30268, 150687] +Central: nothing [1, 4, 40, 458, 5558, 69660, 891154, 11563214, 151605142, 2003523032] +LeftSide: A001003 [1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A331328 [1, 3, 21, 171, 1509, 13995, 134277, 1320651, 13237221, 134682219] +NegHalf: B330802 [1, -1, 5, -33, 253, -2121, 18853, -174609, 1667021, -16290969] +TransUnos: A109980 [1, 2, 8, 36, 172, 852, 4324, 22332, 116876, 618084] +TransAlts: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +TransSqrs: nothing [0, 1, 8, 54, 342, 2098, 12634, 75190, 443934, 2606330] +TransNat0: nothing [0, 1, 6, 34, 190, 1058, 5890, 32822, 183158, 1023658] +TransNat1: nothing [1, 3, 14, 70, 362, 1910, 10214, 55154, 300034, 1641742] +PolyVal2: nothing [1, 3, 15, 81, 453, 2583, 14907, 86733, 507561, 2982987] +PolyVal3: nothing [1, 4, 24, 152, 984, 6440, 42408, 280312, 1857336, 12326792] + +================= +StirlingCycleTriangle + +Triangle: A048994 [1, 0, 1, 0, 1, 1, 0, 2, 3, 1] +Reverse: A054654 [1, 1, 0, 1, 1, 0, 1, 3, 2, 0] +Inverse: A048993 [1, 0, 1, 0, -1, 1, 0, 1, -3, 1] +RevInv: A106800 [1, 1, 0, 1, -1, 0, 1, -3, 1, 0] +Diagonal: A331327 [1, 0, 0, 1, 0, 1, 0, 2, 1, 0] +Sum: A000142 [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880] +EvenSum: A105752 [1, 0, 1, 3, 12, 60, 360, 2520, 20160, 181440] +OddSum: D001710 [0, 1, 1, 3, 12, 60, 360, 2520, 20160, 181440] +AltSum: A019590 [1, -1, 0, 0, 0, 0, 0, 0, 0, 0] +DiagSum: nothing [1, 0, 1, 1, 3, 9, 36, 176, 1030, 7039] +Central: A187646 [1, 1, 11, 225, 6769, 269325, 13339535, 790943153, 54631129553, 4308105301929] +LeftSide: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A001147 [1, 1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425] +NegHalf: A330797 [1, 1, -1, 3, -15, 105, -945, 10395, -135135, 2027025] +TransUnos: A000142 [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880] +TransAlts: A019590 [1, -1, 0, 0, 0, 0, 0, 0, 0, 0] +TransSqrs: B151881 [0, 1, 5, 23, 120, 724, 5012, 39332, 345832, 3371976] +TransNat0: A000254 [0, 1, 3, 11, 50, 274, 1764, 13068, 109584, 1026576] +TransNat1: A000774 [1, 2, 5, 17, 74, 394, 2484, 18108, 149904, 1389456] +PolyVal2: C000142 [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800] +PolyVal3: nothing [1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400] + +================= +StirlingSetTriangle + +Triangle: A048993 [1, 0, 1, 0, 1, 1, 0, 1, 3, 1] +Reverse: A106800 [1, 1, 0, 1, 1, 0, 1, 3, 1, 0] +Inverse: A048994 [1, 0, 1, 0, -1, 1, 0, 2, -3, 1] +RevInv: A054654 [1, 1, 0, 1, -1, 0, 1, -3, 2, 0] +Diagonal: nothing [1, 0, 0, 1, 0, 1, 0, 1, 1, 0] +Sum: A000110 [1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147] +EvenSum: A024430 [1, 0, 1, 3, 8, 25, 97, 434, 2095, 10707] +OddSum: A024429 [0, 1, 1, 2, 7, 27, 106, 443, 2045, 10440] +AltSum: A000587 [1, -1, 0, 1, 1, -2, -9, -9, 50, 267] +DiagSum: A171367 [1, 0, 1, 1, 2, 4, 9, 22, 58, 164] +Central: A007820 [1, 1, 7, 90, 1701, 42525, 1323652, 49329280, 2141764053, 106175395755] +LeftSide: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A004211 [1, 1, 3, 11, 49, 257, 1539, 10299, 75905, 609441] +NegHalf: A009235 [1, 1, -1, -1, 9, -23, -25, 583, -3087, 4401] +TransUnos: A000110 [1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147] +TransAlts: A000587 [1, -1, 0, 1, 1, -2, -9, -9, 50, 267] +TransSqrs: A033452 [0, 1, 5, 22, 99, 471, 2386, 12867, 73681, 446620] +TransNat0: B005493 [0, 1, 3, 10, 37, 151, 674, 3263, 17007, 94828] +TransNat1: C000110 [1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975] +PolyVal2: A001861 [1, 2, 6, 22, 94, 454, 2430, 14214, 89918, 610182] +PolyVal3: A027710 [1, 3, 12, 57, 309, 1866, 12351, 88563, 681870, 5597643] + +================= +T008279 + +Triangle: A008279 [1, 1, 1, 1, 2, 2, 1, 3, 6, 6] +Reverse: A094587 [1, 1, 1, 2, 2, 1, 6, 6, 3, 1] +InvRev: A128229 [1, -1, 1, 0, -2, 1, 0, 0, -3, 1] +Diagonal: nothing [1, 1, 1, 1, 1, 2, 1, 3, 2, 1] +Sum: A000522 [1, 2, 5, 16, 65, 326, 1957, 13700, 109601, 986410] +EvenSum: A087208 [1, 1, 3, 7, 37, 141, 1111, 5923, 62217, 426457] +OddSum: B002747 [0, 1, 2, 9, 28, 185, 846, 7777, 47384, 559953] +AltSum: A000166 [1, 0, 1, -2, 9, -44, 265, -1854, 14833, -133496] +DiagSum: A122852 [1, 1, 2, 3, 6, 11, 24, 51, 122, 291] +Central: A001813 [1, 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400, 17643225600] +LeftSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +RightSide: A000142 [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880] +PosHalf: A010842 [1, 3, 10, 38, 168, 872, 5296, 37200, 297856, 2681216] +NegHalf: A000023 [1, -1, 2, -2, 8, 8, 112, 656, 5504, 49024] +TransUnos: A000522 [1, 2, 5, 16, 65, 326, 1957, 13700, 109601, 986410] +TransAlts: A000166 [1, 0, 1, -2, 9, -44, 265, -1854, 14833, -133496] +TransSqrs: nothing [0, 1, 10, 81, 652, 5545, 50886, 506905, 5480056, 64116657] +TransNat0: A093964 [0, 1, 6, 33, 196, 1305, 9786, 82201, 767208, 7891281] +TransNat1: A001339 [1, 3, 11, 49, 261, 1631, 11743, 95901, 876809, 8877691] +PolyVal2: A010844 [1, 3, 13, 79, 633, 6331, 75973, 1063623, 17017969, 306323443] +PolyVal3: A010845 [1, 4, 25, 226, 2713, 40696, 732529, 15383110, 369194641, 9968255308] +Main.TriangleTraitCard + +WARNING: replacing module TriangleTraitCard. + +================= +BinomialTriangle + +Triangle: A007318 [1, 1, 1, 1, 2, 1, 1, 3, 3, 1] +Reverse: A007318 [1, 1, 1, 1, 2, 1, 1, 3, 3, 1] +Inverse: A007318 [1, -1, 1, 1, -2, 1, -1, 3, -3, 1] +RevInv: A007318 [1, 1, -1, 1, -2, 1, 1, -3, 3, -1] +InvRev: A007318 [1, -1, 1, 1, -2, 1, -1, 3, -3, 1] +Diagonal: A011973 [1, 1, 1, 1, 1, 2, 1, 3, 1, 1] +Sum: A000079 [1, 2, 4, 8, 16, 32, 64, 128, 256, 512] +EvenSum: A011782 [1, 1, 2, 4, 8, 16, 32, 64, 128, 256] +OddSum: A131577 [0, 1, 2, 4, 8, 16, 32, 64, 128, 256] +AltSum: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +DiagSum: C000045 [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] +Central: A000984 [1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620] +LeftSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A000244 [1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683] +NegHalf: A000012 [1, -1, 1, -1, 1, -1, 1, -1, 1, -1] +TransUnos: A000079 [1, 2, 4, 8, 16, 32, 64, 128, 256, 512] +TransAlts: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +TransSqrs: A001788 [0, 1, 6, 24, 80, 240, 672, 1792, 4608, 11520] +TransNat0: A001787 [0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304] +TransNat1: A001792 [1, 3, 8, 20, 48, 112, 256, 576, 1280, 2816] +PolyVal2: A000244 [1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683] +PolyVal3: A000302 [1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144] + +================= +CatalanTriangle + +Triangle: A053121 [1, 0, 1, 1, 0, 1, 0, 2, 0, 1] +Reverse: A052173 [1, 1, 0, 1, 0, 1, 1, 0, 2, 0] +Inverse: A049310 [1, 0, 1, -1, 0, 1, 0, -2, 0, 1] +RevInv: A053119 [1, 1, 0, 1, 0, -1, 1, 0, -2, 0] +Diagonal: [ Info: Dowloaded 1,0,1,1,0,0,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 0, 1, 1, 0, 0, 2, 2, 1, 0] +Sum: A001405 [1, 1, 2, 3, 6, 10, 20, 35, 70, 126] +EvenSum: A126869 [1, 0, 2, 0, 6, 0, 20, 0, 70, 0] +OddSum: A138364 [0, 1, 0, 3, 0, 10, 0, 35, 0, 126] +AltSum: A001405 [1, -1, 2, -3, 6, -10, 20, -35, 70, -126] +DiagSum: [ Info: Dowloaded 1,0,2,0,5,0,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data + +[1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, 0, 429, 0, 1430, 0, 4862, 0] +┌ Warning: Not found in the local base but possibly in the OEIS! +└ @ TrianglesUtils c:\Users\User\GitHub2021\IntegerTriangles.jl\src\TrianglesUtils.jl:142 + +nothing [1, 0, 2, 0, 5, 0, 14, 0, 42, 0] +Central: [ Info: Dowloaded 1,0,3,0,20,0.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 0, 3, 0, 20, 0, 154, 0, 1260, 0] +LeftSide: A126120 [1, 0, 1, 0, 2, 0, 5, 0, 14, 0] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A121724 [1, 1, 5, 9, 45, 97, 485, 1145, 5725, 14289] +NegHalf: A121724 [1, 1, 5, 9, 45, 97, 485, 1145, 5725, 14289] +TransUnos: A001405 [1, 1, 2, 3, 6, 10, 20, 35, 70, 126] +TransAlts: A001405 [1, -1, 2, -3, 6, -10, 20, -35, 70, -126] +TransSqrs: [ Info: Dowloaded 0,1,4,11,28,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [0, 1, 4, 11, 28, 66, 152, 339, 748, 1622] +TransNat0: A045621 [0, 1, 2, 5, 10, 22, 44, 93, 186, 386] +TransNat1: A000079 [1, 2, 4, 8, 16, 32, 64, 128, 256, 512] +PolyVal2: A054341 [1, 2, 5, 12, 30, 74, 185, 460, 1150, 2868] +PolyVal3: A126931 [1, 3, 10, 33, 110, 366, 1220, 4065, 13550, 45162] + +================= +EulerianTriangle + +Triangle: A173018 [1, 1, 0, 1, 1, 0, 1, 4, 1, 0] +Reverse: A123125 [1, 0, 1, 0, 1, 1, 0, 1, 4, 1] +InvRev: [ Info: Dowloaded 1,0,1,0,1,1,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 0, 1, 0, -1, 1, 0, 3, -4, 1] +Diagonal: [ Info: Dowloaded 1,1,1,0,1,1,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 1, 1, 0, 1, 1, 1, 4, 0, 1] +Sum: A000142 [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880] +EvenSum: A128103 [1, 1, 1, 2, 12, 68, 360, 2384, 20160, 185408] +OddSum: A262745 [0, 0, 1, 4, 12, 52, 360, 2656, 20160, 177472] +AltSum: A009006 [1, 1, 0, -2, 0, 16, 0, -272, 0, 7936] +DiagSum: A000800 [1, 1, 1, 2, 5, 13, 38, 125, 449, 1742] +Central: A180056 [1, 1, 11, 302, 15619, 1310354, 162512286, 27971176092, 6382798925475, 1865385657780650] +LeftSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +RightSide: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +PosHalf: A000670 [1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261] +NegHalf: A087674 [1, 1, -1, -3, 15, 21, -441, 477, 19935, -101979] +TransUnos: A000142 [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880] +TransAlts: A009006 [1, 1, 0, -2, 0, 16, 0, -272, 0, 7936] +TransSqrs: [ Info: Dowloaded 0,0,1,8,64,5.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [0, 0, 1, 8, 64, 540, 4920, 48720, 524160, 6108480] +TransNat0: B180119 [0, 0, 1, 6, 36, 240, 1800, 15120, 141120, 1451520] +TransNat1: C001710 [1, 1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400] +PolyVal2: A000670 [1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261] +PolyVal3: A122704 [1, 1, 4, 22, 160, 1456, 15904, 202672, 2951680, 48361216] + +================= +FibonacciTriangle + +Triangle: A193737 [1, 1, 1, 1, 2, 1, 2, 4, 3, 1] +Reverse: A193736 [1, 1, 1, 1, 2, 1, 1, 3, 4, 2] +Inverse: [ Info: Dowloaded 1,1,1,1,2,1,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, -1, 1, 1, -2, 1, -1, 2, -3, 1] +RevInv: [ Info: Dowloaded 1,1,1,1,2,1,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data + +[1, 1, -1, 1, -2, 1, 1, -3, 2, -1, 1, -4, 4, 0, 1, 1, -5, 7] +┌ Warning: Not found in the local base but possibly in the OEIS! +└ @ TrianglesUtils c:\Users\User\GitHub2021\IntegerTriangles.jl\src\TrianglesUtils.jl:142 + +nothing [1, 1, -1, 1, -2, 1, 1, -3, 2, -1] +Diagonal: B119473 [1, 1, 1, 1, 2, 2, 3, 4, 1, 5] +Sum: A052542 [1, 2, 4, 10, 24, 58, 140, 338, 816, 1970] +EvenSum: A215928 [1, 1, 2, 5, 12, 29, 70, 169, 408, 985] +OddSum: A000129 [0, 1, 2, 5, 12, 29, 70, 169, 408, 985] +AltSum: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +DiagSum: A011782 [1, 1, 2, 4, 8, 16, 32, 64, 128, 256] +Central: A330793 [1, 2, 8, 36, 170, 826, 4088, 20496, 103752, 529100] +LeftSide: A324969 [1, 1, 1, 2, 3, 5, 8, 13, 21, 34] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A330795 [1, 3, 9, 39, 153, 615, 2457, 9831, 39321, 157287] +NegHalf: B006131 [1, -1, 1, -5, 9, -29, 65, -181, 441, -1165] +TransUnos: A052542 [1, 2, 4, 10, 24, 58, 140, 338, 816, 1970] +TransAlts: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +TransSqrs: [ Info: Dowloaded 0,1,6,25,92,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [0, 1, 6, 25, 92, 313, 1010, 3137, 9464, 27905] +TransNat0: A119915 [0, 1, 4, 13, 40, 117, 332, 921, 2512, 6761] +TransNat1: A331321 [1, 3, 8, 23, 64, 175, 472, 1259, 3328, 8731] +PolyVal2: A052906 [1, 3, 9, 30, 99, 327, 1080, 3567, 11781, 38910] +PolyVal3: [ Info: Dowloaded 1,4,16,68,28.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 4, 16, 68, 288, 1220, 5168, 21892, 92736, 392836] + +================= +LaguerreTriangle + +Triangle: A021009 [1, 1, 1, 2, 4, 1, 6, 18, 9, 1] +Reverse: A021010 [1, 1, 1, 1, 4, 2, 1, 9, 18, 6] +Inverse: A021009 [1, -1, 1, 2, -4, 1, -6, 18, -9, 1] +RevInv: A021010 [1, 1, -1, 1, -4, 2, 1, -9, 18, -6] +Diagonal: A084950 [1, 1, 2, 1, 6, 4, 24, 18, 1, 120] +Sum: A002720 [1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114] +EvenSum: A331325 [1, 1, 3, 15, 97, 745, 6571, 65359, 723969, 8842257] +OddSum: A331326 [0, 1, 4, 19, 112, 801, 6756, 65563, 717760, 8729857] +AltSum: A009940 [1, 0, -1, -4, -15, -56, -185, -204, 6209, 112400] +DiagSum: C001040 [1, 1, 3, 10, 43, 225, 1393, 9976, 81201, 740785] +Central: A295383 [1, 4, 72, 2400, 117600, 7620480, 614718720, 59364264960, 6678479808000, 857813628672000] +LeftSide: A000142 [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A025167 [1, 3, 17, 139, 1473, 19091, 291793, 5129307, 101817089, 2250495523] +NegHalf: A025166 [1, -1, 1, 7, -127, 1711, -23231, 334391, -5144063, 84149983] +TransUnos: A002720 [1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114] +TransAlts: A009940 [1, 0, -1, -4, -15, -56, -185, -204, 6209, 112400] +TransSqrs: A105219 [0, 1, 8, 63, 544, 5225, 55656, 653023, 8379008, 116780049] +TransNat0: A103194 [0, 1, 6, 39, 292, 2505, 24306, 263431, 3154824, 41368977] +TransNat1: C000262 [1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, 58941091] +PolyVal2: A087912 [1, 3, 14, 86, 648, 5752, 58576, 671568, 8546432, 119401856] +PolyVal3: A277382 [1, 4, 23, 168, 1473, 14988, 173007, 2228544, 31636449, 490102164] + +================= +LahTriangle + +Triangle: A111596 [1, 0, 1, 0, 2, 1, 0, 6, 6, 1] +Reverse: nothing [1, 1, 0, 1, 2, 0, 1, 6, 6, 0] +Inverse: A111596 [1, 0, 1, 0, -2, 1, 0, 6, -6, 1] +RevInv: nothing [1, 1, 0, 1, -2, 0, 1, -6, 6, 0] +Diagonal: A330609 [1, 0, 0, 1, 0, 2, 0, 6, 1, 0] +Sum: A000262 [1, 1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553] +EvenSum: A088312 [1, 0, 1, 6, 37, 260, 2101, 19362, 201097, 2326536] +OddSum: A088313 [0, 1, 2, 7, 36, 241, 1950, 18271, 193256, 2270017] +AltSum: A111884 [1, -1, -1, -1, 1, 19, 151, 1091, 7841, 56519] +DiagSum: A001053 [1, 0, 1, 2, 7, 30, 157, 972, 6961, 56660] +Central: A187535 [1, 2, 36, 1200, 58800, 3810240, 307359360, 29682132480, 3339239904000, 428906814336000] +LeftSide: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A025168 [1, 1, 5, 37, 361, 4361, 62701, 1044205, 19748177, 417787921] +NegHalf: A318223 [1, 1, -3, 13, -71, 441, -2699, 9157, 206193, -8443151] +TransUnos: A000262 [1, 1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553] +TransAlts: A111884 [1, -1, -1, -1, 1, 19, 151, 1091, 7841, 56519] +TransSqrs: A103194 [0, 1, 6, 39, 292, 2505, 24306, 263431, 3154824, 41368977] +TransNat0: A052852 [0, 1, 4, 21, 136, 1045, 9276, 93289, 1047376, 12975561] +TransNat1: A002720 [1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114] +PolyVal2: A052897 [1, 2, 8, 44, 304, 2512, 24064, 261536, 3173888, 42483968] +PolyVal3: A255806 [1, 3, 15, 99, 801, 7623, 83079, 1017495, 13808097, 205374123] + +================= +MotzkinTriangle + +Triangle: A064189 [1, 1, 1, 2, 2, 1, 4, 5, 3, 1] +Reverse: A026300 [1, 1, 1, 1, 2, 2, 1, 3, 5, 4] +Inverse: A101950 [1, -1, 1, 0, -2, 1, 1, 1, -3, 1] +RevInv: nothing [1, 1, -1, 1, -2, 0, 1, -3, 1, 1] +Diagonal: A106489 [1, 1, 2, 1, 4, 2, 9, 5, 1, 21] +Sum: C005773 [1, 2, 5, 13, 35, 96, 267, 750, 2123, 6046] +EvenSum: A002426 [1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139] +OddSum: B005717 [0, 1, 2, 6, 16, 45, 126, 357, 1016, 2907] +AltSum: A005043 [1, 0, 1, 1, 3, 6, 15, 36, 91, 232] +DiagSum: [1, 1, 3, 6, 15, 36, 91, 232, 603, 1585, 4213, 11298, 30537, 83097, 227475, 625992, 1730787, 4805595] +┌ Warning: Not found in the local base but possibly in the OEIS! +└ @ TrianglesUtils c:\Users\User\GitHub2021\IntegerTriangles.jl\src\TrianglesUtils.jl:142 + +nothing [1, 1, 3, 6, 15, 36, 91, 232, 603, 1585] +Central: A026302 [1, 2, 9, 44, 230, 1242, 6853, 38376, 217242, 1239980] +LeftSide: A001006 [1, 1, 2, 4, 9, 21, 51, 127, 323, 835] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A330799 [1, 3, 13, 59, 285, 1419, 7245, 37659, 198589, 1059371] +NegHalf: A330800 [1, -1, 5, -17, 77, -345, 1653, -8097, 40733, -208553] +TransUnos: C005773 [1, 2, 5, 13, 35, 96, 267, 750, 2123, 6046] +TransAlts: A005043 [1, 0, 1, 1, 3, 6, 15, 36, 91, 232] +TransSqrs: [ Info: Dowloaded 0,1,6,26,100.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [0, 1, 6, 26, 100, 361, 1254, 4245, 14108, 46247] +TransNat0: A330796 [0, 1, 4, 14, 46, 147, 462, 1437, 4438, 13637] +TransNat1: A000244 [1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683] +PolyVal2: A059738 [1, 3, 10, 34, 117, 405, 1407, 4899, 17083, 59629] +PolyVal3: [ Info: Dowloaded 1,4,17,73,31.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 4, 17, 73, 315, 1362, 5895, 25528, 110579, 479068] + +================= +NarayanaTriangle + +Triangle: A090181 [1, 0, 1, 0, 1, 1, 0, 1, 3, 1] +Reverse: A131198 [1, 1, 0, 1, 1, 0, 1, 3, 1, 0] +Inverse: [ Info: Dowloaded 1,0,1,0,1,1,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data + +[1, 0, 1, 0, -1, 1, 0, 2, -3, 1, 0, -7, 12, -6, 1, 0, 39, -70] +┌ Warning: Not found in the local base but possibly in the OEIS! +└ @ TrianglesUtils c:\Users\User\GitHub2021\IntegerTriangles.jl\src\TrianglesUtils.jl:142 + +nothing [1, 0, 1, 0, -1, 1, 0, 2, -3, 1] +RevInv: [ Info: Dowloaded 1,1,0,1,1,0,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data + +[1, 1, 0, 1, -1, 0, 1, -3, 2, 0, 1, -6, 12, -7, 0, 1, -10, 40] +┌ Warning: Not found in the local base but possibly in the OEIS! +└ @ TrianglesUtils c:\Users\User\GitHub2021\IntegerTriangles.jl\src\TrianglesUtils.jl:142 + +nothing [1, 1, 0, 1, -1, 0, 1, -3, 2, 0] +Diagonal: [ Info: Dowloaded 1,0,0,1,0,1,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 0, 0, 1, 0, 1, 0, 1, 1, 0] +Sum: A000108 [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862] +EvenSum: B071688 [1, 0, 1, 3, 7, 20, 66, 217, 715, 2424] +OddSum: B071684 [0, 1, 1, 2, 7, 22, 66, 212, 715, 2438] +AltSum: A090192 [1, -1, 0, 1, 0, -2, 0, 5, 0, -14] +DiagSum: [ Info: Dowloaded 1,0,1,1,2,4,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 0, 1, 1, 2, 4, 8, 17, 37, 82] +Central: A125558 [1, 1, 6, 50, 490, 5292, 60984, 736164, 9202050, 118195220] +LeftSide: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A001003 [1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049] +NegHalf: A154825 [1, 1, -1, -1, 5, -3, -21, 51, 41, -391] +TransUnos: A000108 [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862] +TransAlts: A090192 [1, -1, 0, 1, 0, -2, 0, 5, 0, -14] +TransSqrs: B141222 [0, 1, 5, 22, 95, 406, 1722, 7260, 30459, 127270] +TransNat0: B001700 [0, 1, 3, 10, 35, 126, 462, 1716, 6435, 24310] +TransNat1: A189176 [1, 2, 5, 15, 49, 168, 594, 2145, 7865, 29172] +PolyVal2: A006318 [1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098] +PolyVal3: A047891 [1, 3, 12, 57, 300, 1686, 9912, 60213, 374988, 2381322] + +================= +SchröderBTriangle + +Triangle: A122538 [1, 0, 1, 0, 2, 1, 0, 6, 4, 1] +Reverse: [ Info: Dowloaded 1,1,0,1,2,0,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data + +[1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 16, 22, 0, 1, 8, 30] +┌ Warning: Not found in the local base but possibly in the OEIS! +└ @ TrianglesUtils c:\Users\User\GitHub2021\IntegerTriangles.jl\src\TrianglesUtils.jl:142 + +nothing [1, 1, 0, 1, 2, 0, 1, 4, 6, 0] +Inverse: A122542 [1, 0, 1, 0, -2, 1, 0, 2, -4, 1] +RevInv: A266213 [1, 1, 0, 1, -2, 0, 1, -4, 2, 0] +Diagonal: [ Info: Dowloaded 1,0,0,1,0,2,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 0, 0, 1, 0, 2, 0, 6, 1, 0] +Sum: A001003 [1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049] +EvenSum: [ Info: Dowloaded 1,0,1,4,17,7.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 0, 1, 4, 17, 76, 353, 1688, 8257, 41128] +OddSum: B010683 [0, 1, 2, 7, 28, 121, 550, 2591, 12536, 61921] +AltSum: B001003 [1, -1, -1, -3, -11, -45, -197, -903, -4279, -20793] +DiagSum: [ Info: Dowloaded 1,0,1,2,7,26.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 0, 1, 2, 7, 26, 107, 468, 2141, 10124] +Central: A103885 [1, 2, 16, 146, 1408, 14002, 142000, 1459810, 15158272, 158611106] +LeftSide: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: B330802 [1, 1, 5, 33, 253, 2121, 18853, 174609, 1667021, 16290969] +NegHalf: B330803 [1, 1, -3, 17, -123, 1001, -8739, 79969, -756939, 7349657] +TransUnos: A001003 [1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049] +TransAlts: B001003 [1, -1, -1, -3, -11, -45, -197, -903, -4279, -20793] +TransSqrs: A065096 [0, 1, 6, 31, 156, 785, 3978, 20335, 104856, 545073] +TransNat0: B239204 [0, 1, 4, 17, 76, 353, 1688, 8257, 41128, 207905] +TransNat1: A010683 [1, 2, 7, 28, 121, 550, 2591, 12536, 61921, 310954] +PolyVal2: A109980 [1, 2, 8, 36, 172, 852, 4324, 22332, 116876, 618084] +PolyVal3: [ Info: Dowloaded 1,3,15,81,45.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 3, 15, 81, 453, 2583, 14907, 86733, 507561, 2982987] + +================= +SchröderLTriangle + +Triangle: A172094 [1, 1, 1, 3, 4, 1, 11, 17, 7, 1] +Reverse: [ Info: Dowloaded 1,1,1,1,4,3,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 1, 1, 1, 4, 3, 1, 7, 17, 11] +Inverse: A331969 [1, -1, 1, 1, -4, 1, -1, 11, -7, 1] +RevInv: [ Info: Dowloaded 1,1,1,1,4,1,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 1, -1, 1, -4, 1, 1, -7, 11, -1] +Diagonal: [ Info: Dowloaded 1,1,3,1,11,4.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 1, 3, 1, 11, 4, 45, 17, 1, 197] +Sum: A109980 [1, 2, 8, 36, 172, 852, 4324, 22332, 116876, 618084] +EvenSum: B225887 [1, 1, 4, 18, 86, 426, 2162, 11166, 58438, 309042] +OddSum: B225887 [0, 1, 4, 18, 86, 426, 2162, 11166, 58438, 309042] +AltSum: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +DiagSum: [ Info: Dowloaded 1,1,4,15,63,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 1, 4, 15, 63, 280, 1297, 6193, 30268, 150687] +Central: [ Info: Dowloaded 1,4,40,458,5.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 4, 40, 458, 5558, 69660, 891154, 11563214, 151605142, 2003523032] +LeftSide: A001003 [1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A331328 [1, 3, 21, 171, 1509, 13995, 134277, 1320651, 13237221, 134682219] +NegHalf: B330802 [1, -1, 5, -33, 253, -2121, 18853, -174609, 1667021, -16290969] +TransUnos: A109980 [1, 2, 8, 36, 172, 852, 4324, 22332, 116876, 618084] +TransAlts: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +TransSqrs: [ Info: Dowloaded 0,1,8,54,342.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [0, 1, 8, 54, 342, 2098, 12634, 75190, 443934, 2606330] +TransNat0: [ Info: Dowloaded 0,1,6,34,190.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [0, 1, 6, 34, 190, 1058, 5890, 32822, 183158, 1023658] +TransNat1: [ Info: Dowloaded 1,3,14,70,36.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 3, 14, 70, 362, 1910, 10214, 55154, 300034, 1641742] +PolyVal2: [ Info: Dowloaded 1,3,15,81,45.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 3, 15, 81, 453, 2583, 14907, 86733, 507561, 2982987] +PolyVal3: [ Info: Dowloaded 1,4,24,152,9.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 4, 24, 152, 984, 6440, 42408, 280312, 1857336, 12326792] + +================= +StirlingCycleTriangle + +Triangle: A048994 [1, 0, 1, 0, 1, 1, 0, 2, 3, 1] +Reverse: A054654 [1, 1, 0, 1, 1, 0, 1, 3, 2, 0] +Inverse: A048993 [1, 0, 1, 0, -1, 1, 0, 1, -3, 1] +RevInv: A106800 [1, 1, 0, 1, -1, 0, 1, -3, 1, 0] +Diagonal: A331327 [1, 0, 0, 1, 0, 1, 0, 2, 1, 0] +Sum: A000142 [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880] +EvenSum: A105752 [1, 0, 1, 3, 12, 60, 360, 2520, 20160, 181440] +OddSum: D001710 [0, 1, 1, 3, 12, 60, 360, 2520, 20160, 181440] +AltSum: A019590 [1, -1, 0, 0, 0, 0, 0, 0, 0, 0] +DiagSum: [ Info: Dowloaded 1,0,1,1,3,9,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 0, 1, 1, 3, 9, 36, 176, 1030, 7039] +Central: A187646 [1, 1, 11, 225, 6769, 269325, 13339535, 790943153, 54631129553, 4308105301929] +LeftSide: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A001147 [1, 1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425] +NegHalf: A330797 [1, 1, -1, 3, -15, 105, -945, 10395, -135135, 2027025] +TransUnos: A000142 [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880] +TransAlts: A019590 [1, -1, 0, 0, 0, 0, 0, 0, 0, 0] +TransSqrs: B151881 [0, 1, 5, 23, 120, 724, 5012, 39332, 345832, 3371976] +TransNat0: A000254 [0, 1, 3, 11, 50, 274, 1764, 13068, 109584, 1026576] +TransNat1: A000774 [1, 2, 5, 17, 74, 394, 2484, 18108, 149904, 1389456] +PolyVal2: C000142 [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800] +PolyVal3: [ Info: Dowloaded 1,3,12,60,36.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data + +[1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400, 239500800, 3113510400, 43589145600, 653837184000, 10461394944000, 177843714048000, 3201186852864000, 60822550204416000] +┌ Warning: Not found in the local base but possibly in the OEIS! +└ @ TrianglesUtils c:\Users\User\GitHub2021\IntegerTriangles.jl\src\TrianglesUtils.jl:142 + +nothing [1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400] + +================= +StirlingSetTriangle + +Triangle: A048993 [1, 0, 1, 0, 1, 1, 0, 1, 3, 1] +Reverse: A106800 [1, 1, 0, 1, 1, 0, 1, 3, 1, 0] +Inverse: A048994 [1, 0, 1, 0, -1, 1, 0, 2, -3, 1] +RevInv: A054654 [1, 1, 0, 1, -1, 0, 1, -3, 2, 0] +Diagonal: [ Info: Dowloaded 1,0,0,1,0,1,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 0, 0, 1, 0, 1, 0, 1, 1, 0] +Sum: A000110 [1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147] +EvenSum: A024430 [1, 0, 1, 3, 8, 25, 97, 434, 2095, 10707] +OddSum: A024429 [0, 1, 1, 2, 7, 27, 106, 443, 2045, 10440] +AltSum: A000587 [1, -1, 0, 1, 1, -2, -9, -9, 50, 267] +DiagSum: A171367 [1, 0, 1, 1, 2, 4, 9, 22, 58, 164] +Central: A007820 [1, 1, 7, 90, 1701, 42525, 1323652, 49329280, 2141764053, 106175395755] +LeftSide: A000007 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +RightSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +PosHalf: A004211 [1, 1, 3, 11, 49, 257, 1539, 10299, 75905, 609441] +NegHalf: A009235 [1, 1, -1, -1, 9, -23, -25, 583, -3087, 4401] +TransUnos: A000110 [1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147] +TransAlts: A000587 [1, -1, 0, 1, 1, -2, -9, -9, 50, 267] +TransSqrs: A033452 [0, 1, 5, 22, 99, 471, 2386, 12867, 73681, 446620] +TransNat0: B005493 [0, 1, 3, 10, 37, 151, 674, 3263, 17007, 94828] +TransNat1: C000110 [1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975] +PolyVal2: A001861 [1, 2, 6, 22, 94, 454, 2430, 14214, 89918, 610182] +PolyVal3: A027710 [1, 3, 12, 57, 309, 1866, 12351, 88563, 681870, 5597643] + +================= +T008279 + +Triangle: A008279 [1, 1, 1, 1, 2, 2, 1, 3, 6, 6] +Reverse: A094587 [1, 1, 1, 2, 2, 1, 6, 6, 3, 1] +InvRev: A128229 [1, -1, 1, 0, -2, 1, 0, 0, -3, 1] +Diagonal: [ Info: Dowloaded 1,1,1,1,1,2,.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [1, 1, 1, 1, 1, 2, 1, 3, 2, 1] +Sum: A000522 [1, 2, 5, 16, 65, 326, 1957, 13700, 109601, 986410] +EvenSum: A087208 [1, 1, 3, 7, 37, 141, 1111, 5923, 62217, 426457] +OddSum: B002747 [0, 1, 2, 9, 28, 185, 846, 7777, 47384, 559953] +AltSum: A000166 [1, 0, 1, -2, 9, -44, 265, -1854, 14833, -133496] +DiagSum: A122852 [1, 1, 2, 3, 6, 11, 24, 51, 122, 291] +Central: A001813 [1, 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400, 17643225600] +LeftSide: A000012 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +RightSide: A000142 [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880] +PosHalf: A010842 [1, 3, 10, 38, 168, 872, 5296, 37200, 297856, 2681216] +NegHalf: A000023 [1, -1, 2, -2, 8, 8, 112, 656, 5504, 49024] +TransUnos: A000522 [1, 2, 5, 16, 65, 326, 1957, 13700, 109601, 986410] +TransAlts: A000166 [1, 0, 1, -2, 9, -44, 265, -1854, 14833, -133496] +TransSqrs: [ Info: Dowloaded 0,1,10,81,65.json to C:\Users\User\GitHub2021\IntegerTriangles.jl\data +nothing [0, 1, 10, 81, 652, 5545, 50886, 506905, 5480056, 64116657] +TransNat0: A093964 [0, 1, 6, 33, 196, 1305, 9786, 82201, 767208, 7891281] +TransNat1: A001339 [1, 3, 11, 49, 261, 1631, 11743, 95901, 876809, 8877691] +PolyVal2: A010844 [1, 3, 13, 79, 633, 6331, 75973, 1063623, 17017969, 306323443] +PolyVal3: A010845 [1, 4, 25, 226, 2713, 40696, 732529, 15383110, 369194641, 9968255308] +Main.TriangleTraitCard + diff --git a/data/profile.txt b/data/profile.txt index 3be8098..9929060 100644 --- a/data/profile.txt +++ b/data/profile.txt @@ -13,3 +13,78 @@ │ A111884 │ Lah │ Std │ TransAlts │ 1, -1, -1, -1, 1, 19, 151, 1091 │ │ nothing │ Laguerre │ Rev │ TransNat1 │ 1, 3, 15, 97, 753, 6771, 68983, 783945 │ └──────────┴────────────┴──────┴───────────┴─────────────────────────────────────────────┘ +┌──────────┬────────────┬──────┬───────────┬─────────────────────────────────────────────┐ +│ A-number │ Triangle │ Form │ Function │ Sequence │ +├──────────┼────────────┼──────┼───────────┼─────────────────────────────────────────────┤ +│ A000302 │ Binomial │ Std │ PolyVal3 │ 1, 4, 16, 64, 256, 1024, 4096, 16384 │ +│ A001333 │ SchroederB │ Inv │ AltSum │ 1, -1, 3, -7, 17, -41, 99, -239 │ +│ A006012 │ SchroederL │ Inv │ AltSum │ 1, -2, 6, -20, 68, -232, 792, -2704 │ +│ A026302 │ Motzkin │ Rev │ Central │ 1, 2, 9, 44, 230, 1242, 6853, 38376 │ +│ A025167 │ Laguerre │ Std │ PosHalf │ 1, 3, 17, 139, 1473, 19091, 291793, 5129307 │ +│ A103194 │ Laguerre │ Std │ TransNat0 │ 0, 1, 6, 39, 292, 2505, 24306, 263431 │ +│ C000262 │ Laguerre │ Std │ TransNat1 │ 1, 3, 13, 73, 501, 4051, 37633, 394353 │ +│ A103194 │ Lah │ Std │ TransSqrs │ 0, 1, 6, 39, 292, 2505, 24306, 263431 │ +│ A111884 │ Lah │ Std │ TransAlts │ 1, -1, -1, -1, 1, 19, 151, 1091 │ +│ A111884 │ Lah │ Std │ TransAlts │ 1, -1, -1, -1, 1, 19, 151, 1091 │ +│ nothing │ Laguerre │ Rev │ TransNat1 │ 15, 97, 753, 6771, 68983, 783945 │ +└──────────┴────────────┴──────┴───────────┴─────────────────────────────────────────────┘ +┌──────────┬────────────┬──────┬───────────┬─────────────────────────────────────────────┐ +│ A-number │ Triangle │ Form │ Function │ Sequence │ +├──────────┼────────────┼──────┼───────────┼─────────────────────────────────────────────┤ +│ A000302 │ Binomial │ Std │ PolyVal3 │ 1, 4, 16, 64, 256, 1024, 4096, 16384 │ +│ A001333 │ SchroederB │ Inv │ AltSum │ 1, -1, 3, -7, 17, -41, 99, -239 │ +│ A006012 │ SchroederL │ Inv │ AltSum │ 1, -2, 6, -20, 68, -232, 792, -2704 │ +│ A026302 │ Motzkin │ Rev │ Central │ 1, 2, 9, 44, 230, 1242, 6853, 38376 │ +│ A025167 │ Laguerre │ Std │ PosHalf │ 1, 3, 17, 139, 1473, 19091, 291793, 5129307 │ +│ A103194 │ Laguerre │ Std │ TransNat0 │ 0, 1, 6, 39, 292, 2505, 24306, 263431 │ +│ C000262 │ Laguerre │ Std │ TransNat1 │ 1, 3, 13, 73, 501, 4051, 37633, 394353 │ +│ A103194 │ Lah │ Std │ TransSqrs │ 0, 1, 6, 39, 292, 2505, 24306, 263431 │ +│ A111884 │ Lah │ Std │ TransAlts │ 1, -1, -1, -1, 1, 19, 151, 1091 │ +│ A111884 │ Lah │ Std │ TransAlts │ 1, -1, -1, -1, 1, 19, 151, 1091 │ +│ nothing │ Laguerre │ Rev │ TransNat1 │ 1, 3, 15, 97, 753, 6771, 68983, 783945 │ +└──────────┴────────────┴──────┴───────────┴─────────────────────────────────────────────┘ +┌──────────┬────────────┬──────┬───────────┬─────────────────────────────────────────────┐ +│ A-number │ Triangle │ Form │ Function │ Sequence │ +├──────────┼────────────┼──────┼───────────┼─────────────────────────────────────────────┤ +│ A000302 │ Binomial │ Std │ PolyVal3 │ 1, 4, 16, 64, 256, 1024, 4096, 16384 │ +│ A001333 │ SchroederB │ Inv │ AltSum │ 1, -1, 3, -7, 17, -41, 99, -239 │ +│ A006012 │ SchroederL │ Inv │ AltSum │ 1, -2, 6, -20, 68, -232, 792, -2704 │ +│ A026302 │ Motzkin │ Rev │ Central │ 1, 2, 9, 44, 230, 1242, 6853, 38376 │ +│ A025167 │ Laguerre │ Std │ PosHalf │ 1, 3, 17, 139, 1473, 19091, 291793, 5129307 │ +│ A103194 │ Laguerre │ Std │ TransNat0 │ 0, 1, 6, 39, 292, 2505, 24306, 263431 │ +│ C000262 │ Laguerre │ Std │ TransNat1 │ 1, 3, 13, 73, 501, 4051, 37633, 394353 │ +│ A103194 │ Lah │ Std │ TransSqrs │ 0, 1, 6, 39, 292, 2505, 24306, 263431 │ +│ A111884 │ Lah │ Std │ TransAlts │ 1, -1, -1, -1, 1, 19, 151, 1091 │ +│ A111884 │ Lah │ Std │ TransAlts │ 1, -1, -1, -1, 1, 19, 151, 1091 │ +│ nothing │ Laguerre │ Rev │ TransNat1 │ 1, 3, 15, 97, 753, 6771, 68983, 783945 │ +└──────────┴────────────┴──────┴───────────┴─────────────────────────────────────────────┘ +┌──────────┬────────────┬──────┬───────────┬─────────────────────────────────────────────┐ +│ A-number │ Triangle │ Form │ Function │ Sequence │ +├──────────┼────────────┼──────┼───────────┼─────────────────────────────────────────────┤ +│ A000302 │ Binomial │ Std │ PolyVal3 │ 1, 4, 16, 64, 256, 1024, 4096, 16384 │ +│ A001333 │ SchroederB │ Inv │ AltSum │ 1, -1, 3, -7, 17, -41, 99, -239 │ +│ A006012 │ SchroederL │ Inv │ AltSum │ 1, -2, 6, -20, 68, -232, 792, -2704 │ +│ A026302 │ Motzkin │ Rev │ Central │ 1, 2, 9, 44, 230, 1242, 6853, 38376 │ +│ A025167 │ Laguerre │ Std │ PosHalf │ 1, 3, 17, 139, 1473, 19091, 291793, 5129307 │ +│ A103194 │ Laguerre │ Std │ TransNat0 │ 0, 1, 6, 39, 292, 2505, 24306, 263431 │ +│ C000262 │ Laguerre │ Std │ TransNat1 │ 1, 3, 13, 73, 501, 4051, 37633, 394353 │ +│ A103194 │ Lah │ Std │ TransSqrs │ 0, 1, 6, 39, 292, 2505, 24306, 263431 │ +│ A111884 │ Lah │ Std │ TransAlts │ 1, -1, -1, -1, 1, 19, 151, 1091 │ +│ A111884 │ Lah │ Std │ TransAlts │ 1, -1, -1, -1, 1, 19, 151, 1091 │ +│ nothing │ Laguerre │ Rev │ TransNat1 │ 1, 3, 15, 97, 753, 6771, 68983, 783945 │ +└──────────┴────────────┴──────┴───────────┴─────────────────────────────────────────────┘ +┌──────────┬────────────┬──────┬───────────┬─────────────────────────────────────────────┐ +│ A-number │ Triangle │ Form │ Function │ Sequence │ +├──────────┼────────────┼──────┼───────────┼─────────────────────────────────────────────┤ +│ A000302 │ Binomial │ Std │ PolyVal3 │ 1, 4, 16, 64, 256, 1024, 4096, 16384 │ +│ A001333 │ SchroederB │ Inv │ AltSum │ 1, -1, 3, -7, 17, -41, 99, -239 │ +│ A006012 │ SchroederL │ Inv │ AltSum │ 1, -2, 6, -20, 68, -232, 792, -2704 │ +│ A026302 │ Motzkin │ Rev │ Central │ 1, 2, 9, 44, 230, 1242, 6853, 38376 │ +│ A025167 │ Laguerre │ Std │ PosHalf │ 1, 3, 17, 139, 1473, 19091, 291793, 5129307 │ +│ A103194 │ Laguerre │ Std │ TransNat0 │ 0, 1, 6, 39, 292, 2505, 24306, 263431 │ +│ C000262 │ Laguerre │ Std │ TransNat1 │ 1, 3, 13, 73, 501, 4051, 37633, 394353 │ +│ A103194 │ Lah │ Std │ TransSqrs │ 0, 1, 6, 39, 292, 2505, 24306, 263431 │ +│ A111884 │ Lah │ Std │ TransAlts │ 1, -1, -1, -1, 1, 19, 151, 1091 │ +│ A111884 │ Lah │ Std │ TransAlts │ 1, -1, -1, -1, 1, 19, 151, 1091 │ +│ nothing │ Laguerre │ Rev │ TransNat1 │ 1, 3, 15, 97, 753, 6771, 68983, 783945 │ +└──────────┴────────────┴──────┴───────────┴─────────────────────────────────────────────┘ diff --git a/data/stripped b/data/stripped index c810179..50aa0ca 100644 --- a/data/stripped +++ b/data/stripped @@ -1,5 +1,5 @@ # OEIS Sequence Data (http://oeis.org/stripped.gz) -# Last Modified: April 1 03:24 UTC 2021 +# Last Modified: April 19 04:18 UTC 2021 # Use of this content is governed by the # OEIS End-User License: http://oeis.org/LICENSE A000001 ,0,1,1,1,2,1,2,1,5,2,2,1,5,1,2,1,14,1,5,1,5,2,2,1,15,2,2,5,4,1,4,1,51,1,2,1,14,1,2,2,14,1,6,1,4,2,2,1,52,2,5,1,5,1,15,2,13,2,2,1,13,1,2,4,267,1,4,1,5,1,4,1,50,1,2,3,4,1,6,1,52,15,2,1,15,1,2,1,12,1,10,1,4,2, @@ -5332,7 +5332,7 @@ A005327 ,1,0,1,6,91,2820,177661,22562946,5753551231,2940064679040,30076861666579 A005328 ,1,3,28,510,18631,1351413,194192398,55272612720,31184369778961,34909296450535023,77616063417393956368,343049603717222441078130,3016429354620114423122804491,52801416275268069417410827891833, A005329 ,1,1,3,21,315,9765,615195,78129765,19923090075,10180699028325,10414855105976475,21319208401933844325,87302158405919092510875,715091979502883286756577125,11715351900195736886933003038875,383876935713713710574133710574817125, A005330 ,1,5,40,644,21496,1471460,204062440,56865072164,31688930152696,35223651007587140,78001790003385408040,343983307379873262633284,3020895063527811952260491896,52843677532033943174017588842020,1841795434229559227318546660111716840, -A005331 ,1,2,5,20,179,4082,218225,25316720,6135834479,3047003143022,3067545380897645,6223557209578656620,25360384878802358268779,207167485813280961035481962,3389045635023473628621934703465, +A005331 ,1,2,5,20,179,4082,218225,25316720,6135834479,3047003143022,3067545380897645,6223557209578656620,25360384878802358268779,207167485813280961035481962,3389045635023473628621934703465,110960673463328354866093662279119720,7268699514166911556909103208203294815079, A005332 ,1,7,58,838,25171,1610977,214838128,58540023808,32208188445841,35543124039418147,78391002506394742198,344921660620756227029578,3025372940760065880037836511,52886001393832278158415800800117, A005333 ,1,5,205,36317,23679901,56294206205,502757743028605,17309316971673776957,2333508400614646874734621,1243000239291173897659593056765,2629967962392578020413552363565293565,22170252073745058975210005804934596601690557, A005334 ,1,1,34,7037,6317926,21073662977,251973418941994,10878710974408306717,1727230695707098000548430,1028983422758641650604161840065,2342608062302306704492272616530549874,20683716767972841770515007707311751484424893, @@ -6409,32 +6409,32 @@ A006404 ,1,1,2,5,10,29,96,339,1320,5473, A006405 ,1,1,2,5,9,24,70,222,785,3055, A006406 ,1,1,2,4,9,24,81,274,1071,4357,18416,80040,356109,1610910,7399114, A006407 ,1,1,2,4,8,20,58,177,630,2410,9772,41423,181586,814412,3722445, -A006408 ,4,39,190,651,1792,4242,8988,17490,31812, -A006409 ,10,190,1568,8344,33580,111100,317680,811096, -A006410 ,20,651,8344,64667,361884,1607125,5997992, -A006411 ,3,20,75,210,490,1008,1890,3300,5445,8580,13013,19110,27300,38080,52020,69768,92055,119700,153615,194810,244398,303600,373750,456300,552825,665028,794745,943950,1114760,1309440, -A006412 ,4,75,604,3150,12480,40788,115500,292578,677820,1459315, -A006413 ,5,210,3150,27556,170793,829920,3359356,11786190,36845718, +A006408 ,4,39,190,651,1792,4242,8988,17490,31812,54769,90090,142597,218400,325108,472056,670548,934116,1278795,1723414,2289903,3003616,3893670,4993300,6340230,7977060,9951669,12317634,15134665,18469056,22394152,26990832,32348008,38563140, +A006409 ,10,190,1568,8344,33580,111100,317680,811096,1891318,4094090,8328320,16071120,29636984,52540472,89974880,149432720,241497410,380839382,587453856,888181800,1318560100,1925051700,2767711440,3923348520,5489251950,7587551010,10370288640, +A006410 ,20,651,8344,64667,361884,1607125,5997992,19535997,57014776,151986562,375470160,869285378,1902886024,3966657702,7920130544,15220758070,28268206764,50910912965,89176474920,152305796565,254193384900,415363487955,665644575960,1047743815755, +A006411 ,3,20,75,210,490,1008,1890,3300,5445,8580,13013,19110,27300,38080,52020,69768,92055,119700,153615,194810,244398,303600,373750,456300,552825,665028,794745,943950,1114760,1309440,1530408,1780240,2061675,2377620,2731155,3125538, +A006412 ,4,75,604,3150,12480,40788,115500,292578,677820,1459315,2954952,5679700,10438272,18449760,31511880,52213596,84206100,132543411,204105220,308116050,456776320,666022500,956435220,1354315950,1892954700,2614113099,3569749200,4824012424, +A006413 ,5,210,3150,27556,170793,829920,3359356,11786190,36845718,104719524,274707420,672982128,1554007910,3407724936,7139933088,14366348780,27878652291,52364814150,95497666810,169546939380,293722986375,497527759560,825473130300,1343631834090, A006414 ,1,9,40,125,315,686,1344,2430,4125,6655,10296,15379,22295,31500,43520,58956,78489,102885,133000,169785,214291,267674,331200,406250,494325,597051,716184,853615,1011375,1191640,1396736,1629144,1891505,2186625,2517480,2887221, A006415 ,4,104,1020,6092,26670,94128,283338,754380,1821534,4061200, A006416 ,1,8,20,38,63,96,138,190,253,328,416,518,635,768,918,1086,1273,1480,1708,1958,2231,2528,2850,3198,3573,3976,4408,4870,5363,5888,6446,7038,7665,8328,9028,9766,10543,11360,12218,13118,14061,15048, -A006417 ,1,20,131,469,1262,2862,5780,10725,18647,30784,48713,74405, -A006418 ,1,38,469,3008,12843,42602,119042,293578,658021,1367170,2670203, +A006417 ,1,20,131,469,1262,2862,5780,10725,18647,30784,48713,74405,110284,159290,224946,311429,423645,567308,749023,976373,1258010,1603750,2024672,2533221,3143315,3870456,4731845,5746501,6935384,8321522,9930142,11788805,13927545,16379012, +A006418 ,1,38,469,3008,12843,42602,119042,293578,658021,1367170,2670203,4953136,8794967,15040494,24893192,40031954,62755945,96162286,144361777,212738384,308258755,439838594,618773310,859240970,1178886221,1599494506,2147766583,2856204064, A006419 ,0,1,7,37,176,794,3473,14893,63004,263950,1097790,4540386,18696432,76717268,313889477,1281220733,5219170052,21224674118,86188320962,349550141078,1416102710912,5731427140268,23177285611082,93655986978002,378195990166136,1526289367335244, -A006420 ,1,16,150,1104,7077,41504,228810,1205520,6135690,30391520,147277676,700990752,3286733805,15215673408, -A006421 ,1,30,449,4795,41850,319320,2213665,14283280,87169790,508887860,2865204762,15654301865, -A006422 ,4,47,240,831,2282,5362,11256,21690,39072,66649, -A006423 ,10,240,2246,12656,52164,173776,495820,1256992,2902702, -A006424 ,20,831,12656,109075,648792,2978245,11293436,36973989, -A006425 ,4,79,900,7885,59080,398846,2499096,14805705,83969600,459868530, -A006426 ,10,340,5846,71372,706068,6052840,46759630,333746556,2238411692, -A006427 ,20,1071,26320,431739,5494896,58677420,550712668,4681144391, -A006428 ,0,3,36,135,360,798,1568,2826,4770,7645,11748,17433, -A006429 ,0,4,135,1368,7350,28400,89073,241220,585057,1301420,2699125, -A006430 ,0,5,360,7350,73700,474588,2292790,9046807,30676440,92393015, +A006420 ,1,16,150,1104,7077,41504,228810,1205520,6135690,30391520,147277676,700990752,3286733805,15215673408,69675615234,316058238864,1421891923038,6350464644960,28179908990772,124327908683616,545691921346146,2383936774151616,10370479696102500, +A006421 ,1,30,449,4795,41850,319320,2213665,14283280,87169790,508887860,2865204762,15654301865,83388235348,434685964540,2223970137825,11194499812388,55546566721430,272142754971892,1318317357277470,6321681903231990,30037740651227756,141545610360126400, +A006422 ,4,47,240,831,2282,5362,11256,21690,39072,66649,108680,170625,259350,383348,552976,780708,1081404,1472595,1974784,2611763,3410946,4403718,5625800,7117630,8924760,11098269,13695192,16778965,20419886,24695592,29691552,35501576, +A006423 ,10,240,2246,12656,52164,173776,495820,1256992,2902702,6214208,12494482,23827440,43430088,76120288,128926232,211867328,338940050,529346384,809006814,1212404336,1784810764,2584951600,3688170980,5190163680,7211346870,9901950240,13447909290, +A006424 ,20,831,12656,109075,648792,2978245,11293436,36973989,107727724,285451894,699013380,1601397330,3465135024,7135903782,14072047976,26707904230,48991682628,87164772761,150869282184,254695011933,420306632200,679327313795,1077197343300,1678276223715, +A006425 ,4,79,900,7885,59080,398846,2499096,14805705,83969600,459868530,2447439384,12718070274,64766697520,324156347260,1598200903280,7776728909121,37404399901296,178060831286890,839857764202520,3928581810398630,18239060530882224,84101317494787684, +A006426 ,10,340,5846,71372,706068,6052840,46759630,333746556,2238411692,14277544216,87376309020,516495616120,2964332933800,16586670357200,90782049175614,487329793111260,2571575908919740,13364166071956280,68507393061864020,346874109053120616, +A006427 ,20,1071,26320,431739,5494896,58677420,550712668,4681144391,36786186216,271221867098,1896796135920,12688048319278,81709791432384,509222462694582,3083998029716868,18213177504318335,105186858991413976,595499805083872458,3311524095424508480, +A006428 ,0,3,36,135,360,798,1568,2826,4770,7645,11748,17433,25116,35280,48480,65348,86598,113031,145540,185115,232848,289938,357696,437550,531050,639873,765828,910861,1077060,1266660,1482048,1725768,2000526,2309195,2654820,3040623, +A006429 ,0,4,135,1368,7350,28400,89073,241220,585057,1301420,2699125,5282172,9842430,17584416,30289835,50530680,81940901,129557940,200246795,303220720,450674190,658545360,947426925,1343646044,1880535825,2599922780,3553856649,4806611060, +A006430 ,0,5,360,7350,73700,474588,2292790,9046807,30676440,92393015,252872984,639382605,1512137536,3377126024,7176513960,14599539314,28575632350,54036739617,99069119952,176618150000,306965183268,521265871700,866527603370,1412513294049, A006431 ,0,1,2,3,5,6,7,8,11,14,15,23,24,32,56,96,128,224,384,512,896,1536,2048,3584,6144,8192,14336,24576,32768,57344,98304,131072,229376,393216,524288,917504,1572864,2097152,3670016,6291456,8388608,14680064, -A006432 ,0,3,60,650,5352,37681,239752,1421226,7996160,43219990,226309800,1154900708, -A006433 ,0,4,175,3324,42469,429120,3711027,28723640,204598130,1366223880,8664086470, +A006432 ,0,3,60,650,5352,37681,239752,1421226,7996160,43219990,226309800,1154900708,5769562736,28312118565,136830224464,652656300122,3077631550512,14367512295274,66478236840680,305161336656876,1390869368495728,6298727501142218,28358908010334960, +A006433 ,0,4,175,3324,42469,429120,3711027,28723640,204598130,1366223880,8664086470,52673351080,309164754285,1761471681568,9783594370723,53154274959360,283267669144390,1484104565936920,7658877239935362,38993558097982312,196127054929939810, A006434 ,4,120,1230,7424,32424,113584,338742,893220,2136618,4721728,9770904, A006435 ,10,705,14478,154420,1092640,5826492,25240410,93203561,303143970,889015725, A006436 ,10,192,1630,8924,36834,124560,362934,941820,2227368,4881448,889015725, @@ -6469,10 +6469,10 @@ A006464 ,0,3,6,4,4,2,4,6,4,2,6,4,2,4,4,6,4,2,6,4,4,2,4,6,2,4,6,4,2,4,4,6,4,2,6,4 A006465 ,324,63,1,1023,64,1023,1,63,1023,1,63,1023,1,62,1,1023,63,1,1023,64,1023,1,63,1023,1,62,1,1023,64,1023,1,63,1023,1,62,1,1023,63,1,1023,63,1,1023,64,1023,1, A006466 ,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,2,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,2,1,2,1,1,1,1,1,1,1,2,1,1,1,1,2,1,2,1,1,1,1,2,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,2,1,2,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,2, A006467 ,0,4,3,1,3,5,1,3,5,3,3,1,5,3,1,3,3,5,3,1,3,5,1,3,3,5,3,1,5,3,1,3,5,3,3,1,3,5,1,3,5,3,3,1,5,3,1,3,5,3,3,1,3,5,1,3,3,5,3,1,5,3,1,3,3,5,3,1,3,5,1,3,5,3,3,1,5,3,1,3,3,5,3,1,3,5,1,3,3,5,3,1,5,3,1,3,3,5,3,1,3,5,1,3,5, -A006468 ,5,37,150,449,1113,2422,4788,8790,15213,25091,39754,60879,90545,131292, +A006468 ,5,37,150,449,1113,2422,4788,8790,15213,25091,39754,60879,90545,131292,186184,258876,353685,475665,630686,825517,1067913,1366706,1731900,2174770,2707965,3345615,4103442,4998875,6051169,7281528,8713232,10371768,12284965,14483133,16999206, A006469 ,10,79,340,1071,2772,6258,12768,24090,42702,71929,116116,180817,273000,401268,576096,810084,1118226,1518195,2030644,2679523,3492412,4500870,5740800,7252830,9082710,11281725,13907124,17022565,20698576,25013032,30051648,35908488, A006470 ,2,15,60,175,420,882,1680,2970,4950,7865,12012,17745,25480,35700,48960,65892,87210,113715,146300,185955,233772,290950,358800,438750,532350,641277,767340,912485,1078800,1268520,1484032,1727880,2002770,2311575,2657340,3043287,3472820,3949530,4477200,5059810,5701542,6406785,7180140, -A006471 ,5,84,650,3324,13020,42240,118998,300300,693693,1490060,3011580, +A006471 ,5,84,650,3324,13020,42240,118998,300300,693693,1490060,3011580,5779592,10608000,18728832,31957620,52907400,85261341,134115300,206402966,311417700,461446700,672534720,965396250,1366496820,1909325925,2635885980,3598423704,4861432400,6503955744,8622225920, A006472 ,1,1,3,18,180,2700,56700,1587600,57153600,2571912000,141455160000,9336040560000,728211163680000,66267215894880000,6958057668962400000,834966920275488000000,113555501157466368000000,17373991677092354304000000,2970952576782792585984000000, A006473 ,1,30,30240,1816214400,10137091700736000,7561714896123855667200000,1025113885554181044609786839040000000,32964677266721834921175915315161407370035200000000,318071672921132854486459356650996997744817246158245068800000000000, A006474 ,1,2,4,9,16,20,30,42,49,64, @@ -8678,7 +8678,7 @@ A008673 ,1,1,1,2,2,3,4,5,6,7,9,10,12,14,16,19,21,24,27,30,34,38,42,46,51,56,61,6 A008674 ,1,1,1,2,2,3,4,5,6,8,10,11,14,16,19,23,26,30,35,40,45,52,58,65,74,82,91,102,113,124,138,151,165,182,198,216,236,256,277,301,325,350,379,407,437,471,504,539,578,617,658,703,748,795,847,899,953,1012,1071,1133,1200,1267,1337,1413,1489,1568,1653, A008675 ,1,1,1,2,2,3,4,5,6,8,10,12,15,17,21,25,29,34,40,46,53,62,70,80,91,103,116,131,147,164,184,204,227,252,278,307,339,372,408,448,489,534,583,634,689,749,811,878,950,1025,1106,1192,1282,1378,1481,1588,1702,1823,1949,2083, A008676 ,1,0,0,1,0,1,1,0,1,1,1,1,1,1,1,2,1,1,2,1,2,2,1,2,2,2,2,2,2,2,3,2,2,3,2,3,3,2,3,3,3,3,3,3,3,4,3,3,4,3,4,4,3,4,4,4,4,4,4,4,5,4,4,5,4,5,5,4,5,5,5,5,5,5,5,6,5,5, -A008677 ,1,0,0,1,0,1,1,1,1,1,2,1,2,2,2,3,2,3,3,3,4,4,4,4,5,5,5,6,6,6,7,7,7,8,8,9,9,9,10,10,11,11,12,12,12,14,13,14,15,15,16,16,17,17,18,19,19,20,20,21,22,22,23,24,24,25, +A008677 ,1,0,0,1,0,1,1,1,1,1,2,1,2,2,2,3,2,3,3,3,4,4,4,4,5,5,5,6,6,6,7,7,7,8,8,9,9,9,10,10,11,11,12,12,12,14,13,14,15,15,16,16,17,17,18,19,19,20,20,21,22,22,23,24,24,25,26,26,27,28,29,29,30,31,31,33,33,34,35,35,37,37,38,39,40,41,41,43, A008678 ,1,0,0,1,0,1,1,1,1,2,2,1,3,2,3,4,3,4,5,5,5,7,6,7,9,8,9,11,11,11,14,13,14,17,16,18,20,20,21,24,24,25,29,28,30,34,33,35,39,39,41,45,45,47,52,52,54,59,59,62,67,67, A008679 ,1,0,0,1,1,0,1,1,1,1,1,1,2,1,1,2,2,1,2,2,2,2,2,2,3,2,2,3,3,2,3,3,3,3,3,3,4,3,3,4,4,3,4,4,4,4,4,4,5,4,4,5,5,4,5,5,5,5,5,5,6,5,5,6,6,5,6,6,6,6,6,6,7,6,6,7,7,6,7,7,7,7,7,7,8,7, A008680 ,1,0,0,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,6,7,8,8,8,9,10,10,11,11,12,13,13,14,15,15,16,17,18,18,19,20,21,22,22,23,25,25,26,27,28,29,30,31,32,33,34,35,37,37,38,40,41,42,43,44,46,47,48,49,51,52,53,55,56,57, @@ -11758,7 +11758,7 @@ A011753 ,11,20,30,420,5460,60060,746130,80059980,900029130,10407767370,110086937 A011754 ,1,2,2,4,3,6,6,5,6,8,9,13,10,11,14,15,11,14,14,17,17,20,19,22,16,18,24,30,25,25,25,26,26,34,29,32,27,34,36,32,28,39,38,39,34,34,45,38,41,33,41,46,42,35,39,42,39,40,42,48,56,56,49,57,56,51,45,47,55,55,64,68,58, A011755 ,1,3,9,17,37,49,91,123,177,217,327,375,531,615,735,863,1135,1243,1585,1745,1997,2217,2723,2915,3415,3727,4213,4549,5361,5601,6531,7043,7703,8247,9087,9519,10851,11535,12471,13111,14751,15255,17061,17941,19021,20033, A011756 ,2,5,13,29,47,73,107,151,197,257,317,397,467,571,659,769,883,1019,1151,1291,1453,1607,1783,1987,2153,2371,2593,2791,3037,3307,3541,3797,4073,4357,4657,4973,5303,5641,5939,6301,6679,7019,7477, -A011757 ,2,7,23,53,97,151,227,311,419,541,661,827,1009,1193,1427,1619,1879,2143,2437,2741,3083,3461,3803,4211,4637,5051,5519,6007,6481,6997,7573,8161,8737,9341,9931,10627,11321,12049,12743,13499,14327, +A011757 ,2,7,23,53,97,151,227,311,419,541,661,827,1009,1193,1427,1619,1879,2143,2437,2741,3083,3461,3803,4211,4637,5051,5519,6007,6481,6997,7573,8161,8737,9341,9931,10627,11321,12049,12743,13499,14327,15101,15877,16747,17609,18461, A011758 ,1,1,1,1,1,-1,-1,1,1,-1,1,-1,1, A011759 ,0,0,0,0,0,1,1,0,0,1,0,1,0, A011760 ,1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69, @@ -14343,7 +14343,7 @@ A014338 ,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 A014339 ,1,1,0,-1,-1,-1,0,1,1,0,0,-1,-1,0,1,1,1,0,-1,-1,0,0,1,1,0,-1,-1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,-1,-1,-1,0,1,1,0,0,-1,-1,0,1,1,1,0,-1,-1,0,0,1,1,0,-1, A014340 ,0,0,0,0,24,240,2040,15120,106680,726768,4861560,32126160,210749880,1375923120,8955795576,58177326480,377439735480,2446686537840,15851581501560,102662600100432,664738663537080, A014341 ,0,0,0,0,1,10,85,630,4445,30282,202565,1338590,8781245,57330130,373158149,2424055270,15726655645,101945272410,660482562565,4277608337518,27697444314045,179313224367970, -A014342 ,4,12,29,58,111,188,305,462,679,968,1337,1806,2391,3104,3953,4978,6175,7568,9185,11030,13143,15516,18177,21150,24471,28152,32197,36678,41543,46828,52621,58874,65659,73000,80949,89462,98631,108396,118869,130102, +A014342 ,4,12,29,58,111,188,305,462,679,968,1337,1806,2391,3104,3953,4978,6175,7568,9185,11030,13143,15516,18177,21150,24471,28152,32197,36678,41543,46828,52621,58874,65659,73000,80949,89462,98631,108396,118869,130102,142071, A014343 ,8,36,114,291,669,1386,2678,4851,8373,13858,22134,34263,51635,75972,109374,154483,214383,292812,394148,523521,686901,891112,1143936,1454187,1831973,2288400,2836044,3488969,4262541,5173836,6241612,7486437,8930649,10598848, A014344 ,16,96,376,1160,3121,7532,16754,34796,68339,127952,229956,398688,669781,1094076,1742710,2713604,4139111,6195712,9115304,13199072,18833449,26509260,36843322,50603884,68740107,92414192,123039628,162323200,212312453,275448380, A014345 ,4,12,38,118,362,1082,3166,8910,24426,64226,165262,413418,1021362,2490686,6009150,14401410,34098042,80281962,187356750,432549154,992941250,2256712462,5088826238,11408805862,25425739346,56383362854,124565557898,274390550594, @@ -24451,7 +24451,7 @@ A024446 ,1,31,638,10982,171171,2506917,35201776,479688604,6392929061,83765551883 A024447 ,0,6,31,101,288,652,1349,2451,4222,7122,11121,17041,25118,35352,48559,65943,88422,115262,148829,189157,235804,292052,357705,435491,528902,635962,755545,890793,1040232,1207472,1409783,1635103,1888690,2165022,2481945, A024448 ,30,247,1358,5102,16186,41817,98190,220628,441410,852887,1551568,2631642,4293186,6866813,10757450,16151192,23873746,34440605,48249066,66877582,91117898,122953643,165196270,218615372,284119458,364962773,462059210,579605426,732954370, A024449 ,210,2927,20581,107315,414849,1376640,4224150,11063618,27395788,62364155,129081579,252768753,480307611,885449578,1541654028,2623783892,4318819858,6832984023,10644660237,16195499543,24304992465,36231495836,52916319106,75433702422, -A024450 ,4,13,38,87,208,377,666,1027,1556,2397,3358,4727,6408,8257,10466,13275,16756,20477,24966,30007,35336,41577,48466,56387,65796,75997,86606,98055,109936,122705,138834,155995,174764,194085,216286,239087,263736,290305, +A024450 ,4,13,38,87,208,377,666,1027,1556,2397,3358,4727,6408,8257,10466,13275,16756,20477,24966,30007,35336,41577,48466,56387,65796,75997,86606,98055,109936,122705,138834,155995,174764,194085,216286,239087,263736,290305,318194, A024451 ,0,1,5,31,247,2927,40361,716167,14117683,334406399,9920878441,314016924901,11819186711467,492007393304957,21460568175640361,1021729465586766997,54766551458687142251,3263815694539731437539,201015517717077830328949,13585328068403621603022853, A024452 ,1,3,5,10,15,23,31,42,55,69,86,105,125,148,173,200,230,262,296,331,369,409,452,498,547,597,649,702,757,819,883,950,1017,1090,1164,1240,1320,1402,1487,1574,1663,1757,1851,1948, A024453 ,3,14,48,124,279,543,981,1710,2758,4329,6519,9365,13088,18023,24448,32237,42031,53897,67765,84548,104253,127677,155845,188299,224778,266201,312202,363845,426136,495751,574268,660165,758682,865898,984968,1116797, @@ -27438,7 +27438,7 @@ A027433 ,0,2,18,116,646,3324,16302,77356,358424,1630988,7317424,32458400,1426385 A027434 ,2,3,4,4,5,5,6,6,6,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15,15,15,15,15,15,16,16,16,16,16,16,16,16,17,17,17,17,17,17,17,17,18,18,18,18, A027435 ,1,2,4,6,10,11,17,21,27,29,39,42,54,57,62,70,86,89,107,113,120,125,147,152,172,178,196,204,232,236,266,282,294,302,320,329,365,374,388,400,440,446,488,501,518,529,575,586,628,638,657,672,724,733,758,778, A027436 ,0,1,2,-4,16,-80,432,-2304,10944,-35328,-74112,2736384,-30853632,238663680,-1247457280,2201247744,32530722816,-320650199040,156266184704,18314630348800,-20667999748096,-3428200020508672, -A027437 ,2,5,10,21,43,86,173,347,695,1391,2783,5567,11134,22268,44536,89072,178145,356290,712581,1425162,2850325,5700650,11401300,22802600,45605201,91210402,182420805,364841611, +A027437 ,2,5,10,21,43,86,173,347,695,1391,2783,5567,11134,22268,44536,89072,178145,356290,712581,1425162,2850325,5700650,11401300,22802600,45605201,91210402,182420805,364841611,729683222,1459366444,2918732888,5837465777,11674931554, A027438 ,2,5,5,7,43,43,173,347,139,107,23,293,293,293,293,293,79,79,883,883,114013,114013,114013,114013,1232573,1232573,1499,364841611,364841611,364841611,364841611,170801,170801,56812319,56812319,56812319,56812319, A027439 ,1,4,11,27,65,158,388,957,2362,5827,14369,35427,87344,215348,530953,1309104,3227695,7958119,19621313,48377742,119278760,294090269,725100502,1787786943,4407916069,10868031067, A027440 ,1,3,4,6,8,10,12, @@ -27837,7 +27837,7 @@ A027832 ,1,5,14,315,2634,301262,8035168,4451407563,392447922178,1028823851939030 A027833 ,1,2,2,3,3,4,3,6,2,5,2,6,2,2,4,3,5,3,4,5,12,2,6,9,6,5,4,3,4,20,2,2,4,4,19,2,3,2,4,8,11,5,3,3,3,10,5,4,2,17,3,6,3,3,9,9,2,6,2,6,5,6,2,3,2,3,9,4,7,3,7,20,4,7,6,5,3,7,3,20,2,14,4,10,2,3,6,4,2,2,7,2,6,3, A027834 ,1,9,296,20958,2554344,474099840,124074010080,43429847756400,19565965561887360,11018376449767451520,7579467449864423769600,6251471405353507523097600,6087988343847192559805952000,6910412728595671664966422425600,9042510998634333921282477985689600, A027835 ,1,6,52,892,21291,658885,24617866,1077142765,53918557215,3036369842197,189881640057942,13051044976503663,977672716919010876,79267586388173032966,6914956215333832011058,645771787789692953182732,64277686448923785217048191,6793045601578652098886514581,759656437858515775195264228768,89619947709601175930862298926038, -A027836 ,1,2,8,43,268,1824,13156,98865,765948,6075256,49094708,402801425,3346590068,28099903160,238079915640,2032914717645,17476713955548,151143219598008,1314045772469632,11478299163026540,100688538612524720, +A027836 ,1,2,8,43,268,1824,13156,98865,765948,6075256,49094708,402801425,3346590068,28099903160,238079915640,2032914717645,17476713955548,151143219598008,1314045772469632,11478299163026540,100688538612524720,886622619082002120,7834289222109530340, A027837 ,1,7,97,2143,68641,3011263,173773153,12785668351,1169623688353,130305512589247,17376934722756577,2733655173624167551,501034099176714373921,105847486567006696384831, A027838 ,1,7,22,111,486,3772,29142,275871,2830459,32028882,392744078,5201524044,73943424582,1123603726896,18176728661832,311951284854975,5661698774848910,108355867352001811,2181096921557783966,46066653293892718506,1018705098450761473704, A027839 ,1,15,124,2431,68766,3025596,173773496,12786773247,1169623901221,130305653188890,17376934722757908,2733655198336260124,501034099176714376118,105847486572700895182728,25534322201330399433420024,6976464857439636995547805183, @@ -33511,7 +33511,7 @@ A033506 ,1,3,22,131,823,5096,31687,196785,1222550,7594361,47177097,293066688,182 A033507 ,1,5,71,823,10012,120465,1453535,17525619,211351945,2548684656,30734932553,370635224561,4469527322891,53898461609719,649966808093412,7838012982224913,94519361817920403,1139818186429110279,13745178487929574337,165754445655292452448, A033508 ,1,8,228,5096,120465,2810694,65805403,1539222016,36012826776,842518533590,19711134149599,461148537211748,10788744980331535,252406631116215534,5905146419664967132,138153075553825008696, A033509 ,1,13,733,31687,1453535,65805403,2989126727,135658637925,6158217253688,279533139565077,12688781322524383,575975678462394151,26145024935911561519,1186789728933332428003,53871436268769248658909, -A033510 ,1,21,2356,196785,17525619,1539222016,135658637925,11945257052321,1052091957273408,92657526436631289,8160498611028648795,718704019165239462736,63297158846544276862187, +A033510 ,1,21,2356,196785,17525619,1539222016,135658637925,11945257052321,1052091957273408,92657526436631289,8160498611028648795,718704019165239462736,63297158846544276862187,5574656798624151746571203,490966794038702258639391536,43240039834820302340627322251, A033511 ,1,34,7573,1222550,211351945,36012826776,6158217253688,1052091957273408,179788343101980135,30721240815429999078,5249581929453966097649,897032469743945346623442,153282416794739031814924079,26192460807219455656314349664, A033512 ,1,55,24342,7594361,2548684656,842518533590,279533139565077,92657526436631289,30721240815429999078,10185111919160666118608,3376771882017849561260401,1119528305492897225312120742,371166848426649070379972358241,123056076089539426001744759117065, A033513 ,1,89,78243,47177097,30734932553,19711134149599,12688781322524383,8160498611028648795,5249581929453966097649,3376771882017849561260401,2172138783673094193937750015,1397239543795157686038029989037,898783117890438425073750503319527, @@ -33641,14 +33641,14 @@ A033636 ,1,21,1025310,393143628567690,4161601591128480023923529880,3025979870886 A033637 ,1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,18,20,21,22,24,25,27,28,30,32,33,35,36,40,42,44,45,48,49,50,54,55,56,60,63,64,66,70,72,75,77,80,81,84,88,90,96,98,99,100,101,105,108,110,112,120,121,125,126,128,132,135,140, A033638 ,1,1,2,3,5,7,10,13,17,21,26,31,37,43,50,57,65,73,82,91,101,111,122,133,145,157,170,183,197,211,226,241,257,273,290,307,325,343,362,381,401,421,442,463,485,507,530,553,577,601,626,651,677,703,730,757,785,813,842, A033639 ,1,1,1,2,1,2,3,6,1,3,4,13,4,11,21,49,13,17,24,62,66,103,145,338,128,297,376,1156,763,1564,2592,6451,376,1532,1139,4235,4124,11714,8735,26105,5263,21212,18122,77153,35210,100649,135748,369972,95275,207638, -A033640 ,1,1,2,1,3,7,6,20,52,6,26,104,32,162,460,356,1438,4048,712,3588,15272,5012,27460,90476,64944,300816,912472,90476,155420,611656,1067892,1770024,4763360,4151704,14746316,39566064,8915064,27813084,109938548, +A033640 ,1,1,2,1,3,7,6,20,52,6,26,104,32,162,460,356,1438,4048,712,3588,15272,5012,27460,90476,64944,300816,912472,90476,155420,611656,1067892,1770024,4763360,4151704,14746316,39566064,8915064,27813084,109938548,76294212,222960908, A033641 ,1,1,2,6,2,8,18,62,36,160,392,1496,1176,5664,14856,61560,5664,20520,102600,313464,123120,539184,1514952,5207160,3569088,15498360,43342056,164591976,145524528,682642512,1966450584,8092803816,1365285024, A033642 ,1,1,2,6,24,6,30,66,228,978,456,2412,5736,22032,99600,66096,364896,928080,3878928,18299952,15515712,88715520,239493888,1073343744,5251350528,239493888,1312837632,7877025792,23870571264,96795122688, A033643 ,1,1,2,6,24,120,24,144,312,1080,4632,24240,9264,57744,134016,517536,2338176,12725952,7014528,45192384,111428352,469862208,2213733888,12478256064,8854935552,58767959808,152955661824,693938824704, A033644 ,1,1,2,6,24,120,720,120,840,1800,6240,26760,140040,867000,280080,2014080,4588320,17793120,80349120,437331840,2784689280,1311995520,9666063360,23268113280,98802529920,465014459520,2621479887360, A033645 ,1,1,2,6,24,120,720,5040,720,5760,12240,42480,182160,953280,5901840,42266160,11803680,96336000,216279360,841510080,3798599040,20676015360,131653290240,962925062400,394959870720,3283735057920,7752349728000, A033646 ,1,1,2,6,24,120,720,5040,40320,5040,45360,95760,332640,1426320,7464240,46211760,330946560,2693784240,661893120,6049461600,13422709440,52367051520,236313624960,1286302227840,8190440616960,59905688774400, -A033647 ,1,1,2,6,24,120,720,5040,40320,362880,40320,403200,846720,2943360,12620160,66044160,408885120,2928240000,23834805120,217441486080,47669610240,482552582400,1060444385280,4146438320640,18706642053120, +A033647 ,1,1,2,6,24,120,720,5040,40320,362880,40320,403200,846720,2943360,12620160,66044160,408885120,2928240000,23834805120,217441486080,47669610240,482552582400,1060444385280,4146438320640,18706642053120,101826086906880,648369805547520, A033648 ,3,6,12,33,66,132,363,726,1353,4884,9768,18447,92928,175857,934428,1758867,9447438,17794887,96644658,182289327,906271608,1712444217,8836886388,17673772776,85401510447,159803020905,668823329856,1327746658722,3606313135953,7201626272016, A033649 ,5,10,11,22,44,88,176,847,1595,7546,14003,44044,88088,176176,847847,1596595,7553546,14007103,44177144,88354288,176599676,853595347,1597190705,6668108656,13236127322,35608290553, A033650 ,7,14,55,110,121,242,484,968,1837,9218,17347,91718,173437,907808,1716517,8872688,17735476,85189247,159487405,664272356,1317544822,3602001953,7193004016,13297007933,47267087164, @@ -34697,7 +34697,7 @@ A034692 ,1,2,5,23,455,197447,38895873863,1512881323770591465287,2288809899755012 A034693 ,1,1,2,1,2,1,4,2,2,1,2,1,4,2,2,1,6,1,10,2,2,1,2,3,4,2,4,1,2,1,10,3,2,3,2,1,4,5,2,1,2,1,4,2,4,1,6,2,4,2,2,1,2,2,6,2,4,1,12,1,6,5,2,3,2,1,4,2,2,1,8,1,4,2,2,3,6,1,4,3,2,1,2,4,12,2,4,1,2,2,6,3,4,3,2,1,4,2, A034694 ,2,3,7,5,11,7,29,17,19,11,23,13,53,29,31,17,103,19,191,41,43,23,47,73,101,53,109,29,59,31,311,97,67,103,71,37,149,191,79,41,83,43,173,89,181,47,283,97,197,101,103,53,107,109,331,113,229,59,709,61,367,311, A034695 ,1,6,6,21,6,36,6,56,21,36,6,126,6,36,36,126,6,126,6,126,36,36,6,336,21,36,56,126,6,216,6,252,36,36,36,441,6,36,36,336,6,216,6,126,126,36,6,756,21,126,36,126,6,336,36,336,36,36,6,756,6,36,126,462,36,216,6,126, -A034696 ,4,12,20,37,44,82,68,118,117,182,124,296,164,274,298,375,236,512,268,612,462,502,332,950,509,650,642,924,436,1310,508,1108,858,910,970,1831,628,1054,1078,1942,716,2034, +A034696 ,4,12,20,37,44,82,68,118,117,182,124,296,164,274,298,375,236,512,268,612,462,502,332,950,509,650,642,924,436,1310,508,1108,858,910,970,1831,628,1054,1078,1942,716,2034,764,1680,1764,1294,844,2968,1197,2136,1522, A034697 ,1,1,2,3,2,3,4,5,2,3,4,5,4,5,6,5,2,3,4,5,4,7,6,7,4,3,6,3,6,7,6,7,2,7,4,7,4,5,6,7,4,5,8,9,6,5,8,9,4,5,4,5,6,7,4,7,6,7,8,9,6,7,8,7,2,7,8,9,4,9,8,9,4,5,6,5,6,9,8,9, A034698 ,2,7,31,113,233,647,1487,4919,6329,7951,26833,47737,53623,128959,135697,142327,1312777,3178289,6061607,26564393,32426081,102958417,209074609,323901311,587709359,1006009759,1029482303,9876033449,11061524183,15821898167,27926616007, A034699 ,1,2,3,4,5,3,7,8,9,5,11,4,13,7,5,16,17,9,19,5,7,11,23,8,25,13,27,7,29,5,31,32,11,17,7,9,37,19,13,8,41,7,43,11,9,23,47,16,49,25,17,13,53,27,11,8,19,29,59,5,61,31,9,64,13,11,67,17,23,7,71,9,73,37,25,19,11,13,79, @@ -41003,9 +41003,9 @@ A040998 ,2,5,11,29,41,59,71,89,101,131,149,179,181,191,199,211,239,241,251,269,2 A040999 ,3,7,13,17,19,23,31,37,43,47,53,61,67,73,79,83,97,103,107,109,113,127,137,139,151,157,163,167,173,193,197,223,227,229,233,257,263,271,277,283,293,307,313,317,331,337,347,349,353,367,373,383,397, A041000 ,2,3,5,7,0,2,6,8,1,7,2,4,3,1,3,2,4,5,1,6,4,2,5,1,2,0,2,6,8,1,4,1,3,5,4,3,1,2,0,3,1,6,7,5,1,1,0,1,3,5,2,4,1,2,0,1,1,4,2,5,3,4,4,1,1,3,1,1,0,2,1,1,2,1,1,2,2,1,3,5,4,1,0,2,2,3,1,2,1,1,3,2,3,4,4,2,4,2,0,0,2,3,2,2,1,5, A041001 ,1,14,125,906,5810,34364,191901,1026610,5312230,26767940,131990066,639210404,3048892740,14354652152,66828135005,308078809794,1408022619806,6385966846580,28765327498278,128777533131500, -A041002 ,1,3,4,7,14,18,19,20,22,23,25,26,28,29,30,31,35,36,37,38,40,41,42,45,48,49,50,52, -A041003 ,1,1,1,2,3,3,4,6,7,8,10,12,14,16,20,23,26,30,36,41,47,55,64,73,83,96,111,125,144,165,187,211,241,272,306,346,391,439,493,553,622,695,779,871,974,1086,1211,1348,1502,1671, -A041004 ,1,1,0,1,1,0,0,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,1,1,0,1,1,0,1,1,1,1,0,0,0,1,1,1,1,0,1,1,1,0,0,1,0,0,1,1,1,0,1, +A041002 ,1,3,4,7,14,18,19,20,22,23,25,26,28,29,30,31,35,36,37,38,40,41,42,45,48,49,50,52,54,55,57,59,63,67,70,71,73,79,80,83,85,87,90,91,93,94,98,100,101,102,103,106,108,110,111,112,116,117,121,124,132,135,137,142,143,144, +A041003 ,1,1,1,2,3,3,4,6,7,8,10,12,14,16,20,23,26,30,36,41,47,55,64,73,83,96,111,125,144,165,187,211,241,272,306,346,391,439,493,553,622,695,779,871,974,1086,1211,1348,1502,1671,1857,2061,2288,2533,2808,3107,3439,3800,4199,4634,5113, +A041004 ,1,1,0,1,1,0,0,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,1,1,0,1,1,0,1,1,1,1,0,0,0,1,1,1,1,0,1,1,1,0,0,1,0,0,1,1,1,0,1,0,1,1,0,1,0,1,0,0,0,1,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,1,1,0,0,1,0,1,0,1,0,0,1, A041005 ,1,16,159,1260,8722,55152,326811,1844084,10015566,52754624,270976342,1362986520,6734927460,32775704608,157408497171,747269225028,3511471892470,16351481223840,75525932249922,346305571781224, A041006 ,2,5,22,49,218,485,2158,4801,21362,47525,211462,470449,2093258,4656965,20721118,46099201,205117922,456335045,2030458102,4517251249,20099463098,44716177445,198964172878,442644523201,1969542265682,4381729054565,19496458483942, A041007 ,1,2,9,20,89,198,881,1960,8721,19402,86329,192060,854569,1901198,8459361,18819920,83739041,186298002,828931049,1844160100,8205571449,18255302998,81226783441,180708869880, @@ -46151,7 +46151,7 @@ A046146 ,0,0,1,2,3,3,5,5,0,5,7,8,0,11,5,0,0,14,11,15,0,0,19,21,0,23,19,23,0,27,0 A046147 ,1,2,3,2,3,5,3,5,2,5,3,7,2,6,7,8,2,6,7,11,3,5,3,5,6,7,10,11,12,14,5,11,2,3,10,13,14,15,7,13,17,19,5,7,10,11,14,15,17,19,20,21,2,3,8,12,13,17,22,23,7,11,15,19,2,5,11,14,20,23,2,3,8,10,11,14,15,18,19,21,26, A046148 ,10,1,9,12,20,2430,5229,7448,282852,88200,8015040,200676960,2701775518,24655323238,15765750,1715313600,59049874884,1112489914536,14162129381400,135917876094000,1050596838951660,6832549561749912,38554260751029408,193081920969057120, A046149 ,0,77,679,6788,68889,168889,2677889,26888999,126888999,3778888999,13778888999,113778888999,1113778888999,11113778888999,277777788888899,1277777788888899,11277777788888899,111277777788888899, -A046150 ,9,77,976,8876,98886,997762,9999996,99988862,999888621,9998888773,99988887731,999888877311,9998888773111,99988887731111,998888887777772,9988888877777721,99999999998777772,999999999987777721, +A046150 ,9,77,976,8876,98886,997762,9999996,99988862,999888621,9998888773,99988887731,999888877311,9998888773111,99988887731111,998888887777772,9988888877777721,99999999998777772,999999999987777721,9999999999877777211,99999999998777772111, A046151 ,0,1,5,7,19,11,41,31,53,39,109,47,155,83,119,127,271,107,341,159,251,219,505,191,499,311,485,335,811,239,929,511,659,543,839,431,1331,683,935,639,1639,503,1805,879,1079,1011,2161,767,2057,999, A046152 ,2,3,7,9,21,13,43,33,55,41,111,49,157,85,121,129,273,109,343,161,253,221,507,193,501,313,487,337,813,241,931,513,661,545,841,433,1333,685,937,641,1641,505,1807,881,1081,1013,2163,769,2059,1001, A046153 ,3,11,79,23,127,191,1114111,1151,5119,6143,654311423,172031,88774955854727217151,1618481116086271,107221699928436768767,7421703487487,120946279055359,145135534866431,47287796087390207, @@ -46165,11 +46165,11 @@ A046160 ,2,5,6,9,11,14,15,18,21,23,27,30,33, A046161 ,1,2,8,16,128,256,1024,2048,32768,65536,262144,524288,4194304,8388608,33554432,67108864,2147483648,4294967296,17179869184,34359738368,274877906944,549755813888,2199023255552,4398046511104,70368744177664, A046162 ,0,1,4,3,16,25,12,49,64,27,100,121,48,169,196,75,256,289,108,361,400,147,484,529,192,625,676,243,784,841,300,961,1024,363,1156,1225,432,1369,1444,507,1600,1681,588,1849,1936,675,2116,2209,768,2401,2500, A046163 ,1,7,13,7,31,43,19,73,91,37,133,157,61,211,241,91,307,343,127,421,463,169,553,601,217,703,757,271,871,931,331,1057,1123,397,1261,1333,469,1483,1561,547,1723,1807,631,1981,2071,721,2257,2353,817,2551,2653, -A046164 ,0,10,112,512, +A046164 ,0,10,112,512,2138,7676,26034,87388,283436,910035, A046165 ,1,1,2,8,49,462,6424,129425,3731508,152424420,8780782707,710389021036,80610570275140,12815915627480695,2855758994821922882,892194474524889501292,391202163933291014701953,240943718535427829240708786,208683398342300491409959279244, A046166 ,0,0,0,0,1,171,17066,1298346,83384427,4762648737,249485204452,12226539786912,568267449522773,25296121946918823,1086375882592194558,45264846407024660598,1837809636559394481439,72965749033508656346829, A046167 ,0,0,0,0,0,1,420,100814,18151560,2723868147,359750257020,43199991728608,4817721638970240,506352103838393813,50691406225311551700,4872449650707855334482,452435489306282260691640, -A046168 ,0,0,0,0,0,0,0,1,2259,2835075,2609269245,1964842113102,1282310235724518,751046094737039530,403981152738311915910,202813559477327441603103,96164301413883629093787477, +A046168 ,0,0,0,0,0,0,0,1,2259,2835075,2609269245,1964842113102,1282310235724518,751046094737039530,403981152738311915910,202813559477327441603103,96164301413883629093787477,43451168714121294538702462965,18840049876438047870808567312395, A046169 ,0,0,0,0,0,0,0,0,1,5065,14109865,28586753635,47057782540912,66738127617591430,84508389361603849070,97838285747685771503930,105306724888534860425617883,106678207181565103216667658695, A046170 ,1,2,5,12,30,73,183,456,1151,2900,7361,18684,47652,121584,311259,797311,2047384,5260692,13542718,34884239,89991344,232282110,600281932,1552096361,4017128206,10401997092,26957667445,69892976538, A046171 ,1,2,5,13,36,98,272,740,2034,5513,15037,40617,110188,296806,802075,2155667,5808335,15582342,41889578,112212146,301100754,805570061,2158326727,5768299665,15435169364,41214098278,110164686454, @@ -46217,18 +46217,18 @@ A046212 ,1,1,1,6,1,30,1,140,1,630,1,2772,1,12012,1,51480,1,218790,1,923780,1,387 A046213 ,1,1,1,1,1,1,1,1,1,2,1,1,1,1,3,2,3,2,1,1,1,1,5,2,3,1,5,2,1,1,1,1,7,2,11,2,11,2,7,2,1,1,1,1,9,2,9,1,11,1,9,1,9,2,1,1,1,1,11,2,27,2,20,1,20,1,27,2,11,2,1,1,1,1,13,2,19,1,67,2,40,1,67,2,19,1,13,2,1,1,1,1,15,2, A046214 ,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,3,2,3,1,1,1,1,2,5,1,3,2,5,1,1,1,1,2,7,2,11,2,11,2,7,1,1,1,1,2,9,1,9,1,11,1,9,2,9,1,1,1,1,2,11,2,27,1,20,1,20,2,27,2,11,1,1,1,1,2,13,1,19,2,67,1,40,2,67,1,19,2,13,1,1,1,1,2,15,2, A046215 ,2,3,2,3,2,5,2,3,5,2,7,2,11,2,11,2,7,2,9,2,9,11,9,9,2,11,2,27,2,20,20,27,2,11,2,13,2,19,67,2,40,67,2,19,13,2,15,2,51,2,105,2,147,2,147,2,105,2,51,2,15,2,17,2,33,78,126,147,126,78,33,17,2,19,2,83,2,111,204, -A046216 ,2,2,3,2,3,2,5,3,2,5,2,7,2,11,2,11,2,7,2,9,9,11,9,2,9,2,11,2,27,20,20,2,27,2,11,2,13,19,2,67,40,2,67,19,2,13,2,15,2,51, +A046216 ,2,2,3,2,3,2,5,3,2,5,2,7,2,11,2,11,2,7,2,9,9,11,9,2,9,2,11,2,27,20,20,2,27,2,11,2,13,19,2,67,40,2,67,19,2,13,2,15,2,51,2,105,2,147,2,147,2,105,2,51,2,15,2,17,33,78,126,147,126,78,33,2,17,2, A046217 ,3,3,5,3,5,7,11,11,7,9,9,11,9,9,11,27,20,20,27,11,13,19,67,40,67,19,13,15,51,105,147,147,105,51,15,17,33,78,126,147,126,78,33,17,19,83,111,204,273,273,204,111,83,19,21,51,305,315,477,546,477,315,305,51,21,23, -A046218 ,1,1,1,1,1,1,1,3,3,1,1,5,3,5,1,1,7,11,11,7,1,1,9,9,11,9,9,1,1,11,27,20,20,27,11,1,1,13,19,67,40,67,19,13,1,1,15,51,105,147,147,105,51, -A046219 ,1,1,1,1,2,1,1,2,2,1,1,2,1,2,1,1,2,2,2,2,1,1,2,1,1,1,2,1,1,2,2,1,1,2,2,1,1,2,1,2,1,2,1,2,1,1,2,2,2,2,2,2,2,2,1,1,2, +A046218 ,1,1,1,1,1,1,1,3,3,1,1,5,3,5,1,1,7,11,11,7,1,1,9,9,11,9,9,1,1,11,27,20,20,27,11,1,1,13,19,67,40,67,19,13,1,1,15,51,105,147,147,105,51,15,1,1,17,33,78,126,147,126,78,33,17,1,1,19,83,111,204, +A046219 ,1,1,1,1,2,1,1,2,2,1,1,2,1,2,1,1,2,2,2,2,1,1,2,1,1,1,2,1,1,2,2,1,1,2,2,1,1,2,1,2,1,2,1,2,1,1,2,2,2,2,2,2,2,2,1,1,2,1,1,1,1,1,1,1,2,1,1,2,2,1,1,1,1,1,1,2,2,1,1,2,1,2,1,1,1,1,1, A046220 ,1,2,3,5,7,11,9,27,20,13,19,67,40,15,51,105,147,17,33,78,126,83,111,204,273,21,305,315,477,546,23,123,407,935,792,1023,25,73,265,671,2519,1815,2046,171,338,936,3861,6149,29,99,847,1274,5733,5005,13871,7722, -A046221 ,1,1,1,1,1,1,1,3,3,1,1,5,3,5,1,1,7,11,11,7,1,1,9,9,11,9,9,1,1,11,27,27,11,1,1,13,19,67,67,19,13,1,1,15,51,105,147,147,105,51, +A046221 ,1,1,1,1,1,1,1,3,3,1,1,5,3,5,1,1,7,11,11,7,1,1,9,9,11,9,9,1,1,11,27,27,11,1,1,13,19,67,67,19,13,1,1,15,51,105,147,147,105,51,15,1,1,17,33,147,33,17,1,1,19,83,111,273,273,111,83,19,1,1,21,51, A046222 ,1,1,1,2,3,1,11,1,40,1,147,1,546,1,2046,1,7722,1,29315,1,111826,1,428298,1,1646008,1,6344366,1,24515700,1,94942620,1,368404110,1,1431985635,1,5574725970,1,21732560850,1,84828633120,1,331488081210,1, A046223 ,1,1,2,1,1,3,1,11,1,40,1,147,1,546,1,2046,1,7722,1,29315,1,111826,1,428298,1,1646008,1,6344366,1,24515700,1,94942620,1,368404110,1,1431985635,1,5574725970,1,21732560850,1,84828633120,1,331488081210,1, A046224 ,1,2,3,11,40,147,546,2046,7722,29315,111826,428298,1646008,6344366,24515700,94942620,368404110,1431985635,5574725970,21732560850,84828633120,331488081210,1296712152060,5077282282020,19897457591700,78039200913102,306302623291476, -A046225 ,1,1,1,1,3,2,1,1,5,2,1,1,11,2,7,2,1,1,9,1,9,2,1,1,20,1,27,2,11,2,1,1,67,2,19,1,13,2,1,1,147,2,105,2,51,2,15,2,1,1,126,1,78,1,33,1,17,2,1,1, -A046226 ,1,1,1,1,2,3,1,1,2,5,1,1,2,11,2,7,1,1,1,9,2,9,1,1,1,20,2,27,2,11,1,1,2,67,1,19,2,13,1,1,2,147,2,105,2,51,2,15,1,1,1,126,1,78,1,33,2,17,1,1, -A046227 ,3,2,5,2,11,2,7,2,9,9,2,20,27,2,11,2,67,2,19,13,2,147,2,105,2,51,2,15,2,126,78,33,17,2, +A046225 ,1,1,1,1,3,2,1,1,5,2,1,1,11,2,7,2,1,1,9,1,9,2,1,1,20,1,27,2,11,2,1,1,67,2,19,1,13,2,1,1,147,2,105,2,51,2,15,2,1,1,126,1,78,1,33,1,17,2,1,1,273,1,204,1,111,1,83,2,19,2,1,1,477,1,315,1, +A046226 ,1,1,1,1,2,3,1,1,2,5,1,1,2,11,2,7,1,1,1,9,2,9,1,1,1,20,2,27,2,11,1,1,2,67,1,19,2,13,1,1,2,147,2,105,2,51,2,15,1,1,1,126,1,78,1,33,2,17,1,1,1,273,1,204,1,111,2,83,2,19,1,1,1,477,1,315,2, +A046227 ,3,2,5,2,11,2,7,2,9,9,2,20,27,2,11,2,67,2,19,13,2,147,2,105,2,51,2,15,2,126,78,33,17,2,273,204,111,83,2,19,2,477,315,305,2,51,21,2,1023,792,935,2,407,2,123,2,23,2,1815,2519,2,671,265,73,25,2,3861, A046228 ,3,5,11,7,9,9,20,27,11,67,19,13,147,105,51,15,126,78,33,17,273,204,111,83,19,477,315,305,51,21,1023,792,935,407,123,23,1815,2519,671,265,73,25,3861,6149,3861,936,338,171,27,13871,5005,5733,1274,847,99,29,29315, A046229 ,1,1,1,1,3,1,1,5,1,1,11,7,1,1,9,1,9,1,1,20,1,27,11,1,1,67,19,1,13,1,1,147,105,51,15,1,1,126,1,78,1,33,1,17,1,1,273,1,204,1,111,1,83,19,1,1,477,1,315,1,305,51,1,21,1,1,1023,1,792,1,935,407,123,23,1,1,1815,1, A046230 ,1,1,1,1,3,1,1,5,1,1,11,7,1,1,1,9,9,1,1,1,20,27,11,1,1,67,1,19,13,1,1,147,105,51,15,1,1,1,126,1,78,1,33,17,1,1,1,273,1,204,1,111,83,19,1,1,1,477,1,315,305,1,51,21,1,1,1,1023,1,792,935,407,123,23,1,1,1,1815, @@ -46347,7 +46347,7 @@ A046342 ,1,1,3,8,24,74,245,815,2796,9707,34186,121562,436298,1577310,5740299,210 A046343 ,4,5,6,6,7,7,9,8,8,8,9,10,13,9,10,15,9,11,10,10,14,19,12,10,21,16,11,12,15,11,25,11,14,12,20,17,11,16,13,22,31,12,33,13,12,18,16,21,26,14,12,39,13,23,18,18,13,12,43,14,22,45,32,17,13,20,27,34,49,24,13,16,17, A046344 ,6,8,10,10,9,14,12,16,11,14,20,16,22,13,18,26,13,18,12,22,32,20,34,24,17,15,40,28,19,24,22,44,15,46,26,14,50,24,34,17,23,36,56,30,19,26,25,17,62,64,42,28,16,21,70,36,46,29,30,74,48,38,76,30,16,21,52,82,15,19, A046345 ,4,5,6,6,13,14,15,16,16,18,17,17,40,22,50,30,25,103,57,42,35,24,17,133,25,52,77,104,36,43,21,25,134,105,31,59,40,44,229,37,84,26,34,106,108,20,112,114,45,118,33,24,29,106,24,315,60,38,49,45,30,23,38,108,242,78, -A046346 ,4,16,27,30,60,70,72,84,105,150,180,220,231,240,256,286,288,308,378,440,450,476,528,540,560,576,588,594,624,627,646,648,650,728,800,805,840,884,897,900,945,960,1008,1040,1056,1080,1100,1122,1134,1160,1170, +A046346 ,4,16,27,30,60,70,72,84,105,150,180,220,231,240,256,286,288,308,378,440,450,476,528,540,560,576,588,594,624,627,646,648,650,728,800,805,840,884,897,900,945,960,1008,1040,1056,1080,1100,1122,1134,1160,1170,1248, A046347 ,27,105,231,627,805,897,945,1581,1755,2079,2625,2967,3055,3125,3861,4185,4543,5355,5445,5487,5967,6075,6461,6525,6745,7881,8085,8505,8883,9555,9717,10125,10647,10707,11375,11385,12675,12789,13005,13275,13475, A046348 ,4,646,2772,5445,8778,30303,48384,50505,54145,63336,77077,117711,219912,234432,239932,255552,272272,294492,535535,585585,636636,717717,825528,888888,951159,999999,1103011,1112111,1345431,2248422,2267622, A046349 ,4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,27,28,30,32,33,35,36,40,42,44,45,48,49,50,54,55,56,60,63,64,66,70,72,75,77,80,81,84,88,90,96,98,99,100,105,108,110,112,120,121,125,126,128,132,135,140,144,147,150, @@ -46396,7 +46396,7 @@ A046391 ,15015,19635,21945,23205,25935,26565,31395,33495,33915,35805,36465,39585 A046392 ,6,22,33,55,77,111,141,161,202,262,303,323,393,454,505,515,535,545,565,626,707,717,737,767,818,838,878,898,939,949,959,979,989,1111,1441,1661,1991,3113,3223,3443,3883,7117,7447,7997,9119,9229,9449,10001, A046393 ,66,222,282,434,474,494,555,595,606,646,777,969,1001,1221,1551,1771,2222,2882,3333,3553,4334,4994,5335,5555,5665,5885,5995,6226,6446,6886,7337,7557,7667,7777,7887,8338,8558,8998,9339,9669,9779,9889,11211, A046394 ,858,2002,2442,3003,4774,5005,5115,6666,10101,15351,17871,22422,22722,24242,26562,26962,28482,35853,36363,41314,43734,43834,45654,47874,49494,49794,49894,51015,51315,51415,53535,53835,53935,56865,58485, -A046395 ,6006,8778,20202,28182,40404,41514,43134,50505,60606,63336,66066,68586,80808,83538,86268,87978,111111,141141,168861,171171,202202,204402,209902,210012,212212,219912,225522,231132,232232,239932,246642,249942,252252,258852, +A046395 ,6006,8778,20202,28182,41514,43134,50505,68586,87978,111111,141141,168861,202202,204402,209902,246642,249942,262262,266662,303303,323323,393393,399993,438834,454454,505505,507705,515515,516615,519915,534435,535535,543345, A046396 ,222222,282282,474474,555555,606606,646646,969969,2040402,2065602,2206022,2417142,2646462,2673762,2875782,3262623,3309033,4179714,4192914,4356534,4585854,4912194,5021205,5169615,5174715,5578755, A046397 ,22444422,24266242,26588562,35888853,36399363,43777734,47199174,51066015,53588535,53888835,55233255,59911995,60066006,62588526,62700726,62888826,81699618,87788778,89433498,122434221,202040202, A046398 ,244868442,1346776431,2012112102,2050550502,2222442222,2274994722,2402442042,2435775342,2601661062,2615775162,2806886082,4116996114,4163773614,4188998814,4305335034,4501551054,4515665154,4542992454, @@ -46461,15 +46461,15 @@ A046456 ,128,2187,78125,496875,823543,1908795,3680733,6280989,11447205,11639595, A046457 ,256,6561,390625,2484375,5764801,13361565,25765131,69090879,89994375,110875779,125919255,128035545,188245551,207847185,210815759,214358881,242810337,246891183,246944565,272828031,400792119,464794365,475376391, A046458 ,4,6,8,12,14,20,32,38, A046459 ,0,1,8,17,18,26,27, -A046460 ,0,3,2,2,3,8,2,5,4,3,6,6,3,3,3,4,5,6,6,10,8,6,4,6,5,9,8,7,4,7,3,6,6,2,8,9,4,4,6,9,5,7,4,7,10,7,5,8,6,10,3,9,8,14,5,5,6,4,4,8,3,8,5,10, +A046460 ,0,3,2,2,3,8,2,5,4,3,6,6,3,3,3,4,5,6,6,10,8,6,4,6,5,9,8,7,4,7,3,6,6,2,8,9,4,4,6,9,5,7,4,7,10,7,5,8,6,10,3,9,8,14,5,5,6,4,4,8,3,8,5,10,6,8,3,10,7,6,6,7,3,9,6,6,5,6,6,10,6,7,6,7,6, A046461 ,3,4,7,34,97, -A046462 ,2,5,10,13,14,15,31,51,61, +A046462 ,2,5,10,13,14,15,31,51,61,67,73, A046463 ,9,16,23,29,37,38,43,58,59, -A046464 ,8,17,25,41,47,55,56,63, -A046465 ,11,12,18,19,22,24,32,33,39,49,57, -A046466 ,28,30,42,44,46, -A046467 ,6,21,27,35,48,53,60,62, -A046468 ,26,36,40,52, +A046464 ,8,17,25,41,47,55,56,63,77,94,101,103,107, +A046465 ,11,12,18,19,22,24,32,33,39,49,57,65,70,71,75,76,78,79,81,83,85,87,88,91,95,96,99,105,110, +A046466 ,28,30,42,44,46,69,72,82,84,86,93,109,116, +A046467 ,6,21,27,35,48,53,60,62,66,92,106,108,117, +A046468 ,26,36,40,52,74,90,102,112,114,115, A046469 ,0,1,2,3,4,5,6,7,8,9,343,736,1285,2187,2592,3125,3685,3972,4096,14641,15552,15632,15642,15645,15655,15656,15662,15667,15698,16384,17536,23328,32771,32785,37179,39369,39372,39382,43775,45927,45947,46660, A046470 ,2,8,12,18,20,28,30,32,42,44,48,50,52,66,68,70,72,76,78,80,92,98,102,108,110,112,114,116,120,124,128,130,138,148,154,162,164,168,170,172,174,176,180,182,186,188,190,192,200,208,212,222,230,236,238,242,244, A046471 ,8,1,5,5,4,4,8,3,3,6,3,1,11,5,7,6,4,2,9,3,3,7,3,3,13,4,2,6,5,1,10,1,7,3,5,2,8,2,2,6,1,4,9,5,3,8,8,4,11,1,3,4,4,5,2,1,6,3,4,4,5,2,3,4,4,3,8,1,5,3,2,2,5,4,5,3,3,4,8,4,2,4,4,1,5,2,6,6,3,2,7,3,3,8,5,1,7,1,4,5,2,3,9, @@ -46481,7 +46481,7 @@ A046476 ,2,3,5,16561,9470749,90750705709, A046477 ,2,3,5,7,373,13331,30103,1496941,1970791, A046478 ,2,3,5,7,191,373,3106013,1400232320041, A046479 ,2,3,5,7,787,38183,3286823,998111899,999454999, -A046480 ,2,3,7,11,181,797,713171317, +A046480 ,2,3,5,7,11,181,797,713171317, A046481 ,2,3,5,7,11,313,353,797, A046482 ,2,3,5,7,11,9046409,14203330241, A046483 ,2,3,5,7,11,919, @@ -46532,42 +46532,42 @@ A046527 ,1,1,1,2,5,1,5,22,9,1,14,93,58,13,1,42,386,325,110,17,1,132,1586,1686,76 A046528 ,1,3,7,21,31,93,127,217,381,651,889,2667,3937,8191,11811,24573,27559,57337,82677,131071,172011,253921,393213,524287,761763,917497,1040257,1572861,1777447,2752491,3120771,3670009,4063201,5332341,7281799,11010027,12189603, A046529 ,1,9,145,1459,13139,213040,1758629,19210003,153362052,1724515947,15434111703,176062673167,1281243062759,11270705761846,142415666495594,1145004602355098,11968345165915849,121510372538044487, A046530 ,1,2,3,3,5,6,3,5,3,10,11,9,5,6,15,10,17,6,7,15,9,22,23,15,21,10,7,9,29,30,11,19,33,34,15,9,13,14,15,25,41,18,15,33,15,46,47,30,15,42,51,15,53,14,55,15,21,58,59,45,21,22,9,37,25,66,23,51,69,30,71,15,25,26,63, -A046531 ,1,1,3,1,5,1,11,7,1,9,9,1,20,27,11,1,67,19,13,1,147,105,51,15,1,126,78,33,17,1, +A046531 ,1,1,3,1,5,1,11,7,1,9,9,1,20,27,11,1,67,19,13,1,147,105,51,15,1,126,78,33,17,1,273,204,111,83,19,1,477,315,305,51,21,1,1023,792,935,407,123,23,1,1815,2519,671,265,73,25,1,3861,6149,3861,936,338,171, A046532 ,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,1,1,1,1,5,3,1,5,1,1,1,1,7,11,11,7,1,1,1,1,9,9,1,11,1,9,1,9,1,1,1,1,11,27,20,1,20,1,27,11,1,1,1,1,13,19,1,67,40,1,67,19,1,13,1,1,1,1,15,51, A046533 ,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,1,1,1,1,5,1,3,5,1,1,1,1,7,11,11,7,1,1,1,1,9,1,9,1,11,1,9,9,1,1,1,1,11,27,1,20,1,20,27,11,1,1,1,1,13,1,19,67,1,40,67,1,19,13,1,1,1,1,15,51, A046534 ,1,1,1,1,1,1,1,1,1,3,1,1,1,1,4,3,4,3,1,1,1,1,7,3,8,3,7,3,1,1,1,1,10,3,5,1,5,1,10,3,1,1,1,1,13,3,25,3,10,1,25,3,13,3,1,1,1,1,16,3,38,3,55,3,55,3,38,3,16,3,1,1,1,1,19,3,18,1,31,1,110,3,31,1,18,1,19,3,1,1,1,1,22, A046535 ,1,1,1,1,1,1,1,1,3,1,1,1,1,1,3,4,3,4,1,1,1,1,3,7,3,8,3,7,1,1,1,1,3,10,1,5,1,5,3,10,1,1,1,1,3,13,3,25,1,10,3,25,3,13,1,1,1,1,3,16,3,38,3,55,3,55,3,38,3,16,1,1,1,1,3,19,1,18,1,31,3,110,1,31,1,18,3,19,1,1,1,1,3, -A046536 ,3,4,3,4,3,7,3,8,3,7,3,10,3,5,5,10,3,13,3,25,3,10,25,3,13,3,16,3,38,3,55,3,55,3,38,3,16,3,19,3,18,31,110,3,31,18,19,3,22,3,73,3,49,203,3,203,3,49,73,3,22,3,25,3,95,3,220,3,350,3,406,3,406,3,350,3,220,3,95,3, +A046536 ,3,4,3,4,3,7,3,8,3,7,3,10,3,5,5,10,3,13,3,25,3,10,25,3,13,3,16,3,38,3,55,3,55,3,38,3,16,3,19,3,18,31,110,3,31,18,19,3,22,3,73,3,49,203,3,203,3,49,73,3,22,3,25,3,95,3,220,3,350,3,406,3,350,3,220,3,95,3, A046537 ,3,3,4,3,4,3,7,3,8,3,7,3,10,5,5,3,10,3,13,3,25,10,3,25,3,13,3,16,3,38,3,55,3,55,3,38,3,16,3,19,18,31,3,110,31,18,3,19,3,22,3,73,49,3,203,3,203,49,3,73,3,22,3,25,3,95,3,220,3,350,3,406,3,350,3,220,3,95,3,25, -A046538 ,4,4,7,8,7,10,5,5,10,13,25,10,25,13,16,38,55,55,38,16,19,18,93,110,93,18,19,22,73,147, -A046539 ,1,1,1,1,1,1,1,4,4,1,1,7,8,7,1,1,10,5,5,10,1,1,13,25,10,25,13,1,1,16,38,55,55,38,16,1,1,19,18,93,110,93,18,19,1,1,22,73,147,203,203,147,73,22,1,1,25,95,220,350,406,350,220,95,25,1, -A046540 ,1,1,1,1,3,1,1,3,3,1,1,3,3,3,1,1,3,1,1,3,1,1,3,3,1,3,3,1,1,3,3,3,3,3,3,1,1,3,1,3,3,3,1,3,1,1,3,3,3,3,3,3,3,3,1,1,3,3,3,3,3,3,3,3,3,1, +A046538 ,4,4,7,8,7,10,5,5,10,13,25,10,25,13,16,38,55,55,38,16,19,18,31,110,31,18,19,22,73,49,203,203,49,73,22,25,95,220,350,406,350,220,95,25,28,40,105,190,252,252,190,105,40,28,31,148,145,295,442,504,442,295, +A046539 ,1,1,1,1,1,1,1,4,4,1,1,7,8,7,1,1,10,5,5,10,1,1,13,25,10,25,13,1,1,16,38,55,55,38,16,1,1,19,18,31,110,31,18,19,1,1,22,73,49,203,203,49,73,22,1,1,25,95,220,350,406,350,220,95,25,1, +A046540 ,1,1,1,1,3,1,1,3,3,1,1,3,3,3,1,1,3,1,1,3,1,1,3,3,1,3,3,1,1,3,3,3,3,3,3,1,1,3,1,1,3,1,1,3,1,1,3,3,1,3,3,1,3,3,1,1,3,3,3,3,3,3,3,3,3,1,1,3,1,1,1,1,1,1,1,1,3,1,1,3,3,1,1,1,1,1,1, A046541 ,1,3,4,7,8,10,5,13,25,16,38,55,19,18,31,110,22,73,49,203,95,220,350,406,28,40,105,190,252,148,145,295,442,504,34,179,583,440,737,946,37,71,254,1903,1177,1683,1892,250,325,2665,5434,2860,3575,43,290,1225, -A046542 ,1,1,1,1,1,1,1,1,1,7,7,1,1,5,5,1,1,13,25,25,13,1,1,55,55,1,1,19,93,93,19,1,1,73,147,203,203,147,73,1,1,25,95,95,25,1, -A046543 ,1,1,1,3,8,3,10,1,110,3,406,3, -A046544 ,1,1,3,1,3,8,1,10,3,110,3,406, +A046542 ,1,1,1,1,1,1,1,1,1,7,7,1,1,5,5,1,1,13,25,25,13,1,1,55,55,1,1,19,31,31,19,1,1,73,49,203,203,49,73,1,1,25,95,95,25,1,1,105,105,1,1,31,145,295,295,145,31,1,1,179,583,737,737,583,179,1,1,37,71, +A046543 ,1,1,1,3,8,3,10,1,110,3,406,3,504,1,1892,1,7150,1,27170,1,311168,3,1192516,3,1528436,1,17681020,3,68346800,3,88256520,1,342551190,1,1331805570,1,5185791600,1,20220038300,1,78937755820,1,308513659740,1,1207002506320,1, +A046544 ,1,1,3,1,3,8,1,10,3,110,3,406,1,504,1,1892,1,7150,1,27170,3,311168,3,1192516,1,1528436,3,17681020,3,68346800,1,88256520,1,342551190,1,1331805570,1,5185791600,1,20220038300,1,78937755820,1,308513659740,1,1207002506320, A046545 ,1,3,8,10,110,406,504,1892,7150,27170,311168,1192516,1528436,17681020,68346800,88256520,342551190,1331805570,5185791600,20220038300,78937755820,308513659740,1207002506320,4726599121400,18525219137100, -A046546 ,1,1,1,1,4,3,1,1,7,3,1,1,5,1,10,3,1,1,25,3,13,3,1,1,55,3,38,3,16,3,1,1,93,3,18,1,19,3,1,1,203,3,147,3,73,3,23,3,1,1,350,3,220,3,95,3,25,3,1,1, -A046547 ,1,1,1,1,3,4,1,1,3,7,1,1,1,5,3,10,1,1,3,25,3,13,1,1,3,55,3,38,3,16,1,1,3,93,1,18,3,19,1,1,3,203,3,147,3,73,3,22,1,1,3,350,3,220,3,95,3,25,1,1, -A046548 ,4,3,7,3,5,10,3,25,3,13,3,55,3,38,3,16,3,93,3,18,19,3,203,3,147,3,73,3,22,3,350,3,220,3,95,3,25,3, -A046549 ,4,7,5,10,25,13,55,38,16,93,18,19,203,147,73,23,350,220,95,25, -A046550 ,1,1,1,1,4,1,1,7,1,1,5,1,10,1,1,25,13,1,1,55,38,16,1,1,93,18,1,19,1,1,203,147,73,22,1,1,350,220,95,25,1,1, -A046551 ,1,1,4,1,7,1,5,10,1,25,13,1,55,38,16,1,93,18,19,1,203,147,73,22,1,350,220,95,25,1, -A046552 ,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,1,1,1,1,7,8,7,1,1,1,1,10,5,1,5,1,10,1,1,1,1,13,25,10,1,25,13,1,1,1,1,16,38,55,55,38,16,1,1,1,1,19,18,1,93,110,93,18,1,19,1,1,1,1,22,73,147, -A046553 ,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,1,1,1,1,7,8,7,1,1,1,1,10,1,5,1,5,10,1,1,1,1,13,25,1,10,25,13,1,1,1,1,16,38,55,55,38,16,1,1,1,1,19,1,18,93,110,93,1,18,19,1,1,1,1,22,73, -A046554 ,1,1,1,1,4,1,1,7,1,1,1,5,10,1,1,25,13,1,1,55,38,16,1,1,93,1,18,19,1,1,203,147,73,22,1,1,350,220,95,25,1,1, -A046555 ,1,1,1,1,1,1,1,1,1,3,1,1,1,1,3,3,1,1,1,1,7,3,3,7,3,1,1,1,1,3,5,1,5,1,3,1,1,1,1,13,3,25,3,1,25,3,13,3,1,1,1,1,3,3,55,3,55,3,3,3,1,1,1,1,19,3,1,31,3,3,31,3,1,19,3,1,1,1,1,3,73,3,49,1,203,3,203,3,49,1,73,3,3,1,1, -A046556 ,1,1,1,1,1,1,1,1,3,1,1,1,1,1,3,3,1,1,1,1,3,7,3,3,7,1,1,1,1,3,1,5,1,5,3,1,1,1,1,3,13,3,25,1,3,25,3,13,1,1,1,1,3,3,3,55,3,55,3,3,1,1,1,1,3,19,1,3,93,3,3,93,1,3,19,1,1,1,1,3,3,73, -A046557 ,1,7,5,13,25,55,19,93,73,147,203,95, +A046546 ,1,1,1,1,4,3,1,1,7,3,1,1,5,1,10,3,1,1,25,3,13,3,1,1,55,3,38,3,16,3,1,1,31,1,18,1,19,3,1,1,203,3,49,1,73,3,22,3,1,1,350,3,220,3,95,3,25,3,1,1,252,1,190,1,105,1,40,1,28,3,1,1,442,1,295,1, +A046547 ,1,1,1,1,3,4,1,1,3,7,1,1,1,5,3,10,1,1,3,25,3,13,1,1,3,55,3,38,3,16,1,1,1,31,1,18,3,19,1,1,3,203,1,49,3,73,3,22,1,1,3,350,3,220,3,95,3,25,1,1,1,252,1,190,1,105,1,40,3,28,1,1,1,442,1,295, +A046548 ,4,3,7,3,5,10,3,25,3,13,3,55,3,38,3,16,3,31,18,19,3,203,3,49,73,3,22,3,350,3,220,3,95,3,25,3,252,190,105,40,28,3,442,295,145,148,3,31,3,946,737,440,583,3,179,3,34,3,1683,1177,1903,3,254,71,37,3, +A046549 ,4,7,5,10,25,13,55,38,16,31,18,19,203,49,73,22,350,220,95,25,252,190,105,40,28,442,295,145,148,31,946,737,440,583,179,34,1683,1177,1903,254,71,37,3575,2860,5434,2665,325,250,40,6435,14014,8099,3640,1225,290, +A046550 ,1,1,1,1,4,1,1,7,1,1,5,1,10,1,1,25,13,1,1,55,38,16,1,1,31,1,18,1,19,1,1,203,49,1,73,22,1,1,350,220,95,25,1,1,252,1,190,1,105,1,40,1,28,1,1,442,1,295,1,145,1,148,31,1,1,946,1,737,1,440,1,583, +A046551 ,1,1,4,1,7,1,5,10,1,25,13,1,55,38,16,1,31,18,19,1,203,49,73,22,1,350,220,95,25,1,252,190,105,40,28,1,442,295,145,148,31,1,946,737,440,583,179,34,1,1683,1177,1903,254,71,37,1,3575,2860,5434,2665,325, +A046552 ,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,1,1,1,1,7,8,7,1,1,1,1,10,5,1,5,1,10,1,1,1,1,13,25,10,1,25,13,1,1,1,1,16,38,55,55,38,16,1,1,1,1,19,18,1,31,1,110,31,1,18,1,19,1,1,1,1,22,73,49,1,203,203, +A046553 ,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,1,1,1,1,7,8,7,1,1,1,1,10,1,5,1,5,10,1,1,1,1,13,25,1,10,25,13,1,1,1,1,16,38,55,55,38,16,1,1,1,1,19,1,18,1,31,110,1,31,1,18,19,1,1,1,1,22,73,1,49,203,203,1, +A046554 ,1,1,1,1,4,1,1,7,1,1,1,5,10,1,1,25,13,1,1,55,38,16,1,1,1,31,1,18,19,1,1,203,1,49,73,22,1,1,350,220,95,25,1,1,1,252,1,190,1,105,1,40,28,1,1,1,442,1,295,1,145,148,31,1,1,1,946,1,737,1,440,583, +A046555 ,1,1,1,1,1,1,1,1,1,3,1,1,1,1,3,3,1,1,1,1,7,3,3,7,3,1,1,1,1,3,5,1,5,1,3,1,1,1,1,13,3,25,3,1,25,3,13,3,1,1,1,1,3,3,55,3,55,3,3,3,1,1,1,1,19,3,1,31,1,3,31,1,1,19,3,1,1,1,1,3,73,3,49,1,203,3,203,3,49,1,73,3,3,1,1, +A046556 ,1,1,1,1,1,1,1,1,3,1,1,1,1,1,3,3,1,1,1,1,3,7,3,3,7,1,1,1,1,3,1,5,1,5,3,1,1,1,1,3,13,3,25,1,3,25,3,13,1,1,1,1,3,3,3,55,3,55,3,3,1,1,1,1,3,19,1,1,31,3,1,31,1,3,19,1,1,1,1,3,3,73, +A046557 ,1,7,5,13,25,55,19,31,73,49,203,95,105,145,295,179,583,737,37,71,1903,1177,1683,325,2665,3575,43,1225,8099,6435,111,505,4865,3913,7371,33319,13585,379,2227,885,3485,535,1045,13889,61,593,5415,18259,48773,1421, A046558 ,4,4,8,10,10,10,16,38,38,16,18,110,18,22,22,220,350,406,350,220,28,40,190,252,252,190,40,28,148,442,504,442,148,34,440,946,946,440,34,254,1892,254,40,250,5434,2860,2860,5434,250,40,290,3640,14014,7150,14014, A046559 ,4,8,10,16,38,18,110,22,220,350,406,28,40,190,252,148,442,504,34,440,946,254,1892,250,5434,2860,290,3640,14014,7150,46,616,6380,16604,11284,55432,74074,27170,52,428,8228,22984,50456,89284,129506,155584, -A046560 ,1,4,3,7,5,10,25,13,55,38,16,93,18,19,203,147,73,22,350,220,95, -A046561 ,1,3,7,5,25,13,55,93,19,203,147,73,95, -A046562 ,4,10,38,16,18,350,220, +A046560 ,1,4,3,7,5,10,25,13,55,38,16,31,18,19,203,49,73,22,350,220,95,252,190,105,40,28,442,295,145,148,946,737,440,583,179,34,1683,1177,1903,254,71,37,3575,2860,5434,2665,325,250,6435,14014,8099,3640,1225,290,43, +A046561 ,1,3,7,5,25,13,55,31,19,203,49,73,95,105,295,145,737,583,179,1683,1177,1903,71,37,3575,2665,325,6435,8099,1225,43,13585,33319,7371,3913,4865,505,111,379,2227,3485,885,13889,1045,535,48773,18259,5415,593,61, +A046562 ,4,10,38,16,18,22,350,220,252,190,40,28,442,148,946,440,34,254,2860,5434,250,14014,3640,290,46,74074,55432,11284,16604,6380,616,155584,129506,89284,50456,22984,8228,428,52,95030,72930,46580,24480,10404,160,596258, A046563 ,1,1,1,1,1,1,1,1,1,4,1,1,1,1,5,4,5,4,1,1,1,1,9,4,5,2,9,4,1,1,1,1,13,4,19,4,19,4,13,4,1,1,1,1,17,4,8,1,19,2,8,1,17,4,1,1,1,1,21,4,49,4,35,2,35,2,49,4,21,4,1,1,1,1,25,4,35,2,119,4,35,1,119,4,35,2,25,4,1,1,1,1, A046564 ,1,1,1,1,1,1,1,1,4,1,1,1,1,1,4,5,4,5,1,1,1,1,4,9,2,5,4,9,1,1,1,1,4,13,4,19,4,19,4,13,1,1,1,1,4,17,1,8,2,19,1,8,4,17,1,1,1,1,4,21,4,49,2,35,2,35,4,49,4,21,1,1,1,1,4,25,2,35,4,119,1,35,4,119,2,35,4,25,1,1,1,1,4, -A046565 ,4,5,4,5,4,9,4,5,2,9,4,13,4,19,4,19,4,13,4,17,4,8,19,2,8,17,4,21,4,49,4,35,2,35,2,49,4,21,4,25,4,35,2,119,4,35,119,4,35,2,25,4,29,4, -A046566 ,4,4,5,4,5,4,9,2,5,4,9,4,13,4,19,4,19,4,13,4,17,8,2,19,8,4,17,4,21,4,49,2,35,2,35,4,49,4,21,4,25,2,35,4,119,35,4,119,2,35,4,25,4,29, +A046565 ,4,5,4,5,4,9,4,5,2,9,4,13,4,19,4,19,4,13,4,17,4,8,19,2,8,17,4,21,4,49,4,35,2,35,2,49,4,21,4,25,4,35,2,119,4,35,119,4,35,2,25,4,29,4,95,4,189,4,259,4,259,4,189,4,95,4,29,4,33,4,31,71,112, +A046566 ,4,4,5,4,5,4,9,2,5,4,9,4,13,4,19,4,19,4,13,4,17,8,2,19,8,4,17,4,21,4,49,2,35,2,35,4,49,4,21,4,25,2,35,4,119,35,4,119,2,35,4,25,4,29,4,95,4,189,4,259,4,259,4,189,4,95,4,29,4,33,31,71,112,2, A046567 ,5,5,9,2,5,9,13,19,19,13,17,8,2,19,8,17,21,49,2,35,2,35,49,21,25,2,35,119,35,119,2,35,25,29,95,189,259,259,189,95,29,33,31,71,112,2,259,112,71,31,33,37,157,102,183,2,483,2,483,183,102,157,37,41,2,97,565,285,2, A046568 ,1,1,1,1,1,1,1,5,5,1,1,9,5,9,1,1,13,19,19,13,1,1,17,8,19,8,17,1,1,21,49,35,35,49,21,1,1,25,35,119,35,119,35,25,1,1,29,95,189,259,259,189,95,29,1,1,33,31,71,112,259,112,71,31,33,1, A046569 ,1,1,1,1,4,1,1,4,4,1,1,4,2,4,1,1,4,4,4,4,1,1,4,1,2,1,4,1,1,4,4,2,2,4,4,1,1,4,2,4,1,4,2,4,1,1,4,4,4,4,4,4,4,4,1,1,4,1,1,1,2,1,1,1,4,1,1,4,4,1,1,2,2,1,1,4,4,1,1,4,2,4,1,2,1,2,1,4,2,4,1,1,4,4,4,4,2,2,2,2,4,4,4,4,1, @@ -46581,7 +46581,7 @@ A046576 ,1,1,1,1,4,5,1,1,4,9,1,1,4,19,4,13,1,1,1,8,4,17,1,1,2,35,4,49,4,21,1,1,4 A046577 ,4,5,4,9,4,19,4,13,8,4,17,2,35,4,49,4,21,4,119,2,35,4,25,4,259,4,189,4,95,4,29,112,71,31,4,33,2,483,183,102,4,157,4,37,2,849,285,4,565,2,97,4,41,2,1815,2,1419,4,1705,4,759,4,235,4,45,1617,4,4543,616,2,497,70,4, A046578 ,5,9,19,13,8,17,2,35,49,21,119,2,35,25,259,189,95,29,112,71,31,33,2,483,183,102,157,37,2,849,285,565,2,97,41,2,1815,2,1419,1705,759,235,45,1617,4543,616,2,497,70,49,3432,11011,7007,2,1729,2,637,329,53,24739,2,9009, A046579 ,1,1,1,1,5,1,1,9,1,1,19,13,1,1,8,1,17,1,1,35,2,49,21,1,1,119,35,2,25,1,1,259,189,95,29,1,1,112,1,71,1,31,1,33,1,1,483,2,183,1,102,1,157,37,1,1,849,2,285,1,565,97,2,41,1,1,1815,2,1419,2,1705,759,235,45,1,1,1617, -A046580 ,1,1,5,1,9,1,19,13,1,8,17,1,35,49,21,1,119,35,25,1,259,189,95,29,1,112,71,31,33,1,483,189,102,157,37,1,861,291,565,97,41,1,1827,1443,1729,759,235,45,1,1635,4615,622,497,70,49,1,3462,11155,7103,1119,567,329, +A046580 ,1,1,5,1,9,1,19,13,1,8,17,1,35,49,21,1,119,35,25,1,259,189,95,29,1,112,71,31,33,1,483,183,102,157,37,1,849,285,565,97,41,1,1815,1419,1705,759,235,45,1,1617,4543,616,497,70,49,1,3432,11011,7007,1729,637, A046581 ,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,1,1,1,1,9,5,2,9,1,1,1,1,13,19,19,13,1,1,1,1,17,8,1,19,2,8,1,17,1,1,1,1,21,49,35,2,35,2,49,21,1,1,1,1,25,35,2,119,35,1,119,35,2,25,1,1,1,1,29, A046582 ,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,1,1,1,1,9,2,5,9,1,1,1,1,13,19,19,13,1,1,1,1,17,1,8,2,19,1,8,17,1,1,1,1,21,49,2,35,2,35,49,21,1,1,1,1,25,2,35,119,1,35,119,2,35,25,1,1,1,1,29, A046583 ,1,1,1,1,5,1,1,9,1,1,19,13,1,1,1,8,17,1,1,2,35,49,21,1,1,119,2,35,25,1,1,259,189,95,29,1,1,1,112,1,71,1,31,33,1,1,2,483,1,183,1,102,157,37,1,1,2,849,1,285,565,2,97,41,1,1,2,1815,2,1419,1705,759,235,45,1,1,1, @@ -46595,7 +46595,7 @@ A046590 ,5,9,19,13,8,17,35,49,21,119,35,25,259,189,95,29,112,71,31,33,483,183,10 A046591 ,1,1,1,1,1,1,1,1,1,4,1,1,1,1,5,4,5,4,1,1,1,1,9,4,5,9,4,1,1,1,1,13,4,19,4,19,4,13,4,1,1,1,1,17,4,8,1,19,8,1,17,4,1,1,1,1,21,4,49,4,35,35,49,4,21,4,1,1,1,1,25,4,35,119,4,35,1,119,4,35,25,4,1,1,1,1,29,4, A046592 ,1,1,1,1,1,1,1,1,4,1,1,1,1,1,4,5,4,5,1,1,1,1,4,9,5,4,9,1,1,1,1,4,13,4,19,4,19,4,13,1,1,1,1,4,17,1,8,19,1,8,4,17,1,1,1,1,4,21,4,49,35,35,4,49,4,21,1,1,1,1,4,25,35,4,119,1,35,4,119,35,4,25,1,1,1,1,4,29, A046593 ,4,4,5,4,5,4,9,5,4,9,4,13,4,19,4,19,4,13,4,17,8,19,8,4,17,4,21,4,49,35,35,4,49,4,21,4,25,35,4,119,35,4,119,35,4,25,4,29,4,95,4,189,4,259,4,259,4,189,4,95,4,29,4,33,31,71,112,259,112,71,31,4,33,4,37,4,157,102, -A046594 ,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,1,1,1,1,9,5,9,1,1,1,1,13,19,19,13,1,1,1,1,17,1,8,19,1,8,17,1,1,1,1,21,49,35,35,49,21,1,1,1,1,25,35,119,1,35,119,35,25,1,1,1,1,29, +A046594 ,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,1,1,1,1,9,5,9,1,1,1,1,13,19,19,13,1,1,1,1,17,1,8,19,1,8,17,1,1,1,1,21,49,35,35,49,21,1,1,1,1,25,35,119,1,35,119,35,25,1,1,1,1,29,95,189,259,259,189,95,29,1, A046595 ,4,4,4,4,2,4,4,4,4,4,4,2,4,4,4,2,2,4,4,4,2,4,4,2,4,4,4,4,4,4,4,4,4,4,2,4,4,4,2,2,4,4,4,2,4,2,2,4,2,4,4,4,4,4,2,2,2,2,4,4,4,4,4,2,4,4,2,4,4,4,2,2,4,4,4,4,2,2,4,4,4,2,4,4,2,4,4,2,4,4,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4, A046596 ,1,1,1,1,4,1,1,4,4,1,1,4,4,1,1,4,4,4,4,1,1,4,1,1,4,1,1,4,4,4,4,1,1,4,4,1,4,4,1,1,4,4,4,4,4,4,4,4,1,1,4,1,1,1,1,1,1,4,1,1,4,4,1,1,1,1,4,4,1,1,4,4,1,1,1,4,4,1,1,4,4,4,4,4,4,4,4,1,1,4,1,1,4,1,1,1,4,1,1,4,1,1,4,4,4, A046597 ,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,2,1,1,2,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,2,1,1,1,1,2,1,2,1,2,1,2,1,1,2,2,2,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,2,1,1,2,2,1,1,2,1,2,1,2,1,2,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1, @@ -46606,7 +46606,7 @@ A046601 ,1,1,1,1,1,1,1,1,1,5,1,1,1,1,6,5,6,5,1,1,1,1,11,5,12,5,11,5,1,1,1,1,16,5 A046602 ,1,1,1,1,1,1,1,1,5,1,1,1,1,1,5,6,5,6,1,1,1,1,5,11,5,12,5,11,1,1,1,1,5,16,5,23,5,23,5,16,1,1,1,1,5,21,5,39,5,46,5,39,5,21,1,1,1,1,5,26,1,12,1,17,1,17,1,12,5,26,1,1,1,1,5,31,5,86,1,29,1,34,1,29,5,86,5,31,1,1,1, A046603 ,5,6,5,6,5,11,5,12,5,11,5,16,5,23,5,23,5,16,5,21,5,39,5,46,5,39,5,21,5,26,5,12,17,17,12,26,5,31,5,86,5,29,34,29,86,5,31,5,36,5,117,5,231,5,63,63,231,5,117,5,36,5,41,5,153,5,348,5,546,5,126,546,5,348,5,153,5, A046604 ,5,5,6,5,6,5,11,5,12,5,11,5,16,5,23,5,23,5,16,5,21,5,39,5,46,5,39,5,21,5,26,12,17,17,12,5,26,5,31,5,86,29,34,29,5,86,5,31,5,36,5,117,5,231,63,63,5,231,5,117,5,36,5,41,5,153,5,348,5,546,126,5,546,5,348,5,153,5, -A046605 ,6,6,11,12,11,16,23,23,16,21,39,46,39,21,26,12,17,17,12,26,31,86,29,34,29,86,31,36,117,231,63,63,231,117,36,41,153,348,546,126,546,348,153,41,46,199,501,894,1176,1176,894,501,199,46,51,49,140,279,414,2352,414,279,140, +A046605 ,6,6,11,12,11,16,23,23,16,21,39,46,39,21,26,12,17,17,12,26,31,86,29,34,29,86,31,36,117,231,63,63,231,117,36,41,153,348,546,126,546,348,153,41,46,194,501,894,1176,1176,894,501,194,46,51,48,139,279,414,2352,414,279,139, A046606 ,1,1,1,1,1,1,1,6,6,1,1,11,12,11,1,1,16,23,23,16,1,1,21,39,46,39,21,1,1,26,12,17,17,12,26,1,1,31,86,29,34,29,86,31,1,1,36,117,231,63,63,231,117,36,1,1,41,153,348,546,126,546,348,153,41,1,1, A046607 ,1,1,1,1,5,1,1,5,5,1,1,5,5,5,1,1,5,5,5,5,1,1,5,5,5,5,5,1,1,5,1,1,1,1,5,1,1,5,5,1,1,1,5,5,1,1,5,5,5,1,1,5,5,5,1,1,5,5,5,5,1,5,5,5,5,1,1,5,5,5,5,5,5,5,5,5,5,1,1,5,1,1,1,1,5,1,1,1,1,5,1,1,5,5,1,1,1,5,5,1,1,1,5,5,1, A046608 ,1,5,6,11,12,16,23,21,39,46,26,17,31,86,29,34,36,117,231,63,41,153,348,546,126,194,501,894,1176,51,48,139,279,414,2352,56,291,187,418,693,4422,61,347,1226,605,1111,7887,8844,66,408,1573,4251,1716,13442,16731, @@ -46614,8 +46614,8 @@ A046609 ,1,1,1,1,1,1,1,1,1,11,11,1,1,23,23,1,1,21,39,39,21,1,1,17,17,1,1,31,29,2 A046610 ,1,1,1,5,12,5,46,5,34,1,126,1,2352,5,8844,5,33462,5,25454,1,97240,1,1864356,5,7171892,5,27665596,5,21395520,1,82907640,1,321868854,1,1251661518,1,4874644104,1,19010020260,1,74225053980,1,290134122564,1, A046611 ,1,1,5,1,5,12,5,46,1,34,1,126,5,2352,5,8844,5,33462,1,25454,1,97240,5,1864356,5,7171892,5,27665596,1,21395520,1,82907640,1,321868854,1,1251661518,1,4874644104,1,19010020260,1,74225053980,1,290134122564,1, A046612 ,1,5,12,46,34,126,2352,8844,33462,25454,97240,1864356,7171892,27665596,21395520,82907640,321868854,1251661518,4874644104,19010020260,74225053980,290134122564,1135234789728,4446052592904,17427428373420, -A046613 ,1,1,1,1,6,5,1,1,11,5,1,1,23,5,16,5,1,1,39,5,21,5,1,1,17,1,12,1,26,5,1,1,29,1,86,5,31,5,1,1,63,1,231,5,117,5,36,5,1,1,546,5,348,5,153,5,41,5,1,1, -A046614 ,1,1,1,1,5,6,1,1,5,11,1,1,5,23,5,16,1,1,5,39,5,21,1,1,1,17,1,12,5,26,1,1,1,29,5,86,5,31,1,1,1,63,5,231,5,117,5,36,1,1,5,546,5,348,5,153,5,41,1,1, +A046613 ,1,1,1,1,6,5,1,1,11,5,1,1,23,5,16,5,1,1,39,5,21,5,1,1,17,1,12,1,26,5,1,1,29,1,86,5,31,5,1,1,63,1,231,5,117,5,36,5,1,1,546,5,348,5,153,5,41,5,1,1,1176,5,894,5,501,5,194,5,46,5,1,1,414,1, +A046614 ,1,1,1,1,5,6,1,1,5,11,1,1,5,23,5,16,1,1,5,39,5,21,1,1,1,17,1,12,5,26,1,1,1,29,5,86,5,31,1,1,1,63,5,231,5,117,5,36,1,1,5,546,5,348,5,153,5,41,1,1,5,1176,5,894,5,501,5,194,5,46,1,1,1,414,1, A046615 ,6,5,11,5,23,5,16,5,39,5,21,5,17,12,26,5,29,86,5,31,5,63,231,5,117,5,36,5,546,5,348,5,153,5,41,5,1176,5,894,5,501,5,194,5,46,5,414,279,139,48,51,5,4422,5,693,418,187,291,5,56,5,7887,5,1111,605,1226,5,347,5,61, A046616 ,6,11,23,16,39,21,17,12,26,29,86,31,63,231,117,36,546,348,153,41,1176,894,501,194,46,414,279,139,48,51,4422,693,418,187,291,56,7887,1111,605,1226,347,61,16731,13442,1716,4251,1573,408,66,30173,22022,12831, A046617 ,1,1,1,1,6,1,1,11,1,1,23,16,1,1,39,21,1,1,17,1,12,1,26,1,1,29,1,86,31,1,1,63,1,231,117,36,1,1,546,348,153,41,1,1,1176,894,501,194,46,1,1,414,1,279,1,139,1,48,1,51,1,1,4422,693,1,418,1,187,1,291,56,1,1,7887, @@ -46698,7 +46698,7 @@ A046693 ,1,2,3,3,4,4,4,5,5,5,6,6,6,6,7,7,7,7,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10 A046694 ,1,667,252,601,684,171,531,178,372,168,469,123,629,385,309,388,611,55,672,630,449,491,92,632,57,106,88,580,173,185,366,666,27,538,429,379,622,456,269,136,87,280,36,632,160,556,435,345,194,14,570,52,209,652,172,542,49, A046695 ,0,0,1,2,0,1,2,3,1,2,3,4,0,3,4,2,1,3,2,1,0,2,1,4,5,1,4,5,1,2,0,1,2,3,1,2,3,4,2,3,4,2,3,4,2,1,0,2,8,4,5,3,4,5,6,2,5,1,2,3,1,2,3,4,2,3,4,2,3,4,2,3,0,2,3,4,5,3,4,5,6,4,5,6,2,3,1,2,3,4,2,3,4,2,3,4,2,3,0,2,3,4, A046696 ,1,2,5,13,21,31,47,73,99,125,151,177,315,409, -A046697 ,1,1,3,9,35,137,574,2431,10534,46123,204343,912967,4111375,18637303,84988775,389589095, +A046697 ,1,1,3,9,35,137,574,2431,10534,46123,204343,912967,4111375,18637303,84988775,389589095,1794280695,8298536715,38527147681,179487103411,838820394913,3931498654243,18475619837816,87036536948489,410947150379120,1944378509186237, A046698 ,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, A046699 ,1,1,2,2,3,4,4,4,5,6,6,7,8,8,8,8,9,10,10,11,12,12,12,13,14,14,15,16,16,16,16,16,17,18,18,19,20,20,20,21,22,22,23,24,24,24,24,25,26,26,27,28,28,28,29,30,30,31,32,32,32,32,32,32,33,34,34,35,36,36,36,37, A046700 ,1,1,1,2,3,4,4,5,5,7,6,8,7,9,8,10,9,12,9,12,10,15,11,16,12,17,13,18,14,19,15,21,17,18,18,21,19,21,24,20,22,24,20,31,19,30,19,28,19,30,21,32,21,34,21,36,21,38,21,48,18,53,15,49,18,49,24,61,17,51,19,42, @@ -46884,7 +46884,7 @@ A046879 ,1,1,1,6,3,15,30,420,105,315,315,6930,3465,90090,180180,72072,9009,15315 A046880 ,1,0,0,0,0,1,1,1,2,5,7,9,24,19,35,46,86,134,187,259,450,616,823,1233,1799,2355,3342,4468,6063,8148,10774,13977,18769,23589,30683,39393,49878,62372,79362,98541,121354,151201,186611,225245,277930,335569, A046881 ,5,65,1729,635318657, A046882 ,1,1,4,46656,1333735776850284124449081472843776, -A046883 ,17,99551,4303027,6440999,14968819,95517973,527737957,1893230839,1246492090901,12426836115943,21732382677641,154895576080181, +A046883 ,17,99551,4303027,6440999,14968819,95517973,527737957,1893230839,1246492090901,12426836115943,21732382677641,154895576080181,2677628540590583,133475456543097857,820396537622790811, A046884 ,17,99551,14968819,95517973, A046885 ,1,4,18,85,411,2013,9933,49236,244750,1218888,6077644,30329434,151439158,756452890,3779590010,18888255205,94405918355,471899946985,2359022096225,11793343217935,58960151969255,294776293579255, A046886 ,2,3,3,3,3,5,2,4,4,4,3,5,2,4,5,4,2,7,2,5,4,4,3,6,3,4,4,4,3,8,2,4,5,3,4,8,2,3,4,6,3,7,2,5,6,4,2,7,2,5,4,4,3,8,4,6,3,4,2,9,2,3,6,4,4,7,2,4,5,6,2,9,2,4,6,3,3,8,2,6,5,4,3,7,3,4,4,6,3,11,2,4,3,3,4,8,2,5,7,6,2,6,2,5, @@ -47162,16 +47162,16 @@ A047157 ,1,2,3,24,104,316,1347,5007,19908,78909,300750,1172598,4544071,17726423, A047158 ,1,3,7,36,54,449,1592,7243,30636,115153,466704,1833753,7311539,29170551,114837610,453949280,1790444065,7070681835,27947590455,110325729977,435614497712,1719775419793,6791219544205,26827316475982, A047159 ,1,3,13,72,417,2509,15438,96310,607231,3859594,24689329,158756701,1025210362,6644336882,43193144567,281525730152,1839132807282,12038672624172,78943126865652,518485130526736,3410150902046028, A047160 ,0,0,1,0,1,0,3,2,3,0,1,0,3,2,3,0,1,0,3,2,9,0,5,6,3,4,9,0,1,0,9,4,3,6,5,0,9,2,3,0,1,0,3,2,15,0,5,12,3,8,9,0,7,12,3,4,15,0,1,0,9,4,3,6,5,0,15,2,3,0,1,0,15,4,3,6,5,0,9,2,15,0,5,12,3,14,9,0,7,12,9,4,15,6,7,0,9,2,3, -A047161 ,0,0,1,2,6,9,21,30,70,100,235,335,791,1127,2681,3822,9150,13050,31401,44802,108262,154517,374715,534963,1301235,1858155,4531423,6472167,15818791,22597759,55339849,79067374,193962894,277164294, -A047162 ,0,0,0,2,3,9,12,30,40,100,135,335,455,1127,1540,3822,5250,13050,18000,44802,62007,154517,214467,534963,744315,1858155,2590679,6472167,9039823,22597759,31612324,79067374,110761494,277164294, -A047163 ,0,0,0,0,2,3,12,16,40,50,110,135,315,392,980,1232,3080,3864,9480,11850,29040,36300,89870,112519,280423,351351,876603,1098188,2741102,3433703,8586788,10758608,26965808,33794504, -A047164 ,0,0,0,0,0,3,4,16,20,50,60,135,161,392,476,1232,1512,3864,4740,11850,14520,36300,44572,112519,138567,351351,433433,1098188,1355900,3433703,4243148,10758608,13308416,33794504, -A047165 ,0,0,0,0,0,0,3,4,20,25,75,90,210,245,511,588,1260,1458,3510,4125,10725,12705,32835,38830,96382,113399,273273,320411,770315,903175,2208115,2594540,6451500,7594920, -A047166 ,0,0,0,0,1,3,12,24,60,100,205,315,630,980,2156,3528,8260,13692,31620,51600,115995,186945,418825,675675,1535391,2492919,5728086,9324406,21448791,34860553,80006668,129804808,298009048,483483128, -A047167 ,0,0,0,0,0,3,6,24,40,100,150,315,455,980,1470,3528,5544,13692,21630,51600,80520,186945,290400,675675,1056627,2492919,3929926,9324406,14742910,34860553,55107598,129804808,205272008,483483128, -A047168 ,0,0,0,0,0,0,0,4,5,25,30,90,105,245,280,588,666,1458,1665,4125,4785,12705,14850,38830,45331,113399,131859,320411,371735,903175,1048840,2594540,3021240,7594920, -A047169 ,0,0,0,0,0,0,0,0,4,5,30,36,126,147,392,448,1008,1134,2304,2565,5115,5687,12342,13860,34320,39039,104104,119119,315679,360815,913640,1039808,2508928,2842604, -A047170 ,0,0,0,0,0,0,0,0,0,5,6,36,42,147,168,448,504,1134,1260,2565,2827,5687,6270,13860,15444,39039,44044,119119,135135,360815,408968,1039808,1174224,2842604, +A047161 ,0,0,1,2,6,9,21,30,70,100,235,335,791,1127,2681,3822,9150,13050,31401,44802,108262,154517,374715,534963,1301235,1858155,4531423,6472167,15818791,22597759,55339849,79067374,193962894,277164294,680963509,973184312,2394289028,3422117189, +A047162 ,0,0,0,2,3,9,12,30,40,100,135,335,455,1127,1540,3822,5250,13050,18000,44802,62007,154517,214467,534963,744315,1858155,2590679,6472167,9039823,22597759,31612324,79067374,110761494,277164294,388742706,973184312,1366460867,3422117189, +A047163 ,0,0,0,0,2,3,12,16,40,50,110,135,315,392,980,1232,3080,3864,9480,11850,29040,36300,89870,112519,280423,351351,876603,1098188,2741102,3433703,8586788,10758608,26965808,33794504,84844280,106344792,267298650,335061789,843098172,1056924666, +A047164 ,0,0,0,0,0,3,4,16,20,50,60,135,161,392,476,1232,1512,3864,4740,11850,14520,36300,44572,112519,138567,351351,433433,1098188,1355900,3433703,4243148,10758608,13308416,33794504,41843256,106344792,131772372,335061789,415445184,1056924666, +A047165 ,0,0,0,0,0,0,3,4,20,25,75,90,210,245,511,588,1260,1458,3510,4125,10725,12705,32835,38830,96382,113399,273273,320411,770315,903175,2208115,2594540,6451500,7594920,18990768,22366458,55715562,65579982,162488703,191126529, +A047166 ,0,0,0,0,1,3,12,24,60,100,205,315,630,980,2156,3528,8260,13692,31620,51600,115995,186945,418825,675675,1535391,2492919,5728086,9324406,21448791,34860553,80006668,129804808,298009048,483483128,1113181012,1807560972,4172914197, +A047167 ,0,0,0,0,0,3,6,24,40,100,150,315,455,980,1470,3528,5544,13692,21630,51600,80520,186945,290400,675675,1056627,2492919,3929926,9324406,14742910,34860553,55107598,129804808,205272008,483483128,765991032,1807560972,2869786524,6779169543, +A047168 ,0,0,0,0,0,0,0,4,5,25,30,90,105,245,280,588,666,1458,1665,4125,4785,12705,14850,38830,45331,113399,131859,320411,371735,903175,1048840,2594540,3021240,7594920,8863698,22366458,26122302,65579982,76575225,191126529, +A047169 ,0,0,0,0,0,0,0,0,4,5,30,36,126,147,392,448,1008,1134,2304,2565,5115,5687,12342,13860,34320,39039,104104,119119,315679,360815,913640,1039808,2508928,2842604,6651624,7515054,17505954,19773414,46915104,53093125,129385725,146794494, +A047170 ,0,0,0,0,0,0,0,0,0,5,6,36,42,147,168,448,504,1134,1260,2565,2827,5687,6270,13860,15444,39039,44044,119119,135135,360815,408968,1039808,1174224,2842604,3197904,7515054,8436114,19773414,22203020,53093125,59750649,146794494, A047171 ,0,0,0,2,3,9,14,34,55,125,209,461,791,1715,3002,6434,11439,24309,43757,92377,167959,352715,646645,1352077,2496143,5200299,9657699,20058299,37442159,77558759,145422674,300540194,565722719,1166803109,2203961429,4537567649, A047172 ,0,0,1,3,6,13,21,45,70,154,235,525,791,1793,2681,6153,9150,21206,31401,73359,108262,254607,374715,886171,1301235,3091971,4531423,10811671,15818791,37877401,55339849,132924649,193962894,467187454, A047173 ,0,0,0,0,3,4,12,15,40,51,135,175,455,596,1540,2037,5250,7000,18000,24156,62007,83667,214467,290719,744315,1012935,2590679,3537703,9039823,12381252,31612324,43411489,110761494,152459010, @@ -47938,15 +47938,15 @@ A047933 ,3,5,7,13,31,61,103,109,151,157,181,199,229,257,271,277,347,349,373,421, A047934 ,2,3,5,11,29,59,101,107,149,151,179,197,227,251,269,271,337,347,367,419,461,659,733,821,827,971,991,1019,1021,1061,1091,1229,1277,1301,1427,1451,1619,1667,1787,1877,1931,1949,1997,2027,2141,2237,2267,2309, A047935 ,1,2,2,2,2,2,2,2,2,6,2,2,2,6,2,6,10,2,6,2,2,2,6,2,2,6,6,2,10,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,2,6,2,6,6,2,6,2,2,2,2,2,2,2,2,2,2,2,6,2,2,10,2,2,2,2,6,2,6,2,2,2,2,6,2,2,2,2,10,6,10,2,2,2,10,2,2,2,6,10, A047936 ,2,41,109,151,229,251,271,313,337,367,409,439,733,761,971,991,1021,1031,1069,1289,1297,1303,1429,1471,1489,1759,1783,1789,1811,1871,1873,1879,2137,2411,2441,2551,2749,2791,2971,3001,3061,3079,3109,3221,3229, -A047937 ,1,2,6,140,16456,8390720,17179934976,140737496748032,4611686019501162496,604462909807864344215552,316912650057057631849169289216,664613997892457937028364283517337600, -A047938 ,1,3,24,4995,10763361,211822552035,37523658921114744,59824832307866205347043,858420955073128584419531008641,110856622060759442496180656754310346403, -A047939 ,1,4,70,65824,1073758336,281474993496064,1180591620734591303680,79228162514264619068554215424,85070591730234615870455337878516924416,1461501637330902918203686041642102636484130504704, -A047940 ,1,5,165,489125,38147070625,74505806274453125,3637978807092666626953125,4440892098500626236200333251953125,135525271560688054250937420874834136962890625, -A047941 ,1,6,336,2521476,705277897416,7107572010747738816,2578606199622659276537193216,33678386561031835867238388699701784576,15835071665743319426540573726368249140484891508736, -A047942 ,1,7,616,10092775,8308234084801,335267154940213889575,662932711464913775048175499816,64230894380264719522488136461023341060807, -A047943 ,1,8,1044,33562880,70368748374016,9444732965876730429440,81129638414606686199388699623424,44601490397061246283080881278262737180295168, -A047944 ,1,9,1665,96870249,463255057977921,179474496923598616041129,5632099886234793640483695986653185,14316042242555870306568544190208626253583093449, -A047945 ,1,10,2530,250025500,2500000025005000,2500000000002500005000000,250000000000000000250000000500000000,2500000000000000000000002500000000005000000000000, +A047937 ,1,2,6,140,16456,8390720,17179934976,140737496748032,4611686019501162496,604462909807864344215552,316912650057057631849169289216,664613997892457937028364283517337600,5575186299632655785385110159782842147536896,187072209578355573530071668259090783437390809661440, +A047938 ,1,3,24,4995,10763361,211822552035,37523658921114744,59824832307866205347043,858420955073128584419531008641,110856622060759442496180656754310346403,128844380183002832759115461915902241562318377784,1347757724935823407809884872163997148505019182125807296675, +A047939 ,1,4,70,65824,1073758336,281474993496064,1180591620734591303680,79228162514264619068554215424,85070591730234615870455337878516924416,1461501637330902918203686041642102636484130504704,401734511064747568885490523085607563280607806359022338048000, +A047940 ,1,5,165,489125,38147070625,74505806274453125,3637978807092666626953125,4440892098500626236200333251953125,135525271560688054250937420874834136962890625,103397576569128459358926086520114040467888355255126953125, +A047941 ,1,6,336,2521476,705277897416,7107572010747738816,2578606199622659276537193216,33678386561031835867238388699701784576,15835071665743319426540573726368249140484891508736,268034865369025581797148715934176748584236925114472848300179456, +A047942 ,1,7,616,10092775,8308234084801,335267154940213889575,662932711464913775048175499816,64230894380264719522488136461023341060807,304940121908958925034643465916849873749900601574419201,70938377295002676956115265690779190293441720530070400876280330568007, +A047943 ,1,8,1044,33562880,70368748374016,9444732965876730429440,81129638414606686199388699623424,44601490397061246283080881278262737180295168,1569275433846670190958947355821723644654155086251882971136, +A047944 ,1,9,1665,96870249,463255057977921,179474496923598616041129,5632099886234793640483695986653185,14316042242555870306568544190208626253583093449,2947546144434645792880218215353988087374626027116634833972481, +A047945 ,1,10,2530,250025500,2500000025005000,2500000000002500005000000,250000000000000000250000000500000000,2500000000000000000000002500000000005000000000000,2500000000000000000000000000000025000000000000005000000000000000, A047946 ,3,2,8,17,48,122,323,842,2208,5777,15128,39602,103683,271442,710648,1860497,4870848,12752042,33385283,87403802,228826128,599074577,1568397608,4106118242,10749957123,28143753122,73681302248, A047947 ,2,4,2,4,4,4,6,4,2,4,6,6,2,6,4,6,4,6,4,4,6,4,6,10,4,6,6,4,6,4,6,6,4,2,4,6,8,6,4,2,8,4,10,2,4,10,10,4,6,6,2,10,6,2,6,4,6,12,4,6,10,4,6,6,6,8,6,10,4,8,6,6,2,6,12,10,2,4,6,6,8,4,2,10,8,6,6,4,8,10,2,6,4,2, A047948 ,47,151,167,251,257,367,557,587,601,647,727,941,971,1097,1117,1181,1217,1361,1741,1747,1901,2281,2411,2671,2897,2957,3301,3307,3631,3727,4007,4451,4591,4651,4987,5101,5107,5297,5381,5387,5557,5801,6067,6257,6311, @@ -49337,7 +49337,7 @@ A049332 ,2,4,5,10,17,34,65,130,257,514,1025,2050,4097,8194,16385,32770,65537,131 A049333 ,1,2,243,4951760157141521099596496896, A049334 ,1,0,1,0,0,1,1,0,0,0,2,2,1,1,0,0,0,0,3,5,5,4,2,1,0,0,0,0,0,6,13,19,22,19,13,5,2,0,0,0,0,0,0,11,33,67,107,130,130,96,51,16,5,0,0,0,0,0,0,0,23,89,236,486,804,1112,1211,1026,626,275,72,14,0,0,0,0,0,0,0,0, A049335 ,1,240,2160,6720,17280, -A049336 ,0,0,0,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,1,2,3,2,1,0,0,0,0,0,0,1,3,9,13,11,5,2,0,0,0,0,0,0,0,1,4,20,49,77,75,47,16,5,0,0,0,0,0,0,0,0,1,6,40,158,406,662,737,538,259,72,14,0,0,0,0,0,0,0,0,0,1,7,70,426,1645,4176, +A049336 ,0,0,0,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,1,2,3,2,1,0,0,0,0,0,0,1,3,9,13,11,5,2,0,0,0,0,0,0,0,1,4,20,49,77,75,47,16,5,0,0,0,0,0,0,0,0,1,6,40,158,406,662,737,538,259,72,14,0,0,0,0,0,0,0,0,0,1,7,70,426,1645,4176,7307,8871,7541,4353,1671,378,50, A049337 ,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,2,2,2,0,0,0,0,0,0,0,0,0,0,0,2,8,11,8,5,0,0,0,0,0,0,0,0,0,0,0,0,2,11,42,74,76,38,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,74,296,633,768,558,219, A049338 ,1,1,1,2,5,14,50,233,1249,7616, A049339 ,1,1,2,3,6,14,36,121,533,3067,21798, @@ -51043,8 +51043,8 @@ A051038 ,1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,18,20,21,22,24,25,27,28,30,32,33,35 A051039 ,1,2,4,8,16,31,46,61,76,91,106,121,136,151,166,181,196,211,226,241,256,271,286,301,316,331,346,361,376,391,406,421,436,451,466,481,496,511,526,541,556,571,586,601,616,631,646,661,676,691,706,721,736,751, A051040 ,1,2,4,8,16,32,63,94,125,156,187,218,249,280,311,342,373,404,435,466,497,528,559,590,621,652,683,714,745,776,807,838,869,900,931,962,993,1024,1055,1086,1117,1148,1179,1210,1241,1272,1303,1334,1365,1396,1427, A051041 ,1,4,12,36,96,264,696,1848,4848,12768,33480,87936,230520,604608,1585128,4156392,10895952,28566216,74887056,196322976,514662960,1349208600,3536962584,9272217936,24307198464,63721617888,167046745992,437914664688,1147996820376,3009483583056,7889385389784,20682088837608,54218261608896, -A051042 ,1,3,9,24,66,180,486,1314,3558,9606,25956,70134,189462,511866,1382880,3735888,10092762,27266340,73661610, -A051043 ,4,16,60,228,864,3264,12336,46632,176208,665892,2516412,9509364,35935476,135798588,513176076, +A051042 ,1,3,9,24,66,180,486,1314,3558,9606,25956,70134,189462,511866,1382880,3735888,10092762,27266340,73661610,199001490,537615066,1452399978,3923748270, +A051043 ,1,4,16,60,228,864,3264,12336,46632,176208,665892,2516412,9509364,35935476,135798588,513176076,1939267560,7328398344, A051044 ,1,1,3,5,15,27,89,165,585,1113,4097,7917,29927,58499,225585,444793,1741521,3457027,13699699,27342421,109420549,219358315,884987529,1780751883,7233519619,14600965705,59656252987,120742510607, A051045 ,1,2,8,44,298,2350,22774, A051046 ,1,109,113,114,199,200,201,241,242,271,277,281,282,283,284,285,286,287,288,289,293,294,295,313,317,318,319,443,444,445,449,450,451,457,458,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476, @@ -53384,7 +53384,7 @@ A053379 ,8,88,888,7888,77888,877888,7877888,87877888,787877888,8787877888,887878 A053380 ,8,88,888,9888,89888,989888,9989888,89989888,989989888,8989989888,98989989888,898989989888,8898989989888,98898989989888,998898989989888,8998898989989888,98998898989989888,898998898989989888, A053381 ,1,3,1,7,1,3,1,8,1,3,1,7,1,3,1,9,1,3,1,7,1,3,1,8,1,3,1,7,1,3,1,11,1,3,1,7,1,3,1,8,1,3,1,7,1,3,1,9,1,3,1,7,1,3,1,8,1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,8,1,3,1,7,1,3,1,9,1,3,1,7,1,3,1,8,1,3,1,7,1,3,1,11,1,3,1,7,1,3, A053382 ,1,1,-1,1,-1,1,1,-3,1,0,1,-2,1,0,-1,1,-5,5,0,-1,0,1,-3,5,0,-1,0,1,1,-7,7,0,-7,0,1,0,1,-4,14,0,-7,0,2,0,-1,1,-9,6,0,-21,0,2,0,-3,0,1,-5,15,0,-7,0,5,0,-3,0,5,1,-11,55,0,-11,0,11,0,-11,0,5,0,1,-6,11,0,-33,0,22,0, -A053383 ,1,1,2,1,1,6,1,2,2,1,1,1,1,1,30,1,2,3,1,6,1,1,1,2,1,2,1,42,1,2,2,1,6,1,6,1,1,1,3,1,3,1,3,1,30,1,2,1,1,5,1,1,1,10,1,1,1,2,1,1,1,1,1,2,1,66,1,2,6,1,1,1,1,1,2,1,6,1,1,1,1,1,2,1,1,1,2,1,1,1,2730,1,2,1,1,6,1,7,1,10, +A053383 ,1,1,2,1,1,6,1,2,2,1,1,1,1,1,30,1,2,3,1,6,1,1,1,2,1,2,1,42,1,2,2,1,6,1,6,1,1,1,3,1,3,1,3,1,30,1,2,1,1,5,1,1,1,10,1,1,1,2,1,1,1,1,1,2,1,66,1,2,6,1,1,1,1,1,2,1,6,1,1,1,1,1,2,1,1,1,2,1,1,1,2730,1,2,1,1,6,1,7,1,10,1,3,1,210,1, A053384 ,2,2,2,2,3,3,3,3,2,2,2,2,4,4,4,4,2,2,2,2,3,3,3,3,2,2,2,2,5,5,5,5,2,2,2,2,3,3,3,3,2,2,2,2,4,4,4,4,2,2,2,2,3,3,3,3,2,2,2,2,6,6,6,6,2,2,2,2,3,3,3,3,2,2,2,2,4,4,4,4,2,2,2,2,3,3,3,3,2,2,2,2,5,5,5,5,2,2,2,2,3,3,3,3,2, A053385 ,0,1,0,3,0,1,0,3,0,1,0,4,0,1,0,4,0,1,0,3,0,1,0,3,0,1,0,5,0,1,0,5,0,1,0,3,0,1,0,3,0,1,0,4,0,1,0,4,0,1,0,3,0,1,0,3,0,1,0,6,0,1,0,6,0,1,0,3,0,1,0,3,0,1,0,4,0,1,0,4,0,1,0,3,0,1,0,3,0,1,0,5,0,1,0,5,0,1,0,3,0,1,0,3,0, A053386 ,1,1,3,3,1,1,3,3,1,1,4,4,1,1,4,4,1,1,3,3,1,1,3,3,1,1,5,5,1,1,5,5,1,1,3,3,1,1,3,3,1,1,4,4,1,1,4,4,1,1,3,3,1,1,3,3,1,1,6,6,1,1,6,6,1,1,3,3,1,1,3,3,1,1,4,4,1,1,4,4,1,1,3,3,1,1,3,3,1,1,5,5,1,1,5,5,1,1,3,3,1,1,3,3,1, @@ -54591,7 +54591,7 @@ A054586 ,1,-1,-3,-5,-1,-9,-11,3,-15,-17,5,-21,-3,-1,-27,-29,9,15,-35,11,-39,-41, A054587 ,5,37,73,683,631,1459,2633,4621,4733,11093,11527,16193,38993,34183,25189,99929,100069,78941,147881,140071,168151,358109,382117,361111,566567,783421,448249,1050083,1031923,631061,2060687,1843357,1314701, A054588 ,2,6,14,8,12,54,30,22,14,30,90,20,90,76,90,78,190,60,62,104,186,204,190,96,44,168,254,108,188,80,38,290,174,258,98,44,170,136,132,176,180,156,292,190,312,156,142,158,450,120,130,350,132,610,384,392,430,410, A054589 ,1,1,1,2,4,3,6,18,25,15,24,96,190,210,105,120,600,1526,2380,2205,945,720,4320,13356,26488,34650,27720,10395,5040,35280,128052,305620,507430,575190,405405,135135, -A054590 ,0,1,3,19,244,10101,1562298,885237542,1795141933300,13031553571814674,341286507770733602176,32523592049568306757117737,11366810480400463340177768296746, +A054590 ,0,1,3,19,244,10101,1562298,885237542,1795141933300,13031553571814674,341286507770733602176,32523592049568306757117737,11366810480400463340177768296746,14669108426561606778443288692015619955,70315685953531425166863071956073529852161120, A054591 ,1,3,4,9,10,12,13,27,28,30,36,39,40,81,82,84,90,91,108,117,120,121,146,182,205,243,244,246,252,270,273,324,328,351,360,363,364,386,438,546,615,656,671,729,730,732,738,756,757,810,819,820,949,972,984, A054592 ,0,1,4,26,296,6064,230896,16886864,2423185664,687883494016,387139470010624,432380088071584256,959252253993204724736,4231267540316814507357184,37138269572860613284747227136, A054593 ,0,1,10,262,21496,6433336,7566317200,35247649746352,648839620390462336,47230175230392839683456,13617860445102311268975051520,15577054031612736747163633737901312, @@ -54641,7 +54641,7 @@ A054636 ,0,1,3,6,10,15,21,28,29,29,30,31,32,34,35,38,39,43,44,49,50,56,57,64,66, A054637 ,0,1,3,4,4,5,6,7,9,11,11,13,14,16,18,19,19,19,20,20,21,22,22,24,25,26,26,27,28,29,30,31,33,34,36,36,37,39,40,41,43,45,47,47,47,49,49,50,52,52,54,56,57,57,59,60,61,63,64,66,68,70,70,72,74,75, A054638 ,0,1,1,1,0,0,1,0,0,1,1,0,0,0,0,1,1,0,0,1,0,1,1,0,1,1, A054639 ,1,2,3,5,6,9,11,14,18,23,26,29,30,33,35,39,41,50,51,53,65,69,74,81,83,86,89,90,95,98,99,105,113,119,131,134,135,146,155,158,173,174,179,183,186,189,191,194,209,210,221,230,231,233,239, -A054640 ,3,12,72,576,6912,96768,1741824,34836480,836075520,25082265600,802632499200,30500034969600,1281001468723200,56364064623820800,2705475101943398400,146095655504943513600,8765739330296610816000,543475838478389870592000,36956357016530511200256000, +A054640 ,1,3,12,72,576,6912,96768,1741824,34836480,836075520,25082265600,802632499200,30500034969600,1281001468723200,56364064623820800,2705475101943398400,146095655504943513600,8765739330296610816000,543475838478389870592000,36956357016530511200256000, A054641 ,1,6,6,6,6,42,42,210,210,210,210,3990,3990,43890,43890,43890,43890,1360590,23130030,23130030,855811110,855811110,855811110,855811110,855811110,855811110,11125544430,11125544430,11125544430,11125544430, A054642 ,1,6,42,210,3990,43890,1360590,23130030,855811110,11125544430,255887521890,20215114229310,828819683401710,24035770818649590,2331469769409010230,123567897778677542190,5313419604483134314170, A054643 ,3,47,151,167,199,251,257,367,503,523,557,587,601,647,727,941,971,991,1063,1097,1117,1181,1217,1231,1361,1453,1493,1499,1531,1741,1747,1753,1759,1889,1901,1907,2063,2161,2281,2393,2399,2411,2441,2671,2897,2957, @@ -54740,7 +54740,7 @@ A054735 ,8,12,24,36,60,84,120,144,204,216,276,300,360,384,396,456,480,540,564,62 A054736 ,4,8,11,15,21,29,40,55,76, A054737 ,253,1265,2225,2530,6325,12650,18025,18975,22250,24982,25300, A054738 ,64009,1600225,4950625,6400900,40005625,160022500,324900625,360050625,495062500,624100324,640090000, -A054739 ,1,3,21,2862,5398083,105918450471,18761832172500795,29912416165371498901002,429210477536602279123636967061,55428311030379722725246681652572022523, +A054739 ,1,3,21,2862,5398083,105918450471,18761832172500795,29912416165371498901002,429210477536602279123636967061,55428311030379722725246681652572022523,64422190091501416379601522735200323789074174081,673878862467911703904942451533575765568815772023224550102, A054740 ,0,1,1,2,1,2,1,2,2,1,2,2,2,1,2,2,2,1,2,2,2,2,1,2,2,2,2,2,1,2,2,2,2,2,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2, A054741 ,6,10,12,14,18,20,22,24,26,28,30,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,105,106,108,110,112,114,116,118,120,122,124,126,130,132,134,136, A054742 ,2,41,1952,172043,20511924,3058135804,545880769246,113492835877474,26936031159146324,7186257876123323136,2129016419091882758064,693526953186674417975860,246375213208005330322801608,94795009032593187381371471299,39271207630529921493096501099998,17428450442901657489782698628853383,8249301503003544171210026750727519638, @@ -54752,8 +54752,8 @@ A054747 ,3,76,4003,352744,41876694,6217447912,1106509486839,229553329028386,5439 A054748 ,1,6,29,209,1652,15981,171837,2060481,26951143,381398614, A054749 ,1,5,23,165,1328,13193,145076,1774515,23600723,338704176, A054750 ,2,3,5,7,29,67,89,199,599,2999,4999,29989,59999,79999,389999,989999,6999899,8989999,59899999,89999999,289999999,799999999,3999998999,19999997999,79999999999,399999998999,599999899999,999998999999, -A054751 ,1,4,55,34960,537157696,140738033618944,590295811483987148800,39614081257168338331296071680,42535295865117309120430975675097153536,730750818665451459102461990840694008379514814464, -A054752 ,1,5,120,252375,19076074375,37252918396015625,1818989403666496277343750,2220446049250331744551658935546875,67762635780344027129112510010600128173828125, +A054751 ,1,4,55,34960,537157696,140738033618944,590295811483987148800,39614081257168338331296071680,42535295865117309120430975675097153536,730750818665451459102461990840694008379514814464,200867255532373784442745261867639247948787687313041365401600, +A054752 ,1,5,120,252375,19076074375,37252918396015625,1818989403666496277343750,2220446049250331744551658935546875,67762635780344027129112510010600128173828125,51698788284564229679463057470911735435947895050048828125, A054753 ,12,18,20,28,44,45,50,52,63,68,75,76,92,98,99,116,117,124,147,148,153,164,171,172,175,188,207,212,236,242,244,245,261,268,275,279,284,292,316,325,332,333,338,356,363,369,387,388,404,412,423,425,428,436,452, A054754 ,1,2,5,8,17,32,37,101,125,128,197,257,401,468,512,577,677,1297,1417,1601,1872,2048,2340,2917,3125,3137,3145,4100,4212,4357,4913,5477,7057,7488,8101,8192,8837,9360,12101,13457,14401,14841,15377,15588,15877, A054755 ,2,5,8,17,32,37,101,125,128,197,257,401,512,577,677,1297,1601,2048,2917,3125,3137,4357,4913,5477,7057,8101,8192,8837,12101,13457,14401,15377,15877,16901,17957,21317,22501,24337,25601,28901,30977,32401, @@ -56279,9 +56279,9 @@ A056274 ,1,1,4,12,40,116,364,1080,3276,9800,29524,88440,265720,796796,2391440,71 A056275 ,1,1,4,13,50,181,714,2780,11046,43895,175274,699875,2798250,11188191,44747380,178970560,715860650,2863365834,11453377194,45813202675,183252461532,733008625151,2932033104554,11728127521060, A056276 ,1,1,4,13,51,196,854,3830,17997,86419,422004,2079260,10306751,51263086,255514299,1275160060,6368612301,31821454413,159042661904,795019250650,3974515029793,19870830290476,99348921288654, A056277 ,1,1,4,13,51,197,875,4096,20643,109246,601491,3402911,19628063,114699438,676207572,4010086352,23874362199,142508702805,852124263683,5101098123207,30560194492576,183176169456214, -A056278 ,0,1,3,6,15,27,63,120,252,495,1023,2010,4095,8127,16365,32640,65535,130788,262143,523770,1048509,2096127,4194303,8386440,16777200,33550335,67108608,134209530,268435455, -A056279 ,0,0,1,6,25,89,301,960,3024,9305,28501,86430,261625,788669,2375075,7140720,21457825,64435896,193448101,580597110,1742343323,5228050949,15686335501,47063113320,141197991000, -A056280 ,0,0,0,1,10,65,350,1700,7770,34095,145750,611435,2532530,10391395,42355940,171797200,694337290,2798799150,11259666950,45232081795,181509069700,727778478075,2916342574750,11681056021300, +A056278 ,0,1,3,6,15,27,63,120,252,495,1023,2010,4095,8127,16365,32640,65535,130788,262143,523770,1048509,2096127,4194303,8386440,16777200,33550335,67108608,134209530,268435455,536854005,1073741823,2147450880,4294966269,8589869055,17179869105, +A056279 ,0,0,1,6,25,89,301,960,3024,9305,28501,86430,261625,788669,2375075,7140720,21457825,64435896,193448101,580597110,1742343323,5228050949,15686335501,47063113320,141197991000,423610488665,1270865802276,3812663735790,11438127792025,34314649427035, +A056280 ,0,0,0,1,10,65,350,1700,7770,34095,145750,611435,2532530,10391395,42355940,171797200,694337290,2798799150,11259666950,45232081795,181509069700,727778478075,2916342574750,11681056021300,46771289738800,187226354413735,749329038527580, A056281 ,0,0,0,0,1,15,140,1050,6951,42524,246730,1379385,7508501,40074895,210766919,1096189500,5652751651,28958088579,147589284710,749206047975,3791262568261,19137821665325,96416888184100, A056282 ,0,0,0,0,0,1,21,266,2646,22827,179487,1323651,9321312,63436352,420693273,2734926292,17505749898,110687248392,693081601779,4306078872557,26585679462783,163305339165738,998969857983405, A056283 ,0,0,2,9,30,91,258,729,2018,5613,15546,43315,120750,338259,950062,2678499,7573350,21480739,61088874,174184755,497812638,1425847623,4092087522,11765822365,33887517870,97756387365,282414624746,816999710223,2366509198350,6862930841141, @@ -56851,7 +56851,7 @@ A056846 ,1,2,11,80,780,8781,104828,1298506,16462696,212457221,2780615627,3681703 A056847 ,0,0,1,1,2,3,4,4,5,6,7,8,9,9,10,11,12,13,14,15,16,16,17,18,19,20,21,22,23,24,25,25,26,27,28,29,30,31,32,33,34,35,36,36,37,38,39,40,41,42,43,44,45,46,47,48,49,49,50,51,52,53,54,55,56,57,58,59, A056848 ,1,10,16,65,160,180,366,406,896,1436,3904,5464,6312,7168,12558,17957,36960,48097,48256,61952,88646,94400,107340,112240,114863,127540,171856,270336,383360,392736,459012,623639,960484,1222656,1312768,1463990,1480704,2244736,2380968,3183563,4161888,4787280,5107455,5606400,6826556,7878400,9188414,9533238,10219520,10356472,12981760,15162808,22062080,25240360,28313472,32215040,41284864,72160576,79563520,91164167, A056849 ,1,4,7,6,5,6,3,6,9,0,1,6,3,6,5,6,7,4,9,0,1,4,7,6,5,6,3,6,9,0,1,6,3,6,5,6,7,4,9,0,1,4,7,6,5,6,3,6,9,0,1,6,3,6,5,6,7,4,9,0,1,4,7,6,5,6,3,6,9,0,1,6,3,6,5,6,7,4,9,0,1,4,7,6,5,6,3,6,9,0,1,6,3,6,5,6,7,4,9,0, -A056850 ,0,1,1,5,17,13,217,139,1631,3299,6487,46075,7153,502829,588665,2428309,9492289,5077565,118985033,88519643,808182895,1870418611,2978678759,25423702091,7551629537,252223018333,342842572777,1170495537221, +A056850 ,0,1,1,5,17,13,217,139,1631,3299,6487,46075,7153,502829,588665,2428309,9492289,5077565,118985033,88519643,808182895,1870418611,2978678759,25423702091,7551629537,252223018333,342842572777,1170495537221,5284606410545,1738366812781, A056851 ,0,1,2,3,11,26,83,128,186,258,572,875,1494,2029,3859,4810,6497,9274,18033,19243,24600,26073,30828,32528,34287,41930,48325,96475,103590,118814,126936,205022,240742,260009,331334,379612,396656,405360,414186, A056852 ,7,521,102943,23775972551,21633936185161,45957792327018709121,98920982783015679456199,870019499993663001431459704607,85589538438707037818727607157700537549449, A056853 ,4,6,7,12,13,15,18,19,21,30,42,45,60,63,72,93,102,108,117,138,150,165,180,192,198,213,228,240,255,270,282,312,333,348,357,420,432,453,462,522,525,570,600,618,642,660,693,717,765,810,822,828,858,882,933,957, @@ -57753,7 +57753,7 @@ A057748 ,0,1,2,2,2,3,4,3,3,5,4,3,4,3,2,2,3,5,5,2,2,5,4,2,4,7,7,6,5,4,4,3,3,5,6,6 A057749 ,13,19,37,43,53,59,61,67,83,101,107,109,131,139,149,157,163,173,179,181,197,211,227,229,251,269,277,283,293,307,311,317,331,347,349,373,379,389,397,419,421,443,461,467,491,499,509,523,541,547,557,563,571, A057750 ,0,1,4,10,23,49,100,202,413,839,1713,3493,7130,14535,29617,60158,122077,247132,499409,1007440,2029801,4083888,8208828,16484742, A057751 ,2,3,5,7,11,17,23,29,31,41,47,71,73,79,89,97,103,113,127,137,151,167,191,193,199,223,233,239,241,257,263,271,281,313,337,353,359,367,383,401,409,431,433,439,449,457,463,479,487,503,521,569,577,593,599,601, -A057752 ,2,5,10,17,38,130,339,754,1701,3104,11588,38263,108971,314890,1052619,3214632,7956589,21949555,99877775,222744644,597394254,1932355208,7250186216,17146907278,55160980939,155891678121,508666658006, +A057752 ,2,5,10,17,38,130,339,754,1701,3104,11588,38263,108971,314890,1052619,3214632,7956589,21949555,99877775,222744644,597394254,1932355208,7250186216,17146907278,55160980939,155891678121,508666658006,1427745660374, A057753 ,1,2,10,27,150,641,3796, A057754 ,6,30,178,1246,9630,78628,664918,5762209,50849235,455055615,4118066401,37607950281,346065645810,3204942065692,29844571475288,279238344248557,2623557165610822,24739954309690415,234057667376222382, A057755 ,1,1,2,3,5,10,20,39,78,155,309,617,1234,2467,4933,9865,19729,39457,78914,157827,315653,631306,1262612,2525223,5050446,10100891,20201782,40403563,80807125,161614249,323228497,646456994,1292913987,2585827973, @@ -57795,7 +57795,7 @@ A057790 ,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,2,1,1,1,1,3,2,3,1,1,1,1,3,4,4,3,1,1 A057791 ,1,1,3,4,22,6,209,376,1835,2540,49863,94944,1151914,2190666,12079274,95722288,1150653920,3217888350,47454745803,130819911320,846278385786,8064305838350,126356632390297,288019285668096,6861189820377586, A057792 ,1,1,5,28,288,3126,50069,826696,17604145,388244060,10405071317,285312497280,9211817190184,303160805686506,11415167261421900,438197051187369424,18896062057839751444,827240565046755853710, A057793 ,5,26,168,1227,9587,78527,664667,5761552,50847455,455050683,4118052495,37607910542,346065531066,3204941731602,29844570495887,279238341360977,2623557157055978,24739954284239494,234057667300228940, -A057794 ,1,1,0,-2,-5,29,88,97,-79,-1828,-2318,-1476,-5773,-19200,73218,327052,-598255,-3501366,23884333,-4891825,-86432204,-127132665,1033299853,-1658989719, +A057794 ,1,1,0,-2,-5,29,88,97,-79,-1828,-2318,-1476,-5773,-19200,73218,327052,-598255,-3501366,23884333,-4891825,-86432204,-127132665,1033299853,-1658989719,-1834784714,-17149335456,-17535487934,-174760519827, A057795 ,1,1,3,7,33,121,873,5167,45507,367927,4037913,39921961,522956313,6267300607,93445274187,1313941673647,22324392524313,355693695038761,6780385526348313,122000794104233527,2554923725074062867, A057796 ,672,2552,31552,12672,14472,62232,355080,95040,1225008, A057797 ,672,2552,43696,14472,528,62232,407880,42240,1225008, @@ -57840,7 +57840,7 @@ A057835 ,0,3,23,143,906,6116,44158,332774,2592592,20758029,169923159,1416705193, A057836 ,22,38,58,62,82,85,87,95,98,115,118,122,123,138,142,158,162,175,178,182,185,202,203,207,213,215,217,218,220,238,242,258,262,265,275,278,284,297,298,302,318,322,325,333,335,338,355,357,358,362,365,370,371, A057837 ,1,0,0,0,1,1,1,1,36,127,337,793,7525,48764,238954,997790,6401435,49107697,345482807,2150694855,14656830110,116678887407,978172378669,7886661080873,63905475745765,553437891603452,5122279358273976, A057838 ,2,3,11,35,71,191,419,659,1091,1199,1379,1655,2015,2135,2339,2591,3059,4439,6119,6215,6335,7055,8099,8351,8519,9815,11159,12419,12431,12599,12719,12851,13679,15119,15239,16415,16919,17255,17879,18215,18479, -A057839 ,1,31,198089, +A057839 ,1,31,198089,876881261,2026728077, A057840 ,1,3,7,9,27,49,81,133,243,267,343,729,2187,2401,5999,6561,14063,14337,16807,17253,19683,22329,33323,45619,59049,75573,117649,144531,177147,348519,383913,531441,745339,823543,911853, A057841 ,4,8,2048,34359738368,2361183241434822606848,3138550867693340381917894711603833208051177722232017256448, A057842 ,1,13,4381,560129,606797, @@ -58255,7 +58255,7 @@ A058250 ,1,1,2,2,6,30,30,30,30,330,2310,2310,2310,2310,2310,53130,690690,2003001 A058251 ,2,6,120,1680,36960,5765760,1568286720,536354058240,24672286679040,2861985254768640,2661646286934835200,3545312854197200486400,5814313080883408797696000,10500649424075436288638976000, A058252 ,5321191,8606621,9148351,41675791,43251251,49820291,51825461,57791281,66637721,73114441,74055851,82584841,86801801,87620011,112161451,123720361,125810021,126265751,136413721,140969291,152777291,153348161, A058253 ,2,3,5,7,11,47,61,347,7057, -A058254 ,1,2,4,12,60,60,240,720,7920,55440,55440,55440,55440,55440,1275120,16576560,480720240,480720240,480720240,480720240,480720240,480720240,19709529840,19709529840,39419059680,197095298400,3350620072800, +A058254 ,1,1,2,4,12,60,60,240,720,7920,55440,55440,55440,55440,55440,1275120,16576560,480720240,480720240,480720240,480720240,480720240,480720240,19709529840,19709529840,39419059680,197095298400,3350620072800,177582863858400,532748591575200, A058255 ,1,2,4,12,60,240,720,7920,55440,1275120,16576560,480720240,19709529840,39419059680,197095298400,3350620072800,177582863858400,532748591575200,19711697888282400,59135093664847200, A058256 ,2,2,3,5,1,4,3,11,7,1,1,1,1,23,13,29,1,1,1,1,1,41,1,2,5,17,53,3,1,1,1,1,1,37,1,1,3,83,43,89,1,19,2,7,1,1,1,113,1,1,1,1,5,4,131,67,1,1,1,47,73,1,31,1,79,1,1,173,1,1,179,61,1,1,191,97,1,1,1,1,1,1,1,1,1,1,1,1,1, A058257 ,1,0,1,0,0,1,1,1,1,0,3,2,1,0,0,0,3,5,6,6,6,0,0,3,8,14,20,26,71,71,71,68,60,46,26,0,413,342,271,200,132,72,26,0,0,0,413,755,1026,1226,1358,1430,1456,1456,1456,0,0,413,1168,2194,3420,4778,6208,7664,9120,10576, @@ -60868,7 +60868,7 @@ A060863 ,2,3,4,5,6,7,9,11,12,13,15,17,18,19,21,22,23,26,29,30,31,34,37,38,39,41, A060864 ,1,8,10,14,16,20,24,25,27,28,32,33,35,36,40,44,48,54,57,58,62,63,65,66,74,75,80,84,85,88,90,94,98,104,118,119,121,128,136,140,141,142,146,147,148,152,156,158,159,161,162,164,168,171,172,174,178,182,184,188, A060865 ,1,1,2,1,1,8,1,1,2,1,1,16,1,1,2,1,1,8,1,1,2,1,1,32,1,1,2,1,1,8,1,1,2,1,1,16,1,1,2,1,1,8,1,1,2,1,1,64,1,1,2,1,1,8,1,1,2,1,1,16,1,1,2,1,1,8,1,1,2,1,1,32,1,1,2,1,1,8,1,1,2,1,1,16,1,1,2,1,1,8,1,1,2,1,1,128,1,1,2,1, A060866 ,2,3,4,9,6,12,8,15,16,18,12,28,14,24,24,35,18,39,20,42,32,36,24,60,36,42,40,56,30,72,32,63,48,54,48,97,38,60,56,90,42,96,44,84,78,72,48,124,64,93,72,98,54,120,72,120,80,90,60,168,62,96,104,135,84,144,68,126,96, -A060867 ,1,9,49,225,961,3969,16129,65025,261121,1046529,4190209,16769025,67092481,268402689,1073676289,4294836225,17179607041,68718952449,274876858369,1099509530625,4398042316801,17592177655809, +A060867 ,1,9,49,225,961,3969,16129,65025,261121,1046529,4190209,16769025,67092481,268402689,1073676289,4294836225,17179607041,68718952449,274876858369,1099509530625,4398042316801,17592177655809,70368727400449,281474943156225,1125899839733761, A060868 ,2,32,338,3200,29282,264992,2389298,21516800,193690562,1743333152,15690352658,141214236800,1270931319842,11438391444512,102945551698418,926510051379200,8338590720693122,75047317261079072,675425857674234578, A060869 ,3,75,1323,21675,348843,5589675,89467563,1431612075,22906317483,366503176875,5864059218603,93824981052075,1501199831050923,24019197833685675,384307167486454443,6148914688373205675,98382635048331029163,1574122160910735420075, A060870 ,4,144,3844,97344,2439844,61027344,1525839844,38146777344,953673339844,23841853027344,596046423339844,14901161071777344,372529029235839844,9313225743103027344,232830643638610839844,5820766091270446777344, @@ -60921,7 +60921,7 @@ A060916 ,101,127,131,149,151,163,167,181,191,307,311,421,431,433,457,461,479,487 A060917 ,1,12,150,2180,36855,715008,15697948,385300800,10463945085,311697869120,10108450408914,354630018043392,13384651003544275,540860323696035840,23300648262667635960,1066165291831917811712, A060918 ,1,20,360,6860,143570,3321864,84756000,2372001720,72384192540,2394775746220,85443353291296,3271908306712500,133893717061821080,5832748749666611920,269542701201588099840,13172225935626444660144,678788199609330554538000,36790272488566573278647940, A060919 ,4,8,20,60,204,748,2860,11180,44204,175788,701100,2800300,11193004,44755628,178989740,715893420,2863442604,11453508268,45813508780,183252986540,733009849004,2932035201708,11728132418220,46912512895660, -A060920 ,1,2,1,5,5,1,13,20,9,1,34,71,51,14,1,89,235,233,105,20,1,233,744,942,594,190,27,1,610,2285,3522,2860,1295,315,35,1,1597,6865,12473,12402,7285,2534,490,44,1,4181,20284, +A060920 ,1,2,1,5,5,1,13,20,9,1,34,71,51,14,1,89,235,233,105,20,1,233,744,942,594,190,27,1,610,2285,3522,2860,1295,315,35,1,1597,6865,12473,12402,7285,2534,490,44,1,4181,20284,42447,49963,36122,16407,4578,726,54,1, A060921 ,1,3,2,8,10,3,21,38,22,4,55,130,111,40,5,144,420,474,256,65,6,377,1308,1836,1324,511,98,7,987,3970,6666,6020,3130,924,140,8,2584,11822,23109,25088,16435,6588,1554,192,9, A060922 ,1,3,1,4,6,1,7,17,9,1,11,38,39,12,1,18,80,120,70,15,1,29,158,315,280,110,18,1,47,303,753,905,545,159,21,1,76,566,1687,2568,2120,942,217,24,1,123,1039,3612,6666,7043,4311, A060923 ,1,4,1,11,17,1,29,80,39,1,76,303,315,70,1,199,1039,1687,905,110,1,521,3364,7470,6666,2120,159,1,1364,10493,29634,37580,20965,4311,217,1,3571,31885,109421,181074,148545, @@ -60945,7 +60945,7 @@ A060940 ,2,3,7,5,5,7,11,7,13,19,7,11,29,23,17,11,19,13,17,11,13,23,19,11,13,23,4 A060941 ,1,2,23,377,7229,151491,3361598,77635093,1846620581,44930294909,1113015378438,27976770344941,711771461238122,18293652115906958,474274581883631615,12388371266483017545,325714829431573496525,8613086428709348334675,228925936056388155632081, A060942 ,2,12,420,27720, A060943 ,1,5,251,357904,25795462624,141727869124448256,83296040059942781485105152,7013444132843374500928464765799366656,109329825340451764123791003609208862665771818418176,396334659032531033249146049131230887376087800711479296000000000000, -A060944 ,1,9,130,2900,93576,4141872,241353792,17929776384,1655071418880,185914776960000,24978180045312000,3955930130221056000,729464836964806656000,154952762244805582848000, +A060944 ,1,9,130,2900,93576,4141872,241353792,17929776384,1655071418880,185914776960000,24978180045312000,3955930130221056000,729464836964806656000,154952762244805582848000,37566943754471090749440000,10310706109241121091092480000, A060945 ,1,1,2,3,6,10,18,31,55,96,169,296,520,912,1601,2809,4930,8651,15182,26642,46754,82047,143983,252672,443409,778128,1365520,2396320,4205249,7379697,12950466,22726483,39882198,69988378,122821042,215535903,378239143,663763424,1164823609, A060946 ,1,3,12,76,701,8477,126126,2223278,45269999,1045269999,26982694600,769991065288,24068076187769,817782849441913,30010708874832538,1182932213481679514,49844124089148547995,2235755683827845079963,106363105981739086612804, A060947 ,513,561,585,633,645,693,717,765,771,819,843,891,903,951,975,1023,19684,20008,20332,20440,20764,21088,21196,21520,21844,21880,22204,22528,22636,22960,23284,23392,23716,24040,24076,24400,24724,24832, @@ -60985,7 +60985,7 @@ A060980 ,309,408,419,507,518,529,606,617,628,639,705,716,727,738,749,804,815,826 A060981 ,1373,1447,1097,1163,853,911,641,691,461,503,313,347,197,223,113,131,61,71,41,43,53,47,97,83,173,151,281,251,421,383,593,547,797,743,1033,971,1301,1231,1601,1523,1933,1847,2297,2203,2693,2591,3121,3011,3581, A060982 ,11,10,13,14,15,16,17,18,19,90,109,209,309,409,509,609,709,809,909,10909,20909,30909,40909,50909,60909,70909,80909,90909,1090909,2090909,3090909,4090909,5090909,6090909,7090909,8090909,9090909,109090909, A060983 ,1,7,13,35,31,91,57,154,130,217,133,455,183,399,403,644,307,910,381,1085,741,931,553,2002,806,1281,1209,1995,871,2821,993,2632,1729,2149,1767,4550,1407,2667,2379,4774,1723,5187,1893,4655,4030,3871, -A060984 ,1,2,3,4,8,12,21,37,73,137,258,514,998,1959,3895,7739,15308,30437,60713,121229,242333,484397,967422,1933711,3865811,7730967,15459367,30912128,61814609,123625653,247235577,494448306,988888002,1977738918,3955408759, +A060984 ,1,2,3,4,8,12,21,37,73,137,258,514,998,1959,3895,7739,15308,30437,60713,121229,242333,484397,967422,1933711,3865811,7730967,15459367,30912128,61814609,123625653,247235577,494448306,988888002,1977738918,3955408759,7910812423, A060985 ,1,2,3,6,12,22,43,79,157,310,610,1205,2381,4727,9383,18699,37227,74355,148660,296900,593735,1187240,2373810,4746741,9491481,18981027,37956907,75910735,151820416,303627016,607253419,1214497244,2428978214,4857918665, A060986 ,2,3,5,7,12,19,31,34,53,87,118,205,323,441,259,612,730, A060987 ,1,2,3,4,7,11,18,20,31,51,69,120,189,258,327,358,427, @@ -61177,7 +61177,7 @@ A061172 ,9,120,753,3612,15040,57366,206115,709152,2360943,7659870,24340184,76031 A061173 ,3,70,642,4055,20945,95372,398290,1561683,5836190,21001410,73300478,249476600,831342517,2720979140,8768966810,27881856697,87610794135,272424413508,839229287580,2563768831145,7773145679478, A061174 ,15,545,7043,57560,365045,1970905,9520315,42385132,177293730,705980760,2701362950,10001654350,36020160943,126701700755,436709397085,1478813477920,4930328078835,16212542696607, A061175 ,9,471,8268,85962,662773,4215123,23440212,118073914,551281476,2423731704,10148667670,40812739230,158644493079,599051383561,2206150654944,7949311477362,28098758599203,97645872621753, -A061176 ,1,1,-1,1,-1,1,1,0,0,-1,1,2,-5,2,1,1,5,-15,15,-5,-1,1,9,-30,41,-30,9,1,1,14,-49,77,-77,49,-14,-1,1,20,-70,112,-125,112,-70,20,1,1,27,-90,126,-117,117,-126,90,-27,-1,1,35,-105,90,45,-131,45, +A061176 ,1,1,-1,1,-1,1,1,0,0,-1,1,2,-5,2,1,1,5,-15,15,-5,-1,1,9,-30,41,-30,9,1,1,14,-49,77,-77,49,-14,-1,1,20,-70,112,-125,112,-70,20,1,1,27,-90,126,-117,117,-126,90,-27,-1,1,35,-105,90,45,-131,45,90,-105,35,1, A061177 ,1,2,-2,3,-5,3,4,-8,8,-4,5,-10,11,-10,5,6,-10,6,-6,10,-6,7,-7,-14,29,-14,-7,7,8,0,-56,120,-120,56,0,-8,9,12,-126,288,-365,288,-126,12,9,10,30,-228,540,-770,770,-540,228,-30,-10,11,55,-363,858, A061178 ,1,9,51,233,942,3522,12473,42447,140109,451441,1426380,4434420,13599505,41225349,123723351,368080793,1086665562,3186317718,9286256393,26916587307,77634928209,222920650081, A061179 ,1,14,105,594,2860,12402,49963,190570,696787,2463300,8472280,28481220,93914325,304597382,973877245,3075011478,9602753412,29695165110,91026167999,276833858530,835933445799,2507876305416, @@ -61540,7 +61540,7 @@ A061535 ,2,3,5,8,12,17,24,33,44,58,74,95,119,149,184,226,274,332,399,477,568,671 A061536 ,1,2,4,6,9,12,16,20,24,28,33,38,44,50,56,62,69,76,84,92,100,108,117,126,135,144,153,162,172,182,193,204,215,226,237,248,260,272,284,296,309,322,336,350,364,378,393,408,423,438,453,468,484,500,516,532,548, A061537 ,1,2,3,4,5,36,7,8,9,100,11,144,13,196,225,16,17,324,19,400,441,484,23,576,25,676,27,784,29,810000,31,32,1089,1156,1225,1296,37,1444,1521,1600,41,3111696,43,1936,2025,2116,47,2304,49,2500,2601,2704,53,2916, A061538 ,1,1,1,2,1,1,1,8,3,1,1,12,1,1,1,64,1,18,1,20,1,1,1,576,5,1,27,28,1,1,1,1024,1,1,1,7776,1,1,1,1600,1,1,1,44,45,1,1,110592,7,50,1,52,1,2916,1,3136,1,1,1,3600,1,1,63,32768,1,1,1,68,1,1,1,26873856,1,1,75,76,1,1,1, -A061539 ,2,7,28,116,490,2094,9014,38988,169184, +A061539 ,1,2,7,28,116,490,2094,9014,38988,169184,735846,3205830,13984076,61057108,266780436,1166320956,5101254296,22319861332,97685806958,427635145446,1872400460940,8199602319764,35912342632908,157304824211156,689096352589448,3018916616772272, A061540 ,0,0,0,6,205,5700,156555,4483360,136368414,4432075200,154060613850,5720327205120,226378594906035,9523895202838016,424814409531910125,20037831121798963200,996964614369038858060,52198565072252054814720, A061541 ,0,0,0,1,120,6165,258125,10230360,405918324,16530124800,699126562530,30884683104000,1428626760992860,69248819808744576,3516693960681822375,186964957159176734720,10395215954531344335000,603712553730550509035520,36575888366817680447745924, A061542 ,0,0,0,0,45,4945,331506,18602136,974679363,50088981600,2588876118675,136440380444544,7389687834858186,413138671455654144,23901631262740105875,1432747304604594800640,89030607737889046580442, @@ -61893,7 +61893,7 @@ A061888 ,10,5063,14573,17098,1916357,468726713734, A061889 ,1,1,2,2,3,2,4,3,5,5,7,8,10,8,13,14,15,18,20,23,29,31,36,41,49,54,63,72,80,92,108,116,137,153,174,197,222,250,281,318,354,398,450,497,561,624,697,779,869,964,1075,1193,1325,1471,1635,1809,2004,2217,2455,2711, A061890 ,100,25633969,212372329,292341604,3672424151449,219704732167875184222756, A061891 ,1,1,4,7,7,10,13,13,16,19,19,22,25,25,28,31,31,34,37,37,40,43,43,46,49,49,52,55,55,58,61,61,64,67,67,70,73,73,76,79,79,82,85,85,88,91,91,94,97,97,100,103,103,106,109,109,112,115,115,118,121,121,124, -A061892 ,0,3,1,3,3,6,10,28,108,1011,32511,9314238, +A061892 ,0,3,1,3,3,6,10,28,108,1011,32511,9314238,84560776390, A061893 ,1,0,0,3,1,1,1,1,2,3,1,1,1,2,2,3,1,1,1,2,2,3,3,4,5,6,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,5,5,5,6,6,7,7,8,9,10,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6, A061894 ,0,2,2,4,6,13,35,171,1934,97151,52942129, A061895 ,2,0,2,2,1,1,2,2,1,1,2,2,3,4,1,1,1,1,2,2,2,3,3,4,4,5,6,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,6,6,6,7,7,8,8,9,9,10,11,12,13,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3, @@ -62275,7 +62275,7 @@ A062270 ,3,45,175,693,11011,2807805,302307005,402243205,714186915,42803602439,11 A062271 ,4,64,256,1024,16384,4194304,452984832,603979776,1073741824,64424509440,16698832846848,8906044184985600,2244323134616371200,4588393964104581120,24471434475224432640,32628579300299243520, A062272 ,1,1,2,5,12,41,152,685,3472,19921,126752,887765,6781632,56126201,500231552,4776869245,48656756992,526589630881,6034272215552,72989204937125,929327412759552,12424192360405961,174008703107274752, A062273 ,1,23,456,7890,12345,678901,2345678,90123456,789012345,6789012345,67890123456,789012345678,9012345678901,23456789012345,678901234567890,1234567890123456,78901234567890123,456789012345678901, -A062274 ,0,0,1,7,45,291,2030,15695,135045,1287243,13495669,154516663,1919455487,25721712601, +A062274 ,0,0,1,7,45,291,2030,15695,135045,1287243,13495669,154516663,1919455487,25721712601,369942275033, A062275 ,1,0,0,0,1,0,0,2,2,0,0,3,16,3,0,0,4,72,72,4,0,0,5,256,729,256,5,0,0,6,800,5184,5184,800,6,0,0,7,2304,30375,65536,30375,2304,7,0,0,8,6272,157464,640000,640000,157464,6272,8,0,0,9,16384,750141,5308416,9765625, A062276 ,0,0,0,1,1,2,2,2,3,3,3,4,4,4,5,5,6,6,6,7,7,7,8,8,9,9,9,10,10,10,11,11,11,12,12,13,13,13,14,14,14,15,15,16,16,16,17,17,17,18,18,18,19,19,20,20,20,21,21,21,22,22,22,23,23,24,24,24,25,25,25,26,26,27,27,27,28,28, A062277 ,2,1,1,1,1,3,5,10,20,42,88,189,414,921,2077,4737,10921,25416,59646,141033,335752,804258,1937372,4690989,11412140,27884328,68407056,168446547,416226830,1031816793,2565591729,6397371713,15994440540, @@ -62448,7 +62448,7 @@ A062443 ,0,0,0,2,8,21,45,86,150,247,387,580,840,1183,1626,2188,2889,3753,4805,60 A062444 ,0,0,1,3,9,21,46,86,151,248,387,580,841,1184,1627,2188,2889,3753,4805,6073,7587,9378,11481,13934,16775,20048,23796,28068,32913,38385,44540,51436,59136,67704,77208,87720,99314,112067,126061,141379,158109, A062445 ,0,0,0,2,9,23,50,94,164,269,418,623,899,1262,1728,2317,3051,3953,5049,6368,7939,9796,11973,14508,17441,20815,24676,29071,34052,39672,45988,53060,60950,69723,79450,90200,102050,115078,129366,144998,162063, A062446 ,0,0,1,3,10,24,50,95,165,269,418,624,900,1262,1728,2317,3051,3953,5050,6369,7940,9796,11973,14508,17441,20816,24676,29072,34052,39673,45989,53060,60950,69724,79450,90201,102051,115079,129367,144999, -A062447 ,3,13,113,1291,20443,350741,7535917,173723909,4735396021,160158887507,5681909839321,237981875869277,10922592672383377,520256404164231967,26879210482658444513,1556951523272630146229, +A062447 ,2,3,13,113,1291,20443,350741,7535917,173723909,4735396021,160158887507,5681909839321,237981875869277,10922592672383377,520256404164231967,26879210482658444513,1556951523272630146229, A062448 ,2,2,7,103,1619,28687,567871,12579617,310248241,8448283757,252097800623,8187297276401,287629183566841,10871811891162227,440023773804299591, A062449 ,0,0,1,7,24,59,123,228,393,634,976,1444,2066,2877,3912,5212,6820,8786,11161,14002,17370,21331,25953,31312,37486,44560,52623,61767,72093,83705,96711,111226,127371,145270,165056,186864,210838,237125,265881, A062450 ,0,0,2,8,25,59,123,229,393,635,976,1444,2067,2877,3913,5212,6821,8786,11162,14003,17371,21331,25953,31312,37486,44560,52623,61768,72094,83705,96711,111227,127371,145271,165056,186865,210838,237126,265881, @@ -64017,7 +64017,7 @@ A064012 ,10,30,288,660,720,2146560, A064013 ,1,35,215,225,398,2097,5205,7452,22359,98176,169653, A064014 ,8281,183184,328329,528529,715716,60996100,82428241,98029801,1322413225,4049540496,106755106756,453288453289,538277538276,998002998001,20661152066116,29752082975209,2214532822145329,2802768328027684,7783702677837025,9998000299980001, A064015 ,1,8,72,135,504,726,3431,5313,8614,10249,28721,45705,83832,115111,116057,235781,262844,349351,396815,530205,680229,2140452,3514448,5092315,5093695,9520080,12154006,12207991,12213847,13802199,13806381,13807119,29213727,115315480, -A064016 ,0,23,2006,196308,19607514,1960399246,196036947608,19603648572758,1960364533634092,196036449326991586,19603644912113783634,1960364490766613788860,196036449073440195974090, +A064016 ,0,23,2006,196308,19607514,1960399246,196036947608,19603648572758,1960364533634092,196036449326991586,19603644912113783634,1960364490766613788860,196036449073440195974090,19603644907302101080472556,1960364490729905106089642146,196036449072986990521291164848, A064017 ,1,3,12,45,162,567,1944,6561,21870,72171,236196,767637,2480058,7971615,25509168,81310473,258280326,817887699,2582803260,8135830269,25569752274,80196041223,251048476872,784526490225,2447722649502, A064018 ,1,32,3044,304192,30397486,3039650754,303963552392,30396356427242,3039635516365908,303963551173008414,30396355092886216366,3039635509283386211140,303963550927059804025910,30396355092702898919527444,3039635509270144893910357854,303963550927013509478708835152, A064019 ,1,5,51,99,155,209,2369,2569,2882,5745,15143,21691,34573,36566,40516,41237,65304,82718,101638,112305,185701,238302,247221,254865,291399,439104,445794,483107,532645,538531,570020,690238,698561,772485,805013, @@ -67249,7 +67249,7 @@ A067244 ,2,3,4,6,32,34,54,55,58,70,84,133,141,221,285,322,377,407,472,664,684,98 A067245 ,5,6,13,15,33,68,117,156,168,222,259,265,313,522,644,665,750,986,1065,1153,1178,1328,1351,1377,1447,1750,1812,1824,1976,2392,2482,3672,3885,4185,4460,4528,5450,5812,5824,6610,6804,7256,7306,8496,8930,9310, A067246 ,1,2,6,8,11,14,22,30,70,86,102,116,130,140,154,186,238,286,390,406,422,454,459,646,830,869,1015,1070,1120,1518,1528,1710,1742,1870,2670,2871,3586,3654,4394,5070,5214,6102,6446,6692,7295,7943,8339,9204,10664, A067247 ,1,2,4,6,10,16,25,39,63,99,158,253,402,639,1021,1633,2617,4153,6633,10460,16598,26146,41409,64733,102006,159165, -A067248 ,7,9551,303027,440999,968819,5517973,27737957,93230839,46492090901,426836115943,732382677641,4895576080181, +A067248 ,7,9551,303027,440999,968819,5517973,27737957,93230839,46492090901,426836115943,732382677641,4895576080181,77628540590583,3475456543097857,20396537622790811, A067249 ,1,6,84,112,141,294,1188,1320,2508,4584,5406,8850,14270,17416,23320,31152,79035,117576,125576,132066,149877,160664,162514,164024,167970,170980,177744,184584,223286,1119636,1124592,1216644,1481800,1566920,1626716, A067250 ,10,57,92,99,123,124,1677,2485,32578,33165,33220,451140,5954790, A067251 ,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,48,49,51,52,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,71,72,73,74,75,76,77,78,79,81,82,83,84,85,86,87,88,89,91,92,93,94,95,96,97,98,99,101,102,103,104, @@ -68540,7 +68540,7 @@ A068535 ,1,2,4,8,16,32,35,64,128,256,297,512,1024,1093,2048,2186,2590,3279,3511, A068536 ,88209,90288,125928,196020,368280,829521,1978020,2328480,5513508,8053155,19798020,86531940,197998020,554344560,556326540,1960396020,1979998020,5543944560,5925169800,8820988209,9028890288,12592925928,14011538112,19602196020,19799998020, A068537 ,2,5,8,9,10,13,16,17,18,20,25,26,28,29,32,33,34,35,37,40,41,45,50,52,53,54,58,61,64,65,68,72,73,74,80,82,85,89,90,91,97,98,100, A068538 ,111111111,111111111111111111,1111111111111111111111,111111111111111111111111111,111111111111111111111111111111111111,111111111111111111111111111111111111111111, -A068539 ,5,25,120,580,2800,13500,65100,313940,1513820,7299760,35200020,169736780,818482260, +A068539 ,1,5,25,120,580,2800,13500,65100,313940,1513820,7299760,35200020,169736780,818482260,3946776920,19031623000, A068540 ,5,51,171,357,442,582,1071,1250,1292,1460,1746,5456,6435,6825,7248,8060,8140,8540,9348,9486,9516,9594,9632,9636,10476,10860,10950,12192,20910,23160,23680,25308,27468,28032,29340,31392,34000,37488,45220, A068541 ,2,4,6,8,32,64,66,70,72,316,318,326,328,330,332,336,606,636,638,654,670,672,678,680,828,830,832,834,836,838,840,842,844,846,850,880,882,884,898,900,902,904,906,908,914,916,918,928,942,948,962,964,966,968, A068542 ,3,1,370,123456790,411522633744855967078189300,137174211248285322359396433470507544581618655692729766803840877914951989026063100, @@ -72215,7 +72215,7 @@ A072210 ,1,1,2,3,5,8,31,12,43,55,98,441,332,773,16,834,994,739,6341,3732,9083,28 A072211 ,1,1,2,2,4,1,6,2,3,1,10,1,12,1,1,2,16,1,18,1,1,1,22,1,5,1,3,1,28,1,30,2,1,1,1,1,36,1,1,1,40,1,42,1,1,1,46,1,7,1,1,1,52,1,1,1,1,1,58,1,60,1,1,2,1,1,66,1,1,1,70,1,72,1,1,1,1,1,78,1,3,1,82,1,1,1,1,1,88,1,1,1,1,1, A072212 ,6,13,22,33,46,61,77,95,115,136,160,185,211,240,270,302,335,370,407,445,486,527,571,616,663,711,761,813,867,922,978,1037,1097,1159,1222,1287,1354,1422,1492,1563,1637,1711,1788,1866,1946,2027,2110,2195,2281, A072213 ,1,1,5,30,231,1958,17977,173525,1741630,18004327,190569292,2056148051,22540654445,250438925115,2814570987591,31946390696157,365749566870782,4219388528587095,49005643635237875,572612058898037559, -A072214 ,1,1,2,3,7,22,101,792,12310,451276,49995925,22540654445,60806135438329,1596675274490756791,758949605954969709105721,14362612091531863067120268402228,29498346711208035625096160181520548669694,23537552807178094028466621551669121053281242290608650, +A072214 ,1,1,1,2,3,7,22,101,792,12310,451276,49995925,22540654445,60806135438329,1596675274490756791,758949605954969709105721,14362612091531863067120268402228,29498346711208035625096160181520548669694,23537552807178094028466621551669121053281242290608650, A072215 ,4,5,7,15,176,476715857290, A072216 ,5,89,187,1297,10911,150296,9008299,15002893,140669390,1005499526,10087799570, A072217 ,2,24,23,21,55,64,96,96,98,109,149,149,188,186,201,197,236,232, @@ -72242,7 +72242,7 @@ A072237 ,39916800,362880,371993326789901217467999448150835200000000,209227898880 A072238 ,720,87178291200,6402373705728000,8222838654177922817725562880000000,608281864034267560872252163321295376887552831379210240000000000,1124000727777607680000,230843697339241380472092742683027581083278564571807941132288000000000000, A072239 ,11,12,15,27,192,299016608, A072240 ,6,1307674368000,25852016738884976640000,403291461126605635584000000,263130836933693530167218012160000000,33452526613163807108170062053440751665152000000000,10333147966386144929666651337523200000000, -A072241 ,1,1,1,2,3,6,18,76,512,6378,173682,12769602,3328423936,4338469000206,43848229368772905,5999189517441089061374,22578203777383772718280932410,5759108897879943749493986821813718586, +A072241 ,1,1,1,1,2,3,6,18,76,512,6378,173682,12769602,3328423936,4338469000206,43848229368772905,5999189517441089061374,22578203777383772718280932410,5759108897879943749493986821813718586,313503492905074747917062873989282073311633745920, A072242 ,5040,355687428096000,15511210043330985984000000,265252859812191058636308480000000,13763753091226345046315979581580902400000000, A072243 ,1,1,2,8,32,142,668,3264,16444,84756,444793,2368800,12769602,69545358,382075868,2114965120,11784471548,66043042088,372022512608,2105220502772,11962163400706,68223286792200,390406746862530,2240962117491470,12899456450932840, A072244 ,24,121645100408832000,51090942171709440000,620448401733239439360000,2658271574788448768043625811014615890319638528000000000,1405006117752879898543142606244511569936384000000000, @@ -73166,7 +73166,7 @@ A073161 ,1,4,6,10,12,20,21,26,28,36,38,46,50,56,57,64,69,80,81,87,92,99,104,112, A073162 ,1,3,17,37,9107,156335,679083,1068131,4883039,101691357, A073163 ,0,3,68,259,5500628,1180641920,19503263760,46464766631,863653341852,306757978180563, A073164 ,0,1,4,7,604,7552,28720,43501,176868,3016559, -A073165 ,1,1,1,1,2,1,1,3,4,1,1,4,10,8,1,1,5,20,35,16,1,1,6,35,112,126,32,1,1,7,56,294,672,462,64,1,1,8,84,672,2772,4224,1716,128,1,1,9,120,1386,9504,28314,27456,6435,256,1,1,10,165,2640,28314,151008,306735,183040, +A073165 ,1,1,1,1,2,1,1,3,4,1,1,4,10,8,1,1,5,20,35,16,1,1,6,35,112,126,32,1,1,7,56,294,672,462,64,1,1,8,84,672,2772,4224,1716,128,1,1,9,120,1386,9504,28314,27456,6435,256,1,1,10,165,2640,28314,151008,306735,183040,24310,512,1, A073166 ,1,1,1,1,3,1,1,2,2,1,1,5,10,5,1,1,3,5,5,3,1,1,7,7,35,7,7,1,1,4,28,14, A073167 ,4,6,12,36,158,871,5802,44996,396465,3905769,42492571,505638346,6530063762,90937897520,1358169957289,21652573590950,366977865386054,6588521300048437,124902980656633121,2493219952752601419,52268714816806571926, A073168 ,1,5,9,9,9,15,16,17,18,17,25,19,21,27,31,26,21,22,21,35,38,31,35,31,34,33,37,39,49,49,33,52,49,47,39,43,47,47,48,48,41,49,48,60,59,59,49,52,58,58,63,71,75,65,65,67,71,79,75,81,84,77,65,69,72,72,67,69,61,65,65, @@ -74979,7 +74979,7 @@ A074974 ,15,26,33,39,50,51,57,62,68,69,75,79,82,86,93,97,99,118,127,141,147,165, A074975 ,24,42,66,96,104,108,114,140,156,174,176,180,222,224,228,270,282,288,336,352,354,392,396,400,444,448,464,516,532,534,560,572,576,594,644,650,666,702,704,708,714,720,740,756,760,774,780,800,810,822,828,870, A074976 ,3,2,2,1,3,2,4,2,2,5,2,3,6,3,2,2,8,3,4,8,3,4,3,2,5,10,5,10,5,2,6,4,12,2,12,4,4,6,4,4,13,3,14,7,14,2,2,7,15,8,5,15,3,5,5,5,16,6,8,17,3,2,9,18,9,3,6,4,19,9,6,5,6,6,10,7,5,10,5,4,20,4,21,7,10,7,5,11,21,11,4,5,11,6,11, A074977 ,1,10,55,161,209,551,649,1079,1189,3401,6049,6319,9701,12151,14279, -A074978 ,6447,529271,569513,996733, +A074978 ,6447,529271,569513,996733,53172153,837071903,53552588203,445839739269,6130987583999, A074979 ,113,139,181,199,241,283,293,317,467,509,523,577,619,661,773,829,839,863,887,953,1021,1039,1069,1129,1237,1307,1327,1381,1459,1499,1583,1627,1637,1669,1699,1759,1789,1879,1913,1951,2003,2039,2089,2113,2143, A074980 ,6,10,14,34,42,46,50,58,62,66,70,78,82,86,90,102,110,114,122,130,134,158,162,166,178,182,194,202,206,210,214,226,230,234,238,246,250,254,258,266,274,278,290,302,306,310,314,322,326,330,338,354,358,374,378, A074981 ,6,14,34,42,50,58,62,66,70,78,82,86,90,102,110,114,130,134,158,178,182,202,206,210,226,230,238,246,254,258,266,274,278,290,302,306,310,314,322,326,330,358,374,378,390,394,398,402,410,418,422,426, @@ -75064,7 +75064,7 @@ A075059 ,2,2,3,7,13,61,61,421,841,2521,2521,27721,27721,360361,360361,360361,720 A075060 ,10,40,146,427,1055,2510,5047, A075061 ,2,3,4,7,8,9,13,14,15,16,61,62,63,64,65,61,62,63,64,65,66,421,422,423,424,425,426,427,841,842,843,844,845,846,847,848,2521,2522,2523,2524,2525,2526,2527,2528,2529,2521,2522,2523,2524,2525,2526,2527,2528,2529, A075062 ,2,7,24,58,315,381,2968,6756,22725,25255,304986,332718,4684771,5045145,5405520,11531656,208288233,220540491,4423058830,4655851410,4888643991,5121436573,123147264516,128501493420,669278610325,696049754751, -A075063 ,5,13,73,73,1801,1801,2521,2521,15121,15121,15121,15121,55441,55441,1108801,14414401,43243201,43243201,43243201,43243201,43243201, +A075063 ,5,13,73,73,1801,1801,2521,2521,15121,15121,15121,15121,55441,55441,1108801,14414401,43243201,43243201,43243201,43243201,43243201,367567201,367567201,367567201,13967553601,13967553601,13967553601,13967553601,13967553601,13967553601, A075064 ,9,25,91,841,6931,30031,510511,9699691,223092871,6469693231,601681470391,7420738134811,304250263527211,13082761331670031,614889782588491411,32589158477190044731,1922760350154212639071, A075065 ,1,4,9,6,15,8,21,10,25,12,27,14,33,16,35,18,39,20,45,22,49,24,51,26,55,28,57,30,63,32,65,34,69,36,75,38,77,40,81,42,85,44,87,46,91,48,93,50,95,52,99,54,105,56,111,58,115,60,117,62,119,64,121,66, A075066 ,9,4,15,6,21,8,25,10,27,12,33,14,35,16,39,18,45,20,49,22,51,24,55,26,57,28,63,30,65,32,69,34,75,36,77,38,81,40,85,42,87,44,91,46,93,48,95,50,99, @@ -77218,7 +77218,7 @@ A077213 ,2,3,7,23,97,487,2927,20507,164057,1476523,14765237,162417611,1949011333 A077214 ,1,2,9,10,11,12,13,14,17,18,19,20,21,23,24,25,26,27,28,29,30,31,32,33,37,38,41,42,43,44,47,48,49,50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,77,78,79,80,81,82,83,84,85,88,89,90, A077215 ,1,1,4,3,16,4,32,9,8,64,5,256,16,7,8,128,32,4,256,8,8,16,32,64,512,8,17,16,27,32,2048,256,64,23,1024,25,64,128,8,64,64,9,256,64,8,9,4096,1024,64,4,16,16,16,256,2048,16,64,27,128,16,47,2048,8192,8,8,8,32768,128, A077216 ,2,5,3,19,7,13,23,47,31,89,139,113,199,293,631,317,1069,509,2503,1129,1759,2039,887,1951,4027,3967,2477,2971,3271,6917,4831,5591,10799,5119,14107,9973,1327,39461,16381,20809,11743,15683,61169,52391,33247,45439, -A077217 ,2,5,17,29,35,41,101,137, +A077217 ,2,5,17,29,41,101,107,137,149,179,197,269,281,457,461,499,521,569,593,617,641,673,727,809,821,827,857,881,1049,1061,1229,1277,1289,1301,1321,1451,1453,1481,1483,1619,1697,1721,1753,1777,1861,1873,1877,1949,1997,2027, A077218 ,0,2,2,7,3,8,3,7,14,3,15,8,3,8,15,14,4,16,8,5,13,11,14,21,10,3,9,5,10,36,12,16,3,26,4,16,17,8,16,15,5,26,7,9,4,33,30,12,4,10,14,6,29,20,14,15,5,17,10,3,28,40,9,5,9,42,16,27,4,14,13,22,17,18,8,19,22,11,23,27,5, A077219 ,1,1,1,1,2,2,2,3,3,3,4,4,5,5,5,6,6,6,7,7,7,8,9,8,9,9,10,10,11,11,12,12,12,12,12,13,14,14,14,14,15,15,16,16,16,16,17,17,18,18,18,19,20,19,20,20,20,21,22,22,23,22,23,23,23,24,25,25,25,25,26,26,27,27,27,27,28,28, A077220 ,1,2,4,6,9,12,3,7,8,13,15,21,24,31,5,10,11,17,19,26,29,16,20,25,30,36,42,49,56,22,14,41,37,18,27,28,38,40,51,54,66,39,52,53,67,69,84,87,33,45,46,32,23,43,35,70,50,55,65,71,34,44,47,58,62,74,79,57,48,72,64,89, @@ -77655,7 +77655,7 @@ A077650 ,1,3,4,7,6,1,8,1,1,1,1,2,1,2,2,3,1,3,2,4,3,3,2,6,3,4,4,5,3,7,3,6,4,5,4,9 A077651 ,1,1,2,2,4,2,6,4,6,4,1,4,1,6,8,8,1,6,1,8,1,1,2,8,2,1,1,1,2,8,3,1,2,1,2,1,3,1,2,1,4,1,4,2,2,2,4,1,4,2,3,2,5,1,4,2,3,2,5,1,6,3,3,3,4,2,6,3,4,2,7,2,7,3,4,3,6,2,7,3,5,4,8,2,6,4,5,4,8,2,7,4,6,4,7,3,9,4,6,4,1,3,1,4,4, A077652 ,2,3,5,7,11,101,131,151,181,191,313,353,373,383,727,757,787,797,919,929,1021,1031,1051,1061,1091,1151,1171,1181,1201,1231,1291,1301,1321,1361,1381,1451,1471,1481,1511,1531,1571,1601,1621,1721,1741,1801,1811, A077653 ,1,2,2,1,3,0,4,1,3,2,2,3,1,4,0,5,1,4,2,3,3,2,4,1,5,0,6,1,5,2,4,3,3,4,2,5,1,6,0,7,1,6,2,5,3,4,4,3,5,2,6,1,7,0,8,1,7,2,6,3,5,4,4,5,3,6,2,7,1,8,0,9,1,8,2,7,3,6,4,5,5,4,6,3,7,2,8,1,9,0,10,1,9,2,8,3,7,4,6,5,5,6,4,7, -A077654 ,4,10,12,16,22,24,25,27,28,32,34,38,40,42,45,46,49,52,55,57,58,60,62,64,66,70,72,76,77,80,82,84,85,87,88,91,92,93,94,100,102,104,106,108,110,112,115,117,118,121,122,123,124,126,129,130, +A077654 ,4,10,12,16,22,24,25,27,28,32,34,38,40,42,45,46,49,52,55,57,58,60,62,64,66,70,72,76,77,80,82,84,85,87,88,91,92,93,94,100,102,104,106,108,110,112,115,117,118,121,122,123,124,126,129,130,132,133,136,142, A077655 ,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,2,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,2,1,0,0,0,1,0,0,0,0,0,0,0, A077656 ,1,3,4,5,6,7,8,10,11,12,13,15,16,17,18,19,20,22,23,24,26,28,29,30,31,32,35,36,37,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,76,77,78,79,80,81,82,83, A077657 ,1,2,33,603,602,2522,211673,3405123,3405122,49799889,202536181,3195380868,5208143601,85843948321,97524222465, @@ -79156,7 +79156,7 @@ A079151 ,2,3,5,7,11,13,19,23,29,31,43,47,53,59,67,71,79,83,103,107,131,139,149,1 A079152 ,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,97,101,103,107,109,113,131,137,139,149,157,163,167,173,179,181,191,193,211,223,227,229,239,241,257,263,269,277,281,283,293,311,313,317,331, A079153 ,2,3,5,7,11,13,19,29,43,67,173,283,317,653,787,907,1867,2083,2693,2803,3413,3643,3677,4253,4363,4723,5443,5717,6197,6547,6653,8563,8573,9067,9187,9403,9643,10733,11443,11587,12163,12917,13997,14107,14683,15187, A079154 ,3,4,12,30,33,1406, -A079155 ,4,15,85,619,4800,39266,332276,2880818, +A079155 ,4,15,85,619,4800,39266,332276,2880818,25423985,227527467, A079156 ,10,67,396,2201,11870,62571,324896,1665349,8457890,42605267,213305636,1061939193,5263752278,25984214383,127848694424,627084275649,3067923454498, A079157 ,5,50,529,3870,40150,185014,1191698,7080332, A079158 ,5,40,399,2472,17436,98400,601626,3238694, @@ -82217,7 +82217,7 @@ A082212 ,5,136,2491,949777,332986830284,174484936587602528213815,968636210166473 A082213 ,1,3,4,181,594448268301656413948075911105052760867948344134387820089804440720816962, A082214 ,13,34,4181,181594448268301656413948075911105052760867948344134387820089804440720816962, A082215 ,1,121,1213121,121312141213121,1213121412131215121312141213121,121312141213121512131214121312161213121412131215121312141213121,1213121412131215121312141213121612131214121312151213121412131217121312141213121512131214121312161213121412131215121312141213121, -A082216 ,1,2,3,4,5,6,7,8,9,101,11,121,131,141,151,161,171,181,191,202,212,22,232,242,252,262,272,282,292,303,313,323,33,343,353,363,373,383,393,404,414,424,434,44,454,464,474,484,494,505, +A082216 ,0,1,2,3,4,5,6,7,8,9,101,11,121,131,141,151,161,171,181,191,202,212,22,232,242,252,262,272,282,292,303,313,323,33,343,353,363,373,383,393,404,414,424,434,44,454,464,474,484,494,505, A082217 ,1,2,3,4,5,6,7,8,9,10801,11711,12621,13531,14441,15351,16261,17171,1881,0,208802,2139312,227722,2329232,246642,2519152,265562, A082218 ,1,3,5,6,7,2,10,12,8,4,9,14,13,16,19,25,15,37,21,23,11,20,17,22,29,26,35,24,28,36,18,32,38,44,40,48,31,56,33,68,43,50,39,34,41,27,47,61,53,57,45,75,85,93,55,30,49,65,63,72,67,88,69,62,73,51,81,83,80,70,128,42, A082219 ,1,3,2,10,19,25,24,28,41,27,51,81,78,86,124,120,147,123,188,142,192,116,258,250,314,254,320,392,470,404,453,377,490,612,533,445,718,708,812,602,784,726,791,771,928,1002,1032,1158,996,972,1149,1023,1365,1239, @@ -82789,13 +82789,13 @@ A082784 ,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1 A082785 ,0,0,0,0,0,1,1,1,2,0,3,2,2,1,2,2,5,1,2,2,3,2,4,1,2,3,4,4,2,1,1,4,3,2,2,1,3,5,1,3,2,2,2,3,2,3,3,2,1,2,4,5,2,3,1,4,3,3,1,1,1,5,2,2,2,3,2,5,1,1,2,3,2,2,2,3,3,3,1,3,2,4,2,1,2,3,2,4,2,1,0,4,3,3,1,3,1,3,1,1,1,2,2,3,1, A082786 ,0,1,0,0,1,0,2,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0, A082787 ,2,60,6720,1663200,726485760,494010316800,482718652416000,641171050071552000,1111363153457356800000,2436552577639909048320000,6591982246414881207091200000,21572261901392698750205952000000,83992431415453295380032651264000000,383725422380885198036206312488960000000, -A082788 ,1,259,1260,2071,2834,7574,7749,9252,12800,18720,28236,30039,32724,42120,45395,45877,68124,102656,135813,246543,264440,341288,389455,423163,480624,523775,936471,937248, +A082788 ,1,259,1260,2071,2834,7574,7749,9252,12800,18720,28236,30039,32724,42120,45395,45877,68124,102656,135813,246543,264440,341288,389455,423163,480624,523775,936471,937248,1055954,1182104,1295749,1333626,1366632,1379196,1458270,1483118, A082789 ,1,2,5,16,56,282,1865,17100,207697,3180571, A082790 ,0,0,0,1,1,5,19,153,1615,25180,479238,10695820, A082791 ,2,1,7,5,4,4,3,3,3,2,2,2,2,2,14,13,12,12,11,1,1,1,1,1,1,1,1,1,1,7,7,7,7,6,6,6,6,6,6,5,5,5,5,5,5,5,5,5,5,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, A082792 ,3,30,3,32,30,30,35,32,36,30,33,36,39,308,30,32,34,36,38,300,315,308,322,312,300,312,324,308,319,30,31,32,33,34,35,36,37,38,39,320,328,336,301,308,315,322,329,336,343,300,306,312,318,324,330,336,342,348,354, A082793 ,1,1,1,2,1,2,4,2,2,4,7,4,4,4,7,13,7,8,8,7,13,24,13,14,16,14,13,24,44,24,26,28,28,26,24,44, -A082794 ,4,4,42,4,40,42,42,40,45,40,44,48,403,42,45,48,408,414,418,40,42,44,46,48,400,416,405,420,406,420,403,416,429,408,420,432,407,418,429,40,41,42,43,44,45,46,47,48,49,400,408,416,424,432,440,448, +A082794 ,4,4,42,4,40,42,42,40,45,40,44,48,403,42,45,48,408,414,418,40,42,44,46,48,400,416,405,420,406,420,403,416,429,408,420,432,407,418,429,40,41,42,43,44,45,46,47,48,49,400,408,416,424,432,440,448,456,406,413, A082795 ,5,50,51,52,5,54,56,56,54,50,55,504,52,56,510,512,51,54,57,500,504,506,506,504,50,52,54,56,58,510,527,512,528,510,525,504,518,532,507,520,533,504,516,528,540,506,517,528,539,50,51,52,53,54, A082796 ,6,6,6,60,60,6,63,64,63,60,66,60,65,602,60,64,68,612,608,60,63,66,69,600,600,624,621,616,609,60,62,64,66,68,630,612,629,608,624,600,615,630,602,616,630,644,611,624,637,600,612,624,636,648,605, A082797 ,7,70,72,72,70,72,7,72,72,70,77,72,78,70,75,704,714,72,76,700,714,704,713,72,75,78,702,700,725,720,713,704,726,714,70,72,74,76,78,720,738,714,731,704,720,736,705,720,735,700,714,728,742,702,715, @@ -83548,7 +83548,7 @@ A083543 ,3,12,28,42,2,6,120,195,234,6,21,2,84,1,744,558,78,780,210,336,72,6,10, A083544 ,1,2,3,3,4,5,6,6,7,8,9,9,10,11,12,12,12,13,14,14,15,16,17,17, A083545 ,1,3,15,19,95,104,125,164,194,255,259,341,491,495,504,512,513,584,591,629,679,755,775,975,1024,1147,1247,1254,1260,1313,1358,1463,1469,1538,1615,1728,1919,1962,1970,2047,2071,2090,2204,2299,2321,2345,2404,2625, A083546 ,1,2,8,12,48,48,60,80,96,128,144,180,280,240,240,288,288,288,336,288,384,360,480,480,640,720,672,600,576,720,720,720,672,864,960,864,960,1080,1008,1408,1296,960,1008,1320,1260,1056,1440,1200,1728,1440,1296, -A083547 ,1,12,24,36,36,60,60,72,80,96,120,120,120,144,144,168,180,240,264,360,360,432,480,504,480,480,720,720, +A083547 ,1,12,24,36,36,60,60,72,80,96,120,120,120,144,144,168,180,240,264,360,360,432,480,504,480,480,720,720,720,720,840,840,864,840,840,840,840,960,900,960,960,1080,1260,1224,1320,1320,1440,1440,1320,1440,1440,1728, A083548 ,0,1,2,2,4,4,4,12,6,6,8,8,8,56,56,8,12,12,12,36,36,12,16,80,70,126,144,16,22,22,16,208,234,198,264,24,20,60,120,24,30,30,24,168,168,24,32,224,210,570,532,28,36,180,480,672,210,30,44,44,32,864,864,544,782,46,36, A083549 ,0,1,2,2,4,4,4,12,2,6,8,8,8,56,56,8,12,12,12,12,12,12,16,80,70,126,144,16,22,22,16,208,234,198,264,24,20,12,40,24,30,30,24,56,56,24,32,224,210,570,532,28,36,60,480,672,70,30,44,44,32,864,864,544,782,46,36,900, A083550 ,2,4,8,8,8,8,8,24,12,12,24,8,8,24,36,12,12,24,8,12,24,24,48,32,8,8,8,8,56,56,24,12,20,20,12,36,24,24,36,12,20,20,8,8,24,144,48,8,8,24,12,20,60,36,36,12,12,24,8,20,140,56,8,8,56,84,60,20,8,24,48,48,36,24,24,48, @@ -84320,7 +84320,7 @@ A084315 ,1,3,4,13,36,19,120,33,46,11,78,37,560,239,496,1905,52,397,3250,221,778, A084316 ,1,3,20,11,24,5,6,39,98,29,120,23,64,13,104,15,1716,323,284,499,62,1099,1264,215,1274,51,512,447,1768,209,1332,31,32,373,34,1475,258,835,2300,519,5780,419,5374,1275,6974,1655,6626,479,10240,10549,3008,883,13938, A084317 ,0,2,3,2,5,23,7,2,3,25,11,23,13,27,35,2,17,23,19,25,37,211,23,23,5,213,3,27,29,235,31,2,311,217,57,23,37,219,313,25,41,237,43,211,35,223,47,23,7,25,317,213,53,23,511,27,319,229,59,235,61,231,37,2,513,2311,67, A084318 ,0,2,3,2,5,23,7,2,3,5,11,23,13,3,1129,2,17,23,19,5,37,211,23,23,5,3251,3,3,29,547,31,2,311,31397,1129,23,37,373,313,5,41,379,43,211,1129,223,47,23,7,5,317,3251,53,23,773,3,1129,229,59,547,61,31237,37,2,1129,2311, -A084319 ,91,713,2331,3737,37101,383149,1329473,10912197,328312853,1129846623,3735159117,31245053039,173977184859,3293176308321,319269241788861,371325123869195203,1278647733810375857,1665622037676698019, +A084319 ,91,713,2331,3737,37101,383149,1329473,10912197,328312853,1129846623,3735159117,31245053039,173977184859,3293176308321,319269241788861,371325123869195203,1278647733810375857,1665622037676698019,31742715741254857303,56627509560552923867, A084320 ,1,1,2,2,3,3,3,3,3,4,3,4,4,4,4,4,4,4,5,4,4,5,5,4,5,5,4,5,5,5,5,5,5,5,6,5,5,5,6,5,5,6,5,6,5,6,5,6,6,5,6,6,6,5,6,6,6,6,6,6,6,5,6,7,6,6,6,6,6,6,6,6,7,6,6,6,7,6,6,7,6,6,7,6,7,6,7,6,6,7,7,6,7,6,7,6,7,7,6,7,7,6,7,7,6, A084321 ,1,3,5,10,19,35,64,139,256,536,1061,2095,4169,8282,16517,32903,65646,131205,262579,525083,1048893,2098826,4195521,8390583,16782032,33569609,67118347,134229613,268453180,536890474,1073764782,2147523518, A084322 ,2,23,547,2357,4359293547691,325798243129564339,3947306373286437248759663633906484193454376823, @@ -86622,7 +86622,7 @@ A086617 ,1,1,1,1,2,1,1,3,3,1,1,4,7,4,1,1,5,13,13,5,1,1,6,21,33,21,6,1,1,7,31,69, A086618 ,1,2,7,33,183,1118,7281,49626,349999,2535078,18758265,141254655,1079364105,8350678170,65298467487,515349097713,4100346740511,32858696386766,265001681344569, A086619 ,1,2,10,150,7650,1438200,1051324200,3101406390000,37945707181650000,1966422437567466300000,438887790263120370963300000,427664112802721593716655529100000, A086620 ,1,1,1,1,3,1,1,5,5,1,1,7,14,7,1,1,9,28,28,9,1,1,11,47,79,47,11,1,1,13,71,175,175,71,13,1,1,15,100,331,504,331,100,15,1,1,17,134,562,1196,1196,562,134,17,1,1,19,173,883,2464,3514,2464,883,173,19,1,1,21,217, -A086621 ,1,3,14,79,504,3514,26172,204831,1664696,13930840,119312544,1041227642,9228614836,82867255956,752405060536,6897376441167,63760133568096,593763928313128, +A086621 ,1,3,14,79,504,3514,26172,204831,1664696,13930840,119312544,1041227642,9228614836,82867255956,752405060536,6897376441167,63760133568096,593763928313128,5565678569009328,52475976165495960,497376657383374560,4736680863568248480,45304174896889357440, A086622 ,1,2,5,12,30,76,197,520,1398,3820,10594,29768,84620,243000,704045,2055760,6043750,17875020,53148310,158773320,476311940,1434313960,4333867170,13135533552,39924668220,121661345656,371612931492, A086623 ,1,1,1,1,1,1,1,2,2,1,1,3,4,3,1,1,4,8,8,4,1,1,5,14,19,14,5,1,1,6,22,40,40,22,6,1,1,7,32,76,100,76,32,7,1,1,8,44,132,222,222,132,44,8,1,1,9,58,213,448,570,448,213,58,9,1,1,10,74,324,834,1316,1316,834,324,74,10,1,1, A086624 ,1,1,4,19,100,570,3442,21685,141112,941990,6419174,44493000,312818326,2226155632,16008452202,116167346499,849724397580,6259403310366,46399703925202,345894094030552, @@ -87317,7 +87317,7 @@ A087312 ,1,3,5,9,17,33,131,143055667, A087313 ,2,3,255,1046,230584301136334848,7065193045869401568154708608, A087314 ,2,4,20,1154,3907502,609516468354242,108233912076063807870514781000,205688069665244291374160325606433848956971528595913979304345602,381367496233593231179533022742555015402552706280473714446093438118953849830784189071820024395733993533363857256493600698, A087315 ,1,4,72,21600,190512000,580909190400000,428616352408083840000000,859278392084450410309036800000000000,2097197194438629126172451944256706311040000000000000, -A087316 ,4,17,84,545,7824,281771,51540600,3347558057,1146374959980,288113965730819,529172633067826888,283453407513524913023,4122282265785671687518812,1586581830624893452605127040309, +A087316 ,4,17,84,545,7824,281771,51540600,3347558057,1146374959980,288113965730819,529172633067826888,283453407513524913023,4122282265785671687518812,1586581830624893452605127040309,412109111737176949907195758658736, A087317 ,2,3,2,3,2,5,14,3,2,3,2,5,21,3,2,3,2,5,8,3,2,7,10,5,10,3,2,3,2,7,15,5,6, A087318 ,0,2,2,0,2,217,2,0,0,10001,2,0,2,15,226,0,2,325,2,0,22,485,2,0,0,456977,0,0,2,27001,2,0,34,35,1226,0,2,39,1522,0,2,130691233,2,45,0,2117,2,0,0,0,2602,0,2,0,0,0,58,3365,2,0,2,3845,0,0,4226,287497,2,0,4762,24010001, A087319 ,0,2,2,0,2,217,2,65,0,10001,2,0,2,15,226,0,2,325,2,0,22,485,2,110075314177,0,27,0,0,2,27001,2,1025,34,35,1226,0,2,39,1522,64001,2,130691233,2,45,0,2117,2,0,0,0,2602,0,2,1338925209985,0, @@ -87423,7 +87423,7 @@ A087418 ,2,3,3,3,5,5,5,5,7,7,7,7,7,11,11,11,13,13,19,23,23,29,31,37,37,41,41,41, A087419 ,1,1,2,4,1,2,3,4,2,3,5,7,10,6,7,12,8,10,9,16,23,8,13,30,40,13,20,25,27,33,27,29,20,8,29,66,37,52,8,44,71,99,47,79,59,105,104,60,106,12,13,50,121,173,167,3,49,34,7,42,42,182,107,53,157,197,314,8,335,211,273,229, A087420 ,2,4,14,14,34,28,62,46,98,68,142,94,194,124,254,158,322,196,398,238,482,284,574,334,674,388,782,446,898,508,1022,574,1154,644,1294,718,1442,796,1598,878,1762,964,1934,1054,2114,1148,2302,1246,2498,1348,2702, A087421 ,2,2,2,7,29,127,727,5051,40343,362897,3628811,39916801,479001629,6227020867,87178291219,1307674368043,20922789888023,355687428096031,6402373705728037,121645100408832089,2432902008176640029, -A087422 ,1,2,8,55,567,7958,142396,3104160, +A087422 ,1,2,8,55,567,7958,142396,3104160,79813513, A087423 ,32,768,20672,565248,15491072,424685568,11643256832,319215894528,8751751626752,239941585993728,6578336360824832,180354352643309568,4944668491903926272,135565048129674805248,3716706651755063017472,101898745479045492768768, A087424 ,567,239841,114082668,55125843489,26697877691247,12934267027240356,6266540498895923463,3036106030479071781249,1470978970343729016987852,712682440446248640284336721,345291321126117622870522555983,167292036479044881831300837903684,81052212349412217472309893818152407, A087425 ,23105,459119455,9758296035305,208416652653910655,4452963734477926435505,95143212432467064852443605,2032859482921447476046969568705,43434715031065603778576465510557055, @@ -87915,7 +87915,7 @@ A087910 ,1,2,2,5,8,5,5,13,9,10,10,12,12,12,12,22,17,18,18,21,22,21,21,27,25,26,2 A087911 ,2,3,5,17,191,257,1009,4561,4591,21601,57601,54121,86677,176401,415801,291721,950041,1259701,3049201,1670761,6098401,3880801,5654881,13759201,18618601,14414401,18960481,15135121,31600801,45405361,35814241, A087912 ,1,3,14,86,648,5752,58576,671568,8546432,119401856,1815177984,29808908032,525586164736,9898343691264,198227905206272,4204989697906688,94163381359509504,2219240984918720512,54898699229094412288,1422015190821016633344,38484192401958599131136, A087913 ,0,1,1,3,1,5,1,6,7,7,1,10,1,13,13,12,1,15,1,15,19,19,1,20,23,23,26,26,1,26,1,24,31,31,31,30,1,37,37,30,1,39,1,39,39,43,1,40,47,49,47,51,1,52,53,52,53,53,1,52,1,61,62,48,61,65,1,65,67,69,1,60,1,73,74,74,73, -A087914 ,8,48,224,960,1215,3968,16128,65024,261120,1046528,4190208, +A087914 ,8,48,224,960,1215,3968,16128,65024,261120,1046528,4190208,16769024,67092480,268402688,1073676288,4294836224, A087915 ,0,2,4,8,10,14,20,22,28,32,34,38,40,50,52,62,64,68,74,80,82,88,94,98,104,110,112,118,124,130,134,140,152,154,164,172,178,182,188,190,208,214,218,220,230,232,238,242,244,248,250,260,272,280,284,292,298,302, A087916 ,0,0,0,0,1,3,6,7,9,12,16,18,21,27,30,30,34,36,42,46,48,48,51,63,60,64,81,75,76,87,87,90,102,105,97,117,114,105,144,129,126,159,141,145,177,162,160,195,186,153,207,201,171,237,210,187,255,234,222,279, A087917 ,0,0,1,1,1,2,1,1,2,3,2,3,3,2,4,6,5,5,6,5,6,8,8,9,9,8,10,12,12,14,14,10,14,19,14,18,20,14,19,25,21,20,27,22,23,32,26,27,31,29,31,36,35,35,39,34,38,47,40,42,47,40,43,60,53,44,60,50,48,68,62,54,64,65,58,75, @@ -96118,7 +96118,7 @@ A096113 ,1,2,3,6,4,8,12,18,24,36,48,72,144,5,10,15,16,20,30,32,40,54,60,64,80,90 A096114 ,1,2,3,5,4,6,10,11,9,8,7,12,19,20,21,23,22,18,16,17,15,14,13,24,37,38,39,41,40,42,46,47,45,44,43,36,31,32,33,35,34,30,28,29,27,26,25,48,73,74,75,77,76,78,82,83,81,80,79,84,91,92,93,95,94,90,88,89,87,86,85,72, A096115 ,1,2,2,3,6,6,3,4,12,24,24,12,8,8,4,5,20,40,40,60,120,120,60,20,15,30,30,15,10,10,5,6,30,60,60,90,180,180,90,120,360,720,720,360,240,240,120,30,24,48,48,72,144,144,72,24,18,36,36,18,12,12,6,7,42,84,84,126, A096116 ,1,2,3,5,4,9,7,6,5,11,12,14,9,10,8,7,6,13,14,16,15,20,18,17,11,12,13,15,10,11,9,8,7,15,16,18,17,22,20,19,18,24,25,27,22,23,21,20,13,14,15,17,16,21,19,18,12,13,14,16,11,12,10,9,8,17,18,20,19,24,22,21,20,26, -A096117 ,0,0,0,0,1,1365,290745,35804384,3431889000,288982989000,22716104811840,1724903317684800,129165517275377154,9664573656742964960,728813888470620552600,55713446610261097382400, +A096117 ,0,0,0,0,1,1365,290745,35804384,3431889000,288982989000,22716104811840,1724903317684800,129165517275377154,9664573656742964960,728813888470620552600,55713446610261097382400,4334305420045397178746260,344080024970397555374419968,27923503603736889921687649020, A096118 ,1,1,2,3,4,7,9,10,11,21,30,37,41,44,46,47,48,95,141,185,226,263,293,314, A096119 ,1,2,4,11,48,362,5030,133924,6977521,719087781,147394353130,60255915944715,49197429536084417,80280819225274033666,261914438169525117048056, A096120 ,1,1,2,3,4,5,6,8,11,12,13,15,18,22,27,33,41,42,43,45,48,52,57,63,71,82, @@ -96151,7 +96151,7 @@ A096146 ,2,5,7,19,71,97,3691,191861,138907099,708158977,26947261171, A096147 ,3,11,41,571,2131,110771,1542841,15558008491,808717138331,1663476485027525263506023431291963826940251,33648911495192637123958375850447995878147331088460770783226682531, A096148 ,2,3,5,7,23,37,53,73,223,233,337,523,733,773,5233,33377,72733,272333,572333,5222333, A096149 ,2,3,5,7,9,11,13,15,19,35,39,45,51,59,213,607,1315,1435,3901,4921,5255, -A096150 ,0,0,0,0,0,105,116175,37007656,7032842901,1016662746825,125217059384890,13979620699390500,1468384747758433362,148610523724144786304,14725179052834536611325, +A096150 ,0,0,0,0,0,105,116175,37007656,7032842901,1016662746825,125217059384890,13979620699390500,1468384747758433362,148610523724144786304,14725179052834536611325,1444367897584925254381440,141356080305700826710780155,13881663444819892480039097856, A096151 ,7,7,6,0,2,7,1,4,0,6,4,8,6,8,1,8,2,6,9,5,3,0,2,3,2,8,3,3,2,1,3,8,8,6,6,6,4,2,3,2,3,2,2,4,0,5,9,2,3,3,7,6,1,0,3,1,5,0,6,1,9,2,2,6,9,0,3,2,1,5,9,3,0,6,1,4,0,6,9,5,3,1,9,4,3,4,8,9,5,5,3,2,3,8,3,3,0,3,3,2,3,8,5,8,0, A096152 ,8,0,4,8,2,5,7,5,9,6,5,9,6,4,0,3,3,6,8,8,8,5,1,8,8,4,2,2,7,9,3,2,2,8,7,8,3,5,1,0,0,4,5,4,0,6,3,7,7,9,5,5,3,0,1,7,1,7,3,8,0,0,9,2,5,8,8,1,9,1,3,8,1,0,0,3,4,6,5,5,6,7,1,4,3,3,7,8,9,5,6,0,3,4,1,3,4,3,9,5,3,9,7,1,0, A096153 ,2,3,4,5,9,6,7,25,10,8,11,49,14,27,12,13,121,15,125,20,16,17,169,21,343,28,81,18,19,289,22,1331,44,625,50,24,23,361,26,2197,45,2401,75,40,30,29,529,33,4913,52,14641,98,56,42,32,31,841,34,6859,63,28561,147,88,66, @@ -96225,7 +96225,7 @@ A096220 ,1,3,6,12,20,33,48,66,87, A096221 ,1,2,3,5,7,10,13,15,18, A096222 ,1,3,9,30,100,360,1296,4896,18496,71808,278784,1098240,4326400,17172480,68161536,271589376,1082146816,4320165888,17247043584,68920934400,275415040000,1101122764800,4402342526976,17605073043456,70403108110336, A096223 ,1,1,3,4,11,8,29,26,52,49,138,79,271,198,337,389,914,477,1596,993,1881,1912,4507,2222,6485,5080,8682,7384,18459,6780,28628,19598,31098,29444,53198,30470,99132,65771,104464,80422,215307,81792,313064,195091,272503, -A096224 ,0,0,0,0,0,15,54257,30258935,8403710364,1624745199910,253717024819170,34644709397517912,4336461198140896396,512755474242717445740,58441126001104710458595, +A096224 ,0,0,0,0,0,15,54257,30258935,8403710364,1624745199910,253717024819170,34644709397517912,4336461198140896396,512755474242717445740,58441126001104710458595,6511044113057606391228960,716247426054164600104429648,78368395883181612191026677504, A096225 ,1,2,3,7,71,6653,25469,15750503, A096226 ,2,2,3,1,5,3,7,1,1,5,11,1,13,7,5,1,17,1,19,1,7,11,23,1,1,13,1,1,29,5,31,1,11,17,13,1,37,19,13,1,41,7,43,1,1,23,47,1,1,1,17,1,53,1,21,1,19,29,59,1,61,31,1,1,13,11,67,1,23,13,71,1,73,37,1,1,31,13,79,1,1,41,83,1, A096227 ,2,8,16,44,96,268,648,1832,4784,13456,36832,102944,289216,804928,2292608,6365312,18257664,50626816,145731072,403833344, @@ -96489,7 +96489,7 @@ A096484 ,1,10,105,1054,10540,105409,1054092,10540925,105409255,1054092553,105409 A096485 ,2,6,2,24,2,622,2,2396,2,21912,2,527718,2,168484,2,13171730,2,359947864,2,52090778,2,16658818532,2,134257065348,2, A096486 ,8,170,2242,2132,1294,976846,216566,9904144,25617930,408928520,25346031262,137031675878, A096487 ,2,6,20,66,210,666,2108,6666,21080,66666,210818,666666,2108184,6666666,21081850,66666666,210818510,666666666,2108185106,6666666666,21081851066,66666666666,210818510676,666666666666,2108185106778, -A096488 ,2,3,2,8,2,37,2,76,2,217,2,870,2,583,2,5034,2,28494,2,10058,2, +A096488 ,2,3,2,8,2,37,2,76,2,217,2,870,2,583,2,5034,2,28494,2,10058,2,187966,2,383291,2,340992,2, A096489 ,1,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97, A096490 ,60,120,168,180,240,252,300,336,360,420,480,504,540,600,660,672,720,756,780,792,840,900,924,936,960,1008,1020,1080,1140,1176,1200,1260,1320,1344,1380,1440,1500,1512,1560,1584,1620,1680,1740,1764,1800,1848,1860, A096491 ,1,2,2,2,4,4,4,4,3,6,6,6,6,6,6,4,8,8,8,8,8,8,8,8,5,10,10,10,10,10,10,10,10,10,10,6,12,12,12,12,12,12,12,12,12,12,12,12,7,14,14,14,14,14,14,14,14,14,14,14,14,14,14,8,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16, @@ -98450,8 +98450,8 @@ A098445 ,1,4,4,0,0,1,0,1,0,0,0,0,4,0,0,4,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,4 A098446 ,1,1,1,1,2,1,1,3,4,1,1,4,9,9,1,1,5,16,30,24,1,1,6,25,70,115,77,1,1,7,36,135,344,510,295,1,1,8,49,231,805,1908,2602,1329,1,1,9,64,364,1616,5325,11904,15133,6934,1,1,10,81,540,2919,12381,39001,83028,99367,41351,1, A098447 ,1,1,1,1,2,1,1,3,4,1,1,4,9,9,1,1,5,16,32,24,1,1,6,25,78,150,79,1,1,7,36,155,532,1018,340,1,1,8,49,271,1395,5802,10996,2090,1,1,9,64,434,3036,21343,116658,212434,20613,1,1,10,81,652,5824,60209,661325,5072504, A098448 ,1,2,4,9,24,79,340,2090,20613,374593,14797043,1558788465,568317523370,1002992052280356,13173490079341336160,2227644152149802108130325,9740856579902962818887540217002, -A098449 ,4,10,106,1003,10001,100001,1000001,10000001,100000001,1000000006,10000000003,100000000007,1000000000007,10000000000015,100000000000013,1000000000000003,10000000000000003,100000000000000015, -A098450 ,9,95,998,9998,99998,999997,9999998,99999997,999999991,9999999997,99999999997,999999999997,9999999999989,99999999999997,999999999999998,9999999999999994,99999999999999989,999999999999999993, +A098449 ,4,10,106,1003,10001,100001,1000001,10000001,100000001,1000000006,10000000003,100000000007,1000000000007,10000000000015,100000000000013,1000000000000003,10000000000000003,100000000000000015,1000000000000000007,10000000000000000001, +A098450 ,9,95,998,9998,99998,999997,9999998,99999997,999999991,9999999997,99999999997,999999999997,9999999999989,99999999999997,999999999999998,9999999999999994,99999999999999989,999999999999999993,9999999999999999991,99999999999999999983, A098451 ,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20,23,43, A098452 ,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,21,22,43, A098453 ,1,2,12,56,304,1632,9024,50304,283392,1607168,9167872,52537344,302239744,1744412672,10096263168,58576306176,340566147072,1983765676032,11574393962496,67631502065664,395710949228544,2318088492023808,13594307705438208,79802741538422784,468895276304695296, @@ -101751,7 +101751,7 @@ A101746 ,7,103,2503,88903,4322503,2473107965928318342544472044975303, A101747 ,3,4,5,6,7,19,40,56,93, A101748 ,1,1,1,3,1,7,7,7,8,4,8,9,8,5,6,2,2,6,0,2,6,8,4,1,0,0,7,9,3,2,9,8,8,8,4,3,1,7,1,2,4,6,6,7,5,0,7,1,8,9,6,8,3,6,3,3,8,4,1,6,5,2,2,3,4,6,7,2,9,8,6,8,6,3,7,1,7,2,8,1,9,1,9,4,8,3,4,1,0,9,9,1,8,1,3,0,6,8,8,3,1,0,9,9,7, A101749 ,0,0,0,3,8,8,2,0,3,2,0,3,9,2,6,7,6,6,2,4,7,2,3,2,5,2,9,8,9,8,7,0,1,4,2,7,1,1,7,8,6,2,0,4,9,4,0,0,0,5,4,2,4,6,6,0,3,3,7,8,4,3,9,0,1,9,4,8,4,8,8,7,2,3,3,3,4,3,1,2,0,7,1,4,4,9,6,8,4,6,1,9,6,3,4,0,9,0,8,3,3,0,3,7,3, -A101750 ,2,29,293,2649,23760,215594, +A101750 ,2,29,293,2649,23760,215594,1983334,18451711,173211045, A101751 ,1,0,1,3,-6,32,264,-2024,2400,3420,55800,-666540,909720,2570400,90440,13101144,72406040,-3757930680,13117344800,72965762016,-261763004160, A101752 ,1,0,1,5,-16,8,69,-767,1314,117,1774,-30405,78914,69024, A101753 ,1,2,6,126,8598, @@ -103213,7 +103213,7 @@ A103208 ,10,16,18,20,24,26,28,30,32,34,36,40,42,44,46,52,54,57,68,70,74,76,78,80 A103209 ,1,1,2,1,6,3,1,22,15,4,1,90,93,28,5,1,394,645,244,45,6,1,1806,4791,2380,505,66,7,1,8558,37275,24868,6345,906,91,8,1,41586,299865,272188,85405,13926,1477,120,9,1,206098,2474025,3080596,1204245,229326,26845, A103210 ,1,3,15,93,645,4791,37275,299865,2474025,20819307,178003815,1541918901,13503125805,119352115551,1063366539315,9539785668657,86104685123025,781343125570515,7124072211203775,65233526296899981,599633539433039445,5531156299278726663, A103211 ,1,4,28,244,2380,24868,272188,3080596,35758828,423373636,5092965724,62071299892,764811509644,9511373563492,119231457692284,1505021128450516,19112961439180588,244028820862442116,3130592301487969948,40333745806536135028,521655330655122923980, -A103212 ,1,1,6,93,2380,85405,3956106,224939113,15175702200,1185580310121,105302043709390,10482085765658661,1156062800841590148,139945327558704629221,18449221488652046992914, +A103212 ,1,1,6,93,2380,85405,3956106,224939113,15175702200,1185580310121,105302043709390,10482085765658661,1156062800841590148,139945327558704629221,18449221488652046992914,2631255715262150125502865,403689862107153669227378416,66297391981691913179574751633, A103213 ,1,5,29,206,1774,18204,218868,3036144,47928816,850514400,16783812000,364865040000,8666747625600,223351748524800,6206847295622400,185007996436838400,5887506932836300800,199216094254423142400, A103214 ,1,25,49,73,97,121,145,169,193,217,241,265,289,313,337,361,385,409,433,457,481,505,529,553,577,601,625,649,673,697,721,745,769,793,817,841,865,889,913,937,961,985,1009,1033,1057,1081,1105,1129,1153,1177,1201, A103215 ,1,2,5,10,13,17,25,26,29,34,37,41,49,50,53,58,61,65,73,74,77,82,85,89,97,98,101,106,109,113,121,122,125,130,133,137,145,146,149,154,157,161,169,170,173,178,181,185,193,194,197,202,205,209,217,218,221,226, @@ -106314,7 +106314,7 @@ A106309 ,5,7,11,13,17,31,37,41,53,79,107,199, A106310 ,47,617,2693, A106311 ,49,81,148,169,229,257,316,321,361,404,469,473,564,568,592,621,697,729,733,756,761,785,788,837,892,916,940,985,993,1016,1076,1101,1129,1229,1257,1264,1300,1304,1345,1369,1373,1384,1396,1425,1436,1489,1492,1509, A106312 ,23,31,44,59,76,83,87,104,107,108,116,135,139,140,152,172,175,176,199,200,204,211,212,216,231,236,239,243,244,247,255,268,279,283,300,304,307,324,327,331,332,335,339,351,356,364,367,379,411,416,419,424,428, -A106313 ,1,4,9,16,37,129,338,753,1700,3103,11587,38262,108970,314889,1052618,3214631,7956588,21949554,99877774,222744643,597394253,1932355207,7250186215,17146907277, +A106313 ,1,4,9,16,37,129,338,753,1700,3103,11587,38262,108970,314889,1052618,3214631,7956588,21949554,99877774,222744643,597394253,1932355207,7250186215,17146907277,55160980938,155891678120,508666658005,1427745660373, A106314 ,1,1,1,1,4,1,1,4,4,1,1,4,9,4,1,1,4,9,9,4,1,1,4,9,16,9,4,1,1,4,9,16,16,9,4,1,1,4,9,16,25,16,9,4,1,1,4,9,16,25,25,16,9,4,1, A106315 ,0,1,2,5,4,0,6,2,1,4,10,16,12,8,12,18,16,30,18,36,20,16,22,12,13,20,28,0,28,24,30,3,36,28,44,51,36,32,44,50,40,48,42,12,36,40,46,108,33,21,60,18,52,72,4,88,68,52,58,48,60,56,66,67,8,96,66,30,84,128,70,84,72,68,78, A106316 ,0,1,2,1,4,0,6,2,1,4,10,4,12,8,12,2,16,12,18,16,20,16,22,12,13,20,1,0,28,24,30,3,3,28,9,15,36,32,5,10,40,6,42,12,36,40,46,12,33,21,9,18,52,18,4,32,11,52,58,48,60,56,3,3,8,30,66,30,15,58,70,12,72,68,3,36,20,42, @@ -116926,7 +116926,7 @@ A116921 ,0,1,1,1,2,1,3,3,4,3,5,5,6,5,7,7,8,7,9,9,10,9,11,11,12,11,13,13,14,13,15 A116922 ,1,1,2,3,3,5,4,5,5,7,6,7,7,9,8,9,9,11,10,11,11,13,12,13,13,15,14,15,15,17,16,17,17,19,18,19,19,21,20,21,21,23,22,23,23,25,24,25,25,27,26,27,27,29,28,29,29,31,30,31,31,33,32,33,33,35,34,35,35,37,36,37,37,39,38, A116923 ,1,5,1,12,7,2,22,26,20,6,35,74,112,84,24,51,183,484,672,456,120,70,417,1818,4140,4968,3000,720,92,904,6288,22014,41400,42840,23040,5040,117,1900,20672,106920,295056,464040,418320,201600,40320,145,3917,65816,489696,1902960, A116924 ,1,1,4,1,8,7,1,12,21,10,1,16,42,40,13,1,20,70,100,65,16,1,24,105,200,195,96,19,1,28,147,350,455,336,133,22,1,32,196,560,910,896,532,176,25,1,36,252,840,1638,2016,1596,792,225,28,1,40,315,1200, -A116925 ,1,1,2,1,2,3,1,2,4,4,1,2,5,8,5,1,2,6,14,16,6,1,2,7,22,42,32,7,1,2,8,32,92,132,64,8,1,2,9,44,177,422,429,128,9,1,2,10,58,310,1122,2074,1430,256,10,1,2,11,74,506,2606,7898,10754,4862,512,11,1,2,12,92, +A116925 ,1,1,2,1,2,3,1,2,4,4,1,2,5,8,5,1,2,6,14,16,6,1,2,7,22,42,32,7,1,2,8,32,92,132,64,8,1,2,9,44,177,422,429,128,9,1,2,10,58,310,1122,2074,1430,256,10,1,2,11,74,506,2606,7898,10754,4862,512,11,1,2,12,92,782,5462,25202,60398,58202,16796,1024,12, A116926 ,6,14,15,51,62,91,95,159,254,287,473,679,703,1139,1199,1339,1717,1891,2051,2147,2495,2651,2701,2869,3151,4313,4381,4607,5017,5267,6245,6683,8441,9809,10063,10637,11051,11183,12403,13119,13169,13207,13423,13427, A116927 ,0,1,0,0,1,1,0,0,1,0,1,0,0,0,1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,2,0,1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,2,0,1,0,1,0,1,1,1,1,1,0,1,0,0,0,1,2,0,2,0,1,0,1,0,1,2,1,1, A116928 ,1,0,1,0,2,1,3,2,4,4,6,6,8,9,11,12,15,17,20,22,26,29,34,37,43,48,55,60,69,76,86,94,106,117,131,143,160,176,195,213,236,259,285,311,342,374,410,446,488,533,581,631,688,748,813,881,957,1038,1125,1216,1317,1425, @@ -117395,7 +117395,7 @@ A117390 ,17,56,1888, A117391 ,2,3,4,4,3,3,7,6,6,8,3,3,5,8,6,6,7,4,6,5,8,12,10,3,3,4,4,14,13,8,6,6,10,6,9,5,5,8,6,10,8,4,3,11,20,9,4,4,7,6,10,11,9,7,6,6,8,3,6,19,14,4,4,15,16,9,6,4,7,7,12,9,5,5,12,10,8,13,10,10,9,6,7,8,12,10,3,3,8,18,10,8,5,5, A117392 ,7,11,47,29,23,37,157,97,199,89,127,113,317,331,839,479,293,211,541,1399,1973,1637,1129,3229,2971,3433,7253,6397,2179,3989,4297,1327,1361,4831,7963,8501,7283,4177,16301,2503,17257,7993,18839,16033,31957,9587, A117393 ,1,2,15,65,190,447, -A117394 ,2,2,6,30,2310,9699690,304250263527210,40729680599249024150621323470,10014646650599190067509233131649940057366334653200433090,16516447045902521732188973253623425320896207954043566485360902980990824644545340710198976591011245999110, +A117394 ,1,2,2,6,30,2310,9699690,304250263527210,40729680599249024150621323470,10014646650599190067509233131649940057366334653200433090,16516447045902521732188973253623425320896207954043566485360902980990824644545340710198976591011245999110, A117395 ,0,0,0,0,1,2,3,4,8,14,20,27,40,59,80,106,145,198,262,340,447,584,751,956,1221,1555,1959,2454,3073,3839,4760,5875,7245,8912,10909,13303,16206,19696,23848,28788,34704,41755,50085, A117396 ,1,1,1,1,2,1,1,5,3,1,1,17,11,4,1,1,77,51,19,5,1,1,437,291,109,29,6,1,1,2957,1971,739,197,41,7,1,1,23117,15411,5779,1541,321,55,8,1,1,204557,136371,51139,13637,2841,487,71,9,1,1,2018957,1345971,504739,134597, A117397 ,1,4,19,109,739,5779,51139,504739,5494339,65369539,843747139,11741033539,175200329539,2790549065539,47251477577539,847548190793539,16053185741897539,320165936763977539,6706533708227657539,147206624680428617539,3378708717041050697539, @@ -120259,7 +120259,7 @@ A120254 ,0,0,0,0,1,0,1,2,1,2,2,2,3,2,5,3,4,4,5,4,5,7,5,6,6,7,9,5,9,7,8,11,8,11,8 A120255 ,1,2,3,5,4,8,13,7,21,17,34,11,55,89,6,9,12,16,18,24,36,48,72,144,233,29,377,10,61,122,305,610,47,141,329,987,1597,19,38,68,76,136,152,323,646,1292,2584,37,113,4181,15,33,41,123,165,205,451,615,1353,2255,6765,26, A120256 ,1,0,1,1,1,2,1,2,2,2,1,10,1,2,5,4,1,10,3,11,5,2,1,55,4,2,12,11,1,52,3,8,5,2,5,133,7,4,5,46,3,52,1,27,22,6,1,260,6,40,5,11,3,100,13,78,27,6,3,874,3,4,22,48,5,52,7,27,29,116,3,1319,3,8,36,23,13,116,3,444,112,4,1,1834, A120257 ,1,2,-1,3,-6,-1,4,-20,-20,1,5,-50,-175,70,1,6,-105,-980,1764,252,-1,7,-196,-4116,24696,19404,-924,-1,8,-336,-14112,232848,731808,-226512,-3432,1,9,-540,-41580,1646568,16818516,-24293412,-2760615,12870,1,10,-825,-108900,9343620,267227532,-1447482465, -A120258 ,1,1,1,1,2,1,1,6,3,1,1,20,20,4,1,1,70,175,50,5,1,1,252,1764,980,105,6,1,1,924,19404,24696,4116,196,7,1,1,3432,226512,731808,232848,14112,336,8,1,1,12870,2760615,24293412,16818516,1646568,41580,540,9,1,1,48620, +A120258 ,1,1,1,1,2,1,1,6,3,1,1,20,20,4,1,1,70,175,50,5,1,1,252,1764,980,105,6,1,1,924,19404,24696,4116,196,7,1,1,3432,226512,731808,232848,14112,336,8,1,1,12870,2760615,24293412,16818516,1646568,41580,540,9,1, A120259 ,1,2,4,11,46,302,3109,49345,1209058,45574112,2636237374,234854695297,32081882854399,6733481882732516,2172532761103119601,1074257501384373622001,816914977299535380309346,953227711986515337529688144,1706089496424625166250326935690, A120260 ,1,1,2,3,8,24,92,432,2740,23822,264185,3545166,59474514,1343942004,41179884383,1593533376361,74665098131246,4404743069577837,351138858279113987,37740395752334771775,5093113605218543006445, A120261 ,1,4,10,11,13,28,17,26,31,31,20,77,28,46,67,40,28,100,26,72,120,62,32,139,44,53,71,118,32,202,35,70,135,73,97,211,33,80,130,134,36,284,45,141,183,78,50,226,68,112,150,146,38,173,150,219,182,80,38,468,36,82, @@ -122141,7 +122141,7 @@ A122136 ,2,13,19,29,104,29,111,79,778,47,73,163,1068,359,5233,885,142,20477,219, A122137 ,30,123,195,214,248,300,304,335,343,350,364,367,414,443,543,570,579,584,590,612,671,691,706,707,734,780,791,799,806,810,827,836,852,880,938,960,976,1015,1055,1147,1168,1190,1195,1199,1200,1210,1230,1231,1250, A122138 ,1,2,3,4,6,8,10,11,12,14,15,18,20,22,23,26,27,32,36,38,39,40,44,47,48,50,51,52,54,55,56,58,59,60,64,66,68,71,72,74,76,78,80,83,84,86,88,89,90,92,94,95,96,98,100,102,103,107,108,110,112,114,116,118,120,122,126, A122139 ,2,13,19,29,29,79,47,73,163,359,5233,20477,811,13859,2203,75997,3331,4457,239087,58061,159097,116041,7487,17929,4547,152657,408787,58313,5563,4783,226199,13729,676763,204641,119293,283979,2210983,7121,433, -A122140 ,1,25,537,661,5199,113253,240621,5337048977,17434578479,34216676921,1991831965911,4495321247369, +A122140 ,1,25,537,661,5199,113253,240621,5337048977,17434578479,34216676921,1991831965911,4495321247369,22567781434431, A122141 ,1,1,2,1,4,0,1,6,4,0,1,8,12,0,2,1,10,24,8,4,0,1,12,40,32,6,8,0,1,14,60,80,24,24,0,0,1,16,84,160,90,48,24,0,0,1,18,112,280,252,112,96,0,4,2,1,20,144,448,574,312,240,64,12,4,0,1,22,180,672,1136,840,544,320,24,30,8,0, A122142 ,1,25,837,5129,94375,271465,3576217,3661659,484486719,2012535795,31455148645,95748332903,145967218799,165153427677, A122143 ,3,2,4,1,3,7,7,4,0,0,5,3,3,2,9,8,1,7,2,4,1,0,9,3,4,7,5,0,0,6,2,7,3,7,4,7,1,2,0,3,6,5,2,0,1,5,1,9,2,4,5,5,2,7,2,4,8,0,8,5,9,3,3,2,1,6,0,9,9,2,6,7,2,6,0,0,9,6,3,7,4,5,1,9,6,1,1,4,8,7,9,4,8,7,0,0,1,7,1,3,1,2,9,3, @@ -122627,7 +122627,7 @@ A122622 ,2,3,5,7,12,16,24,28,49,67,94,118,165,175,195,268,304,367,409,498,514,56 A122623 ,2,4,8,22,98,388,16648,132358,1311234,1073743876,17179877384,274877943814,4398113693698,72083983122432004,3458834890081107976,110681871838615896070,38686511673635471463677954,2475908412805686633409019908,198070557401964757114570145800, A122624 ,1,2,3,4,5,6,7,8,9,1024,2049,4098,8195,16388,32773,65542,131079,262152,524297,2097152,4194305,8388610,16777219,33554436,67108869,134217734,268435463,536870920,1073741833,3221225472,6442450945,12884901890,25769803779,51539607556, A122625 ,1,2,3,4,5,6,7,8,9,100,122,146,172,200,230,262,296,332,370,800,883,970,1061,1156,1255,1358,1465,1576,1691,2700,2884,3074,3270,3472,3680,3894,4114,4340,4572,6400,6725,7058,7399,7748,8105,8470,8843,9224,9613,12500, -A122626 ,1,4,9,22,55,114,205,388,649,10000,14884,21316,29584,40186,101705,132358,169363,315580,393130,640000,779689,940900,1400272,1662918,2345005,2746594,3721554,4308868,5661613,7290000,8317456,1073743876,1291476690,1546146538, +A122626 ,1,4,9,22,55,114,205,388,649,10000,14884,21316,29584,40186,101705,132358,169363,315580,393130,640000,779689,940900,1400272,1662918,2345005,2746594,3721554,4308868,5661613,7290000,8317456,1073743876,1291476690,1546146538,1841269330, A122627 ,1,2,3,4,5,6,7,8,9,55,67,80,94,109,125,142,160,179,199,420,463,508,555,604,655,708,763,820,879,1395,1489,1586,1686,1789,1895,2004,2116,2231,2349,3280,3445,3614,3787,3964,4145,4330,4519,4712,4909,6375,6631,6892,7158, A122628 ,1,3,6,10,20,43,64,114,185,280,402,554,820,11030,14640,18910,24177,30439,37810,88410,107416,129286,154290,270000,317530,371359,431306,659350,758210,867695,988534,1394984,1576972,1775485,2383290,2665338,3459466,3846532, A122629 ,1,2,3,4,5,6,7,8,9,55,90,146,236,381,615,993,1604,2592,4190,13530,21893,35424,57317,92740,150055,242792,392843,635630,1028467,2496120,4038808,6534929,10573737,17108665,27682400,44791062,72473458,117264515,189737967, @@ -123376,7 +123376,7 @@ A123371 ,3,3,3,4,35,16,7,4,11,55,112,183,36,51,23,56,8,16,32,28,115,135,44,15,28 A123372 ,0,1,29,71,95,173,298,4937,4982,15755,16639,17621, A123373 ,4,48,3598,924780,287358579128,339575512147572,836406636653653232322,2225332017808171682043720,21158384827910606570843063431876,2570789828135881020104992992114519012237948, A123374 ,2,5,17,151, -A123375 ,3,1,2,4,24,6,10,56,50,78,34,320,249,186,463,762,598,1238,422,760,3760,3585,9214,1765,4112,13447,6675,4585,68498,8112,10083,8650,86203,49433,35085,20641,458421,8861,366314,157857,169147,487115,277440, +A123375 ,3,1,2,4,24,6,10,56,50,78,34,320,249,186,463,762,598,1238,422,760,3760,3585,9214,1765,4112,13447,6675,4585,68498,8112,10083,8650,86203,49433,35085,20641,458421,8861,366314,157857,169147,487115,277440,563951,511757,920602,75150, A123376 ,28,129,1371,7141,68341,163541,624211,1086557,2756043,8546951,11791577,28122767,46308119,58262037,88870153,158512433,263952799,308206649,480993245,635060975,724715753,1053143991,1331063769,1845563079,2750645663,3325653577,3650662901,4369224195,4767074983,5637335441, A123377 ,0,10,2916,933470,300476232,96750651250,31153377608748,10031290272012230,3230044304029586064,1040064234424568675290,334897453437128916148980,107835939942462262098571310, A123378 ,0,60,82308,118528020,170911244616,246453665407500,355386005842019724,512466373637712510180,738976155386937410086032,1065603103601110189318267740,1536598936416627281801814920340, @@ -128275,8 +128275,8 @@ A128270 ,2,1,-3,4,-3,12,-3,48,-3,320,-3,512,-135,256,-243,5120,-243,8192,-27,512 A128271 ,1,1,2,1,4,1,16,1,64,3,32,27,256,27,1024,243,1024,243,512,27,1024,27,1024,243,8192,243,16384,243,4096,243,7168,81,12544,243,15680,27,39200,27,62720,243,313600,243,1568000,27,31360000,27,17920000,27,31360000,27, A128272 ,1,1,15,77,5301,189679,87596289,21608003585,68221625702463,115452529488363949,2497495662248930113941,80258100236324702562311,4295613290302749695769359713665,341566880541004135370464340131322497, A128273 ,1,3,7,171,2401,419121,39647713,47740815747,30877916418391,255080753983140651,1130395777976404261441,177322193432863810849593,1944244855966235024678049078337,754657638581703992960984555289787011, -A128274 ,1,1,17,721,58337,7734241,218014151,419784870961,153563504618177,10300599833780983, -A128275 ,1,5,121,1369,698161,22394737,25947503401,29819441791,3389281372287841,354891998735343073, +A128274 ,1,1,17,721,58337,7734241,218014151,419784870961,153563504618177,10300599833780983,2486497854930863041,30262124466958766778001,3711710439292601861342231,26350476755161831091778460321,31166629149666821954776191205937,45673109693364177065089340171611, +A128275 ,1,5,121,1369,698161,22394737,25947503401,29819441791,3389281372287841,354891998735343073,1147649139272698443481,179707467079684030326841,76137452589606191547280211,183280927961986287722231696209,1163176750283121903011836076436361, A128276 ,3,15,105,93081, A128277 ,93081,449985,1523705,301921991,899343761,1581262341,7290929465,12102153569,25404516309,27482957831,38661868781,49656488021,240305617889,305000299185,341656377581,377737353491, A128278 ,105,165,231,935,2109,2795,3021,3819,6981,7205,11285,12341,13101,16419,17549,19839,21749,21995,26391,31229,31269,46631,62651,63645,65391,76155,77585,100955,110811,113555,118031,136451,148359,150245,154679, @@ -129978,7 +129978,7 @@ A129973 ,0,0,0,1,1,3,5,9,16,27,46,77,128,212,349,573,938,1532,2498,4067,6614,107 A129974 ,0,627,1128,2811,6188,9027,18740,38375,54908,111503,225936,322295,652152,1319115,1880736,3803283,7690628,10963995,22169420,44826527,63905108,129215111,261270408,372468527,753123120,1522797795,2170907928, A129975 ,0,132,2295,2859,3535,15792,19060,22984,94363,113407,136275,552292,663288,796572,3221295,3868227,4645063,18777384,22547980,27075712,109444915,131421559,157811115,637894012,765983280,919792884,3717921063, A129976 ,1,2,3,4,5,6,8,10,14,21,33,36,56,68,94,378,1943,2389,5455, -A129977 ,2,17,102,112,316,447,535,820,1396,1475,1650, +A129977 ,2,17,102,112,316,447,535,820,1396,1475,1650,5575,6486,6832, A129978 ,2,3,4,5,6,7,12,16,19,21,22,25,41,114,181,236,2003, A129979 ,1,3,3,2,3,1,3,2,2,1, A129980 ,1,2,4,7,6,3,15,12,18,9,15,24,24,33,24,33,24,33,24,51,42,51,33,51,69,51,60,69,60,87,60,60,87,105,87,87,105,87,87,105,114,105,96,141,123,123,159,150,159,150,141,141,132,168,159,150,177,159,159,168,195,186,195, @@ -131278,9 +131278,9 @@ A131273 ,1,23,299,313,171287,435705,487475,3774601,219347813,9613155161,51501638 A131274 ,1,295,455,4361,10817,132680789,334931875,957643538339, A131275 ,1,17,25,31,1495,5555,8185,8647,106841,187329,345377,1811351,2179119,2863775,6368703,10250821,59137893,337430815,11349203711,183233304195, A131276 ,1,3131,6289,323807,443371,83802527023,4076111200313, -A131277 ,1,395191,697717,1078323,2050797,10543929,386099691,2467825171,4488040933,17387575533,39641205433,825688143387,2800262033655,3214748608393, +A131277 ,1,395191,697717,1078323,2050797,10543929,386099691,2467825171,4488040933,17387575533,39641205433,825688143387,2800262033655,3214748608393,5174884331693, A131278 ,1,37,265,17207,9382589,970248431,2427811793,156281194823,2955922292131, -A131279 ,1,25,453,677,839,1015,3735,4175,4413,10369,14239,43311,452567,1274185,14102849,37801813,71271705,93524231,386557609,2151748733,261349938459,761474469415,1284262332971, +A131279 ,1,25,453,677,839,1015,3735,4175,4413,10369,14239,43311,452567,1274185,14102849,37801813,71271705,93524231,386557609,2151748733,261349938459,761474469415,1284262332971,5115376212971, A131280 ,4,9,14,19,22,24,27,32,37,40,45,47,50,52,57,58,62,63,65,70,75,76,83,88,90,93,95,98,100,101,103,106,108,111,113,116,124,126,129,131,133,136,138,141,142,149,151,154,159,164,167,172,174,176,177,179,182,185,190, A131281 ,0,0,0,2,6,18,70,310,1582,9058,57678,403878,3085478,25535378,227589206,2173314806,22137209694,239580726978,2745392996254,33207657441094,422813028038230,5652593799727858,79168165551184422,1159200449070638742,17711278225214739086, A131282 ,1,2,3,3,4,5,1,2,3,3,4,5,1,2,3,3,4,5,1,2,3,3,4,5,1,2,3,3,4,5,1,2,3,3,4,5,1,2,3,3,4,5,1,2,3,3,4,5,1,2,3,3,4,5,1,2,3,3,4,5,1,2,3,3,4,5,1,2,3,3,4,5,1,2,3,3,4,5,1,2,3,3,4,5,1,2,3,3,4,5,1,2,3,3,4,5,1,2,3,3,4,5,1,2,3, @@ -131591,7 +131591,7 @@ A131586 ,3,30,304,3042,30424,304248,3042487,30424876,304248761,3042487612,304248 A131587 ,4,2397,8384727,19053119163,34099597499091,53251529659694763,76304519151822049179,103158861357874372432083,133759354162117403400944283,168072405102068540986037048787,206076219788796447007218742841043,247754953701579144582110673365391267, A131588 ,1,1,3,7,11,31,43,127,171,511,683,2047,2731,8191,10923,32767,43691,131071,174763,524287,699051,2097151,2796203,8388607,11184811,33554431,44739243,134217727,178956971,536870911,715827883,2147483647,2863311531, A131589 ,-3,3,-2,-1,9,-30,85,-229,606,-1593,4177,-10942,28653,-75021,196414,-514225,1346265,-3524574,9227461,-24157813,63245982,-165580137,433494433,-1134903166,2971215069,-7778742045,20365011070,-53316291169,139583862441,-365435296158,956722026037, -A131590 ,4,13,87,1027,13275,155995,1789395,19523155,204330315,2081006083,20605602003,199966727443,1908356153955,17942429101363,166591116531123,1529578004981731,13917470067182067,125565110929591171, +A131590 ,4,13,87,1027,13275,155995,1789395,19523155,204330315,2081006083,20605602003,199966727443,1908356153955,17942429101363,166591116531123,1529578004981731,13917470067182067,125565110929591171,1124685106917162579,10009134886727192611, A131591 ,4,38,1556,86606,4083404,171658094,6716224724,247782290006,8763080657420,299863491723614,9990667099305740,325847250824377382,10445562407382412028,330039152364735149222,10301457052184951857604,318211810358946705058382, A131592 ,4,4,87,86606,204330315,792563962432,4719861842243387,41451006295401961098, A131593 ,4,12,34,118,520,1738,5310,13528,25332, @@ -132119,7 +132119,7 @@ A132114 ,1,7,94,856,2995,56902,413893,1527982,47859601,702710533,1373798194,8537 A132115 ,1,2,3,4,8,9,10,12,16,22,27,28,40,42,46,52,58,64,88,100,102,106,112,130,148,162,166,172,178,184,208,268,282,292,294,328,418,424,556,562,568,586,592,598,616,640,642,646,652,658,664,688,712,784,904,1024,1072,1168,1240, A132116 ,1,1,4,2,1,2,3,7,3,3,30,2,1,2,2,83,9,20,1,37,1,2,7,1,1,2,1,6,1,2,1,1,3,3,1,4,8,1,6,33,1,1,1,17,4,1,3,1,5,3,2,1,1100,2,31,6,7,1,1,9,6,3,1,2,2,2,1,2,4,6,16,1,1,8,1,13,2,18,1,4,1,46,2,5,1,3,1,42,1,1,1,26,3,2,1,5,4, A132117 ,1,8,32,90,205,406,728,1212,1905,2860,4136,5798,7917,10570,13840,17816,22593,28272,34960,42770,51821,62238,74152,87700,103025,120276,139608,161182,185165,211730,241056,273328,308737,347480,389760,435786,485773,539942,598520, -A132118 ,1,2,4,4,6,8,7,9,11,13,11,13,15,17,19,16,18,20,22,24,26,22,24,26,28,30,32,34,29,31,33,35,37,39,41,43,37,39,41,43,45,47,49,51,53,46,48,50,52,54,56,58,60,62,64, +A132118 ,1,2,4,4,6,8,7,9,11,13,11,13,15,17,19,16,18,20,22,24,26,22,24,26,28,30,32,34,29,31,33,35,37,39,41,43,37,39,41,43,45,47,49,51,53,46,48,50,52,54,56,58,60,62,64,56,58,60,62,64,66,68,70,72,74,76, A132119 ,1,3,3,6,5,6,10,8,9,10,15,12,13,14,15,21,17,18,19,20,21,28,23,24,25,26,27,28,36,30,31,32,33,34,35,36,45,38,39,40,41,42,43,44,45,55,47,48,49,50,51,52,53,54,55, A132120 ,3,6,2,3,0,6,2,2,2,3,6,6,4,9,8,0,4,8,7,9,8,6,2,6,3,7,2,2,2,4,0,9,3,4,6,1,8,1,1,1,7,9,8,5,8,5,3,4,4,2,0,9,9,9,7,5,9,9,5,1,0,1,7,0,2,7,8,4,1,8,8,6,3,0,6,8,9,6,5,0, A132121 ,0,1,2,5,11,17,14,32,50,68,30,70,110,150,190,55,130,205,280,355,430,91,217,343,469,595,721,847,140,336,532,728,924,1120,1316,1512,204,492,780,1068,1356,1644,1932,2220,2508,285,690,1095,1500,1905,2310,2715,3120, @@ -132128,7 +132128,7 @@ A132123 ,0,11,110,469,1356,3135,6266,11305,18904,29811,44870,65021,91300,124839, A132124 ,0,3,17,50,110,205,343,532,780,1095,1485,1958,2522,3185,3955,4840,5848,6987,8265,9690,11270,13013,14927,17020,19300,21775,24453,27342,30450,33785,37355,41168,45232,49555,54145,59010,64158,69597,75335,81380, A132125 ,1,2,3,4,5,6,7,7,7,7,8,8,9,9,9,9,10,10,11,11,11,11,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,15,15,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17, A132126 ,0,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, -A132127 ,1,6,17,37,69,116,181,267,377,514,681,881, +A132127 ,1,6,17,37,69,116,181,267,377,514,681,881,1117,1392,1709,2071,2481,2942,3457,4029,4661,5356,6117,6947,7849,8826,9881,11017,12237,13544,14941,16431,18017,19702,21489,23381,25381,27492,29717,32059,34521,37106,39817,42657,45629, A132128 ,1,2,4,4,5,8,7,8,9,13,11,12,13,14,19,16,17,18,19,20,26,22,23,24,25,26,27,34,29,30,31,32,33,34,35,43,37,38,39,40,41,42,43,44,53, A132129 ,2,19,19,577,7417,114229,2053313,42373937,987654103,25678048763,736867805209,23136292864193,789018236128391,29043982525257901,1147797409030815779,48471109094902530293,2178347851919531491093,103805969587115219167613,5228356786703601108008083, A132130 ,1,6,21,62,162,378,819,1680,3276,6138,11145,19662,33840,57048,94362,153432,245757,388218,605466,933414,1423614,2149586,3215844,4769544,7016572,10243896,14848809,21378276,30582360,43484304,61473438,86428896, @@ -133757,7 +133757,7 @@ A133752 ,1,256,65536,16777216,4294967296,1099511627776,281474976710656,720575940 A133753 ,73,733,3733,7253,7523,7757,33223,35323,72253,72353,73327,73523,73553,75223,75253,77237,77323,77527,77557,333323,352333,355723,375223,375233,375553,722333,727327,733333,735733,737353,737753,737773,753373,753527,772273,773273,775757,777353,777373, A133754 ,0,0,24,216,960,3000,7560,16464,32256,58320,99000,159720,247104,369096,535080,756000,1044480,1414944,1883736,2469240,3192000,4074840,5142984,6424176,7948800,9750000,11863800,14329224,17188416,20486760,24273000,28599360,33521664, A133755 ,0,0,0,1,1,1,2,1,2,2,3,1,4,2,3,3,5,2,6,2,4,4,7,3,7,4,6,4,9,2,10,5,7,6,8,4,12,6,8,6,13,4,14,6,8,8,15,5,14,6,11,8,17,6,14,8,12,10,19,6,20,10,12,11,16,6,22,10,15,8,23,8,24,12,13,12,20,8,26,10,18,14,27,8,22,14,19,14, -A133756 ,5,7,10,14,21,33,52,85,144,248,438,791,1456,2731,5213,10112,19920,39819,80704,165749,344758,725888,1546398,3331879, +A133756 ,5,7,10,14,21,33,52,85,144,248,438,791,1456,2731,5213,10112,19920,39819,80704,165749,344758,725888,1546398,3331879,7257856,15978098,35538283,79834112,181082105,414609369,958004224,2233339296,5251710002,12454043648,29777842663,71773351064,174356586496,426815713006,1052675774422, A133757 ,0,1,2,4,9,7,20,23,27, A133758 ,0,3,5,4,149,7,144,37,1442, A133759 ,2,5,6,9,10,13,14,16,17,21,23,26,28,30,31,36,37,38,39,41,44,47,48,50,51,52,54,55,58,60,61,65,67,69,71,74,76,79,82,84,86,87,93,95,96,99,100,101,103,105,106,108,112,115,116,117,118,119,121,122,126,128,132,133,134, @@ -137230,7 +137230,7 @@ A137225 ,1,3,2,7,5,3,15,8,7,4,31,17,11,9,5,63,26,15,14,11,6,127,53,31,19,17,13,7 A137226 ,29,41,71,101,149,197,239,269,311,419,461,521,599,617,641,809,821,827,881,1031,1061,1151,1289,1427,1607,1697,1721,1871,2267,2381,2657,2687,2789,2969,3251,3299,3527,3539,3581,3821,3929,4001,4049,4091,4229,4241, A137227 ,1,1,1,2,2,2,6,9,9,22,24,64,64,266,708,120,625,625,4536,17457,108129,720,7776,7776,100392,563088,5709120,52517688,5040,117649,117649,2739472,22516209,375217945,5489293264,92757410569,40320,2097152, A137228 ,3,5,7,9,11,12,14,16,18,19,21,23,24,26,28,29,31,33,34,36,38,39,41,42,44,46,47,49,51,52,54,55,57,59,60,62,63,65,67,68,70,71,73,75,76,78,79,81,83,84,86,87,89,90,92,94,95,97,98,100,102,103,105,106,108,109,111,113, -A137229 ,1,4,11,27,64,150,350,815,1896,4409,10251,23832,55404,128800,299425,696080,1618191,3761839,8745216,20330162,47261894,109870575,255418100,593775045,1380359511,3208946544,7459895656,17342153392,40315615409, +A137229 ,1,4,11,27,64,150,350,815,1896,4409,10251,23832,55404,128800,299425,696080,1618191,3761839,8745216,20330162,47261894,109870575,255418100,593775045,1380359511,3208946544,7459895656,17342153392,40315615409,93722435100,217878227875, A137230 ,4,6,10,12,14,16,18,22,24,26,27,30,34,36,38,40,42,45,46,56,58,60,62,63,66,74,75,78,80,82,84,86,88,94,96,99,100,102,104,105,106,114,117,118,120,122,132,134,136,138,140,142,144,146,147,152,153,156,158,165,166, A137231 ,6552,30240,70680,87360,120960,120960,120960,138240,157248,157248,161280,196560,211680,229320,241920,241920,241920,241920,262080,280800,290160,302400,338688,362880,362880,393120,393120,446400,446400,483840, A137232 ,0,0,1,-1,8,-12,65,-125,544,-1224,4657,-11593,40520,-107700,356561,-988901,3161728,-9014352,28179745,-81795025,252010184,-740036124,2258722337,-6682944653,20273892640,-60278338200,182146752721,-543273442201,1637465696648,-4893939533892,14726379083825, @@ -137260,8 +137260,8 @@ A137255 ,1,2,4,8,17,36,80,178,409,942,2212,5204,12377,29472,70592,169198,406801, A137256 ,1,2,4,9,21,48,108,243,549,1242,2808,6345,14337,32400,73224,165483,373977,845154,1909980,4316409,9754749,22044960,49819860,112588947,254442141,575019162,1299497904,2936762649,6636851721,14998760928, A137257 ,4,12,16,18,20,24,27,28,36,44,48,50,52,54,60,64,68,72,76,80,84,90,92,98,100,108,112,116,120,124,126,132,135,140,144,148,150,156,160,162,164,168,172,176,180,188,189,192,196,198,200,204,208,212,216,220,228,234, A137258 ,3,5,7,17,19,139,157,577,1201,27361,530401,2513281,7183201,407817217, -A137259 ,0,0,0,3,3,0,20,20,16,0,115,115,110,90,0,714,714,708,684,576,0,5033,5033,5026,4998,4872,4200,0,40312,40312,40304,40272,40128,39360,34560,0,362871,362871,362862,362826,362664,361800,356400,317520,0,3628790, -A137260 ,0,0,0,1,2,0,5,10,12,0,23,46,66,72,0,119,238,354,456,480,0,719,1438,2154,2856,3480,3600,0,5039,10078,15114,20136,25080,29520,30240,0,40319,80638,120954,161256,201480,241200,277200,282240,0,362879,725758, +A137259 ,0,0,0,3,3,0,20,20,16,0,115,115,110,90,0,714,714,708,684,576,0,5033,5033,5026,4998,4872,4200,0,40312,40312,40304,40272,40128,39360,34560,0,362871,362871,362862,362826,362664,361800,356400,317520,0,3628790,3628790,3628780,3628740,3628560,3627600,3621600,3578400,3225600,0, +A137260 ,0,0,0,1,2,0,5,10,12,0,23,46,66,72,0,119,238,354,456,480,0,719,1438,2154,2856,3480,3600,0,5039,10078,15114,20136,25080,29520,30240,0,40319,80638,120954,161256,201480,241200,277200,282240,0,362879,725758,1088634,1451496,1814280,2176560,2535120,2862720,2903040,0, A137261 ,1200,360,360,29172,360,360,360,5765161,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360, A137262 ,1,22,671,21097,666716,21082008,666667166,21081852648,666666671666,21081851083600, A137263 ,26,50,56,86,134,170,176,236,254,260,266,356,386,446,473,506,515,560,566,590,596,650,656,680,803,944,950,974,980,1016,1100,1106,1184,1190,1220,1226,1268,1286,1313,1364,1370,1436,1496,1505,1517,1556,1604,1616, @@ -138170,7 +138170,7 @@ A138165 ,104869,108649,140689,140869,148609,164089,164809,168409,184609,186049,4 A138166 ,1,12,20,21,22,23,24,25,26,27,28,29,32,42,52,62,72,82,92,103,113,123,130,131,132,133,134,135,136,137,138,139,143,153,163,173,183,193,203,213,223,230,231,232,233,234,235,236,237,238,239,243,253,263,273,283, A138167 ,1,5,6,7,8,9,10,11,12,21,31,36,37,38,39,40,41,42,43,44,49,58,66,67,68,76,86,95,96,97,98,104,113,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149, A138168 ,1,2,6,7,8,9,12,20,21,22,23,26,27,29,38,44,45,46,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,71,78,79,87,92,93,94,95,103,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130, -A138169 ,1,0,-2,2,-1,1,6,-12,6,0,12,-24,-12,72,-72,24,24,-52,-88,356,-240,-360,720,-480,120,0,-720,2280,-1320,-3720,6360,-1200,-6000,7200,-3600,720,-3060,10260,2580,-56340,86760,-12480,-95760,93240,12600,-88200,75600,-30240,5040,0,171360,-745920,994560,383040, +A138169 ,1,0,-2,2,-1,1,6,-12,6,0,12,-24,-12,72,-72,24,24,-52,-88,356,-240,-360,720,-480,120,0,-720,2280,-1320,-3720,6360,-1200,-6000,7200,-3600,720,-3060,10260,2580,-56340,86760,-12480,-95760,93240,12600,-88200,75600,-30240,5040, A138170 ,2,3,5,23,31,61,83,89,149,179,239,251,263,269,353,367,419,433,449,503,557,569,571,587,653,701,733,761,839,941,983,991,1109,1123,1187,1193, A138171 ,45,81,105,117,165,225,261,273,297,315,325,333,345,357,385,405,435,441,465,477,495,513,525,555,561,567,585,595,621,625,627,651,675,693,705,715,765,777,795,801,825,837,855,861,885,891,897,915,925,945,957,975, A138172 ,62,74,134,146,164,188,194,206,254,274,278,284,314,356,362,386,398,404,422,428,454,458,482,494,524,538,554,566,584,614,626,662,674,692,734,746,758,764,794,818,824,854,866,890,914,926,934,944,956,974,998,1004,1028, @@ -138743,9 +138743,9 @@ A138738 ,1,1,1,7,25,121,1561,9871,101137,1293265,15765841,226501111,3355388521,5 A138739 ,1,1,2,11,88,888,10572,143214,2159154,35702442,640873656,12394383780,256762580460,5671209169168,133041670286160,3304034094162183,86616702087692256,2390831825522972392,69323685702986714272,2107073248164657741448,67003070810599639419680,2225053954972969636237280,77034579373254666948386880,2776183496539544726567249520, A138740 ,1,1,-2,9,-56,420,-3572,33328,-334354,3559310,-39838760,465743720,-5658983108,71191948512,-924554859776,12365546196641,-169995491295312,2398380272232272,-34680290150700800,513390937937217088,-7773229533145403728, A138741 ,1,3,2,0,1,0,2,6,2,0,0,0,3,3,2,0,0,0,2,6,2,0,2,0,1,6,2,0,0,0,2,0,4,0,0,0,2,9,0,0,1,0,4,6,2,0,0,0,2,0,2,0,0,0,2,6,2,0,2,0,1,6,4,0,0,0,0,6,2,0,0,0,4,3,2,0,2,0,2,6,0,0,0,0,3,0,2, -A138742 ,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,2,4,23, -A138743 ,1,1,1,3,6,6, -A138744 ,1,1,2,4,8,33, +A138742 ,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,2,4,23,1,1,2,2,9,1,90,1,14,5,2,1,1,2,2,7,1,2,4,5,1,2,4,1,8,32,2,1,8,3,1,2,1,8,5,2,3,1,1,2,2,8,11,4,3,3,2,3,4,3,8,1,6,22,4,2,1,1,1,1,1,5,1,1,2,2,1,11,1,4,3,3,97,3,1,1,4,1,1,3,87,5,2,7,3, +A138743 ,1,1,1,3,6,6,11,26,48,82,201,379,836,1554,3197,6420,12639,25298,50675,101675,203379,405946,811519,1622692,3249540,6494117,12998399,25991681, +A138744 ,1,1,2,4,8,33,128,109,344,3760,1829,18367,11168,35246,41103,79356,151643,344725,1249071,1678788,5385320,19780986,17348076,30966961,85647848,160394455,451333739,623813606, A138745 ,1,-1,1,-3,1,-2,3,0,1,-1,2,0,3,-2,0,-6,1,-2,1,0,2,0,0,0,3,-3,2,-3,0,-2,6,0,1,0,2,0,1,-2,0,-6,2,-2,0,0,0,-2,0,0,3,-1,3,-6,2,-2,3,0,0,0,2,0,6,-2,0,0,1,-4,0,0,2,0,0,0,1,-2,2,-9,0,0,6,0, A138746 ,1,-1,3,-1,2,-3,0,-1,1,-2,0,-3,2,0,6,-1,2,-1,0,-2,0,0,0,-3,3,-2,3,0,2,-6,0,-1,0,-2,0,-1,2,0,6,-2,2,0,0,0,2,0,0,-3,1,-3,6,-2,2,-3,0,0,0,-2,0,-6,2,0,0,-1,4,0,0,-2,0,0,0,-1,2,-2,9,0,0,-6, A138747 ,1,1,1,2,6,19,61,197,637,2060,6662,21545,69677,225337,728745,2356778,7621874,24649315,79716449,257804821,833746693,2696355892,8720076682,28200927617,91202445513,294950796673,953877628705,3084862088210,9976514614558,32264276654339,104343409321397,337448974463477,1091317708583837,3529346452933372,11413987225587534, @@ -140341,7 +140341,7 @@ A140336 ,1,5,16,47,138,419,1358,4615,16562,61879,240506,967043,4011246,17127819, A140337 ,1,8,161,3771,65536,968434,13398995,190804729,2840301338, A140338 ,1,8,256,23045,3499498,540106922,68719476736, A140339 ,1,8,256,32768,13213313,11522939359,14149679017875, -A140340 ,29,59,109,179,269,379,509,659,829,1019,1229,1459,1709,1979,76,86,116,166,236,326,436,566,716,886,1076,1286,1516,1766,161,151,161,191,241,311,401,511,641,791,961,1151,1361,1591,284,254,244,254,284, +A140340 ,29,59,109,179,269,379,509,659,829,1019,1229,1459,1709,1979,76,86,116,166,236,326,436,566,716,886,1076,1286,1516,1766,161,151,161,191,241,311,401,511,641,791,961,1151,1361,1591,284,254,244,254,284,334,404,494,604,734,884,1054,1244,1454, A140341 ,1,4,4,5,5,5,5,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, A140342 ,0,0,0,0,0,1,5,14,28,42,42,0,-131,-417,-924,-1652,-2380,-2380,0,7753,25213,56714,102256,147798,147798,0,-479779,-1557649,-3499720,-6305992,-9112264,-9112264,0,29587889,96072133,215873462,388991876,562110290,562110290,0, A140343 ,0,0,0,0,1,4,9,14,14,0,-41,-122,-243,-364,-364,0,1093,3280,6561,9842,9842,0,-29525,-88574,-177147,-265720,-265720,0,797161,2391484,4782969,7174454,7174454,0,-21523361,-64570082,-129140163,-193710244,-193710244,0,581130733, @@ -141389,7 +141389,7 @@ A141384 ,8,8,32,158,828,4408,23564,126106,675076,3614144,19349432,103593806,5546 A141385 ,3,7,31,157,827,4407,23563,126105,675075,3614143,19349431,103593805,554625899,2969386479,15897666067,85113810057,455687062275,2439682811479,13061709929935,69930511268509,374397872321627, A141386 ,3,11,12,27,129,138,273, A141387 ,0,1,1,2,4,2,3,7,7,3,4,10,12,10,4,5,13,17,17,13,5,6,16,22,24,22,16,6,7,19,27,31,31,27,19,7,8,22,32,38,40,38,32,22,8,9,25,37,45,49,49,45,37,25,9,10,28,42,52,58,60,58,52,42,28,10, -A141388 ,0,6,6,23,60,23,56,208,208,56,109,496,713,496,109,184,968,1696,1696,968,184,279,1664,3311,4032,3311,1664,279,384,2616,5704,7872,7872,5704,2616,384,473,3840,9005,13568,15369,13568,9005,3840,473,488,5320,13312,21440, +A141388 ,0,6,6,23,60,23,56,208,208,56,109,496,713,496,109,184,968,1696,1696,968,184,279,1664,3311,4032,3311,1664,279,384,2616,5704,7872,7872,5704,2616,384,473,3840,9005,13568,15369,13568,9005,3840,473,488,5320,13312,21440,26488,26488,21440,13312,5320,488, A141389 ,2,4,9,7,12,1,5,6,11,13,15,8,3,18,21,10,16,25,24,27,20,29,14,30,26,19,28,35,32,33,22,38,17,37,36,42,23,34,41,47,43,39,46,31,40,45,54,55,51,57,58,44,52,56,49,50,60,53,65,66,59,68,63,48,71,62,70,74,69,73,77,64,76,78,61,79,81,82,85,86, A141390 ,781,1541,5461,13021,15751,25351,29539,38081,40501,79381,100651,121463,133141,195313,216457,315121,318551,319507,326929,341531,353827,375601,416641,432821,453331,464881,498451,555397,556421,753667,764941,863329,872101,886411, A141391 ,1,7,5,11,28,14,182,70,2,66,1518,462,1540,616,296,600,1950,750,10,730,2336,876,2436,996,3154,1162,5698,210,1554,3234,1638,5382,1872,23088,4368,5934,201,4359,77991,7021,13090,4270,12950,74,12802,76466,16954, @@ -142466,17 +142466,17 @@ A142461 ,1,1,1,1,14,1,1,111,111,1,1,796,2886,796,1,1,5597,52642,52642,5597,1,1,3 A142462 ,1,1,1,1,16,1,1,143,143,1,1,1166,4290,1166,1,1,9357,90002,90002,9357,1,1,74892,1621383,3960088,1621383,74892,1,1,599179,27016857,134142043,134142043,27016857,599179,1,1,4793482,431017552,3923731798,7780238494, A142463 ,-1,3,11,23,39,59,83,111,143,179,219,263,311,363,419,479,543,611,683,759,839,923,1011,1103,1199,1299,1403,1511,1623,1739,1859,1983,2111,2243,2379,2519,2663,2811,2963,3119,3279,3443,3611,3783,3959,4139,4323,4511,4703,4899,5099, A142464 ,3,6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, -A142465 ,1,1,1,1,7,1,1,28,28,1,1,84,336,84,1,1,210,2520,2520,210,1,1,462,13860,41580,13860,462,1,1,924,60984,457380,457380,60984,924,1,1,1716,226512,3737448,9343620,3737448,226512,1716,1,1,3003,736164,24293412,133613766, +A142465 ,1,1,1,1,7,1,1,28,28,1,1,84,336,84,1,1,210,2520,2520,210,1,1,462,13860,41580,13860,462,1,1,924,60984,457380,457380,60984,924,1,1,1716,226512,3737448,9343620,3737448,226512,1716,1,1,3003,736164,24293412,133613766,133613766,24293412,736164,3003,1, A142466 ,127,227,277,577,677,727,827,877,977,1277,1327,1427,1627,1777,1877,2027,2377,2477,2677,2777,2927,3527,3677,3727,3877,4027,4127,4177,4327,4877,5077,5227,5477,5527,5827,5927,6277,6427,6577,6827,6977,7027,7127,7177, -A142467 ,1,1,1,1,8,1,1,36,36,1,1,120,540,120,1,1,330,4950,4950,330,1,1,792,32670,108900,32670,792,1,1,1716,169884,1557270,1557270,169884,1716,1,1,3432,736164,16195608,44537922,16195608,736164,3432,1,1,6435,2760615, +A142467 ,1,1,1,1,8,1,1,36,36,1,1,120,540,120,1,1,330,4950,4950,330,1,1,792,32670,108900,32670,792,1,1,1716,169884,1557270,1557270,169884,1716,1,1,3432,736164,16195608,44537922,16195608,736164,3432,1, A142468 ,1,1,1,1,9,1,1,45,45,1,1,165,825,165,1,1,495,9075,9075,495,1,1,1287,70785,259545,70785,1287,1,1,3003,429429,4723719,4723719,429429,3003,1,1,6435,2147145,61408347,184225041,61408347,2147145,6435,1, A142469 ,3,3,46,6,46,347,532,532,347,1932,14505,740,14505,1932,9199,203925,152405,152405,203925,9199,40250,2087884,6882086,-86372,6882086,2087884,40250,168318,17968725,152844537,78623775,78623775,152844537,17968725,168318, -A142470 ,1,1,1,1,8,1,1,30,30,1,1,80,300,80,1,1,175,1750,1750,175,1,1,336,7350,19600,7350,336,1,1,588,24696,144060,144060,24696,588,1,1,960,70560,790272,1728720,790272,70560,960,1,1,1485,178200,3492720,14669424, +A142470 ,1,1,1,1,8,1,1,30,30,1,1,80,300,80,1,1,175,1750,1750,175,1,1,336,7350,19600,7350,336,1,1,588,24696,144060,144060,24696,588,1,1,960,70560,790272,1728720,790272,70560,960,1,1,1485,178200,3492720,14669424,14669424,3492720,178200,1485,1, A142471 ,0,0,2,2,6,14,86,1206,103718,125083910,12973452977382,1622770224612082123622,21052933202100473722674133293917606,34164073141115747076263787631563122725393126176374288934, -A142472 ,1,-4,1,21,-18,1,-140,240,-48,1,1140,-3150,1300,-100,1,-11004,43620,-29700,4800,-180,1,123074,-650769,647780,-175175,13965,-294,1,-1566928,10517108,-14190400,5676160,-764400,34496,-448,1,22390488,-184052520,319680732,-175091112,35160048,-2698920,75600, -A142473 ,1,-1,2,4,-6,6,-36,44,-36,24,576,-600,420,-240,120,-14400,13152,-8100,4080,-1800,720,518400,-423360,233856,-105840,42000,-15120,5040,-25401600,18817920,-9455040,3898944,-1411200,463680,-141120,40320,1625702400,-1104606720,510295680,-193777920,64653120, +A142472 ,1,-4,1,21,-18,1,-140,240,-48,1,1140,-3150,1300,-100,1,-11004,43620,-29700,4800,-180,1,123074,-650769,647780,-175175,13965,-294,1,-1566928,10517108,-14190400,5676160,-764400,34496,-448,1,22390488,-184052520,319680732,-175091112,35160048,-2698920,75600,-648,1, +A142473 ,1,-1,2,4,-6,6,-36,44,-36,24,576,-600,420,-240,120,-14400,13152,-8100,4080,-1800,720,518400,-423360,233856,-105840,42000,-15120,5040,-25401600,18817920,-9455040,3898944,-1411200,463680,-141120,40320,1625702400,-1104606720,510295680,-193777920,64653120,-19595520,5503680,-1451520,362880, A142474 ,1,0,1,2,4,9,19,41,88,189,406,872,1873,4023,8641,18560,39865,85626,183916,395033,848491,1822473,3914488,8407925,18059374,38789712,83316385,178955183,384377665,825604416,1773314929,3808901426,8181135700,17572253481,37743426307, -A142475 ,1,0,0,-1,0,0,1,-1,0,0,0,1,-1,0,0,-1,-1,1,-1,0,0,1,2,-1,1,-1,0,0,0,-3,1,-1,1,-1,0,0,-1,4,0,1,-1,1,-1,0,0,1,-6,-1,-1,1,-1,1,-1,0,0,0,9,2,2,-1,1,-1,1,-1,0,0,-1,-13,-3,-3,1,-1,1,-1,1,-1,0,0,1,19,3,4,0,1,-1,1,-1,1,-1,0,0,0,-28,-2,-5,-1,-1,1,-1,1,-1,1,-1,0,0,-1, +A142475 ,1,0,0,-1,0,0,1,-1,0,0,0,1,-1,0,0,-1,-1,1,-1,0,0,1,2,-1,1,-1,0,0,0,-3,1,-1,1,-1,0,0,-1,4,0,1,-1,1,-1,0,0,1,-6,-1,-1,1,-1,1,-1,0,0,0,9,2,2,-1,1,-1,1,-1,0,0,-1,-13,-3,-3,1,-1,1,-1,1,-1,0,0,1,19,3,4,0,1,-1,1,-1,1,-1,0,0,0,-28,-2,-5,-1,-1,1,-1,1,-1,1,-1,0,0, A142476 ,103,307,409,613,919,1021,1123,1327,1429,1531,2143,2347,2551,2857,3061,3163,3469,3571,3673,3877,4591,4999,5101,5407,6121,6427,6529,6733,7039,7243,7549,7753,8059,8161,8263,8467,9181,9283,10099,10303,10711,11119,11527, A142477 ,2,53,257,359,461,563,971,1277,1481,1583,1787,1889,2297,2399,2909,3011,3623,3929,4133,4337,4643,5051,5153,5867,6173,6581,7193,7499,7703,7907,8009,8111,9029,9437,9539,9743,10151,10253,10457,10559,11069,11171,11273, A142478 ,157,463,769,1279,1381,1483,1789,1993,2503,2707,3217,3319,3727,3931,4339,4441,4951,5563,5869,6073,6277,6379,6481,6991,7297,7603,8011,8317,8419,8521,8623,8929,9133,9337,9439,9643,9949,10357,10459,10663,10867,11071, @@ -142597,7 +142597,7 @@ A142592 ,29,83,137,191,353,461,569,677,839,947,1109,1163,1217,1433,1487,1811,197 A142593 ,1,2,1,3,1,4,1,1,5,1,1,6,1,1,1,7,1,1,1,8,3,1,1,9,3,1,1,10,3,1,1,1,11,3,1,1,1,12,3,1,1,1,1,13,3,1,1,1,1,14,3,1,1,1,1,15,3,1,1,1,1,16,3,1,1,1,1,1,17,3,1,1,1,1,1,18,3,1,1,1,1,1,1,19,3,1,1,1,1,1,1,20,3,1,1, A142594 ,1,2,3,4,5,6,7,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,288,300,390,405,420,435,450,465,480,495,510,525,540,555,570,585,600,615,630,645,660,675,690,705,1728,1764,1800, A142595 ,1,1,1,1,4,1,1,10,10,1,1,22,40,22,1,1,46,124,124,46,1,1,94,340,496,340,94,1,1,190,868,1672,1672,868,190,1,1,382,2116,5080,6688,5080,2116,382,1,1,766,4996,14392,23536,23536,14392,4996,766,1, -A142596 ,1,1,1,1,6,1,1,21,21,1,1,66,126,66,1,1,201,576,576,201,1,1,606,2331,3456,2331,606,1,1,1821,8811,17361,17361,8811,1821,1,1,5466,31896,78516,104166,78516,31896,5466,1,1,16401,112086,331236,548046,548046,331236, +A142596 ,1,1,1,1,6,1,1,21,21,1,1,66,126,66,1,1,201,576,576,201,1,1,606,2331,3456,2331,606,1,1,1821,8811,17361,17361,8811,1821,1,1,5466,31896,78516,104166,78516,31896,5466,1,1,16401,112086,331236,548046,548046,331236,112086,16401,1, A142597 ,1,1,1,1,8,1,1,36,36,1,1,148,288,148,1,1,596,1744,1744,596,1,1,2388,9360,13952,9360,2388,1,1,9556,46992,93248,93248,46992,9556,1,1,38228,226192,560960,745984,560960,226192,38228,1,1,152916,1057680,3148608, A142598 ,1,1,0,1,0,1,1,0,1,1,1,0,1,1,0,1,0,1,1,0,1,1,0,1,1,0,2,1,1,0,1,1,0,2,1,0,1,0,1,1,0,2,1,1,1,1,0,1,1,0,2,1,2,2,1,1,0,1,1,0,2,1,2,2,1,0,1,0,1,1,0,2,1,2,2,2,2,1,1,0,1,1,0,2,1,2,2,2,3,2,1,1,0,1,1,0,2,1,2,2,2,3,2,2,0, A142599 ,5,2,77,35,221,20,437,143,725,56,1085,323,1517,110,2021,575,2597,182,3245,899,3965,272,4757,1295,5621,380,6557,1763,7565,506,8645,2303,9797,650,11021,2915,12317,812,13685,3599,15125,992,16637,4355,18221,1190,19877,5183,21605,1406,23405, @@ -155876,7 +155876,7 @@ A155871 ,1,1,-16,-110,-16,-117,-1322,-1322,-117,-512,-9703,-22288,-9703,-512,-18 A155872 ,2,21,221,2331,24641,261051,2771561,29487171,314358881,3357947691,35937424601,385311670611,4138428376721,44522712143931,479749833583241,5177248169415651,55949729863572161,605447028499293771, A155873 ,2,3,5,7,23,37,59,73,233,373,593,739,2339,3733,5939,7393,23399,37337,59393,73939,233993,373379,593933,739391,2339933,3733799,5939333,7393913,23399339,37337999,59393339,73939133, A155874 ,4,8,4,6,4,4,4,8,4,6,4,4,4,8,4,6,4,4,4,6,4,4,4,4,4,8,4,6,4,4,4,4,4,6,4,4,4,8,4,6,4,4,4,6,4,4,4,4,4,6,4,4,4,4,4,8,4,6,4,4,4,4,4,6,4,4,4,8,4,6,4,4,4,4,4,6,4,4,4,6,4,4,4,4,4,6,4,4,4,4,4,4,4,6,4,4,4,8,4,6,4, -A155875 ,4,9,6,9,8,9,10,15,12,15,14,15,16,21,18,21,20,21,22,25,24, +A155875 ,4,9,6,9,8,9,10,15,12,15,14,15,16,21,18,21,20,21,22,25,24,25,26,27,28,33,30,33,32,33,34,35,36,39,38,39,40,45,42,45,44,45,46,49,48,49,50,51,52,55,54,55,56,57,58,63,60,63,62,63,64,65,66,69,68,69,70, A155876 ,1,1,3,0,8,9,0,4,8,9,0,1,4,2,5,3,2,1,8,0,7,3,5,3,7,0,6,1,0,4,0,6,6,7,2,1,1,1,2,4,7,0,6,2,8,1,3,6,0,6,3,8,7,6,4,8,7,3,6,1,0,9,3,3,0,0,3,6,9,4,5,3,6,3,9,0,6,9,1,1,7,4,0,2,7,6,8,8,6,3,1,4,6,5,5,2,2,0,5, A155877 ,9,11,13,15,23,25,27,37,39,51,263,265,267,277,279,291,517,519,531,771,65543,65545,65547,65557,65559,65571,65797,65799,65811,66051,131077,131079,131091,131331,196611,4294967303,4294967305,4294967307, A155878 ,4,8,10,12,14,15,16,18,20,21,22,24,26,27,28,30,32,33,34,35,36,39,40,42,44,45,46,48,49,51,52,54,55,57,58,60,62,63,64,65,66,69,70,72,74,75,76,77,78,80,82,84,86,87,88,90,91,93,94,95,96,98,99,102,104,105,106,108, @@ -156655,7 +156655,7 @@ A156650 ,85,89,91,101,119,145,175,185,221,289,349,371,461,595,769,959,1021,1241, A156651 ,1,-2,-65,227,25285,-151321,-24851645,208985867,45675130345,-494053998001,-134944451180825,1784108230326707,584753480627757805,-9136756258815374281,-3493729771694615374805,62987838852907115030747,27526170759461264661539665, A156652 ,1,-1,-77,239,30877,-160801,-30468977,222359759,56025500377,-525750911041,-165532771357877,1898604115708079,717305800978797877,-9723130520022672481,-4285693661775748922777,67030256200148854573199,33765846794176822397603377, A156653 ,1,1,3,1,16,13,1,125,171,39,1,1296,2551,1091,101,1,16807,43653,28838,5498,243,1,262144,850809,780585,243790,24270,561,1,4782969,18689527,22278189,10073955,1733035,98661,1263,1, -A156654 ,1,3,1,25,22,1,343,515,101,1,6561,14156,5766,396,1,161051,456197,299342,49642,1447,1,4826809,16985858,15796159,4592764,371239,5090,1,170859375,719818759,878976219,383355555,58474285,2550165,17481,1,6975757441, +A156654 ,1,3,1,25,22,1,343,515,101,1,6561,14156,5766,396,1,161051,456197,299342,49642,1447,1,4826809,16985858,15796159,4592764,371239,5090,1,170859375,719818759,878976219,383355555,58474285,2550165,17481,1,6975757441,34264190872,52246537948,31191262504,7488334150,660394024,16574428,59032,1, A156655 ,3001,4001,7001,9001,13001,16001,19001,21001,24001,28001,51001,54001,55001,61001,69001,70001,76001,81001,88001,90001,93001,96001,97001,102001,103001,109001,114001,115001,121001,123001,124001,126001,129001, A156656 ,1,-17,-18,6749,6822,-2441897,-7394058,14988306853,15126584742,-9866867955647,-49788967645098,79396908872686679,240385445052560262,-226519192557338133197,-1600244381647342824138,13919437045277101776460901,14047690539171597748097382, A156657 ,0,1,2,3,4,6,8,9,10,12,13,14,15,16,17,18,19,20,21,22,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,49,50,51,52,53,54,55,56,57,58,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77, @@ -157035,7 +157035,7 @@ A157030 ,1,2,0,2,1,0,4,0,1,0,2,1,1,1,0,8,3,0,0,1,0,2,1,1,1,1,1,0,10,0,5,0,1,0,1, A157031 ,1,1,3,3,9,3,19,7,21,13,51,7,87,17,39,51,175,11,239,21,169,111,415,15,489,185,313,219,1017,15,1413,283,763,415,981,513,3057,839,1259,497,4425,93,5605,893,1311,2259,7505,521,8267,1429,5473,3311,13821,1449,11135,4095, A157032 ,1,3,6,8,1,8,8,8,8,8,9,0,8,8,8,0,8,0,8,1,1,0,3,8,3,8,8,0,8,3,3,3,8,8,6,6,9,9,1,1,8,1,8,6,9,8,8,1,3,9,3,1,8,3,1,6,8,3,0,0,8,3,1,1,9,1,3,1,3,1,0,3,1,8,6,8,8,1,1,0,0,8,9,1,9,1,1,9,1,1,0,6,8,8,8,8,6,6,8,9,0,8,0,9,3, A157033 ,2,11,1009,10000019,1000000000000037,10000000000000000000000000000033,1000000000000000000000000000000000000000000000000000000000000121, -A157034 ,1,9,19,37,33,121,283,37,241,3259,2823,67017,13989,9523, +A157034 ,2,1,9,19,37,33,121,283,37,241,3259,2823,67017,13989,9523, A157035 ,7,97,9973,99999989,9999999999999937,99999999999999999999999999999979,9999999999999999999999999999999999999999999999999999999999999949, A157036 ,3,3,27,11,63,21,51,17,813,377,7017,27381,7763,1133, A157037 ,6,10,22,30,34,42,58,66,70,78,82,105,114,118,130,142,154,165,174,182,202,214,222,231,238,246,255,273,274,282,285,286,298,310,318,345,357,358,366,370,382,385,390,394,399,418,430,434,442,454,455,465,474,478, @@ -158824,9 +158824,9 @@ A158819 ,0,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,2,1,1,1,1,0,0,1,1,1,1,1,2,1 A158820 ,1,-5,-1,35,-227,-1435,27599,123095,-2428187,-18154423,1002748195,4095412475,-11278566075977,-1310672758291,9265563303353,564709713458975,-387913690488413419,-315149059886480239,381102197975912820173,221139612243078051395, A158821 ,1,1,1,2,0,1,3,0,0,1,4,0,0,0,1,5,0,0,0,0,1,6,0,0,0,0,0,1,7,0,0,0,0,0,0,1,8,0,0,0,0,0,0,0,1,9,0,0,0,0,0,0,0,0,1,10,0,0,0,0,0,0,0,0,0,1,11,0,0,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,0,0,0,1,13,0,0,0,0,0,0,0,0,0,0,0, A158822 ,1,3,1,6,3,2,10,6,5,3,15,10,9,7,4,21,15,14,12,9,5,28,21,20,18,15,11,6,36,28,27,25,22,18,13,7,45,36,35,33,30,26,21,15,8,55,45,44,42,39,35,30,24,17,9,66,55,54,52,49,45,40,34,27,19,10, -A158823 ,1,3,1,6,2,2,10,3,4,3,15,4,6,6,4,21,5,8,9,8,5,28,6,10,12,12,10,6,36,7,12,15,16,15,12,7,45,8,14,18,20,20,18,14,8,55,9,16,21,24,25,24,21,16,9,66,10,18,24,28,30,30,28,24,18,10,78,11,20,27,32,35,36,35,32,27,20,11,91, -A158824 ,1,4,1,10,3,2,20,6,6,3,35,10,12,9,4,56,15,20,18,12,5,84,21,30,30,24,15,6,120,28,42,42,40,30,18,7,165,36,56,63,60,50,36,21,8,220,45,72,84,84,75,60,42,24,9,286,55,90,108,112,105,90,70,48,27,10, -A158825 ,1,1,1,1,2,2,1,3,6,5,1,4,12,21,14,1,5,20,54,80,42,1,6,30,110,260,322,132,1,7,42,195,640,1310,1348,429,1,8,56,315,1330,3870,6824,5814,1430,1,9,72,476,2464,9380,24084,36478,25674,4862,1,10,90,684,4200,19852,67844, +A158823 ,1,3,1,6,2,2,10,3,4,3,15,4,6,6,4,21,5,8,9,8,5,28,6,10,12,12,10,6,36,7,12,15,16,15,12,7,45,8,14,18,20,20,18,14,8,55,9,16,21,24,25,24,21,16,9,66,10,18,24,28,30,30,28,24,18,10,78,11,20,27,32,35,36,35,32,27,20,11, +A158824 ,1,4,1,10,3,2,20,6,6,3,35,10,12,9,4,56,15,20,18,12,5,84,21,30,30,24,15,6,120,28,42,45,40,30,18,7,165,36,56,63,60,50,36,21,8,220,45,72,84,84,75,60,42,24,9,286,55,90,108,112,105,90,70,48,27,10,364,66,110,135,144,140,126,105,80,54,30,11, +A158825 ,1,1,1,1,2,2,1,3,6,5,1,4,12,21,14,1,5,20,54,80,42,1,6,30,110,260,322,132,1,7,42,195,640,1310,1348,429,1,8,56,315,1330,3870,6824,5814,1430,1,9,72,476,2464,9380,24084,36478,25674,4862,1,10,90,684,4200,19852,67844,153306,199094,115566,16796, A158826 ,1,3,12,54,260,1310,6824,36478,199094,1105478,6227712,35520498,204773400,1191572004,6990859416,41313818217,245735825082,1470125583756,8840948601024,53417237877396,324123222435804,1974317194619712, A158827 ,1,4,20,110,640,3870,24084,153306,993978,6544242,43652340,294469974,2006018748,13784115468,95444016984,665407010349,4667570034444,32922870719664,233389493503968,1662048903052380,11885333877149532, A158828 ,1,5,30,195,1330,9380,67844,500619,3755156,28558484,219767968,1708590960,13403300208,105983648060,844009565176,6764300053390,54525119251104,441811163402124,3597005618194848,29412560840221272, @@ -160504,7 +160504,7 @@ A160499 ,1,0,1,1,3,0,1,2,0,0,1,1,3,0,3,4,3,0,1,3,1,0,1,2,0,0,0,1,3,0,1,0,1,0,3,0 A160500 ,691,1399,1699,5791,6091,6691,6793,7297,8599,10993,12391,12799,13999,14197,14293,15091,15391,15991,17599,18493,18691,19699,22699,22993,23899,24499,24799,25693,26893,27397,28099,28297,28393,29191,33493, A160501 ,9,251,16627,48844509,13109522141,232643574681223,144347818589843079,8863082234840576951801,100000008862938119652501095929,192043424957750480504146841291811, A160502 ,1,4,6,2,5,9,0,7,3,5,0,4,4,3,6,4,6,9,9,5,4,6,1,4,5,4,4,6,7,2,0,5,3,4,6,2,1,0,7,4,7,4,4,8,6,4,7,4,8,8,2,1,1,0,9,3,6,4,2,0,0,6,2,4,3,5,4,5,2,2,9,4,3,7,8,5,8,8,1,5,0,3,5,5,2,1,9,2,9,2,2,1,5,9,2,4,0,8,9,2,3,6,9,7,5, -A160503 ,2,5,2,1229,2,2,664579,3,2,97,19,2,11,2,19,5,3,2,23,2,2,2,73,2,2,7,3, +A160503 ,2,5,2,1229,2,2,664579,3,2,97,19,2,11,2,19,5,3,2,23,2,2,2,73,2,2,7,3,2, A160504 ,1,1,1,3,6,6,6,15,15,18,18,18,21,21,21,21,27,27,29,38,38,47,59,59,72,72,72,84,90,90,96,96,97,109,109,112,123,123,123,141,141,143,153,153,161,167,167,170,181,181,186,186,186,193,194,194,202,202,202,210,216,216, A160505 ,1,3,6,18,36,180,360,1080,2160,6480,12960,64800,129600,388800,777600,2332800,4665600,23328000,46656000,139968000,279936000,839808000,1679616000,8398080000,16796160000,50388480000,100776960000, A160506 ,1,5,20,65,190,502,1245,2910,6505,13965,29005,58455,114810,220240,413775,762635,1381550,2463060,4327445,7500260,12836645,21712470,36323930,60143320,98620425,160238035,258110955,412367705,653709340,1028658150,1607306688, @@ -162452,7 +162452,7 @@ A162447 ,12,720,181440,7257600,399168000,1307674368000,73229764608000,7316998520 A162448 ,-11,863,-215641,41208059,-9038561117,28141689013943,-2360298440602051,3420015713873670001,-147239749512798268300237,176556159649301309969405807,-178564975300377173768513546347, A162449 ,18,2700,992250,250047000,68075295750,253103949598500,24677635085853750,40753351656067050000,1969563638017107451068750,2619519638562752909921437500,2910024366479362207631724918750, A162450 ,125673984,132978564,136925784,136978425,138572964,139876254,139876425,143297856,143857296,145827396,146385729,148567329,149572836,149872356,153728964,153762894,153764289,158273964,158763249,158769324,162573984, -A162451 ,24,111,126,128,137,147,248,426,488,575,664,834,3060,4016,4464,4717,5025,5484,6036,7049,8064,8256,8704,8772,9081,32768,38463,57399,59177,78741,86964,94987, +A162451 ,24,111,126,128,137,147,248,426,488,575,664,834,2317,3060,3968,4016,4464,4717,5025,5484,6036,7049,8064,8256,8704,8772,8919,8946,8973,9081,10535,10575,12943,13467,22553,23478,28082,28488,30927,32768,36864,38463,41664,48657,57399,59177,78078,78741,81075,86964,94987, A162452 ,1,46,1080,17250,210794,2101418,17796503,131648504,868101374,5182032940,28344317261,143450494506,677150551521,3001361428036,12561988338047,49889607533966,188796675237026,683282982630926,2372613717733406, A162453 ,1,1,2,1,2,3,1,5,3,4,1,5,9,4,5,1,9,15,12,5,6,1,9,24,24,15,6,7,1,14,36,46,30,18,7,8,1,14,58,70,65,36,21,8,9,1,20,76,130,110,78,42,24,9,10,1,20,111,196,200,144,91,48,27,10,11,1,27,150,314,335,273,168,104,54,30, A162454 ,7,43,901830931, @@ -165230,7 +165230,7 @@ A165225 ,1,5,45,425,4025,38125,361125,3420625,32400625,306903125,2907028125,2753 A165226 ,0,1,5,1,31,1,41,1,31,1,61,1,3421,1,-1,1,4127,1,-43069,1,174941,1,-854375,1,236366821,1,-8553097,1,23749461899,1,-8615841261683,1,7709321041727,1,-2577687858361,1,26315271553055396563,1,-2929993913841553,1, A165227 ,0,1,0,6,5,9,3,5,7,6,6,7,5,0,9,7,7,8,9,3,0,7,7,8,4,4,9,0,6,5,7,8,5,4,2,9,9,4,5,7,4,7,7,5,4,6,4,7,7,4,9,2,1,4,4,3,4,0,4,4,0,6,4,6,8,5,9,3,0,0,1,5,3,7,6,5,9,8,4,1,8,1,2,1,3,5,8,8,0,1,0,7,3,2,5,1,2,1,6,7,5,6,8,0,7, A165228 ,14,19,16,16,22,12,11,13,16,10,22,24,15,15,21,16,23,20,22,17,11,20,14,18,19,19,13,15,21,20,14,16,12,26,18,16,14,13,16,19,15,16,23,15,14,20,12,12,39,27,16,17,14,40,19,18,19,17,14,22,12,38,19,20,16,21,21,19,23, -A165229 ,1,6,66,756,8676,99576,1142856,13116816,150544656,1727834976,19830751776, +A165229 ,1,6,66,756,8676,99576,1142856,13116816,150544656,1727834976,19830751776,227602011456,2612239626816,29981263453056,344101723675776,3949333103390976,45327386898637056,520232644163298816,5970827408567763456,68528533037833368576,786517432002593842176, A165230 ,1,7,91,1225,16513,222607,3000907,40454449,545355937,7351801975,99107736091,1336045691449,18010885527649,242800077546943,3273124886963659,44124147874662625,594826196036531137,8018697709388797543,108097984559187447643,1457240899862902684201, A165231 ,1,8,120,1856,28736,444928,6888960,106663936,1651511296,25570869248,395921817600,6130182127616,94915539501056,1469607174995968,22754390483927040,352313390342864896,5454979121614422016, A165232 ,1,9,153,2673,46737,817209,14289129,249849441,4368687777,76387735017,1335661040313,23354409110481,408358414625841,7140261781270809,124849486331241993, @@ -165961,7 +165961,7 @@ A165956 ,1,1,2,2,4,4,4,2,8,8,5,6,9,7,7,4,11,11,10,10,12,8,9,10,14,13,11,11,14,12 A165957 ,1,4,6,8,9,0,2,4,5,6,8,0,2,4,8,10,12,14,16,0,6,9,12,15,18,24,27,0,8,16,20,24,32,36,0,5,10,20,25,30,35,40,0,12,18,24,30,36,48,54,0,14,28,35,42,49,56,0,8,16,32,40,48,56,64,0,9,18,27,36,45,54,72,81,0,0,0,0,0,0,0,1,2, A165958 ,0,3,2,1,6,5,4,9,8,7, A165959 ,2,3,5,5,5,11,3,7,3,9,5,11,7,9,7,11,15,13,27,25,21,15,13,11,5,17,7,3,11,9,15,9,21,13,3,15,13,7,5,15,11,11,17,15,27,21,15,13,7,21,19,15,9,3,17,15,7,7,7,9,9,17,15,11,9,5,5,21,17,11,7,15,9, -A165960 ,3,20,100,612,4389,35688,325395,3288490,36489992,441093864,5770007009,81213878830, +A165960 ,1,1,2,3,20,100,612,4389,35688,325395,3288490,36489992,441093864,5770007009,81213878830,1223895060315,19662509071056,335472890422812,6057979285535388,115434096553014565,2314691409652237700,48723117262650147387,1074208020519710570054, A165961 ,1,5,20,102,627,4461,36155,328849,3317272,36757822,443846693,5800991345,81593004021,1228906816941,19733699436636,336554404751966,6075478765948135,115734570482611885,2320148441078578447,48827637296350480457,1076313671861962141616, A165962 ,1,5,18,95,600,4307,35168,321609,3257109,36199762,438126986,5736774126,80808984725,1218563180295,19587031966352,334329804347219,6039535339644630,115118210694558105,2308967760171049528,48613722701436777455,1072008447320752890459, A165963 ,0,16,80,516,3794,31456,290970,2974380,33311520,405773448,5342413414,75612301688, @@ -165991,7 +165991,7 @@ A165986 ,6,14,26,38,74,86,134,158,194,206,218,254,326,386,446,458,554,614,626,69 A165987 ,1099258818702,8792791182238,29674231047422,70337212371066, A165988 ,0,3,12,9,24,15,36,21,48,27,60,33,72,39,84,45,96,51,108,57,120,63,132,69,144,75,156,81,168,87,180,93,192,99,204,105,216,111,228,117,240,123,252,129,264,135,276,141,288,147,300,153,312,159,324,165,336,171,348,177, A165989 ,534,659,1727,1852,2920,3045,4113,4238,5306,5431,6499,6624,7692,7817,8885,9010,10078,10203,11271,11396,12464,12589,13657,13782,14850,14975,16043,16168,17236,17361,18429,18554,19622,19747,20815,20940,22008,22133,23201, -A165990 ,3,7,12,15,99,188, +A165990 ,3,7,12,15,99,188,843,1567,1388,12823,25739,24828,203347,169975,1793132,3247295,3281747,33047100,46475931,223888367,464656140,443782407,3392754203,6320720892,28126943139,51929697511,46812642508,430604078639,875439722435,832171221180, A165991 ,0,5,8,9,10,11,13,14,17,19,20,21,22,23,24,25,26,27,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,63,64,65,66,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,85,86,87, A165992 ,1,3,3,9,12,12,27,39,51,51,81,120,171,222,222,243,363,534,756,978,978,729,1092,1626,2382,3360,4338,4338,2187,3279,4905,7287,10647,14985,19323,19323,6561,9840,14745,22032,32679,47664,66987,86310,86310,19683, A165993 ,0,1,4,11,31,44,80,103,157,252,293,420,520,575,695,884,1105,1180,1431,1617,1704,2007,2217,2552,3040,3300,3439,3713,3852,4144,5255,5595,6120,6305,7252,7457,8060,8695,9141,9804,10507,10740,11983,12224,12740, @@ -167052,7 +167052,7 @@ A167047 ,1,3,5,7,9,2,11,13,4,15,17,6,19,21,8,23,25,27,10,29,31,12,33,35,37,14,39 A167048 ,1,18,306,5202,88434,1503378,25557426,434476242,7386096114,125563633938,2134581776946,36287890208082,616894133537394,10487200270135545,178282404592301664,3030800878069084224,51523614927173682720, A167049 ,1,19,342,6156,110808,1994544,35901792,646232256,11632180608,209379250944,3768826516992,67838877305856,1221099791505408,21979796247097173,395636332447746036,7121453984059373415, A167050 ,2,3,5,7,10,14,15,21,22,26,33,34,35,38,39,46,51,55,57,58,62,65,69,74,77,82,85,86,87,91,93,94,95,102,105,110,114,130,138,154,165,170,174,182,186,190,195,222,230,231,238,246,255,258,266,273,282,285,286,290,310, -A167051 ,1,2,4,7,8,10,25,26,28,79,80,82,241,242,244,727,728,730,2185, +A167051 ,1,2,4,7,8,10,25,26,28,79,80,82,241,242,244,727,728,730,2185,2186,2188,6559,6560,6562,19681,19682,19684,59047,59048,59050,177145,177146,177148,531439,531440,531442,1594321,1594322,1594324,4782967,4782968,4782970,14348905, A167052 ,6,3,4,4,8,8,3,4,9,8,13,6,7,7,11,11,9,10,15,14,8,10,11,11,15,15,10,11,16,15,6,13,14,14,18,18,13,14,19,18,10,17,18,18,22,22,17,18,23,22,12,19,20,20,24,24,19,20,25,24,7,14,15,15,19,19,14,15,20,19,7,14,15,15,19,19, A167053 ,3,19,39,81,165,333,335,673,1347,1349,1351,1353,1355,1357,1359,2721,2723,2725,2727,5457,5459,5461,5463,5465,5467,5469,10941,10943,10945,10947,21897,21899,21901,21903,21905,21907,21909,43821,43823,43825,43827,43829,43831, A167054 ,15,19,41,83,167,337,673,1361,2729,5471,10949,21911,43853,87719,175447,350899,701819,1403641,2807303,5614657,11229331,22458671,44917381,89834777,179669557,359339171,718678369, @@ -171844,8 +171844,8 @@ A171839 ,1,0,0,1,0,0,1,1,0,0,3,2,1,0,0,6,8,3,1,0,0,15,22,15,4,1,0,0,36,68,52,24, A171840 ,1,1,2,1,2,5,1,2,4,15,1,2,4,9,52,1,2,4,8,23,203,1,2,4,8,17,65,877,1,2,4,8,16,40,199,4140,1,2,4,8,16,33,104,654,21147,1,2,4,8,16,32,73,291,2296,115975,1,2,4,8,16,32,65,177,857,8569,678570, A171841 ,1,3,8,22,68,241,974,4410,21969,118698,688301,4250788, A171842 ,1,1,2,4,9,21,50,120,289,697,1682,4060,9801,23661,57122,137904,332929,803761,1940450,4684660,11309769,27304197,65918162,159140520,384199201,927538921,2239277042,5406093004,13051463049,31509019101,76069501250,183648021600,443365544449,1070379110497, -A171843 ,1,1,3,1,3,8,1,3,6,21,1,3,6,12,55,1,3,6,10,24,144,1,3,6,10,17,48,377,1,3,6,10,15,30,96,987,1,3,6,10,15,23,53,192,2584,1,3,6,10,15,21,57,93,384,6765, -A171844 ,1,4,12,31,77,188,462,1148,2887,7355,18789,48419,125291, +A171843 ,1,1,3,1,3,8,1,3,6,21,1,3,6,12,55,1,3,6,10,24,144,1,3,6,10,17,48,377,1,3,6,10,15,30,96,987,1,3,6,10,15,23,53,192,2584,1,3,6,10,15,21,37,93,384,6765,1,3,6,10,15,21,30,61,163,768,17711,1,3,6,10,15,21,28,45,100,286,1536,46368, +A171844 ,1,4,12,31,77,188,462,1148,2887,7335,18789,48419,125321,325381,846713,2206891,5758797,15040102,39304237,102760572,268757551,703079117,1839625401,4814107671,12599351527,32977310272,86319400527,225954695164,591492569038,1548419254590, A171845 ,0,4,6,9,12,15,18,21,25,26,27,30,33,34,35,39,42,45,49,50,51,55,56,57,60,63,64,65,69,72,75,76,77,81,85,86,87,91,92,93,94,95,99,102,105,108,111,115,116,117,118,119,120,121,122,123,124,125,129,133,134,135,138, A171846 ,1,1,1,1,0,1,1,0,2,1,1,0,3,2,1,0,1,1,0,4,3,3,1,2,2,1,1,0,5,4,6,4,4,4,5,2,1,0,1,1,0,6,5,10,9,9,7,11,8,5,3,3,2,2,1,1,0,7,6,15,16,18,14,20,20,16,10,11,8,8,6,5,2,1,0,1,1,0,8,7,21,25,32,28,36,39,41,29,27,24,25,20,17, A171847 ,0,0,0,2,7,22,68,198,563,1578,4367,11980,32648,88500,238886,642598,1723629,4612170,12316357,32832302,87390763,232305470,616812557,1636084020,4335770052,11480937084,30379110906,80332372838,212300488377, @@ -173080,7 +173080,7 @@ A173075 ,1,1,1,1,2,1,1,3,3,1,1,4,7,4,1,1,5,12,12,5,1,1,6,18,25,18,6,1,1,7,25,44, A173076 ,1,1,1,1,3,1,1,4,4,1,1,7,13,7,1,1,8,21,21,8,1,1,13,46,67,46,13,1,1,14,60,114,114,60,14,1,1,23,123,295,389,295,123,23,1,1,24,147,419,685,685,419,147,24,1,1,41,300,1015,2001,2491,2001,1015,300,41,1, A173077 ,1,1,1,1,4,1,1,5,5,1,1,12,23,12,1,1,13,36,36,13,1,1,32,122,181,122,32,1,1,33,155,304,304,155,33,1,1,88,513,1270,1689,1270,513,88,1,1,89,602,1784,2960,2960,1784,602,89,1,1,252,1988,6923,13817,17261,13817,6923,1988,252,1, A173078 ,1,3,11,23,51,103,211,423,851,1703,3411,6823,13651,27303,54611,109223,218451,436903,873811,1747623,3495251,6990503,13981011,27962023,55924051,111848103,223696211,447392423,894784851,1789569703,3579139411, -A173079 ,2,3,12,15,17,22,35,124,191,774,1405,1522,3988,6220,7448,8038,11404,63027,161153, +A173079 ,1,2,3,12,15,17,22,35,124,191,774,1405,1522,3988,6220,7448,8038,11404,63027,161153, A173080 ,8,24,40,56,72,88,104,120,128,136,152,168,179,184,200,216,232,248,264,280,296,312,323,328,344,358,360,376,384,389,392,398,408,424,437,440,456,459,472,488,493,504,520,536,537,552,568,569,584,600,616,621,632, A173081 ,0,6,28,167,964,6305,45082,335919,2605867,20841010,170395131, A173082 ,6,51,65,115,133,141,159,187,201,209,213,287,291,295,327,339,361,407,411,413,471,493,511,519,537,559,579,597,633,649,687,695,723,799,813,831,835,871,917,939,1007,1041,1047,1079,1135,1167,1189,1195,1199,1227, @@ -173349,11 +173349,11 @@ A173344 ,0,1,0,-2,-3,0,8,13,0,-34,-55,0,144,233,0,-610,-987,0,2584,4181,0,-10946 A173345 ,0,0,0,0,1,2,3,4,5,7,9,11,13,15,18,21,24,27,30,34,38,42,46,50,56,62,68,74,80,87,94,101,108,115,123,131,139,147,155,164,173,182,191,200,210,220,230,240,250,262,274,286,298,310,323,336,349,362,375,389,403,417, A173346 ,0,4,16,144,324,625, A173347 ,21,233,196418,9227465,165580141,2971215073,53316291173,2504730781961,3416454622906707,51680708854858323072,184551825793033096366333,898923707008479989274290850145,3210056809456107725247980776292056, -A173348 ,12,93,239,4896,4904,6546,7806,9104,20542,35962,43783,96569,616400,635331,842163,7888432, -A173349 ,892,1110,1498,1827,3657,9249,10637,27590,63500,63508,248461,300221,357450,1317619,4782975,6245380,6376350,7486710, -A173350 ,3,21,145,1005,1746,5559,29005,34320,76053,146402,154269,553624,853772,853780,1841222,2582634,3051972, -A173351 ,15,42,71,168,9172,15844,542482,548554,5947459,9825757, -A173352 ,2,4,23,122,199,408,4995,7320,44217,177682,394826,1706886,1738064,8403388, +A173348 ,12,93,239,4896,4904,6546,7806,9104,20542,35962,43783,96569,616400,635331,842163,7888432,450177181, +A173349 ,892,1110,1498,1827,3657,9249,10637,27590,63500,63508,248461,300221,357450,1317619,4782975,6245380,6376350,7486710,10059286,22580324,26040615,34827846,123838550,170331287,178384607,234365487,483178063, +A173350 ,3,21,145,1005,1746,5559,29005,34320,76053,146402,154269,553624,853772,853780,1841222,2582634,3051972,23630121,41571007,76908458,98649561,106586932,114021359,316366090,633141499, +A173351 ,15,42,71,168,9172,15844,542482,548554,5947459,9825757,176874995,671960665, +A173352 ,2,4,23,122,199,408,4995,7320,44217,177682,394826,1706886,1738064,8403388,21194961,110525339,314033376,328840890, A173353 ,2,3,32,33,34,88,442,498,942,2266144, A173354 ,97,37840,199652,2905727, A173355 ,2,3,48,73,436,23494,37381,621706,781913,2351612, @@ -173882,16 +173882,16 @@ A173877 ,1,3,6,17,13,40,27,106,78,127,79,391,129,321,358,832,285,1070,409,1549, A173878 ,1,3,7,23,19,65,46,202,156,281,183,972,333,903,1029,2507,912, A173879 ,5,53,389,509,593,599,839,2879,2963,4013,4799,5273,6473,6719,6869,7499,8243,10589,11003,11069,15959,17483,20123,21383,25073,25583,27059,28319,32213,34019,34253,34913,37013,38453,38609,38933,41039,42569,43283, A173880 ,7,61,151,157,571,997,1447,1831,2251,3121,4057,4177,5011,5737,6907,10321,10357,10567,11941,15601,16477,19267,19597,20347,22447,22531,23131,24121,24337,29587,29641,30181,30817,33577,37201,37447,38671, -A173881 ,1,1,1,1,2,1,1,6,6,1,1,12,36,12,1,1,20,120,120,20,1,1,30,300,600,300,30,1,1,42,630,2100,2100,630,42,1,1,56,1176,5880,9800,5880,1176,56,1,1,72,2016,14112,35280,35280,14112,2016,72,1,1,90,3240,30240,105840,158760, -A173882 ,1,1,1,1,6,1,1,24,24,1,1,60,240,60,1,1,120,1200,1200,120,1,1,210,4200,10500,4200,210,1,1,336,11760,58800,58800,11760,336,1,1,504,28224,246960,493920,246960,28224,504,1,1,720,60480,846720,2963520,2963520, +A173881 ,1,1,1,1,2,1,1,6,6,1,1,12,36,12,1,1,20,120,120,20,1,1,30,300,600,300,30,1,1,42,630,2100,2100,630,42,1,1,56,1176,5880,9800,5880,1176,56,1,1,72,2016,14112,35280,35280,14112,2016,72,1,1,90,3240,30240,105840,158760,105840,30240,3240,90,1, +A173882 ,1,1,1,1,6,1,1,24,24,1,1,60,240,60,1,1,120,1200,1200,120,1,1,210,4200,10500,4200,210,1,1,336,11760,58800,58800,11760,336,1,1,504,28224,246960,493920,246960,28224,504,1,1,720,60480,846720,2963520,2963520,846720,60480,720,1, A173883 ,0,0,0,0,0,1,1,2,2,2,3,2,2,3,2,2,2,4,4,4,4,4,4,4,4,4,4,3,4,4,4,4,5,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,6,5,4,4,4,4,4,6,4,5,4,5,4,5,5,4,4,4,4,5,6,5,4,6,4,4,4,4,4,4,4,8,8,8,8,8,8,8, A173884 ,1,1,1,1,3,1,1,21,21,1,1,105,735,105,1,1,465,16275,16275,465,1,1,1953,302715,1513575,302715,1953,1,1,8001,5208651,115334415,115334415,5208651,8001,1,1,32385,86370795,8032483935,35572428855,8032483935, A173885 ,1,1,1,1,16,1,1,208,208,1,1,2080,27040,2080,1,1,19360,2516800,2516800,19360,1,1,176176,213172960,2131729600,213172960,176176,1,1,1591408,17522993488,1630986316960,1630986316960,17522993488,1591408,1,1, A173886 ,1,1,1,1,1,1,1,2,2,1,1,6,12,6,1,1,15,90,90,15,1,1,40,600,1800,600,40,1,1,104,4160,31200,31200,4160,104,1,1,273,28392,567840,1419600,567840,28392,273,1,1,714,194922,10135944,67572960,67572960,10135944,194922, A173887 ,1,1,1,1,2,1,1,6,6,1,1,30,90,30,1,1,120,1800,1800,120,1,1,520,31200,156000,31200,520,1,1,2184,567840,11356800,11356800,567840,2184,1,1,9282,10135944,878448480,3513793920,878448480,10135944,9282,1,1,39270, A173888 ,0,1,4,5,6,7,8,9,10,17,19,23,25,32,51,55,65,87,129,132,159,171,175,180,242,315,324,358,393,435,467,491,501,507,555,591,680,786,800,1070,1459,1650,1707,2813,2923,3281,4217,5153,6287,6365,6462,10088,10367,14289, -A173889 ,1,1,1,1,2,1,1,12,12,1,1,120,720,120,1,1,360,21600,21600,360,1,1,840,151200,1512000,151200,840,1,1,1680,705600,21168000,21168000,705600,1680,1,1,3024,2540160,177811200,533433600,177811200,2540160,3024,1,1, -A173890 ,1,1,1,1,2,1,1,72,72,1,1,840,30240,840,1,1,2880,1209600,1209600,2880,1,1,7560,10886400,127008000,10886400,7560,1,1,16800,63504000,2540160000,2540160000,63504000,16800,1,1,33264,279417600,29338848000,100590336000, +A173889 ,1,1,1,1,2,1,1,12,12,1,1,120,720,120,1,1,360,21600,21600,360,1,1,840,151200,1512000,151200,840,1,1,1680,705600,21168000,21168000,705600,1680,1,1,3024,2540160,177811200,533433600,177811200,2540160,3024,1, +A173890 ,1,1,1,1,2,1,1,72,72,1,1,840,30240,840,1,1,2880,1209600,1209600,2880,1,1,7560,10886400,127008000,10886400,7560,1,1,16800,63504000,2540160000,2540160000,63504000,16800,1,1,33264,279417600,29338848000,100590336000,29338848000,279417600,33264,1, A173891 ,1,3,16,37,40,47,55,56,74,103,108,111,119,130,161,165,185,188,195,200,219,240,272,273,292,340,359,388,420,427,465,466,509,521,554,600,606,622,630,634,668,683,684,703,710,711,734,762,792,814,822,823,830,831, A173892 ,257,1747,3307,5107,5387,6317,6367,12647,13457,14747,15797,15907,17477,18217,19477,23327,26177,30097,30637,53617,56087,62207,63697,71347,75527,77557,78797,80917,82787,83437,84437,89107,89387,91297,94427,95267, A173893 ,26,175,331,511,539,632,637,1265,1346,1475,1580,1591,1748,1822,1948,2333,2618,3010,3064,5362,5609,6221,6370,7135,7553,7756,7880,8092,8279,8344,8444,8911,8939,9130,9443,9527, @@ -174044,8 +174044,8 @@ A174039 ,1,1,1,1,12,1,1,37,37,1,1,116,452,116,1,1,305,2544,2544,305,1,1,752,1249 A174040 ,1,1,1,1,19,1,1,71,71,1,1,281,2064,281,1,1,942,19925,19925,942,1,1,3000,182094,372304,182094,3000,1,1,9265,708780,2645662,2645662,708780,9265,1,1,28435,2470768,15065554,26673373,15065554,2470768,28435,1,1,86456, A174041 ,8,9,14,15,20,21,26,27,32,33,38,39,44,45,50,51,56,57,62,63,68,69,74,75,80,81,86,87,92,93,98,99,104,105,110,111,116,117,122,123,128,129,134,135,140,141,146,147,152,153,158,159,164,165,170,171,176,177,182,183, A174042 ,1,9,10,24,28,67,195,361,362,382,459,462,470,759,765,766,794,864,869,909,1189,1300,1303,1374,1378,1642,1657,1659,3727,3755,4187,4368,4413,4677,4684,4721,4927,4945,5221,5270,5313,5409,5627,5945,7587,7588,7789, -A174043 ,1,1,1,1,4,1,1,10,10,1,1,18,38,18,1,1,26,97,97,26,1,1,39,206,344,206,39,1,1,53,389,974,974,389,53,1,1,70,669,2348,3522,2348,669,70,1,1,86,1076,5033,10575,10575,5033,1076,86,1, -A174044 ,1,1,1,1,5,1,1,16,16,1,1,36,92,36,1,1,49,276,276,49,1,1,93,673,1265,673,93,1,1,124,1484,4004,4004,1484,124,1,1,204,2832,12400,18060,12400,2832,204,1,1,237,5244,26416,57580,57580,26416,5244,237,1, +A174043 ,1,1,1,1,4,1,1,10,10,1,1,18,38,18,1,1,26,97,97,26,1,1,39,206,344,206,39,1,1,53,389,974,974,389,53,1,1,70,669,2348,3522,2348,669,70,1,1,86,1076,5033,10575,10575,5033,1076,86,1,1,105,1644,9890,27704,38784,27704,9890,1644,105,1, +A174044 ,1,1,1,1,5,1,1,16,16,1,1,36,92,36,1,1,49,276,276,49,1,1,93,673,1265,673,93,1,1,124,1484,4004,4004,1484,124,1,1,204,2832,12400,18060,12400,2832,204,1,1,237,5244,26416,57580,57580,26416,5244,237,1,1,289,7729,53024,151756,211692,151756,53024,7729,289,1, A174045 ,1,1,1,1,6,1,1,24,24,1,1,70,230,70,1,1,90,881,881,90,1,1,231,2790,7060,2790,231,1,1,295,8383,28270,28270,8383,295,1,1,684,21441,181680,242172,181680,21441,684,1,1,750,58320,378009,882549,882549,378009,58320,750,1, A174046 ,2,3,4,6,14,16,29,356,358,359,403,446,464,485,652,655,764,861,866,1123,1301,1304,1324,1328,1358,1486,1610,2631,2632,3735,3931,3953,3956,3957,4679,4855,4931,5222,5226,5269,5283,5292,5403,5427,5445, A174047 ,1,4,5,7,8,10,11,12,14,16,18,19,20,22,23,24,26,27,29,31,33,34,35,37,39,40,41,42,44,45,48,49,50,52,53,55,56,57,63,64,65,66,68,70,74,76,78,79,81,82,83,84,86,87,89,91,95,97,98,100,105,106,111,112,113,115,116,117,119,121,125,126,128,129,131, @@ -174073,15 +174073,15 @@ A174068 ,1,1,2,2,4,5,7,9,13,17,23,29,38,48,62,77,98,121,153,187,233,283,349,422, A174069 ,5,13,14,25,29,30,41,50,54,55,61,77,85,86,90,91,110,113,126,135,139,140,145,149,174,181,190,194,199,203,204,221,230,245,255,265,271,280,284,285,294,302,313,330,355,365,366,371,380,384,385,415,421,434,446,451, A174070 ,14,29,30,50,54,55,77,86,90,91,110,126,135,139,140,149,174,190,194,199,203,204,230,245,255,271,280,284,285,294,302,330,355,365,366,371,380,384,385,415,434,446,451,476,492,501,505,506,509,510,534,559,590,595, A174071 ,30,54,55,86,90,91,126,135,139,140,174,190,199,203,204,230,255,271,280,284,285,294,330,355,366,371,380,384,385,415,446,451,476,492,501,505,506,510,534,559,595,615,620,630,636,645,649,650,679,728,730,734,764, -A174072 ,114,674,4714,37754,340404, -A174073 ,100,594,4389,35744,325395, -A174074 ,22,109,657,4625,37186,336336,3379058,37328103,449669577,5866178493,82387080624, -A174075 ,18,93,600,4320,35186, -A174076 ,108,632,4408,35336,319056, -A174077 ,80,504,3794,31616,290970, +A174072 ,1,1,2,6,24,114,674,4714,37754,340404,3412176,37631268,452745470,5900431012,82802497682,1244815252434,19958707407096,339960096280062,6130407887839754,116675071758609742, +A174073 ,1,1,2,3,24,100,594,4389,35744,325395,3288600,36489992,441091944,5770007009,81213883898,1223895060315,19662509172096,335472890422812, +A174074 ,2,6,22,109,657,4625,37186,336336,3379058,37328103,449669577,5866178493,82387080624, +A174075 ,1,6,18,93,600,4320,35168,321630,3257109,36199458,438126986,5736774869,80808984725,1218563192160,19587031966352,334329804180135,6039535339644630,115118210695441900,2308967760171049528,48613722701440862328,1072008447320752890459, +A174076 ,1,1,2,6,24,108,632,4408,35336,319056,3205824,35451984,427683560,5588310904,78615281768,1184587864512,19033796498496,324852522308160,5868833343451592,111889157407344424, +A174077 ,1,1,2,0,24,80,504,3794,31616,290970,2973600,33311520,405781344,5342413414,75612197528,1144942063230,18471128518656,316309310084728,5730646943736936, A174078 ,20,100,600,4244,34264,311424,3143912,34833964,420917638,5513592091,77715460917, A174079 ,12,84,494,3696,30574, -A174080 ,21,100,597,4113,32842,292379, +A174080 ,1,1,2,5,21,100,597,4113,32842,292379,2925367,31983248,383514347,4966286235,69508102006,1039315462467,16627618496319,282023014602100,5075216962675445,96263599713301975,1925002914124917950, A174081 ,16,40,300,1764,17056,118908, A174082 ,5,18,91,544,3842,30573, A174083 ,4,0,40,168,1652,9408, @@ -174151,8 +174151,8 @@ A174146 ,1,2,5,13,40,131,481,1857,7600,32235,141203,633383,2899885,13498337,6373 A174147 ,0,2,4,2,8,5,12,2,4,9,20,5,24,13,14,2,32,5,36,9,20,21,44,5,8,25,4,13,56,15,60,2,32,33,34,5,72,37,38,9,80,21,84,21,14,45,92,5,12,9,50,25,104,5,54,13,56,57,116,15,120,61,20,2,64,33,132,33,68,35,140,5,144,73,14, A174148 ,1,1,1,1,12,1,1,42,42,1,1,100,360,100,1,1,195,1700,1700,195,1,1,336,5775,14000,5775,336,1,1,532,15876,75950,75950,15876,532,1,1,792,37632,312816,617400,312816,37632,792,1,1,1125,79920,1058400,3630312,3630312, A174149 ,1,1,1,1,0,1,1,120,120,1,1,720,5400,720,1,1,2520,84700,84700,2520,1,1,6720,712950,3136000,712950,6720,1,1,15120,4064256,56080500,56080500,4064256,15120,1,1,30240,17745840,619178112,1944810000,619178112, -A174150 ,1,1,1,1,6,1,1,12,12,1,1,30,60,30,1,1,60,300,300,60,1,1,105,1050,2625,1050,105,1,1,168,2940,14700,14700,2940,168,1,1,252,7056,61740,123480,61740,7056,252,1,1,360,15120,211680,740880,740880,211680,15120,360,1,1, -A174151 ,1,1,1,1,12,1,1,60,60,1,1,180,900,180,1,1,420,6300,6300,420,1,1,840,29400,88200,29400,840,1,1,1512,105840,740880,740880,105840,1512,1,1,2520,317520,4445280,10372320,4445280,317520,2520,1,1,3960,831600, +A174150 ,1,1,1,1,6,1,1,12,12,1,1,30,60,30,1,1,60,300,300,60,1,1,105,1050,2625,1050,105,1,1,168,2940,14700,14700,2940,168,1,1,252,7056,61740,123480,61740,7056,252,1,1,360,15120,211680,740880,740880,211680,15120,360,1, +A174151 ,1,1,1,1,12,1,1,60,60,1,1,180,900,180,1,1,420,6300,6300,420,1,1,840,29400,88200,29400,840,1,1,1512,105840,740880,740880,105840,1512,1,1,2520,317520,4445280,10372320,4445280,317520,2520,1,1,3960,831600,20956320,97796160,97796160,20956320,831600,3960,1, A174152 ,13,19,43,79,139,151,211,271,373,433,523,643,739,751,769,853,919,1033,1051,1093,1129,1171,1423,1429,1471,1531,1579,1663,1741,1759,1789,1933,2053,2281,2389,2521,2689,2731,2749,2833,3061,3109,3163,3271,3313,3319, A174153 ,2,8,10,64,76,118,120,258,303,332,364,528,811,1270,1362,1607,2091,2572,3596,8190, A174154 ,448,30319,976640,21137959,357365350,5109144543,64737165162,749160010737,8080813574550,82425144219429,803491953235264,7545414941610145,68680800264413920,608889093898882615,5278006575696293456,44873569636443901967,375159494582050088590,3090799708762482416287, @@ -176529,7 +176529,7 @@ A176524 ,1,5,3,2,9,7,0,9,7,1,6,7,5,5,8,9,1,6,5,6,5,5,3,6,8,1,9,9,1,5,7,2,0,4,8,7 A176525 ,6,8,10,12,14,15,18,20,21,22,26,27,28,32,33,34,35,36,38,39,44,45,46,48,50,51,52,55,57,58,62,63,64,65,68,69,74,75,76,77,80,82,85,86,87,91,92,93,94,95,98,99,100,106,111,112,115,116,117,118,119,122, A176526 ,1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,21,24,25,28,30,35,36,40,42,45,48,50,60,70,72,75,80,84,90,100,105,120,140,144,150,180,200,210,240,300,360,420,600,720, A176527 ,1,2,5,21,166,2277,49901,1675904,84239935,6231045077,668949067432,103005162942955,22511886374045653,6918461813753405930,2965189776573865320121,1759287329824925168339697,1435531006280642249195752862,1601571709194974043628781397985,2430449338115875591262479128994073, -A176528 ,1,1,2,2,4,6,8,8,12,20,26,36,44,56,64,64,76,108,128,200,226,286,322,432,476,572,628, +A176528 ,1,1,2,2,4,6,8,8,12,20,26,36,44,56,64,64,76,108,128,200,226,286,322,432,476,572,628,784,848,960,1024,1024,1100,1292,1400,1944,2072,2432,2632,4000,4226,4746,5032,6292,6614,7406,7838,10368,10844,11900,12472,14872, A176529 ,1,0,4,7,7,2,2,5,5,7,5,0,5,1,6,6,1,1,3,4,5,6,9,6,9,7,8,2,8,0,0,8,0,2,1,3,3,9,5,2,7,4,4,6,9,4,9,9,7,9,8,3,2,5,4,2,2,6,8,9,4,4,4,9,7,3,2,4,9,3,2,7,7,1,2,2,7,2,2,7,3,3,8,0,0,8,5,8,4,3,6,1,6,3,8,7,0,6,2,5,7,6,4,7,2, A176530 ,1,0,3,2,2,9,0,6,4,7,4,2,2,3,7,7,0,6,6,6,3,5,6,7,4,8,3,9,2,3,2,6,8,7,1,2,8,0,5,2,2,4,4,9,9,0,1,4,5,8,4,7,5,5,5,7,7,4,5,6,1,2,5,4,8,6,8,7,4,6,4,8,4,1,9,5,8,7,8,0,9,7,4,2,8,2,1,8,7,4,3,7,1,4,1,9,4,6,3,9,7,9,1,9,7, A176531 ,1,0,2,4,4,0,4,4,2,4,0,8,5,0,7,5,7,7,3,4,9,5,7,2,6,7,5,6,8,3,9,9,6,8,7,9,9,2,3,7,6,3,5,9,2,8,8,4,0,7,5,1,9,9,2,4,3,7,8,7,7,8,8,1,7,9,0,0,0,2,9,6,2,7,5,0,5,5,0,3,4,5,7,0,9,6,9,2,6,4,4,4,6,6,5,9,7,2,0,8,9,0,1,9,8, @@ -177994,7 +177994,7 @@ A177989 ,2,3,4,5,6,8,9,10,11,13,14,18,19,20,21,22,23,24,25,26,27,28,29,30,33,34, A177990 ,1,0,1,0,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1, A177991 ,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,3,1,2,1,1,1,3,1,2,1,1,1,4,1,3,1,2,1,1,1,4,1,3,1,2,1,1,1,1,5,1,4,1,3,1,2,1,1,1,5,1,4,1,3,1,2,1,1,1, A177992 ,1,1,1,1,3,1,1,7,5,1,1,15,6,5,1,1,31,10,16,5,1,1,63,15,42,15,7,1,1,127,21,99,35,29,7,1,1,255,28,219,70,93,28,9,1,1,511,36,466,126,256,84,46,9,1, -A177993 ,1,1,1,2,3,1,2,4,3,1,3,8,9,5,1,3,9,13,11,5,1,4,15,28,31,20,7,1,4,16,34,46,40,22,7,1,5,24,62,102,110,78,35,9,1,5,25,70,130,166,148,91,37,9,1, +A177993 ,1,1,1,2,3,1,2,4,3,1,3,8,9,5,1,3,9,13,11,5,1,4,15,28,31,20,7,1,4,16,34,46,40,22,7,1,5,24,62,102,110,78,35,9,1,5,25,70,130,166,148,91,37,9,1,6,35,115,250,376,400,301,157,54,11,1,6,36,125,295,496,610,553,367,174,56,11,1, A177994 ,1,1,1,2,1,1,2,1,1,1,3,1,2,1,1,3,1,2,1,1,1,4,1,3,1,2,1,1,4,1,3,1,2,1,1,1,5,1,4,1,3,1,2,1,1,5,1,4,1,3,1,2,1,1,1, A177995 ,1,2,1,2,0,3,2,0,6,5,2,0,6,0,13,2,0,6,0,26,21,2,0,6,0,26,0,55,2,0,6,0,26,0,110,89,2,0,6,0,26,0,110,0,233,2,0,6,0,26,0,110,0,466,377,1,0,6,0,26,0,110,0,466,0,987, A177996 ,41,29,23,79,354689,1961870762757168078553,47,40427,4093,4441,2543,1033,659,181194015068926422899222020415627,394502321,22742387,36583,569,14747,12641,167,407987015619859919,100493,3679329001, @@ -178068,7 +178068,7 @@ A178063 ,1,2,4,7,11,17,23,34,44,62,78,98,122,148,168,213,253,291,325,387,433,487 A178064 ,2,1,2,2,1,0,2,2,2,2,4,4,3,3,2,2,3,2,1,2,2,1,5,4,4,3,4,3,3,2,2,2,2,1,3,1,2,2,1,2,2,1,6,5,5,4,4,3,5,5,3,3,2,5,4,4,4,4,2,3,2,5,4,4,3,3,3,4,3,3,2,3,3,2,2,4,2,2,1,2,1,1,6,6,6,5,6,5,3,6,5,4,5,4,4,4,3,5,4,4,2,6,5,5,4, A178065 ,1,2,2,2,3,4,3,3,3,3,2,2,3,3,4,4,3,4,5,4,4,5,2,3,3,4,3,4,4,5,5,5,5,6,4,6,5,5,6,5,5,6,2,3,3,4,4,5,3,3,5,5,6,3,4,4,4,4,6,5,6,3,4,4,5,5,5,4,5,5,6,5,5,6,6,4,6,6,7,6,7,7,3,3,3,4,3,4,6,3,4,5,4,5,5,5,6,4,5,5,7,3,4,4,5, A178066 ,59,108959,176459,4040159,5904959,10497659,25401659,26625659,38192459,89302559,105884159,117288959,155750459,156500159,228614459,251856959,306950459,432224159,491508959,508953659,624500159,682776959,934524959,1092963659,1106892959, -A178067 ,1,5,3,15,11,6,34,27,19,10,65,54,42,29,15,111,95,78,60,41,21,175,153,130,106,81,55,28,260,231,201,170,138,105,71,36, +A178067 ,1,5,3,15,11,6,34,27,19,10,65,54,42,29,15,111,95,78,60,41,21,175,153,130,106,81,55,28,260,231,201,170,138,105,71,36,369,332,294,255,215,174,132,89,45,505,459,412,364,315,265,214,162,109,55,671,615,558,500,441,381,320,258,195,131,66, A178068 ,3,5,23,89,173,233,239,1223,1409,1559,2549,2693,3389,3803,4373,4919,9059,10313,16493,17159,20879,20939,22013,24473,25229,31649,32933,34253,34883,37049,38453,39089,40283,41399,43793,44543,49103,49919,50993, A178069 ,12345679,24691358,49382716,61728395,86419753,98765432,123456790,135802469,160493827,172839506,197530864,209876543,234567901,246913580,271604938,283950617,308641975,320987654,345679012,358024691,382716049, A178070 ,11,17,41,73,101,137,251,257,271,353,401,449,641,751,1201,1409,1601,3541,4001,4801,5051,9091,10753,15361,16001,19841,21001,21401,24001,25601,27961,37501,40961,43201,60101,62501,65537,69857,76001,76801,160001,162251,163841,307201,453377,524801,544001,670001,952001,976193,980801, @@ -178127,7 +178127,7 @@ A178122 ,1,1,1,1,8,1,1,27,27,1,1,82,240,82,1,1,245,1700,1700,245,1,1,732,10571,2 A178123 ,1,1,2,5,16,61,269,1337,7354,44155,286397,1990427,14725738,115356349,952592288,8261093885,74994333994,710656444489,7012302313061,71892455879393,764331907463476,8411953721081635,95684448908132498, A178124 ,1,-1,1,1,-3,1,0,7,-6,1,-5,-13,26,-10,1,25,11,-101,69,-15,1,-105,76,383,-425,150,-21,1,460,-758,-1494,2599,-1310,286,-28,1,-2315,5536,6215,-16761,11129,-3325,497,-36,1,13935,-40769,-27989,118079,-97272,36764, A178125 ,1,1,1,2,3,1,5,11,6,1,16,45,34,10,1,61,208,197,81,15,1,269,1068,1204,626,165,21,1,1337,6017,7810,4863,1640,302,28,1,7354,36801,53762,38742,15781,3760,511,36,1,44155,242242,391797,319197,151487,43962,7805,814, -A178126 ,1,1,2,4,6,9,9,24,56,24,16,120,250,275,50,25,720,1884,1350,960,90,36,5040,12348,14896,5145,2695,147,49,40320,114624,105056,80416,15680,6496,224,64,362880,986256,1282284,605556,336609,40824,13986,324,81,3628800, +A178126 ,1,2,4,6,9,9,24,56,24,16,120,250,275,50,25,720,1884,1350,960,90,36,5040,12348,14896,5145,2695,147,49,40320,114624,105056,80416,15680,6496,224,64,362880,986256,1282284,605556,336609,40824,13986,324,81, A178127 ,149,179,227,239,347,431,569,599,641,821,1019,1049,1061,1427,1487,1607,1787,1997,2081,2129,2237,2267,2657,2687,2711,2789,2999,3167,3257,3299,3359,3527,3539,3581,3671,3917,4091,4127,4229,4241,4337,4547,4637,4649, A178128 ,11,17,29,41,59,71,101,107,149,179,227,239,269,281,311,347,419,431,461,569,599,641,659,809,821,827,857,881,1019,1031,1049,1061,1091,1151,1229,1277,1289,1301,1427,1451,1481,1487,1607,1667,1721,1787,1871,1877,1997, A178129 ,0,2,8,23,47,87,147,224,328,463,623,821,1049,1322,1644,2004,2420,2896,3418,4007,4647,5361,6153,7004,7940,8940,10032,11220,12480,13843,15313,16863,18527,20276,22146,24141,26229,28449,30767,33224,35824,38530, @@ -178990,7 +178990,7 @@ A178985 ,3,19,11,227,1019,269201,186023729,457933343698297657,226760286222021349 A178986 ,1,0,0,0,0,0,0,0,0,0,44,0,1092,0,0,0,16932,0,24776,0,0,0,1881492,0, A178987 ,0,-1,-2,0,16,80,288,896,2560,6912,17920,45056,110592,266240,630784,1474560,3407872,7798784,17694720,39845888,89128960,198180864,438304768,964689920,2113929216,4613734400,10032775168,21743271936, A178988 ,7,5,7,5,5,2,2,1,2,8,1,0,1,1,4,9,2,9,7,6,9,2,0,8,0,5,6,3,0,6,4,4,5,8,0,9,2,7,0,3,7,5,3,2,6,1,9,3,9,2,9,2,1,4,7,5,9,1,2,9,9,2,1,3,9,5,2,4,5,6,5,1,0,6,0,2,5,9,4,9,6,8,8,5,3,3,6,9,9,2,8,4,4,4,9,8,4,2,5,7, -A178989 ,1,1,14,1128,90942080,57157560576,67818988957718528,115047995548743401472,674758653138775267142795264,40819609745761407890621234130376982528, +A178989 ,1,1,14,1128,90942080,57157560576,67818988957718528,115047995548743401472,674758653138775267142795264,40819609745761407890621234130376982528,221388314080552960064314183934017536000000,79870389582370042643423622863118514819531536385179648, A178990 ,0,1,1,0,4,0,0,0,0,0,0,0,0,0,0,0,0,1924,1924,0,0,0,0,19799,68302,19799,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3219407612,25797991623,25797991623,3219407612,0,0,0,0,0,0, A178991 ,2,3,5,7,11,17,43,59,67,313,443,449,619,991,1051,1601,2143,2593,2609,2753,3169,6829,20749,24917,28661,38447,49393,54323,56873,75029,372121,974177,1346273,1346333,1718369,1806209,2178313,2178373,3524603,3525019,6683821, A178992 ,0,1,2,3,5,6,10,11,13,21,22,26,27,43,45,53,54,86,90,91,107,109,173,181,182,214,218,346,347,363,365,429,437,693,694,726,730,858,859,875,1387,1389,1453,1461,1717,1718,1750,2774,2778,2906,2907,2923,3435,3437,3501, @@ -179432,7 +179432,7 @@ A179427 ,0,0,0,0,0,3420,576856,19760512,270487188,2209065700,12914201256,5965985 A179428 ,0,0,0,0,0,486,346381,36285336,956078397,12428297150,104000525596,643409498286,3191250652226,13361641961066,48905750870775,160414160371552,480243686391743,1330654487994234,3449609146025210,8439769551278350,19624142987739108,43616849672119790,93112709811981557,191696927842663704,381920049400830625,738532765420347014,1389708580432837752,2550402748009811870,4573836436177381798,8029626473495462850, A179429 ,3,5,7,11,13,17,19,23,29,31,37,41,43,47,59,61,71,73,79,89,97,103,107,113,131,149,151,157,167,173,179,181,191,199,233,239,241,251,257,269,293,379,383,401,419,433,467,479,487,521,523,613,617,619, A179430 ,1,1,1,3,9,1,84,405,81,1,17550,121500,32805,729,1,25621596,247203171,82255257,2539107,6561,1,268715232324,3543210805275,1382411964132,53628242751,199290375,59049,1,21091830512086620,373203783345533355, -A179431 ,1,1,3,84,17550,25621596,268715232324,21091830512086620,12814543323816738705045,61742372998425082372103866380,2399699340005498870742886195375900380, +A179431 ,1,1,3,84,17550,25621596,268715232324,21091830512086620,12814543323816738705045,61742372998425082372103866380,2399699340005498870742886195375900380,761689137813999393167583510790986701377432464,1992997938492157367948224731863936229108552184201415196, A179432 ,1,2,15,816,316251,873642672,17743125256857,2739097835911193328,3301626910467952067341626,31698997711344336177849363574320,2460103385023594223069956382123378560008, A179433 ,1,9,405,121500,247203171,3543210805275,373203783345533355,299059356226224581923626,1870707073035678423776605220985,93075349691648156957700437094276630105, A179434 ,1,2,13,571,172585,357625693,5248165593907,566958191345077996,465798195439736703244606,2982999334066325867630228374270,151658307264909973462110073089257457502, @@ -179442,7 +179442,7 @@ A179437 ,0,1,1,1,1,1,3,3,5,9,9,13,15,15,17,21,25,25,29,31,31,35,37,41,47,49,49,5 A179438 ,1,1,1,2,1,1,4,2,1,1,1,9,4,2,2,1,1,1,20,9,4,3, A179439 ,2,3,4,5,6,8,9,10,11,12,13,14,15,17,20,21,22,24,25,26,27,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,49,50,51,52,53,54,55,56,57,58,59,61,62,64,65,66,67,68,69,70,71,72,73,75,76,77,78,79,80,81,82,83,84,85, A179440 ,240,395,450,733, -A179441 ,1,21,121,432,1182,2723,5558,10368,18039,29689,46695,70720,103740,148071,206396,281792,377757,498237,647653,830928,1053514,1321419,1641234, +A179441 ,1,21,121,432,1182,2723,5558,10368,18039,29689,46695,70720,103740,148071,206396,281792,377757,498237,647653,830928,1053514,1321419,1641234,2020160,2466035,2987361,3593331,4293856,5099592,6021967,7073208,8266368,9615353,11134949,12840849, A179442 ,2,3,16,180,3456,100800,4147200,228614400,16257024000,1448500838400,158018273280000,20713561989120000,3212195459235840000,581636820654489600000,121600871304831959040000, A179443 ,8,9,12,14,16,20,22,26,30,32,34,35,36,38,39,44,45,48,50,51,55,56,58,62,65,68,72,74,77,78,80,84,85,86,87,90,92,93,95,96,98,100,104,108,110,111,112,114,116,119,121,122,124,125,126,128,133,134,135,140,141, A179444 ,81,91,121,141,161,201,221,261,301,321,341,351,361,381,391,441,451,481,501,511,551,561,581,621,651,681,721,741,771,781,801,841,851,861,871,901,921,931,951,961,981,1001,1041,1081,1101,1111,1121,1141,1161,1191,1211,1221,1241,1251,1261,1281,1331, @@ -179818,12 +179818,12 @@ A179813 ,2,3,5,6,7,8,10,11,17,18,23,24,27,35,45,55,56,76,78,84,111,114,115,117,1 A179814 ,181,3787,174692,685700,2178889,5931641,31622776,64631634,1691869691,2597429617,16328969210,22469029417,54353589638,380636413501,2506650894908,11290681881873,12924394402851,127673846293724, A179815 ,1,3,21,163,1259,9657,73949,566797,4352755,33501979,258431853,1997743677,15473296249, A179816 ,17,60,52,68,131,112,128,223,172,97,420,113,127,407,149,308,330,352,181,780,0,211,679,472,241,508,532,548,564,293,307,941,0,668,696,712,367,752,772,397,810,419,421,1303,892,457,1391,479,487,990,1012,0,1044,0, -A179817 ,2,4,8,14,27,48,86,151,269,460,808,1386,2372,4048,6890,11661,19719,33167, +A179817 ,1,2,4,8,14,27,48,86,151,269,460,808,1386,2372,4048,6890,11661,19719,33167,55705,93288,155954,260040,432895,719252,1192989,1975724,3267513,5396171,8900534,14663096, A179818 ,17,131,223,97,113,127,149,181,211,241,293,307,941,367,397,419,421,1303,457,479,487,557,587,631,1931,661,683,691,719,727,743,773,787,797,809,811,839,863,877,907,929,937,953,967,983,1009,1021,1049,1051,1087,1117, A179819 ,10,20,25,35,45,50,60,70,75,85,95,100,110,120,125,135,145,150,160,170,175,185,195,200,210,220,225,235,245,250,260,270,275,285,295,300,310,320,325,335,345,350,360,370,375,385,395,400,410,420,425,435,445,450,460,470,475,485,495,500,510,520,525,535,545,550,560, A179820 ,0,1,3,1,4,1,5,1,6,1,7,1,8,1,9,1,10,1,11,1,12,1,13,1,14,1,15,1,16,1,17,1,18,1,19,1,20,1,21,1,22,1,23,1,24,1,25,1,26,1,27,1,28,1,29,1,30,1,31,1,32,1,33,1,34,1,35,1,36,1,37,1,38,1,39,1,40,1,41,1,42,1,43,1,44,1,45, A179821 ,0,1,2,2,4,5,4,3,8,9,10,10,8,9,6,4,16,17,18,18,20,21,20,11,16,17,18,18,12,13,8,5,32,33,34,34,36,37,36,19,40,41,42,42,40,41,22,20,32,33,34,34,36,37,36,19,24,25,26,26,16,17,10,6,64,65,66,66,68,69,68,35,72,73,74,74, -A179822 ,1,1,2,3,5,7,12,16,26,37,58,79,128,171,271,376,576,783,1239, +A179822 ,1,1,2,3,5,7,12,16,26,37,58,79,128,171,271,376,576,783,1239,1654,2567,3505,5382,7245,11247,15036,23187,31370,47672,64146,98887,131784,201340,271350,412828,551744,843285,1125417,1715207,2299452,3479341,4654468,7090529, A179823 ,1,1,2,5,29,408,33461,38613965,3654502875938,399133058537705128729,4125636888562548868221559797461449,4657508918199804645965719872781284840798220312648198320, A179824 ,2,24,108,320,750,1512,2744,4608,7290,11000,15972,22464,30758,41160,54000,69632,88434,110808,137180,168000,203742,244904,292008,345600,406250,474552,551124,636608,731670,837000,953312,1081344,1221858, A179825 ,96,402,516,786,906,1116,1146,1266,1356,3246,4206, @@ -179839,7 +179839,7 @@ A179834 ,1,2,3,4,6,7,10,11,12,14,17,18,19,22,23,24,26,27,28,30,31,32,34,35,36,37 A179835 ,0,0,1,0,2,2,2,0,0,3,3,6,3,0,0,1,7,4,8,3,0,0,7,4,6,6,2,2,0,0,6,8,7,12,0,2,1,0,6,1,2,4,8,15,15,0,1,0,0,0,6,0,0,2,1,1,0,0,6,0,0,0,19,7,0,0,17,5,29,3,15,15,5,1,5,20,20,4,7,2,21,2,21,4,3,5,4,27,3,0,0,5,28,2,0,0,0,21,0,30, A179836 ,4,1,8,1,5,5,4,4,9,1,4,1,3,2,1,6,7,6,6,8,9,2,7,4,2,3,9,8,4,3,3,6,1,0,6,0,8,3,5,9,5,0,1,8,6,9,0,1,0,3,8,6,2,0,8,1,7,1,9,8,3,5,0,1,7,7,6,0,4,8,5,4, A179837 ,1,1,1,1,7,1,1,26,13,1,1,70,87,19,1,1,155,403,184,25,1,1,301,1462,1216,317,31,1,1,532,4446,6190,2725,486,37,1,1,876,11826,25954,17903,5146,691,43,1,1,1365,28314,93536,96055,41461,8695,932,49,1,1,2035, -A179838 ,1,1,1,1,18,1,1,129,38,1,1,571,627,58,1,1,1884,6212,1525,78,1,1,5103,43123,24576,2823,98,1,1,11998,230241,277500,63660,4521,118,1,1,25362, +A179838 ,1,1,1,1,18,1,1,129,38,1,1,571,627,58,1,1,1884,6212,1525,78,1,1,5103,43123,24576,2823,98,1,1,11998,230241,277500,63660,4521,118,1,1,25362,1005267,2379096,1014681,131464,6619,138,1,1,49347,3744753,16359996,12301986,2724266,235988,9117,158,1, A179839 ,341,731,1333,1387,1727,2047,2701,3277,3503,3763,4033,4369,4681,5461,7957,8321,9509,10261,10669,13747,14491,15709,17557,17861,18721,19147,19951,20737,23377,31417,31609,31621,35333,42799,43921,44669,46979,49141,49901,49981, A179840 ,1,2,3,3,4,5,4,6,6,6,7,8,8,7,7,7,10,11,10,8,8,10,12,13,12,11,11,13,14,14,11,11,11,10,11,14,15,14,13,15,17,17,13,10,15,20,21,18,14,13,15,19,19,18,16,21,21,18,16,18,17,19,21,23,25,23,17,18,20,20,21,20,23,25,28, A179841 ,3,4,4,5,5,5,6,6,7,6,7,8,9,8,9,10,11,10,10,10,11,12,10,10,10,12,11,13,14,13,14,12,14,14,15,17,17,17,18,20,20,18,19,18,18,17,19,18,19,20,20,19,20,17,19,18,19,21,21,19,20,18,23,22,21,20,24,26,26,27,23,22,28,29, @@ -179945,7 +179945,7 @@ A179940 ,1,2,2,3,2,4,2,4,3,4,0,4,0,2,2,3,0,4,0,4,2,0,0,4,1,0,2,2,0,4,0,2,0,0,2,3 A179941 ,1,2,2,3,2,4,2,4,3,4,2,6,2,4,4,5,2,6,2,6,4,4,2,8,3,4,4,6,2,8,2,6,4,4,4,9,2,4,4,8,2,8,2,6,6,4,2,10,3,6,4,6,2,8,4,8,4,4,2,12,2,4,6,7,4,8,2,6,4,8,2,12,2,4,6,6,4,8,2,10,5,4,2,12,4,4,4,8,2,12,4,6,4,4,4,12,2,6,6,9, A179942 ,1,2,2,3,2,4,2,4,3,4,2,6,2,4,4,5,2,6,2,6,4,4,2,8,3,4,4,6,2,8,2,6,4,4,4,9,2,4,4,8,2,8,2,6,6,4,2,10,3,6,4,6,2,8,4,8,4,4,2,12,2,4,6,7,4,8,2,6,4,8,2,12,2,4,6,6,4,8,2,10,5,4,2,12,4,4,4,8,2,12,4,6,4,4,4,12,2,6,6,9, A179943 ,1,1,2,1,3,3,1,4,8,4,1,5,15,21,5,1,6,24,56,55,6,1,7,35,115,209,144,7,1,8,48,204,551,780,377,8,1,9,63,329,1189,2640,2911,987,9,1,10,80,496,2255,6930,12649,10864,2584,10,1,11,99,711,3905,15456,40391,60605,40545,6765,11, -A179944 ,1,3,7,17,47,148,518,1977,8138,35879,168500,838944, +A179944 ,1,3,7,17,47,148,518,1977,8138,35879,168500,838944,4409957,24385913,141412615,857611641,5426144191,35739397738,244573978098,1735854397529,12757309001222,96941738970957,760649367654460,6155205917196408,51308394497243469,440110582561558831, A179945 ,30,42,60,78,102,138,186,198,216,222,228,240,246,258,270,282,360,372,390,414,438,492,498,546,582,600,606,642,708,720,756,762,774,786,810,852,870,930,942,954,1002,1014,1020,1026,1038,1068,1086,1182,1266,1290, A179946 ,0,1,2,1,2,8,1,2,2,108,1,2,1,1,2,1,6,2,8,1,1,9,1,1,2,17,1,5,2,2,1,1,18,6,1,2,4,3,3,3,17,2,1,2,2,1,1,4,1,22,14,1,1,1,1,2,6,1,13,1,4,2,2,3,1,13,1,2,1,5,3,2,1,6,1,3,11,5,1,9,2,1,1,4,4,2,2,1,1,1,8,1,1,4,5,111,21,2,3, A179947 ,0,5,1,1,1,1,1,2,1,7,1,1,36,2,1,1,56,2,44,1,1,1,34,3,5,1,1,1,15,3,1,2,12,2,4,2,17,4,2,1,2,2,2,1,1,1,29,6,1,4,1,3,1,1,4,3,2,1,3,1076,17,3,49,1,2,2,2,3,20,4,13,3,2,90,1,1,2,12,2,1,3,1,7,1,10,1,2,1,2,4,206,2,2,1,6, @@ -180167,7 +180167,7 @@ A180162 ,1,2,3,7,510,21,17490,93,217,381,651,118879530,2667,8191,11811,24573,573 A180163 ,62480,1432640,7660880,27931280,39685376,116636864,179299575,318523136,4217802560,4494828240,4952759175,6067699000,7775676090,12285798525,15069863936,17358731325,20160203840,25845386480,30293400832, A180164 ,504,2394,5544,10584,12600,21600,26880,35712,139104,133920,138240,157248,168480,224640,262080,245520,294840,311040,348192,357120,388800,399168,645624,698544,749952,756000,892800,955206,1017792,1048320, A180165 ,1,1,2,1,3,3,1,4,8,5,1,5,15,22,8,1,6,24,57,60,13,1,7,35,116,216,164,21,1,8,48,205,560,819,448,34,1,9,63,330,1200,2704,3105,1224,55,1,10,80,497,2268,7025,13056,11772,3344,89,1,11,99,712,3920,15588,41125,63040,44631,9136,144, -A180166 ,1,3,7,18,51,161,560,2163,8691,38142,178107,885041,4636948, +A180166 ,1,3,7,18,51,161,560,2123,8691,38142,178407,885041,4636948,25564727,147848651,894448186,5646589363,37115577265,253517232120,1796241061843,13180234725987,100009217354694,783656713398383,6333420109604593,52732283687195340,451831859926030943, A180167 ,1,7,48,330,2268,15588,107136,736344,5060880,34783344,239065344,1643092128,11292944832,77616221760,533454999552,3666427327872,25199293964544,173194327754496,1190361730314240,8181336348412416,56230188472359936,386469148924634112, A180168 ,1,3,11,37,129,443,1531,5277,18209,62803,216651,747317,2577889,8892363,30674171,105810157,364991169,1259033123,4343022091,14981209797,51677530049,178261109083,614909868411,2121125282237,7316799906529,25239226224243,87062451981131, A180169 ,1,3,4,8,1296,32,46656,128,256,512,1024,362797056,4096,8192,16384,32768,65536,131072,262144,524288,1048576,2097152,4194304,8388608,16777216,33554432,67108864,134217728,268435456,536870912,1073741824,2147483648, @@ -180415,14 +180415,14 @@ A180410 ,1,2,3,4,5,6,7,8,9,1,1,12,13,14,15,16,17,18,19,2,12,2,23,24,25,26,27,28, A180411 ,16,21,24,30,32,31,37,42,41,48,39,48,45,56,45,54,51,51,61,72,59,57,55,80,71,64,65,78,61,96,70,77,75,69,91,90,71,67,87,80,101,120,87,75,128,77,101,93,72,114,121,87,81,91,152,81,126,111,113,107,90,78,168,103,93,129,123,176, A180412 ,1,2,3,4,5,6,7,8,9,20,31,40,51,60,71,80,91,200,311,400,511,600,711,800,911,2000,3111, A180413 ,0,144,576,1440,2880,5040,8064,12096,17280,23760,31680,41184,52416,65520,80640,97920,117504,139536,164160,191520,221760,255024,291456,331200,374400,421200,471744,526176,584640,647280,714240,785664,861696, -A180414 ,1,2,4,8,16,36,80,194,506,1400,4039,12044,36406,111324,342447,1064835,3341434,10583931, +A180414 ,1,2,4,8,16,36,80,194,506,1400,4039,12044,36406,111324,342447,1064835,3341434,10583931,33728050, A180415 ,1,3,6,11,19,31,48,71,101,139,186,243,311,391,484,591,713,851,1006,1179,1371,1583,1816,2071,2349,2651,2978,3331,3711,4119,4556,5023,5521,6051,6614,7211,7843,8511,9216,9959,10741,11563,12426,13331,14279,15271,16308, A180416 ,3,33,298,2649,23711,215341,1982296,18447847,173197435,1637524156,15570196516,148735628858,1426303768587,13722207893214,132387231596281,1280309591127436, A180417 ,0,0,1,173,1211969509,5547480986860602794895774677,708720364531529518355420122993246286974247836241724513772950684967495246261, A180418 ,1,3,39,32163,1720635,12345020175,1530993953307,44148864630732711,797213247855503373843915,281095572810489332134542303,26242778669866462496740532647355475, A180419 ,1,10,5052,14240070,3152221563324450,157195096511273995860,2374214683408467590063771983920,618146855974818638210995488847340730,144946467754033586465978879886385830380958862710, A180420 ,1,2,12,160,4592,276496,34174592,8570174016,4335215019520,4408454839564672,8992935435667848448,36753720073439398166016,300717909357395506394597376,4923649248081508021291300507648, -A180421 ,113,131,151,199,311,337,353,359,373,733,757,919,953,991,1031,1103,1213,1217,1231,1237,1259,1301,1321,1381,1439,1471,1499,1619,1723,1741,1831,1949,3011,3019,3109,3121,3163,3257,3271,3299,3347,3527,3583,3613,3767, +A180421 ,11,101,113,131,151,199,311,337,353,359,373,733,757,919,953,991,1031,1103,1213,1217,1231,1237,1259,1301,1321,1381,1439,1471,1499,1619,1723,1741,1831,1949,3011,3019,3109,3121,3163,3257,3271,3299,3347,3527,3583,3613,3767, A180422 ,2,3,7,11,19,31,53,83,139,229,373,607,983,1583,2579,4177,6763,10939,17707,28649,46351,75017,121379,196387,317797,514219,832003,1346249,2178283,3524569,5702867,9227443,14930341,24157811,39088157,63245971, A180423 ,2,28,9906,43803136, A180424 ,1,1,0,1,1,0,1,1,1,0,1,2,2,1,0,1,2,1,2,1,0,1,3,3,3,3,1,0,1,3,3,4,3,3,1,0,1,4,3,6,6,3,4,1,0,1,4,4,8,5,8,4,4,1,0,1,5,5,10,10,10,10,5,5,1,0,1,5,4,12,10,17,10,12,4,5,1,0, @@ -180474,7 +180474,7 @@ A180469 ,701,1301,1901,3701,6101,6701,7901,10301,13901,15101,16301,19301,21101,2 A180470 ,2,7,13,23,41,53,71,83,107,137,149,189,209,225,245,293,323,339,375,395,417,467,493,527,575,607,629,653,677,709,801,835,875,891,947,965,1023,1065,1109,1129,1193,1227,1289,1295,1333,1353,1415,1517,1555,1571,1627, A180471 ,31,257,73,89,683,113,11,151,331,73,109,61681,127,337,5419,178481,2796203,157,1613,233,1103,2089,3033169,1321,20857,599479,281,86171,122921,19,37,109,433,38737,2731,8191,121369,22366891,13367,164511353,8831418697,23,353,397,683,2113,2931542417, A180472 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,2,2,2,0,0,0,0,0,0,3,4,4,3,0,0,0,0,0,0,4,6,10,6,4,0,0,0,0,0,0,5,10,16,16,10,5,0,0,0,0,0,0,7,14,28,30,28,14,7,0,0,0,0,0,0,8,20,42,56,56,42,20,8,0,0,0,0,0,0,10,26,64,91,113,91,64,26,10,0,0,0,0,0,0,12,35,90,150,197,197,150,90,35,12,0,0,0,0,0,0,14,44,126,224,340,370,340,224,126,44,14,0,0,0,0,0,0,16,56,168,336,544,680,680,544,336,168,56,16,0,0,0, -A180473 ,1,2,7,27,114,509,2365,11318,55411,276231,1397430,7156089,37023225,193229466,1016141199,5378940051,28638955098,153267403397,824014568581,4448456379134, +A180473 ,1,2,7,27,114,509,2365,11318,55411,276231,1397430,7156089,37023225,193229466,1016141199,5378940051,28638955098,153267403397,824014568581,4448456379134,24104579252971,131055735586767,714741620026542,3908997981612017,21434123083817329, A180474 ,2,3,5,17,23,41,47,113,131,137,149,251,263,281,293,311,317,449,503,659,677,827,881,887,1409,1787,1889,1913,2003,2069,2081,2267,2393,2531,2591,2657,2729,3083,3221,3329,3347,3767,4001,4211,4229,4583,4931,4967,5333, A180475 ,41,271,3251,1424771,6448511,115925123,229448831,18425794691,38581737743,48264295811,73443083699,996266439503,1258302388991,1752012093443,2159450038451,2909420102783,3201110256371,18248780996099, A180476 ,0,0,1,10,518,1,154,120,1,2,8,15,911,226,24,9470,189,2766,8224,4998,1730,49,106,3114,2030,155,231,4,119,195,2354,31,1749,29,7,2806,11704,11,1380,561,140,553,431,50231,65,7,1003,1,1905,57,456,77,231,3346,35,301,99,106,20,1045,71,280,1169,231,685,440,566,385,7994,4095, @@ -180516,7 +180516,7 @@ A180511 ,5,51,585,95325,1290555,252645135,3616814565,764877654105,24847446219975 A180512 ,1,2,6,1,24,16,2,120,200,94,14,1,720,2400,2684,1284,310,36,2,5040,29400,63308,66158,38390,13037,2660,328,26,1, A180513 ,111111111,111111112,111111113,111111114,111111115,111111116,111111117,111111118,111111119,111111211,111111222,111111223,111111224,111111225,111111226,111111227,111111228,111111229,111111311,111111322,111111333,111111334,111111335,111111336,111111337,111111338,111111339,111111411,111111422,111111433,111111444,111111445,111111446,111111447,111111448,111111449,111111511,111111522, A180514 ,1,5,9,13,35,39,286,290,381,385,866,4376,10461,13506,19709,50925,139046,144086,188517,623114,6815124,7226204,7647853,8970817,42716373,64176516,189403472,240240118,463852538,520740373, -A180515 ,0,0,1,0,0,3,0,0,198,0,0,15390,0,0,4611168,0,0,1829539224,0,0,1492247906784,0,0,1669958449339824, +A180515 ,0,0,1,0,0,3,0,0,198,0,0,15390,0,0,4611168,0,0,1829539224,0,0,1492247906784,0,0,1669958449339824,0,0,2955696363525356640,0,0,7028088099915471491520,0,0,23308039026983275082311680,0,0,100343481973929775498656672000, A180516 ,0,1,2,3,7,11,15,31,47,63,127,191,255,511,767,1023,2047,3071,4095,8191,12287,16383,32767,49151,65535,131071,196607,262143,524287,786431,1048575,2097151,3145727,4194303,8388607,12582911,16777215,33554431,50331647,67108863,134217727,201326591,268435455,536870911,805306367,1073741823,2147483647,3221225471, A180517 ,23,107,127,211,223,227,241,271,283,401,421,503,523,809,829,1009,1013,1021,1031,1049,1091,1097,1103,1109,1123,1129,1201,1213,1229,1231,1249,1291,1297,1301,1307,1321,1327,1409,1429,1601,1607,1621,1627,2003,2011, A180518 ,37,101,107,109,131,137,139,307,311,317,337,347,359,367,379,389,397,401,409,431,439,601,631,709,739,809,839,907,937,1019,1021,1031,1061,1201,1231,1301,1319,1321,1361,1409,1439,1607,1637,1801,1831,1901,1931,2011, @@ -180923,7 +180923,7 @@ A180918 ,0,0,1,0,1,1,0,2,1,1,0,2,2,1,1,0,3,2,3,1,1,0,3,3,3,3,1,1,0,4,3,6,3,4,1,1 A180919 ,1,733,1467,2203,2941,3681,4423,5167,5913,6661,7411,8163,8917,9673,10431,11191,11953,12717,13483,14251,15021,15793,16567,17343,18121,18901,19683,20467,21253,22041,22831,23623,24417,25213,26011,26811, A180920 ,1,33,2017,124993,7747521,480221281,29765971873,1845010034817,114360856186753,7088528073543841,439374379703531361,27234123013545400513,1688076252460111300417,104633493529513355225313,6485588522577367912668961,402001854906267297230250241, A180921 ,1,2079,7876385,30254180671,116236127290689,446579144331338591,1715756954644453458529,6591937773063166150358655,25326223208345427203876398721,97303342974524967600723097592479,373839418381901692962342398114034081, -A180922 ,8,12,102,1001,10002,100006,1000002,10000005,100000006,1000000003,10000000001,100000000006,1000000000001,10000000000001,100000000000018,1000000000000002,10000000000000006,100000000000000007,1000000000000000001, +A180922 ,8,12,102,1001,10002,100006,1000002,10000005,100000006,1000000003,10000000001,100000000006,1000000000001,10000000000001,100000000000018,1000000000000002,10000000000000006,100000000000000007,1000000000000000001,10000000000000000007, A180923 ,2,16,18,20,26,28,30,38,40,42,46,56,60,62,68,72,82,86,88,96,110,112,118,130,132,138,140,150,156,158,160,166,178,192,196,210,216,220,226,228,240,242,248,250,266,276,278,280,290,292,300,306,320,326,342,348,350, A180924 ,4,24,29,47,61,63,67,69,87,101,129,143,153,249,252,333,408,561,616,732,929,1349,3467,6156,6919,9244,14413,17128,20059,20169,20512,23479,24076,26208,27189, A180925 ,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70, @@ -180958,10 +180958,10 @@ A180953 ,1,6,15,29,48,72,100,134,172,214,262,314,371,433,500,571,647,728,813,904 A180954 ,1,32,2271,79936,2103269,49998072,1163531779,27263453288, A180955 ,1,1,1,3,1,1,5,3,1,1,35,5,3,1,1,63,35,5,3,1,1,231,63,35,5,3,1,1,429,231,63,35,5,3,1,1,6435,429,231,63,35,5,3,1,1,12155,6435,429,231,63,35,5,3,1,1,46189,12155,6435,429,231,63,35,5,3,1,1,88179,46189,12155,6435,429, A180956 ,1,2,1,8,2,1,16,8,2,1,128,16,8,2,1,256,128,16,8,2,1,1024,256,128,16,8,2,1,2048,1024,256,128,16,8,2,1,32768,2048,1024,256,128,16,8,2,1,65536,32768,2048,1024,256,128,16,8,2,1,262144,65536,32768,2048,1024,256,128, -A180957 ,1,1,1,1,1,1,1,0,0,1,1,-2,-5,-2,1,1,-5,-15,-15,-5,1,1,-9,-30,-41,-30,-9,1,1,-14,-49,-77,-77,-49,-14,1,1,-20,-70,-112,-125,-112,-70,-20,1,1,-27,-90,-126,-117,-117,-126,-90,-27,1,1,-35,-105,-90,45,131,45,-90,-105, -A180958 ,1,1,2,2,2,-1,-8,-25,-57,-114,-202,-322,-447,-496,-271,625,2914,7762,16834,32063,54760,83319,108375,103726,11110,-282498,-973439,-2366432,-4869919,-8903455,-14604094, -A180959 ,1,1,1,1,3,1,1,6,6,1,1,10,23,10,1,1,15,65,65,15,1,1,21,150,321,150,21,1,1,28,301,1197,1197,301,28,1,1,36,546,3584,7531,3584,546,36,1,1,45,918,9114,35523,35523,9114,918,45,1,1,55,1455,20490,132045,276433,132045, -A180960 ,1,1,1,1,4,1,1,9,9,1,1,16,46,16,1,1,25,150,150,25,1,1,36,375,952,375,36,1,1,49,791,4039,4039,791,49,1,1,64,1484,12992,31078,12992,1484,64,1,1,81,2556,34524,162774,162774,34524,2556,81,1,1,100,4125,79920,641250, +A180957 ,1,1,1,1,1,1,1,0,0,1,1,-2,-5,-2,1,1,-5,-15,-15,-5,1,1,-9,-30,-41,-30,-9,1,1,-14,-49,-77,-77,-49,-14,1,1,-20,-70,-112,-125,-112,-70,-20,1,1,-27,-90,-126,-117,-117,-126,-90,-27,1,1,-35,-105,-90,45,131,45,-90,-105,-35,1, +A180958 ,1,1,2,2,2,-1,-8,-25,-57,-114,-202,-322,-447,-496,-271,625,2914,7762,16834,32063,54760,83319,108375,103726,11110,-282498,-973439,-2366432,-4869919,-8903455,-14604094,-21135454,-25294718,-19009153,14697432,107405319,311830247,705982670,1386882198,2436851006,3830805953, +A180959 ,1,1,1,1,3,1,1,6,6,1,1,10,23,10,1,1,15,65,65,15,1,1,21,150,321,150,21,1,1,28,301,1197,1197,301,28,1,1,36,546,3584,7531,3584,546,36,1,1,45,918,9114,35523,35523,9114,918,45,1,1,55,1455,20490,132045,276433,132045,20490,1455,55,1, +A180960 ,1,1,1,1,4,1,1,9,9,1,1,16,46,16,1,1,25,150,150,25,1,1,36,375,952,375,36,1,1,49,791,4039,4039,791,49,1,1,64,1484,12992,31078,12992,1484,64,1,1,81,2556,34524,162774,162774,34524,2556,81,1,1,100,4125,79920,641250,1484504,641250,79920,4125,100,1, A180961 ,27,37,47,57,67,71,72,73,74,75,76,78,79,87,97,101,102,103,104,105,106,108,109,110,112,201,202,203,204,205,206,208,209,210, A180962 ,1,1,2,16,4200,1093025200, A180963 ,21,42,69,81,84,87,93,117,138,162,168,171,174,186,213,234,261,273,276,279,285,309,321,324,327,333,336,339,342,345,348,351,357,369,372,375,381,405,426,453,465,468,471,477,501,522,546,552,555,558,570,597,618, @@ -181090,7 +181090,7 @@ A181085 ,1,3,25,327,6336,513657,142074241,52903930911,36806786795365,14830870563 A181086 ,3,11,13,37,101,137,271,2161,4649,8779,9091,9901,27961,52579,69857,333667,459691,513239,909091,2906161,5882353,10838689,39526741,99990001,121499449,265371653,1056689261,1058313049,5363222357,5964848081, A181087 ,1,2,1,1,3,1,2,4,1,3,1,1,1,5,2,2,1,4,1,1,2,6,2,3,1,5,1,1,3,7,2,4,1,2,2,1,6,1,1,1,1,3,3,1,1,4,8,2,5,1,2,3,1,7,1,1,1,2,3,4,1,1,5,9,2,6,1,2,4,1,8,1,1,1,3,3,5,2,2,2,1,1,6,10,1,3,3,2,7,1,1,2,2,4,4,1,2,5,1,9,1,1,1,4,3,6,2,2,3,1,1,7,11,1,3,4,2,8,1,1, A181088 ,1,-4,-40,672,8064,-253440,-3294720,153753600,2091048960,-130025226240,-1820353167360,141707492720640,2024392753152000,-189483161695027200,-2747505844577894400,300609462994993152000,4408938790593232896000, -A181089 ,2,2,2,2,0,2,8,-12,-12,8,28,0,-96,0,28,32,120,-160,-160,120,32,-56,0,240,0,240,0,-56,128,-1680,-1344,3360,3360,-1344,-1680,128,1936,0,-17024,0,26880,0,-17024,0,1936,512,30240,-9216,-80640,48384,48384, +A181089 ,2,2,2,2,0,2,8,-12,-12,8,28,0,-96,0,28,32,120,-160,-160,120,32,-56,0,240,0,240,0,-56,128,-1680,-1344,3360,3360,-1344,-1680,128,1936,0,-17024,0,26880,0,-17024,0,1936,512,30240,-9216,-80640,48384,48384,-80640,-9216,30240,512, A181090 ,1,1,9,28,126,585,2198,9632,44226,167832,704970,3543517,12649338,53609220,257397588,1000032768,4073003174,19720373400,73088555292,323884878912,1476102415284,5555586582000,23533806109394, A181091 ,1,1,1,2,4,2,12,6,16,20,88,12,232,84,60,138,1596,144,1008,40,420,792,28656,264,3000,15080,5616,840,514228,60,335824,152214,19800,135660,141960,7632,13320,785232,135720,2160,1009256,420,433494436,94248, A181092 ,1,2,3,5,6,7,8,9,11,12,13,14,15,16,17,20,21,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,72,73,74,75,76,77,78,79,80, @@ -182295,8 +182295,8 @@ A182290 ,1,1,2,5,16,65,386,3700,55784,1134526,27053464, A182291 ,2,4,6,2,10,12,2,16,18,2,22,4,2,28,30,2,2,36,2,40,42,2,46,6,2,52,2,2,58,60,2,6,66,2,70,72,2,2,78,2,82,6,2,88,18,2,2,96,2,100,102,2,106,108, A182292 ,34155,407715,8415, A182293 ,1,2,22,2418,4276864, -A182294 ,0,0,0,0,0,1,20349,21426300,8956859646,2352103292070,470090359867986,79002015147719136,11836068369346126698,1640443794179544776604,215598057543037336382670, -A182295 ,0,0,0,0,0,0,5985,13112470,8535294180,3096620034795,800118566011380,166591475854153740,30012638793107746776,4892304538906805158775,743352352817243899253160, +A182294 ,0,0,0,0,0,1,20349,21426300,8956859646,2352103292070,470090359867986,79002015147719136,11836068369346126698,1640443794179544776604,215598057543037336382670,27336005392867324870778880,3385297472808136707459580488,413211903044379104303226531072, +A182295 ,0,0,0,0,0,0,5985,13112470,8535294180,3096620034795,800118566011380,166591475854153740,30012638793107746776,4892304538906805158775,743352352817243899253160,107478174967432322995403280,15008321493306766503800761840,2046331888629918743459557040544, A182296 ,509203,1330207,2251349,2554843,2924861,3177553,3292241,3580901,3661529,3661543,4384979,6055001,7576559,7629217,8086751,8643209,9053711,9203917,9545351,10219379,10645867,10913233,10913681,11694013,11942443,13161283,14608183,15627133, A182297 ,21,39,55,57,105,111,147,155,165,171,183,195,201,203,205,219,231,237,253,273,285,291,301,305,309,327,333,355,357,385,399,417,429,453,465,483,489,495,497,505,507,525,543,555,579,597,605,609,615,627,633,651,655, A182298 ,0,2,4,3,6,5,4,7,7,6,5,10,8,8,7,6,12,11,9,9,8,7,11,13,12,10,10,9,8,15,12,14,13,11,11,10,9,17,16,13,15,14,12,12,11,10, @@ -182372,7 +182372,7 @@ A182367 ,1,3,67,21350,147512732,30761087800216, A182368 ,1,0,1,-4,6,-3,0,1,-12,66,-216,459,-648,594,-323,79,0,1,-24,276,-2015,10437,-40614,122662,-292883,557782,-848056,1022204,-960627,682349,-346274,112275,-17493,0,1,-40,780,-9864,90798,-647352,3714180,-17590911,69997383, A182369 ,8,6,7,5,3,0,9,0,1,9,8,1,6,8,5,4,0,9,7,5,5,8,2,7,5,2,2,4,9,6,1,4,3,1,8,3,8,4,4,0,2,9,7,2,3,1,3,2,8,1,1,6,9,3,7,7,1,5,6,5,8,9,5,6,1,7,6,0,6,0,3,9,0,3,5,9,1,8,9,7,8,3,5,4,0,3,1,2,6,0,6,4,5,9,5,0,5,4,2,7,9,7,1,3,6,8,9,8, A182370 ,1,1,20,3246670537110000, -A182371 ,0,0,0,0,0,0,1330,6905220,7279892361,3717889913655,1255470137209650,326123611416074340,70993993399632155710,13659118629343706026053,2405832308811599670396135,397496768417871214784702640, +A182371 ,0,0,0,0,0,0,1330,6905220,7279892361,3717889913655,1255470137209650,326123611416074340,70993993399632155710,13659118629343706026053,2405832308811599670396135,397496768417871214784702640,62693059156926401902640364120,9561367292987041683030275944320, A182372 ,2,2,3,4,6,8,11,14,19,24,31,39,50,61,77,94,117,141,173,208,253,302,363,431,516,609,723,850,1003,1174,1379,1607,1878,2181,2537,2936,3404,3925,4532,5212,5998,6877,7890,9021,10320,11771,13427,15277,17385,19734,22401,25375,28739,32485, A182373 ,3,5,7,37,45,53,179,277,721,2087,6197,6317,8775,12781, A182374 ,19,52489,59296646043258913,3140085798164163223281069127,281013956365219695455558985684629594690518822413326510467, @@ -185229,8 +185229,8 @@ A185224 ,0,0,0,0,0,0,0,0,1,1,2,2,4,4,6,7,10,11,15,17,23,26,33,38,49,56,69,80,99, A185225 ,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,4,5,6,8,9,12,14,17,20,25,29,35,41,49,57,69,79,94,109,128,149,175,201,235,271,316,363,422,483,559,642,739,846,974,1111,1276,1455,1665,1896,2167,2463,2808,3188,3626,4111,4672,5286,5994,6777,7670,8661,9790,11036, A185226 ,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,5,5,7,8,10,11,15,16,20,23,28,31,39,43,52,59,70,79,95,106,125,142,166,187,220,247,287,325,375,423,490,551,633,715,818,921,1055,1186,1352,1522,1729,1943,2208, A185227 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,4,5,6,7,9,10,12,14,17,19,23,26,31,35,41,47,55,62,72,82,95,107,124,140,161,182,208,235,269,303,345,389,442,497,564,634,718,806,910,1021,1152,1290,1452,1627,1828,2044,2294, -A185228 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,4,4,6,6,8,9,11,12,15,16,20,22,26,29,35,38,45,50,59,65,76,84,98,109,125,139,161,178,204,227,259,288,328,364,414,460,520,578,654,725, -A185229 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,4,4,5,6,7,8,10,11,13,15,17,19,23,25,29,33,38,42,49,54,62,70,79,88,101,112, +A185228 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,4,4,6,6,8,9,11,12,15,16,20,22,26,29,35,38,45,50,59,65,76,84,98,109,125,139,161,178,204,227,259,288,328,364,414,460,520,578,654,725,817,908,1021,1133, +A185229 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,4,4,5,6,7,8,10,11,13,15,17,19,23,25,29,33,38,42,49,54,62,70,79,88,101,112,127,142,160,178,202,224,252,281,315,350,394,436,488,543,606,672,751,831,926,1027,1142, A185230 ,5,67,157,12211,313553, A185231 ,1,2,3,5,7,13,23,43,83,163,317,631,1259,2503,5003,9973,19937,39869,79699,159389,318751,637499,1274989,2549951,5099893,10199767,20399531,40799041,81598067,163196129,326392249,652784471,1305568919,2611137817, A185232 ,0,0,0,0,4,0,0,0,1520,0,0,0,235072,0,0,705280,278539264,0,0,0,226593936,0,0,0,295266178368,0,24143851798528,27,10557680820452065280,0,0,0,2821525007683005301391360,0,0,2821525007683005301391360,43942858408664114852524638339072, @@ -186187,7 +186187,7 @@ A186182 ,1,1,2,8,50,388,3363,31132,301156,3007000,30753169,320492869,3391067666, A186183 ,1,1,2,9,68,646,6857,77695,919642,11233858,140544189,1791614714,23187320736,303861373679,4023883823059,53762917329659,723854999871943,9811154512175468,133762940465746744,1833187046654598058,25239961633188882896, A186184 ,1,1,2,10,89,1002,12592,168805,2363241,34138860,505042286,7612594936,116492572621,1804984878387,28260999959595,446441276449715,7106718529937710,113886198966545724, A186185 ,1,1,3,11,48,239,1306,7612,46436,292875,1894365,12496864,83753165,568628232,3902600850,27031069848,188709211952,1326456525471,9379857716098,66680723764051,476269444919163,3416178576731504, -A186186 ,1,1,3,12,63,403,2919,22833,187799,1599718,13984383,124717327,1130144932,10375309228,96290993853,901915801437,8514822062757,80939662475426, +A186186 ,1,1,3,12,63,403,2919,22833,187799,1599718,13984383,124717327,1130144932,10375309228,96290993853,901915801437,8514822062757,80939662475426,774025387921462,7441380898249458,71879194326339456,697253570563306939,6789448668631285664,66340474776507262638, A186187 ,1,2,1,2,4,2,1,2,2,2,1,2,4,2,1,2,2,2,1,2,4,2,1,2,2,2,1,2,4,2,1,2,2,2,1,2,4,2,1,2,2,2,1,2,4,2,1,2,2,2,1,2,4,2,1,2,2,2,1,2,4,2,1,2,2,2,1,2,4,2,1,2,2,2,1,2,4,2,1,2,2,2,1,2,4,2,1,2,2,2,1,2,4,2,1,2,2,2,1,2,4,2,1,2,2, A186188 ,1,1,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, A186189 ,1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7, @@ -188227,7 +188227,7 @@ A188222 ,1,2,3,5,6,7,9,10,11,13,14,15,17,18,19,20,22,23,24,26,27,28,30,31,32,34, A188223 ,1,1,3,5,9,16,29,53,96,174,315,571,1035,1876,3400,6162,11168,20241,36685,66488,120503,218400,395829,717402,1300222,2356527,4270978,7740736,14029338,25426823,46083666,83522203,151375943,274354307,497240739,901200915,1633339800,2960270965,5365205811, A188224 ,1,2,6,10,24,54,96,200,442,650,1548,2370,4060,7670,15792,25740,49074,81900,147756,251012, A188225 ,2,31,256,1496,6936,27132,93024,286824,810084,2124694,5230016,12183560,27041560,57500460,117675360,232676280,445962870,830905245,1508593920,2674776720,4639918800,7887861960,13160496960,21578373360,34810394760, -A188226 ,1,7,63,315,945,1575,3465,19845,10395,17325,26775,127575,45045,266805,190575,155925,135135,2480625,225225,130203045,405405,1289925,2168775,1715175,675675,3898125,3468465,1576575,3239775,67798585575,2027025,16769025,2297295,20539575,42170625,27286875, +A188226 ,1,7,63,315,945,1575,3465,19845,10395,17325,26775,127575,45045,266805,190575,155925,135135,2480625,225225,130203045,405405,1289925,2168775,1715175,675675,3898125,3468465,1576575,3239775,67798585575,2027025,16769025,2297295,20539575,42170625,27286875,3828825,117661005, A188227 ,1,3,12,81,598,4859,41748,374820,3475284,33053399,320869264,3167899567,31721907390,321494911644,3292220700520,34018798556265,354312456839426,3716173628641396,39220841304052510,416264662788000213, A188228 ,1,2,4,15,58,245,1082,5020,24040,118154,592332,3019280,15604848,81614541,431227650,2298833499,12350952158,66818754504,363727676848,1990946917066,10952512200610,60525264890259,335856363303010,1870732844007387, A188229 ,1,3,7,30,119,527,2395,11376,55368,275735,1397063,7185356,37419881,196993233,1046785509,5608211846,30264466262,164375822152,897938065590,4930713542112,27202861579741,150721902660263,838367664692809, @@ -192792,7 +192792,7 @@ A192787 ,0,1,3,3,2,8,7,10,6,12,9,21,4,17,39,28,4,26,11,36,29,25,21,57,10,20,29,4 A192788 ,3,12,12,36,48,24,24,66,132,42,114,60,48,84,216,90,168,72,108,246,42,228,162,66,48,102,156,150,96,84,198,192,108,222,114,192,144,144,402,162,306,108,408,36,150,252,186,366,216,126,126,672,54,312,120,450,180,300,198,114,204,222,252,486,108,204,228,126,228,204, A192789 ,1,3,2,7,9,4,4,11,21,7,19,9,7,14,34,13,27,11,17,40,7,37,27,10,8,16,27,25,15,13,33,32,17,36,18,31,24,24,65,26,47,17,67,6,23,42,30,58,37,20,19,106,8,51,19,71,28,48,31,17,33,34,40,79,16,34,38,21,39,32,19,110,52,33,39,86,30,29,23,15,81,16,93,19, A192790 ,4,80,336,880,1820,3264,5320,8096,11700,16240,21824,28560,36556,45920,56760,69184,83300,99216,117040,136880,158844,183040,209576,238560,270100,304304,341280,381136,423980,469920, -A192791 ,40,112,240,448,760,1200,1792,2560,3528,4720,6160,7872,9880,12208,14880,17920,21352,25200,29488,34240,39480,45232,51520,58368,65800,73840,82512,91840,101848,112560, +A192791 ,40,112,240,448,760,1200,1792,2560,3528,4720,6160,7872,9880,12208,14880,17920,21352,25200,29488,34240,39480,45232,51520,58368,65800,73840,82512,91840,101848,112560,124000,136192,149160,162928,177520,192960,209272,226480,244608,263680, A192792 ,72,360,2556,22572,219636,2204244,22197420,222257988,2207645892,21754722852,212845625820,2069408197476,20010127994676,192565336573476,1845376043710284,17619057807964452,167667905660138532,1590879916369856484,15054743317985652924, A192793 ,108,360,900,1872,3420,5688,8820,12960,18252,24840,32868,42480,53820,67032,82260,99648,119340,141480,166212,193680,224028,257400,293940,333792,377100,424008,474660,529200,587772,650520, A192794 ,1,3,5,15,17,27,35,45,57,65,87,95,125,135,137,147,155,177,255,267,275,347,357,407,447,455,477,507,605,615,707,717,755,767,785,795,827,837,905,935,945,1185,1235,1247,1257,1275,1325,1365,1457,1497,1595,1695, @@ -193073,7 +193073,7 @@ A193068 ,12,42,98,188,320,502,742,1048,1428,1890,2442,3092,3848,4718,5710,6832,8 A193069 ,24,36,71,119,120,127,143,144,145,216,240,343,354,355,360,384,456,595,660,693,713,715,719,720,721,722,723,724,725,726,727,728,729,733,736,744,799,936, A193070 ,3,5,17,27,41,49,59,71,89,101,125,131,167,169,173,289,293,383,529,677,701,729,743,761,773,827,839,841,857,911,1091,1097,1163,1181,1193,1217,1373,1427,1487,1559,1583,1709,1811,1847,1849,1931,1973,2129,2197,2273,2309, A193071 ,1,7,9,11,13,15,19,21,23,25,29,31,33,35,37,39,43,45,47,51,53,55,57,61,63,65,67,69,73,75,77,79,81,83,85,87,91,93,95,97,99,103,105,107,109,111,113,115,117,119,121,123,127,129,133,135,137,139,141,143,145,147, -A193072 ,39,507,2379,6591,13167,29511,148955,1672209,8852259,212370543, +A193072 ,39,507,2379,6591,13167,29511,148955,1672209,8852259,212370543,1929229929, A193073 ,1,1,1,2,1,1,1,2,1,3,1,1,1,1,2,1,1,2,2,3,1,4,1,1,1,1,1,2,1,1,1,2,2,1,3,1,1,3,2,4,1,5,1,1,1,1,1,1,2,1,1,1,1,2,2,1,1,2,2,2,3,1,1,1,3,2,1,3,3,4,1,1,4,2,5,1,6,1,1,1,1,1,1,1,2,1, A193074 ,1,1,3,11,46,208,993,4932,25246,132327,706936,3836187,21090069,117230109,657797920,3721215175,21201525478,121554438782,700793218421,4060389849633,23631280018767,138090295023370,809908779557386,4766153373556047,28134449221105339, A193075 ,1,1,3,9,5,6,4,7,0,6,8,7,9,3,2,1,6,0,8,2,3,7,8,8,1,6,5,0,5,7,9,3,1,8,7,1,1,3,1,7,3,5,8,0,0,7,5,5,8,5,2,2,8,1,7,4,5,0,1,3,3,5,1,7,8,9,0,7,2,4,8,6,0,3,9,5,9,6,7,2,5,7,3,4,6,3,0,2,0,5,5,2,9,8,2,5,0,2,2,0, @@ -196840,7 +196840,7 @@ A196835 ,1,4,15,51,146,273,-319,-6374,-36235,-113833,69388,3772035,28631669,1127 A196836 ,2,5,15,50,177,650,2445,9350,36177,141170,554325,2186750,8656377,34355690,136617405,544061750,2169039777,8654570210,34553579685,138020346350,551499730377,2204254480730,8811785649165,35231447872550,140878711512177,563373614503250, A196837 ,1,2,-3,3,-12,11,4,-30,70,-50,5,-60,255,-450,274,6,-105,700,-2205,3248,-1764,7,-168,1610,-7840,20307,-26264,13068,8,-252,3276,-22680,89796,-201852,236248,-109584,9,-360,6090,-56700,316365,-1077300,2171040,-2345400,1026576,10,-495,10560,-127050,946638,-4510275,13667720,-25228500,25507152,-10628640, A196838 ,1,-1,1,1,-1,1,0,1,-3,1,-1,0,1,-2,1,0,-1,0,5,-5,1,1,0,-1,0,5,-3,1,0,1,0,-7,0,7,-7,1,-1,0,2,0,-7,0,14,-4,1,0,-3,0,2,0,-21,0,6,-9,1,5,0,-3,0,5,0,-7,0,15,-5,1,0,5,0,-11,0,11,0,-11,0,55,-11,1, -A196839 ,1,2,1,6,1,1,1,2,2,1,30,1,1,1,1,1,6,1,3,2,1,42,1,2,1,2,1,1,1,6,1,6,1,2,2,1,30,1,3,1,3,1,3,1,1,1,10,1,1,1,5,1,1,2,1,66,1,2,1,1,1,1,1,2,1,1,1,6,1,2,1,1,1,1,1,6,2,1,2730,1,1,1,2,1, +A196839 ,1,2,1,6,1,1,1,2,2,1,30,1,1,1,1,1,6,1,3,2,1,42,1,2,1,2,1,1,1,6,1,6,1,2,2,1,30,1,3,1,3,1,3,1,1,1,10,1,1,1,5,1,1,2,1,66,1,2,1,1,1,1,1,2,1,1,1,6,1,2,1,1,1,1,1,6,2,1,2730,1,1,1,2,1,1,1,2,1,1,1,1, A196840 ,1,1,1,1,1,1,0,1,1,1,-1,0,1,1,1,0,-1,0,5,1,1,1,0,-1,0,1,1,1,0,1,0,-7,0,7,1,1,-1,0,2,0,-7,0,2,1,1,0,-3,0,1,0,-7,0,3,1,1,5,0,-1,0,1,0,-1,0,5,1,1, A196841 ,1,1,1,1,4,3,1,8,19,12,1,13,59,107,60,1,19,137,461,702,360,1,26,270,1420,3929,5274,2520,1,34,478,3580,15289,36706,44712,20160,1,43,784,7882,47509,174307,375066,422568,181440,1,53,1214,15722,126329,649397, A196842 ,1,1,1,1,3,2,1,7,14,8,1,12,49,78,40,1,18,121,372,508,240,1,25,247,1219,3112,3796,1680,1,33,447,3195,12864,28692,32048,13440,1,42,744,7218,41619,144468,290276,301872,120960,1,52,1164,14658,113799,560658, @@ -201144,7 +201144,7 @@ A201139 ,6,282,5252,38763,129244,120096,4264060,46991775,263910168,769159517,105 A201140 ,1,51,758,13009,120096,1268728,8360853,58395657,309819522,1599103606,6891312239,29648211631,108584697209,395584327260,1292379405268,4136956355752,12134954233672,35217094178978, A201141 ,6,848,35810,593543,4264060,8360853,543067656,11302225941,110916509158,542120293937,1230211025824,1086877299841, A201142 ,6,15,15,20,30,20,15,5,5,15,6,135,402,135,6,1,282,117,117,282,1,6,51,5252,7642,5252,51,6,15,848,758,38763,38763,758,848,15,20,1189,35810,13009,129244,13009,35810,1189,20,15,120,4788,593543,120096,120096, -A201143 ,1,1,3,6,3,7,24,30,16,3,15,80,180,220,155,60,10,31,240,840,1740,2340,2106,1260,480,105,10,63,672,3360,10360,21840,33054,36757,30240,18270,7910,2331,420,35, +A201143 ,1,1,3,6,3,7,24,30,16,3,15,80,180,220,155,60,10,31,240,840,1740,2340,2106,1260,480,105,10,63,672,3360,10360,21840,33054,36757,30240,18270,7910,2331,420,35,127,1792,12096,51520,154280,343392,586488,782944,824670,686840,450296,229656,89208,25480,5040,616,35, A201144 ,1,2,3,5,6,7,8,9,11,13,13,13,14,19,21,21,18,19,22,29,31,31,25,25,26,33,41,43,43,36,32,33,37,46,55,57,57,49,41,41,42,51,61,71,73,73,64,55,50,51,56,67,78,89,91,91,81,71,61,61,62,73,85,97,109,111,111,100,89,78,72,73,79,92,105,118,131,133,133,121,109,97,85,85,86,99,113,127,141,155,157,157,144,131,118,105,98,99,106,121, A201145 ,1,0,1,0,1,0,0,1,2,11,0,1,2,42,320,0,1,6,199,3278,71648,0,1,10,858,29904,1369736,55717584,0,1,22,3881,285124,27876028,2372510658,213773992667,0,1,42,17156,2671052,549405072,98927211122,18677872557034,3437213982024260, A201146 ,1,2,1,6,3,1,6,3,1,1,30,15,5,5,1,30,15,5,5,1,1,210,105,35,35,7,7,1,210,105,35,35,7,7,1,1,210,105,35,35,7,7,1,1,1,210,105,35,35,7,7,1,1,1,1,2310,1155,385,385,77,77,11,11,11,11,1,2310,1155,385,385, @@ -202183,7 +202183,7 @@ A202178 ,1,0,1,0,2,1,0,3,5,1,0,4,17,9,1,0,5,45,50,14,1,0,6,115,218,114,20,1,0,7, A202179 ,1,2,1,3,5,1,4,17,9,1,5,45,50,14,1,6,115,218,114,20,1,7,278,851,709,224,27,1,8,679,3161,3818,1867,398,35,1,9,1666,11507,19042,13113,4276,657,44,1,10,4167,41837,91383,83222,37898,8845,1025,54,1, A202180 ,1,1,3,9,31,115,474,2097,9967,50315,268442,1505463,8840306,54169431, A202181 ,1,1,1,1,3,1,1,7,6,1,1,13,24,10,1,1,25,77,61,15,1,1,43,228,291,130,21,1,1,76,644,1229,856,246,28,1,1,128,1776,4872,4840,2136,427,36,1,1,216,4854,18711,25107,15543,4733,694,45,1,1,354,13184,70858,124167,101538,43120,9577,1071,55,1, -A202182 ,1,2,5,15,49,180,715,3081,14217,69905,363926,1150036,69269925, +A202182 ,1,2,5,15,49,180,715,3081,14217,69905,363926,1996922,1150036,69269925, A202183 ,1,0,1,6,0,1,-12,24,0,1,100,-60,60,0,1,-540,960,-180,120,0,1,4158,-6300,4620,-420,210,0,1,-33600,71904,-35280,15680,-840,336,0,1,310896,-725760,557928,-136080,42840,-1512,504,0,1,-3160080,8723520,-6652800, A202184 ,1,0,1,0,0,1,24,0,0,1,-60,120,0,0,1,240,-360,360,0,0,1,1260,1680,-1260,840,0,0,1,-12096,30240,6720,-3360,1680,0,0,1,105840,-290304,226800,20160,-7560,3024,0,0,1,-388800,2721600,-2358720,1058400,50400,-15120, A202185 ,1,0,1,6,0,1,-24,24,0,1,170,-120,60,0,1,-1320,1380,-360,120,0,1,11816,-14280,6090,-840,210,0,1,-118944,171808,-77280,19600,-1680,336,0,1,1329156,-2249856,1181376,-292320,51660,-3024,504,0,1,-16313760,32093280, @@ -210582,7 +210582,7 @@ A210577 ,12,16,20,21,25,26,27,30,31,34,35,36,38,40,41,42,43,45,46,48,49,50,51,55 A210578 ,6,10,12,15,16,20,21,25,26,27,28,30,31,34,35,36,38,40,41,42,43,45,46,48,49,50,51,55,56,57,60,61,62,63,64,65,66,70,71,72,73,75,76,77,78,80,81,83,84,85,86,87,88,90,91,92,93,94,97,98,99,100,101,102, A210579 ,2,4,16,16,96,96,576,5184,31104,279936,1679616,8398080,58786560,352719360,1763596800,1763596800,14108774400,56435097600,169305292800,169305292800,169305292800,1693052928000,6772211712000,13544423424000,94810963968000,853298675712000,7679688081408000,23039064244224000, A210580 ,2,2,1,2,1,0,2,1,2,2,1,0,1,2,1,2,0,2,1,2,2,2,1,0,1,1,2,1,2,0,0,2,1,2,0,2,2,1,2,2,1,2,1,0,1,1,0,2,1,0,1,1,2,2,1,2,0,0,1,2,1,2,0,2,0,2,1,2,0,2,2,2,1,2,2,1,1,2,1,0,1,1,0,0,2,1,0, -A210581 ,1,2,7,23,68,200,615,1764,5060,14626,41785,117573,332475,933891,2609832, +A210581 ,1,2,7,23,68,200,615,1764,5060,14626,41785,117573,332475,933891,2609832,7278512, A210582 ,13,19,23,26,29,39,46,49,59,69,79,89,103,109,127,133,163,193,197,199,203,206,209,214,218,233,234,236,247,254,258,263,266,274,293,294,296,298,299,309,367,399,406,409,417,428,436,466,468,487,496,499,509,537,599,609,638,657,678,699,709,799,809,899, A210583 ,1,4,1,3,7,1,6,6,9,4,1,1,5,4,0,6,9,5,7,3,0,8,1,8,9,5,2,2,4,7,5,7,7,6,2,9,7,8,8,8,7,2,6,2,2,9,7,1,8,7,9,7,6,1,9,4,3,8,7,2,5,0,6,6,5,3,8,5,1,7,3,8,2,8,2,8,7,9,4,0,4,9,3,8,2,6,1,5,6,7, A210584 ,1,2,3,4,12,13,14,23,24,34,112,113,114,122,123,124,132,133,134,142,143,144,223,224,233,234,243,244,334,344,1112,1113,1114,1122,1123,1124,1132,1133,1134,1142,1143,1144,1213,1214,1222,1223,1224,1232,1233,1234, @@ -212433,8 +212433,8 @@ A212428 ,0,18,37,57,78,100,123,147,172,198,225,253,282,312,343,375,408,442,477,5 A212429 ,1,1,2,4,48,96,1152,2304,276480,552960,6635520,13271040,33443020800,66886041600,802632499200,1605264998400,385263599616000,770527199232000,194172854206464000,388345708412928000,512616335105064960000,1025232670210129920000, A212430 ,384,840,8676,33300,34980,37044,39984,42024,50604,53760,55056,61680,64380,71064,83520,88176,97644,103740,120204,129840,133896,148764,154524,160416,168120,173064,184800,188880,199056,207984,234744,266640,292116,307044,356184, A212431 ,1,1,1,2,1,2,5,3,2,5,15,9,8,5,15,52,31,28,25,15,52,203,121,108,100,90,52,203,877,523,466,425,405,364,203,877,4140,2469,2202,2000,1875,1820,1624,877,4140,21147,12611,11250,10230,9525,9100,8932,7893,4140,21147, -A212432 ,1,1,2,4,16,84,536,3912,32256,297072, -A212433 ,1,1,2,3,13,71,470,3497,29203,271500, +A212432 ,1,1,2,4,16,84,536,3912,32256,297072,3026112,33798720,410826624,5399704320,76317546240,1154312486400,18604815528960,318348065548800,5763746405053440,110086912964367360,2212209395234979840,46657233031296706560,1030510550216174469120, +A212433 ,1,1,2,3,13,71,470,3497,29203,271500,2786711,31322803,382794114,5054810585,71735226535,1088920362030,17607174571553,302143065676513,5484510055766118,104999034898520903,2114467256458136473,44682676397748896010,988663144904696100347, A212434 ,1,1,0,1,1,0,0,1,0,0,0,1,2,0,0,0,0,2,0,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,3,2,0,0,0,0,0, A212435 ,1,-1,-3,11,57,-361,-2763,24611,250737,-2873041,-36581523,512343611,7828053417,-129570724921,-2309644635483,44110959165011,898621108880097,-19450718635716001,-445777636063460643,10784052561125704811,274613643571568682777, A212436 ,9,3,3,0,9,2,0,7,5,5,9,8,2,0,8,5,6,3,5,4,0,4,1,0,1,7,1,4,0,8,7,4,3,5,8,9,0,2,5,8,9,4,7,9,7,9,5,0,1,3,7,6,4,4,6,2,3,8,4,3,7,8,8,4,0,7,9,0,6,7,2,1,6,6,3,3,0,1,2,4,3,4,3,0,1,7,6,7,3,6,3,0,3,2,7,4,3,3,6,3,7,4,8,7,6, @@ -212581,8 +212581,8 @@ A212576 ,0,1,2,7,16,33,52,87,126,181,246,331,422,545,674,831,1006,1213,1428,1691 A212577 ,0,1,4,17,46,89,154,251,374,531,736,979,1268,1621,2024,2485,3026,3629,4302,5071,5914,6839,7876,8999,10216,11561,13004,14553,16246,18049,19970,22051,24254,26587,29096,31739,34524,37501,40624,43901, A212578 ,0,1,4,13,28,55,92,147,216,309,420,561,724,923,1148,1415,1712,2057,2436,2869,3340,3871,4444,5083,5768,6525,7332,8217,9156,10179,11260,12431,13664,14993,16388,17885,19452,21127,22876,24739,26680,28741, A212579 ,0,1,8,31,80,171,308,509,780,1137,1584,2143,2812,3615,4552,5645,6892,8321,9924,11731,13736,15967,18416,21117,24056,27269,30744,34515,38568,42943,47620,52641,57988,63701,69760,76211,83028,90259,97880, -A212580 ,1,1,2,5,20,102,626,4458,36144, -A212581 ,1,1,2,4,17,89,556,4011,32843,301210, +A212580 ,1,1,2,5,20,102,626,4458,36144,328794,3316944,36755520,443828184,5800823880,81591320880,1228888215960,19733475278880,336551479543440,6075437671458000,115733952138747600,2320138519554562560,48827468196234035280,1076310620915575933440, +A212581 ,1,1,2,4,17,89,556,4011,32843,301210,3059625,34104275,413919214,5434093341,76734218273,1159776006262,18681894258591,319512224705645,5782488507020050,110407313135273127,2218005876646727423,46767874983437110354,1032732727339665789981, A212582 ,8,12,18,20,27,28,30,42,44,45,50,52,63,66,68,70,75,76,78,92,98,99,102,105,110,114,116,117,124,125,130,138,147,153,154,164,165,170,171,174,175,182,186,188,190,195,207,230,231,236,238,242,245,246,255,261, A212583 ,66161,534851,3152573, A212584 ,1,1,2,3,5,6,9,12,18,24,34,46,65,89,124,170,236,325,450,620,857,1182,1633,2253,3111,4293,5927,8180,11292,15585,21513,29693,40986,56571,78085,107778,148765,205336,283422,391200,539966,745302,1028725,1419925,1959892, @@ -215664,7 +215664,7 @@ A215659 ,2,3,6,15,715, A215660 ,1,5,7,10,27,38,82,108,207,278,486,644,1052,1404,2182,2880,4293,5654,8182,10692,15076,19604,27108,35000,47547,61020,81713,104236,137781,174800,228498,288360,373174,468566,601020,751036,955642,1188756,1501730,1859944, A215661 ,1,3,14,83,554,3966,29756,230915,1838162,14926346,123157572,1029590062,8702171620,74238432924,638408311800,5528154378467,48161687414498,421848099386322,3712675503776372,32815429463428794,291169073934720940,2592569269501484836, A215662 ,77551,89381,120811,265151,292471,301051,388231,477571,493541,778301,828601,971851,1008451,1123841,1133501,1154221,1163441,1219651,1243741,1265611,1295881,1559281,1668301,1796941,1842041,1929481,2071351,2080711,2119591,2545021, -A215663 ,0,0,0,-3,-5,29,88,96,-79,-1828,-2319,-1476,-5774,-19201,73217,327052,-598256,-3501366,23884333,-4891825,-86432205,-127132665,1033299853,-1658989720, +A215663 ,0,0,0,-3,-5,29,88,96,-79,-1828,-2319,-1476,-5774,-19201,73217,327052,-598255,-3501366,23884333,-4891825,-86432205,-127132665,1033299853,-1658989720,-1834784715,-17149335456,-17535487935,-174760519828, A215664 ,3,0,6,-3,18,-15,57,-63,186,-246,621,-924,2109,-3393,7251,-12288,25146,-44115,87726,-157491,307293,-560199,1079370,-1987890,3798309,-7043040,13382817,-24927429,47191491,-88165104,166501902,-311686803,587670810,-1101562311, A215665 ,0,-3,-3,-9,-6,-24,-9,-66,-3,-189,57,-564,360,-1749,1644,-5607,6681,-18465,25650,-62076,95415,-211878,348321,-731049,1256841,-2541468,4501572,-8881245,16046184,-31145307,57019797,-109482105,202204698,-385466112,716096199, A215666 ,0,-3,6,-9,21,-33,72,-120,249,-432,867,-1545,3033,-5502,10644,-19539,37434,-69261,131841,-245217,464784,-867492,1639569,-3067260,5786199,-10841349,20425857,-38310246,72118920,-135356595,254667006,-478188705,899357613, @@ -216717,18 +216717,18 @@ A216712 ,1,1,4,22,140,514,3444,23790,165932,774610,5767268,42526198,310791884,15 A216713 ,1,1,3,12,27,105,420,1242,5295,22395,72738,323268,1410684,4806675,21881721,97371786,341608239,1579726122,7123796790,25489388367,119184247992,542664427242,1969440159591,9284827569117,42584603672868,156213604844883,741154831030785, A216714 ,0,1,3,6,14,29,60,123,249,503,1012,2032,4075,8164,16347,32719,65471,130986,262030,524137,1048376,2096887,4193953,8388143,16776600,33553616,67107783,134216296,268433559,536868399,1073738495,2147479238,4294961454,8589926853,17179858932,34359724787,68719458745,137438929639,274877875372,549755772064, A216715 ,1,0,1,0,1,1,0,1,4,2,0,1,9,14,5,0,1,16,54,55,18,1, -A216716 ,1,2,6,24,114,6,674,44,2,4714,294,30,2,37754,2272,276,16,2,340404,20006,2236,216,16,2,3412176,193896,20354,2200,156,16,2,37631268,2056012,206696,20738,1908,160,16,2, +A216716 ,1,1,2,6,24,114,6,674,44,2,4714,294,30,2,37754,2272,276,16,2,340404,20006,2236,216,16,2,3412176,193896,20354,2200,156,16,2,37631268,2056012,206696,20738,1908,160,16,2,452745470,23744752,2273420,215024,21136,1616,164,16,2, A216717 ,1,2,6,24,114,674,4714,37754,340404,3412176,37631268, -A216718 ,1,1,5,0,1,20,3,0,1,102,14,3,0,1,627,72,17,3,0,1,4461,468,87,20,3,0,1,36155,3453,582,103,23,3,0,1,328849,28782,4395,704,120,26,3,0,1,3317272,267831,37257,5435,834,138,29,3,0,1, +A216718 ,1,1,1,5,0,1,20,3,0,1,102,14,3,0,1,627,72,17,3,0,1,4461,468,87,20,3,0,1,36155,3453,582,103,23,3,0,1,328849,28782,4395,704,120,26,3,0,1,3317272,267831,37257,5435,834,138,29,3,0,1, A216719 ,2,6,22,2,109,10,1,657,55,7,1,4625,356,54,4,1,37186,2723,362,44,4,1,336336,23300,2837,368,34,4,1,3379058,220997,25408,2967,330,35,4,1,37328103,2308564,249736,26964,3100,292,36,4,1, A216720 ,2,6,22,109,657,4625,37186,336336,3379058,37328103, A216721 ,2,10,55,356,2723,23300,220997,2308564, A216722 ,1,0,0,1,5,0,0,0,1,18,5,0,0,0,1,95,18,6,0,0,0,1,600,84,28,7,0,0,0,1,4307,568,116,40,8,0,0,0,1,35168,4122,810,156,54,9,0,0,0,1,321609,33910,5975,1100,205,70,10,0,0,0,1, A216723 ,0,0,5,18,84,568,4122,33910, -A216724 ,3,3,24,0,100,15,0,5,594,108,18,0,4389,504,119,21,0,7,35744,3520,960,64,32,0,325395,31077,5238,927,207,27,0,9,3288600,288300,42050,8800,900,100,50,0, +A216724 ,1,1,2,3,3,24,0,100,15,0,5,594,108,18,0,4389,504,119,21,0,7,35744,3520,960,64,32,0,325395,31077,5238,927,207,27,0,9,3288600,288300,42050,8800,900,100,50,0,36489992,2946141,409827,59785,9174,1518,319,33,0,11, A216725 ,3,24,100,594,4389,35744,325395,3288600, A216726 ,11,0,0,1,6,0,0,0,0,18,5,0,0,0,1,93,18,9,0,0,0,0,600,84,28,7,0,0,0,1,4320,512,192,0,16,0,0,0,0,35168,4122,810,156,54,9,0,0,0,1,321630,34000,5625,1400,200,0,25,0,0,0,0, -A216727 ,1,6,18,93,600,4320,35168,321630,3257109,36199458,438126986,5736774869,80808984725,1218563192160,19587031966352,334329804180135,6039535339644630,115118210695441900,2308967760171049528,48613722701440862328,1072008447320752890459, +A216727 ,1,6,18,93,600,4320,35168,321630,3257109,36199458,438126986,5736774869, A216728 ,1,1,30,4410,1837080,1660289400,2778905329200,7757931431250000,33536835305077104000,212373276256391153904000,1887114765997607482496160000,22736049196010108202227823840000,361148501823912048339843750000000000,7389146090843722060953495522716592000000,190939093198813987007780146685866111584000000, A216729 ,1,1,140,168000,812011200,11021058048000,339782903171712000,20692894514095964160000,2254632317437500000000000000,408212019690599470111653888000000,115985264066835726820369478446080000000,49409573278650211500346024173376634880000000,30404587048380414443886075636144408738201600000000, A216730 ,22,333,32323,323232,2323232,3232323,22322232,23222322,23223223,33233233,223222322,223222323,232223222,332332332,2232223222,2232223223,2232223232,2322232223,2322322322,2332332332,3322332233,3323323323,22322232223,22322232232,22322232322,22322322232,22322322322,22323222322,23222322232,23223223223, @@ -218036,7 +218036,7 @@ A218031 ,1,1,0,-1,0,1,0,0,0,-1,0,1,0,0,0,-2,0,3,0,-1,0,-3,0,6,0,-4,0,-4,0,12,0,- A218032 ,1,1,1,1,2,3,5,8,13,21,35,57,94,154,254,417,687,1129,1859,3057,5032,8277,13623,22412,36883,60684,99862,164312,270384,444899,732093,1204629,1982228,3261701,5367131,8831505,14532200,23912499,39347839,64746320,106539481,175309363,288469809, A218033 ,1,1,1,0,-1,-2,-2,0,3,6,6,2,-6,-14,-16,-8,11,32,42,26,-18,-74,-108,-82,18,162,268,238,16,-344,-656,-664,-189,694,1570,1792,826,-1294,-3668,-4698,-2866,2110,8364,12034,8960,-2432,-18508,-30134,-26254,-910,39492,73862,73560,19120, A218034 ,1,4,12,24,84,240,732,2184,6564,19680,59052,177144,531444,1594320,4782972,14348904,43046724,129140160,387420492,1162261464,3486784404,10460353200,31381059612,94143178824,282429536484,847288609440,2541865828332,7625597484984,22876792454964, -A218035 ,4,2,5,3,8,5,13,9,22,16,37,27,60,43,93,65,138,94, +A218035 ,4,2,5,3,8,5,13,9,22,16,37,27,60,43,93,65,138,94,197,131,272,177,365,233,478,300,613,379,772,471,957,577,1170,698,1413,835,1688,989,1997,1161,2342,1352,2725,1563,3148,1795,3613,2049,4122,2326,4677,2627,5280,2953, A218036 ,4,6,9,8,12,16,10,15,20,25,12,18,24,30,36,14,21,28,35,42,49,16,24,32,40,48,56,64,18,27,36,45,54,63,72,81,20,30,40,50,60,70,80,90,100,22,33,44,55,66,77,88,99,110,121,24,36,48,60,72,84,96,108,120, A218037 ,100,200,300,400,500,600,700,800,900,1001,1002,1003,1004,1005,1006,1007,1008,1009,1100,1200,1300,1400,1500,1600,1700,1800,1900,2001,2002,2003,2004,2005,2006,2007,2008,2009,2100,2200,2300,2400,2500,2600,2700,2800, A218038 ,235,346,427,506,574,697,785,786,842,874,894,895,898,899,906,985,1086,1191,1211,1339,1342,1345,1406,1527,1546,1639,1735,1758,1765,1851,1866,1882,1937,1954,2118,2230,2233,2263,2298,2495,2505,2510,2554,2666,2678,2726, @@ -221206,7 +221206,7 @@ A221201 ,0,9,10,196,720,6400,34272,242064,1460368,9610000,60194160,387459856,245 A221202 ,0,49,46,9025,58700,2518569,32085376,848789956,14068757692,311366232004,5733258186854,118412678934081,2273843945394922,45702294155340601,892403786998151272,17744284197389113081,348794591561701410272, A221203 ,0,289,212,427716,4984812,1026177156,30374196832,3043294206016,133567666236732,10038761087929924,525060302368983108,34891927404610766400,1974298747702764055248,124298442666315631470276, A221204 ,0,1681,976,20277009,433687328,420771471561,29037336149952,10986555692499984, -A221205 ,0,2,5,13,35,98,280,815,2400,7131,21332,64172,193928,588273,1790235,5463018,16710426,51220671,157289397,483795067,1490241458,4596440959,14193917243,43878472986,135777758736, +A221205 ,0,2,5,13,35,98,280,815,2400,7131,21332,64172,193928,588273,1790235,5463018,16710426,51220671,157289397,483795067,1490241458,4596440959,14193917243,43878472986,135777758736,420530985064,1303551591182,4043817556078,12553456467283, A221206 ,2,5,12,33,93,269,788,2330,6947,20840,62834,190240,577990,1761279,5380796,16475256,50543777,155330201,478096270,1473591670,4547602623,14050145290,43453847676,134519899690,416794664987,1292425391245,4010608533780,12454122695249, A221207 ,2,17,2593,5308417,26214401,57802753,584652423169,5566277615617,24807731101697,2128654511374337,114923510727115685920505857,626707144888223764167681638401,28901765777295687591430290881352276511750619137, A221208 ,1,5,7,0,7,9,6,3,2,6,7,7,1,7,9,6,0,4,6,5,0,5,8,4,0,8,9,4,2,4,6,4,9,5,8,5,4,7,5,0,6,5,9,3,1,8,3,8,7,5,3,2,5,9,5,9,8,0,2,2,7,5,8,2,3,5,4,7,7,6,9,6,2,7,6,6,9,2,6,3,9,1,0,7,0,4,9,6,6,6,1,7,9,3,8,6,3,4,7,3,4,0,5,0,3, @@ -223168,7 +223168,7 @@ A223163 ,139,3886,540154,43640576,6578580741,713054874385,107232700247240,129384 A223164 ,568,40380,22935840,6578580741,4148524583552,1726991116346936,1085230897885735392,515916486281448877215,317979410833372586944592, A223165 ,4,10,10,40,50,40,139,500,500,139,568,3886,20000,3886,568,2134,40380,540154,540154,40380,2134,8724,359428,22935840,43640576,22935840,359428,8724,33639,3723640,767019352,6578580741,6578580741,767019352,3723640, A223166 ,4,28,175,1244,9628,78625,664916,5762207,50849233,455055612,4118066398,37607950279,346065645808,3204942065690,29844571475285,279238344248555,2623557165610820,24739954309690413,234057667376222380,2220819602783663481, -A223167 ,0,3,7,15,36,127,337,752,1699,3101,11585,38261,108969,314888,1052616,3214630,7956587,21949553,99877773,222744641,597394252,1932355206,7250186214,17146907276, +A223167 ,0,3,7,15,36,127,337,752,1699,3101,11585,38261,108969,314888,1052616,3214630,7956587,21949553,99877773,222744641,597394252,1932355206,7250186214,17146907276,55160980937,155891678119,508666658004,1427745660372, A223168 ,1,1,2,3,2,3,12,4,15,20,4,15,90,60,8,105,210,84,8,105,840,840,224,16,945,2520,1512,288,16,945,9450,12600,5040,720,32,10395,34650,27720,7920,880,32,10395,124740,207900,110880,23760,2112,64,135135,540540,540540,205920,34320,2496,64, A223169 ,1,1,3,4,3,4,24,9,28,42,9,28,252,189,27,280,630,270,27,280,3360,3780,1080,81,3640,10920,7020,1404,81,3640,54600,81900,35100,5265,243,58240,218400,187200,56160,6480,243,58240,1048320,1965600, A223170 ,1,1,4,5,4,5,40,16,45,72,16,45,540,432,64,585,1404,624,64,585,9360,11232,3328,256,9945,31824,21216,4352,256,9945,198900,318240,141440,21760,1024,208845,835380,742560,228480,26880,1024,208845,5012280,10024560,5940480,1370880,129024,4096, @@ -223937,7 +223937,7 @@ A223932 ,239,10511,142177,1065625,5773556,26250443,108796955,427868778,162337460 A223933 ,3,9,9,22,54,22,46,218,218,46,86,698,1116,698,86,148,1915,4498,4498,1915,148,239,4690,15791,21334,15791,4690,239,367,10511,49646,86439,86439,49646,10511,367,541,21919,142177,316136,386495,316136,142177,21919,541, A223934 ,2,2,2,3,2,2,7,2,17,7,5,3,3,2,109,3,101,19,229,5,2,23,23,17,107,269,2,29,2,31,37,197,107,73,37,7,59,233,3,3,7,43,43,5,2,47,269,61,43,3,53,13,3,643,13,5,151,59,2, A223935 ,48497,48907,493747,578453,1223777,1249363,1933363,3304607,5160217,5765083,6022087,6205937,7740127,7757447,7862843,8173537,8938627,11989177,13789033,17649223,18142693,18829117,20006813,20601593,23938867,24448063,24478043, -A223936 ,2,97,3877,4943,50741,1487159,3356117,131047091863,449627893189,906460844407,61168531626487,141835115384731, +A223936 ,2,97,3877,4943,50741,1487159,3356117,131047091863,449627893189,906460844407,61168531626487,141835115384731,749668095960389, A223937 ,8,4696450,7024453131396,17761740387522,155912686127038650,87598780898450312031408,2147216863131055036604400,2908950240914054780101441371333254159676520,384422969812280951687876430655304031054262132,6187047308209705064673104196645071104957480508, A223938 ,2,3,4,5,6,13,14,17,30,40,41,51,54,73,121,137,364,446,485,638,925,1382,1478,2211,2726,5581,5678,6424,8524,10649,15990,17174,18685,18889, A223939 ,8,187858,13080918308,26871014202,29988975981350,773478679579793136,8923646993118036400,545048444084018901462938808502760,22049455928935679528789623492181708,180819643079146957138056211903672348, @@ -224067,7 +224067,7 @@ A224062 ,610,59792,1557606,21167501,200974242,1573171210,11060805360,72498474377 A224063 ,1163,180821,6643979,114643788,1274747540,11060805360,83942450048,591725806925,3973992584299,25579886531225,157381574935619,920939113739591, A224064 ,4,16,16,50,160,50,130,984,984,130,296,4580,8854,4580,296,610,17723,58814,58814,17723,610,1163,59792,324702,506513,324702,59792,1163,2083,180821,1557606,3509115,3509115,1557606,180821,2083,3544,499357,6643979, A224065 ,1,2,1,4,1,2,8,3,2,6,19,5,4,6,21,53,14,10,12,21,112,209,39,24,24,42,112,853,1253,170,72,72,84,224,853,11117,13599,1083,322,210,231,448,1706,11117,261080,288267,12516,2112,948,735,1232,3412,22234,261080,11716571, -A224066 ,2,7,28,114,472,1988,8480,36474,157720,684404, +A224066 ,1,2,7,28,114,472,1988,8480,36474,157720,684404,2976994,12971206,56587676,247097170,1079749976,4720841314,20649303934,90353041092,395459463960,1731251197242,7580521689750,33197447406682,145400339328566,636901149067534,2790082285204966, A224067 ,1,5,5,13,9,5,13,5,9,5,17,9,13,13,5,9,21,9,9,17,0,5,9,5,13,13,13,13,17,5,9,9,0,9,9,13,13,5,17,17,17,17,17,17,21,9,5,5,25,13,5,0,25,13,13,17,9,5,13,9,33,9,9,0,0,21,9,33,21,9,13,5,13,9,17, A224068 ,0,0,0,1536,122880,10813440,1348730880,261070258176,81787921367040,42364317235937280,36686317873382031360,53408511909378681470976,131046345314766385022238720,542471805171085602081503969280,3789399960645715708906355231293440, A224069 ,1,-1,1,3,-4,1,-25,36,-12,1,543,-800,288,-32,1,-29281,43440,-16000,1920,-80,1,3781503,-5621952,2085120,-256000,11520,-192,1,-1138779265,1694113344,-629658624,77844480,-3584000,64512,-448,1,783702329343,-1166109967360,433693016064,-53730869248,2491023360,-45875200,344064,-1024,1, @@ -224244,7 +224244,7 @@ A224239 ,1,2,3,13,77,1494,56978,4495023,669203528,187623057932,98793520541768,97 A224240 ,1,8,34,142,596,2530,10842,46766,202594,880210, A224241 ,0,3,130456,342096,1226720,291575011,379894587,523040160,15216609776,136622606520, A224242 ,0,4,24,44,112,480,1984,8064,32512,130560,263160,278828,340028,523264,2095104,8384512,25239472,32490836,33546240,134201344,536838144,2147418112, -A224243 ,4,22,108,490,2164,9474,41374,180614,788676, +A224243 ,4,22,108,490,2164,9474,41374,180614,788676,3445462,15059202,65847946,288033326,1260313930,5516051890,24147542122,105729680608,463006798298,2027839420598,8882324416302,38909820194506,170461077652718,746826223566214,3272185833672630, A224244 ,1,1,2,2,9,17,63,261,1088,4374,24583,133861,740303,4514824,29945555,205127474,1464586617,10971233035,86410874373,708423380237,6026435657580,53117555943951,485246803230148,4589013046619689,44819208415713035,451184268041122808, A224245 ,1,1,5,14,89,474,3499,27040,253161,2426300,27596051,323960856,4277055925,59041067344,898062119655,14172430400864,243919993681649,4347177953716080,83224487266425811,1653277176082392040,34961357216796300381,763702067489722288136, A224246 ,1,1,3,8,41,194,1309,9022,79057,689588,7462601,80632826,1021071193,13120783948,192752054377,2848878770774,47617784530529,800500650553472,14910497765819137,281133366288649138,5803224036600349801,120681837753825004796,2734647516979262677673,62424209302423879016558,1535507329367939907583057, @@ -228725,7 +228725,7 @@ A228720 ,1,2,2,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,8,8,9,9,9,9,10,10,10,10,11,11 A228721 ,2,1,9,9,1,1,4,8,5,7,5,1,2,8,5,5,2,6,6,9,2,3,8,5,0,3,6,8,2,9,5,6,5,2,0,1,8,9,3,8,0,1,8,5,7,9,5,6,2,5,7,4,0,7,4,6,8,2,4,6,1,2,1,4,6,1,5,4,7,1,4,8,4,4,0,0,3,4,6,2,9,9,0,3,9,6,2,4,3,7,7,7,3,9,4,8,1,9,4,7,5,8,7,5, A228722 ,0,1,2,3,4,5,6,7,8,9,10,10,12,12,14,14,16,16,18,18,18,21,21,23,23,25,25,27,27,29,30,30,32,32,34,34,36,36,38,38,38,41,41,43,43,45,45,47,47,49,50,50,52,52,54,54,56,56,58,58,58,61,61,63,63,65,65, A228723 ,0,1,2,3,4,5,6,7,8,9,10,12,12,14,14,16,16,18,18,21,21,21,23,23,25,25,27,27,29,29,30,32,32,34,34,36,36,38,38,41,41,41,43,43,45,45,47,47,49,49,50,52,52,54,54,56,56,58,58,61,61,61,63,63,65,65,67, -A228724 ,0,0,0,3,7,-23,-73,-57,186,2126,3161,3885,12731,39462,-13815,-151907,1117163,5045162,-19274680,18700047,127912738,252060543,-656184524,2799754423,5292148929,27646015077, +A228724 ,0,0,0,3,7,-23,-73,-57,186,2126,3161,3885,12731,39462,-13815,-151907,1117163,5045162,-19274680,18700047,127912738,252060543,-656184524,2799754423,5292148929,27646015077,49454963317,271968742992, A228725 ,6,3,5,1,8,1,4,2,2,7,3,0,7,3,9,0,8,5,0,1,1,8,7,2,1,0,5,7,7,0,2,8,9,4,9,9,5,5,8,8,2,9,7,3,5,1,5,0,0,8,9,4,2,6,4,6,3,2,2,3,6,2,2,1,8,9,1,3,0,6,7,4,3,7,3,6,7,9,6,9,3,2,7,1, A228726 ,1,1,1,2,1,1,2,1,2,9,1,1,3,1,3,9,1,5,9,28,1,1,3,1,3,10,1,5,11,28,1,5,12,28, A228727 ,7,13,23,131,179,229,283,337,107,641,317,163,643,193,1949,523,257,2053,1021,1933,2477,773,811,401,929,6379,457,6197,5701,1747,547,1949,1291,2083,647,661,2341,709,1579,2549,2633,1721,4909,2851,857,877,5441,4441, @@ -229756,7 +229756,7 @@ A229751 ,3,422,2347,6561,15075,32548,69198,147376,315786,680124,1468934,3174760, A229752 ,12,1840,6809,15075,29776,57677,113330,228657,473562,1000381,2139866,4607729,9947906,21481485,46333458,99752209,214296842,459341309,982407146,2096608977,4465367730,9492005773,20140323170,42660619313, A229753 ,50,6456,17404,32548,57677,102271,186396,354509,704530,1450667,3059672,6544921,14099310,30453719,65785684,141933029,305639306,656732227,1407958032,3011810033,6428914918,13695082991,29117602316,61795491133, A229754 ,210,20032,41872,69198,113330,186396,314700,557578,1046550,2070144,4258696,8984046,19221426,41402836,89392212,192991026,416096878,895389192,1922585088,4119014998,8805491466,18784661532,39993300364, -A229755 ,0,0,0,1,3,1,3,60,60,3,12,422,598,422,12,50,1840,2347,2347,1840,50,210,6456,6809,6561,6809,6456,210,861,20032,17404,15075,15075,17404,20032,861,3416,57440,41872,32548,29776,32548,41872,57440,3416,13140,155904, +A229755 ,0,0,0,1,3,1,3,60,60,3,12,422,598,422,12,50,1840,2347,2347,1840,50,210,6456,6809,6561,6809,6456,210,861,20032,17404,15075,15075,17404,20032,861,3416,57440,41872,32548,29776,32548,41872,57440,3416,13140,155904,97565,69198,57677,57677,69198,97565,155904,13140, A229756 ,2,2,4,2,12,6,2,32,28,8,2,82,110,48,10,2,206,408,224,72,12,2,516,1454,968,378,100,14,2,1294,5048,4016,1784,578,132,16,2,3252,17244,16202,7980,2924,830,168,18,2,8194,58290,64058,34570,13810,4464,1140,208,20, A229757 ,1,2,3,4,5,7,8,9,11,12,15,17,20,21,23,29,36,39,41,44,84, A229758 ,0,0,0,0,0,0,0,0,9,9,0,9,9,18,18,0,9,9,18,27,27,0,9,18,18,27,36,36,0,9,18,27,36,36,45,54,0,9,18,27,36,45,54,63,72,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,9,9,9,18,0,0,0, @@ -232849,7 +232849,7 @@ A232844 ,988,500516,179149960,32297599754,10331973738132,3491302545600310,101368 A232845 ,0,1,0,-2,-4,-4,4,44,236,1300,8276,61484,523804,5024036,53478980,624890236,7946278604,109195935284,1612048228276,25439293045580,427278358483196,7609502950269124,143217213477235364,2840152418116021916,59189357288576068780, A232846 ,1,2,4,6,3,8,9,10,12,5,14,15,16,18,20,21,7,22,24,25,11,26,27,28,30,32,33,34,35,13,36,38,39,40,42,44,45,46,48,17,49,50,51,52,54,55,56,57,58,60,19,62,63,64,65,66,68,69,70,72,74,75,76,23,77,78,80,81, A232847 ,1,22,17310,20802,23110,24262,25995,26542,29427,31735,33835,38137,39287,39859,40967,13595040,14285160,15129504,15378336,15834528,15912936,16327008,16555752,16897896,16908264,17054388,17145432,17749044,18013428,20239146,20713482,21265578, -A232848 ,2,59,97,127,12517,54581,83921,89273,1396411,2562719,4952183,29201281,35562101,47567557,111213143,184201627,1172476337,7309217299,287609314877, +A232848 ,2,59,97,127,12517,54581,83921,89273,1396411,2562719,4952183,29201281,35562101,47567557,111213143,184201627,1172476337,7309217299,287609314877,5173838081669, A232849 ,29,112,356,960,2307,5078,10265,19632,35694,62317,104971,170736,269815,415810,625923,923930,1339958,1911980,2686162,3721083,5089904,6879942,9196707,12169730,15946892,20711810,26672412,34082534,43239305,54478386, A232850 ,112,1169,10020,69096,395858,1977447,8733769,35038672,129401308,446455554,1449355171,4445398493,12943299647,35960503702,95710408560,245007196179, A232851 ,356,10020,250841,5049004,81165760,1100553095,12972830143,135388726387,1274013956481,10999910504747, @@ -233556,7 +233556,7 @@ A233551 ,419,659,1769,2609,2651,2981, A233552 ,361,919,1681,1849,2419,2629,3301,5209,5539,5581,6421,7771,8551,9109,9871,10039,10609,10819,11491,13399,13729,13771,14611,15661,15961,16741,17299,18061,18229,18799,19009,19681,21589,21919,21961,22801,24151,24931,25489, A233553 ,53542288800,59509850400,59999219280,60074174160,61695597600,67154527440,68763895200,69626138400,71957405520,72598125600,67509842400,72747675000,73605331800,75710489400,78953074200,87113426400,88410722400,89398663200,96058282320,96369633360, A233554 ,1,3,6,15,19,22,207,542,2374,10579,17726,43182, -A233555 ,2,5724469,10534369,16784723,33330911,189781037,8418091991,58605633953,109388266843,448366797199,1056238372873,24603683667221,86982253895059,100316149840769, +A233555 ,2,5724469,10534369,16784723,33330911,189781037,8418091991,58605633953,109388266843,448366797199,1056238372873,24603683667221,86982253895059,100316149840769,164029709175817, A233556 ,1,2,4,6,10,12,116,147,324,2070,2902,3663,4994,11531,13554,22421,558905,1242890,1655487,2021278,2878297,4790338,7061177,16875261,21813642,24563860,58919808,69676102,85356321,92610708,205600836,338430087,343675600,1176903461,1698127637,4657254361,17421656611, A233557 ,2,3,7,13,29,37,641,853,2143,18059,26417,34283,48539,122597,146539,254831,8304757,19534651,26528699,32820527,47825363,82199141,124088207,312168289,409464961,464174839,1167927947,1393486043,1725361103,1879982849,4346448019,7331901341,7451088943,27036461983,39662532977,113692593373,449281234057, A233558 ,1,2,2,3,0,3,4,1,1,4,5,2,3,2,5,6,3,5,5,3,6,7,4,7,0,7,4,7,8,5,0,2,2,0,5,8,9,6,1,4,5,4,1,6,9,10,7,2,6,8,8,6,2,7,10,11,8,3,8,11,0,11,8,3,8,11,12,9,4,10,1,3,3,1,10,4,9,12,13,10,5,12,3,6,7,6,3,12,5,10,13,14,11,6,14,5,9,11,11,9,5,14, @@ -233768,7 +233768,7 @@ A233763 ,0,1,2,2,4,2,4,5,8,2,4,6,12,6,8,11,16,2,4,6,12,14,16,18,24,10,8,14,28,14 A233764 ,0,1,3,5,9,11,15,21,29,31,35,41,51,61,69,83,99,101,105,111,121,131,141,159,183,201,209,223,245,271,287,317,349,351,355,361,371,381,391,409,433,451,461,479,507,545,575,625,679,713,721,735,757,783, A233765 ,0,1,2,2,4,2,4,6,8,2,4,6,10,10,8,14,16,2,4,6,10,10,10,18,24,18,8,14,22,26,16,30,32,2,4,6,10,10,10,18,24,18,10,18,28,38,30,50,54,34,8,14,22,26,22,42,56,50,16,30,46,58,32,62,64,2,4,6,10,10, A233766 ,2,9,6,7,2,9,3,7,9,7,2,9,3,2,7,6,7,9,3,2,7,9,6,2,2,9,6,7,2,9,3,7,9,7,2,9,3,2,7,6,7,9,3,2,7,9,6,2,2,9,6,7,2,9,3,7,9,7,2,9,3,2,7,6,7,9,3,2,7,9,6,2,2,9,6,7,2,9,3,7,9,7,2,9,3,2,7,6,7,9,3,2,7,9,6,2, -A233767 ,2,97,3203,5059,6469,8081,35051,39719,42209,109049,154591,523297,6621827,20059771,258196441,731584957,1427109029,1899496631,8428550519,50790885203,7475902096387,22626378502139,38855796912367, +A233767 ,2,97,3203,5059,6469,8081,35051,39719,42209,109049,154591,523297,6621827,20059771,258196441,731584957,1427109029,1899496631,8428550519,50790885203,7475902096387,22626378502139,38855796912367,162082298018497, A233768 ,1,2,4,5,6,10,12,53,226,361,400,620,935,1037,3832,3960,4956,7222,12183,13615,24437,80849,450827,680044,7388490,23503578,27723887,52048944,85860268,126177976,606788411,613917734,2693408896,3856356590,5167833600,5810025660,9197308014,10805855623,19751202045,19781610414,27240188169,30742119459, A233769 ,2,3,7,11,13,29,37,241,1429,2437,2741,4583,7333,8269,36073,37397,48121,73037,130261,147289,280037,1032259,6594787,10249573,130193849,443038781,527454197,1024907927,1736090963,2602512709,13517865841,13684220029,64209198247,93380481511,126718347859,143176188581,231059158871,273286859737,511940464493,512760363097,715173864563,810985955573, A233770 ,2,7,6,8,5,7,6,2,4,8,6,2,5,7,6,5,3,8,9,3,6,4,3,7,2,5,0,8,2,3,5,7,3,3,9,6,3,1,7,9,7,9,7,3,7,5,2,7,5,1,3,7,3,9,1,5,9,7,7,3,1,6,4,3,5,4,8,5,0,1,4,1,8,0,8,2,9,7,1,2,4,3,1,1,8,9,8, @@ -245301,7 +245301,7 @@ A245296 ,1,0,4,4,2,5,7,9,0,9,3,0,9,7,9,5,1,4,3,4,4,5,3,6,9,6,1,7,1,5,5,7,0,2,5,8 A245297 ,1,1,1,6,6,4,5,9,7,1,1,0,3,8,0,9,8,8,2,6,4,5,7,1,5,4,5,1,0,7,3,1,5,3,1,7,8,9,6,6,5,1,2,0,0,6,6,9,7,4,0,4,0,1,6,4,5,6,3,4,2,1,6,0,6,0,8,1,7,9,5,2,8,6,4,8,5,2,2,2,9,6,8,4,6,4,6,0,0,2,6,2,2,4,5,4,9,9,1,2,3, A245298 ,1,1,1,9,4,2,3,7,3,1,7,3,5,1,0,7,6,1,1,6,2,9,7,1,1,0,8,2,0,8,1,2,6,1,0,4,1,2,4,9,9,8,5,5,6,7,0,5,8,6,0,7,0,8,6,5,2,0,9,8,2,7,9,9,1,3,1,5,4,2,2,9,2,2,9,6,9,0,4,5,1,5,2,5,2,6,2,8,6,5,9,6,1,3,0,8,5,2,2,9,2,9,5,2, A245299 ,1,4,9,6,2,7,7,8,6,9,7,3,8,8,4,4,7,3,8,5,0,8,1,0,2,1,3,9,3,2,9,7,8,2,5,5,3,3,1,7,0,0,6,2,4,7,0,9,3,2,5,4,1,0,3,0,8,7,5,6,8,6,3,9,5,0,3,6,8,0,0,9,7,2,0,4,5,0,0,4,3,3,7,4,5,7,0,3,5,8,1,0,9,0,8,3,9,6,3,9,6,9,2,0,9, -A245300 ,0,1,4,3,7,12,6,11,17,24,10,16,23,31,40,15,22,30,39,49,60,21,29,38,48,59,71,84,28,37,47,58,70,83,97,112,36,46,57,69,82,96,111,127,144,45,56,68,81,95,110,126,143,161,180,55,67,80,94,109,125,142,160, +A245300 ,0,1,4,3,7,12,6,11,17,24,10,16,23,31,40,15,22,30,39,49,60,21,29,38,48,59,71,84,28,37,47,58,70,83,97,112,36,46,57,69,82,96,111,127,144,45,56,68,81,95,110,126,143,161,180,55,67,80,94,109,125,142,160,179,199,220, A245301 ,0,5,22,58,120,215,350,532,768,1065,1430,1870,2392,3003,3710,4520,5440,6477,7638,8930,10360,11935,13662,15548,17600,19825,22230,24822,27608,30595,33790,37200,40832,44693,48790,53130,57720,62567,67678,73060,78720,84665, A245302 ,3,5,9,13,19,25,32,39,48,57,67,78,90,103,116,130,145,161,178,195,213,232,252,273,294,317,340,364,388,414,440,467,495,524,554,584,615,647,680,714,748,783,820,856,894,933,972,1012,1053,1095,1137,1181,1225,1270,1316,1362, A245303 ,2,3,5,7,8,11,12,13,16,17,18,19,20,23,24,27,28,29,31,32,37,40,41,43,44,45,47,48,50,52,53,54,56,59,61,63,64,67,68,71,72,73,75,76,79,80,81,83,88,89,92,96,97,98,99,101,103,104,107,108,109,112,113,116,117,124,125,127,128,131, @@ -261175,7 +261175,7 @@ A261170 ,2,3,4,5,7,9,17,20,31,38,43,64,64,70,91,93,102,117,120,123,127,127,127,1 A261171 ,2,3,4,4,5,6,9,10,13,16,16,21,23,23,29,28,38,39,33,34,41,40,37,37,41,42,44,64,77,82,75,83,83,87,104,104,86,94, A261172 ,2,3,2,4,3,6,9,10,11,16,12,14,22,18,25,20,2,6,18,14,7,40,31,25,23,20,22,62,65,68,29,23,38,26,104,6,34,52, A261173 ,11,0,101,0,0,0,0,10111,0,0,0,101111,0,0,0,0,0,0,1011001,0,0,0,11110111,0,10011101,10010101,0,0,0,101111111,101101111,0,100100111,101001001,0,0,0,0,1010111111,1001110111,0,1000011011,1000001011,0,0, -A261174 ,1,2,9,30,90,248,650,1560,3560,7680,15786,31076,58905,107768,191180,329664,554038,909558,1461655,2302950,3563482,5422392,8124040,11997648,17482295,25156872, +A261174 ,1,2,9,30,90,248,650,1560,3560,7680,15786,31076,58905,107768,191180,329664,554038,909558,1461655,2302950,3563482,5422392,8124040,11997648,17482295,25156872,35779092,50330364,70072640,96615760,131999058,178786960,240186182,320179470, A261175 ,1,1,1,3,5,8,13,19,26,35,45,56,69,84,100,117,137,158,180,204,231,258,288,319,352,387,424,463,503,546,590,636,684,734,786,840,897,955,1015,1077,1141,1207,1275,1345,1418,1492,1568,1647,1728,1811,1896,1983,2072,2163,2257,2352, A261176 ,0,9,126,802,3158,10040,25464,58837,123422,238203,429467,733923,1200319,1912928,2945116,4369570,6338678,9053512,12622814,17359779,23503546,31347788,41161317, A261177 ,0,10,180,1392,6149,21350,57192,137617,298864,593378,1101739,1936342,3216080, @@ -262699,7 +262699,7 @@ A262694 ,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7 A262695 ,0,4,0,3,2,2,0,1,1,24,3,23,0,1,2,22,2,21,0,1,1,20,0,19,1,1,3,18,1,17,0,16,2,1,0,15,1,1,10,14,1,2,0,1,2,13,0,12,9,1,1,11,1,10,0,1,1,9,0,8,8,7,0,1,1,6,1,1,1,5,0,4,7,3,1,1,13,2,0,1,2,12,4,11,6,1,3,10,1,5,0,9,2,4,0,8,5,7,1,3,1,2,0,1,4,6,0,5,1,1,2,4,1,1,0,3,1,1,0,2,3, A262696 ,0,2,0,1,1,1,0,1,1,13,1,13,0,1,1,11,1,11,0,1,1,10,0,10,1,1,1,10,1,9,0,8,1,1,0,8,1,1,6,7,1,1,0,1,1,6,0,6,5,1,1,6,1,5,0,1,1,5,0,3,4,3,0,1,1,3,1,1,1,2,0,1,4,1,1,1,7,1,0,1,1,7,1,6,4,1,1,6,1,1,0,5,1,1,0,4,4,4,1,1,1,1,0,1,3,4,0,4,1,1,1,3,1,1,0,1,1,1,0,1,3,0,4,1, A262697 ,0,6,0,3,2,2,0,1,1,38,3,37,0,1,2,33,2,32,0,1,1,30,0,29,1,1,3,28,1,26,0,24,2,1,0,23,1,1,16,21,1,2,0,1,2,18,0,17,13,1,1,16,1,14,0,1,1,13,0,10,11,9,0,1,1,8,1,1,1,6,0,4,10,3,1,1,23,2,0,1,2,22,4,20,9,1,3,19,1,5,0,13,2,4,0,11,8,10,1,3,1,2,0,1,6,9,0,8,1,1,2,6,1,1,0,3,1,1,0,2,5,0,12,1, -A262698 ,1,2,4,24,41,51,88,95,99,179,183,663,782,829,1339,2054,2816,7918,8474,13264,16664,27415,39514,48606,51145, +A262698 ,1,2,4,24,41,51,88,95,99,179,183,663,782,829,1339,2054,2816,7918,8474,13264,16664,27415,39514,48606,51145,187222,200906,261980,353209,375162,396967,400469, A262699 ,1,2,2,3,4,4,8,8,16,16,32,32,64,64,128,128,256,256,512,512,1024,1024,2048,2048,4096,4096,8192,8192,16384,16384,32768,32768,65536,65536,131072,131072,262144,262144,524288,524288,1048576,1048576, A262700 ,5,19,31,151,691,1181,1489,1511,1601,2579,3037,7297,9661,10993,11699,20407,25657,33937,65099,96419,102911,133157,251789,411841,417271,670729,808211,1179907,1671277, A262701 ,9,6,3,9,7,2,3,8,4,4,0,2,1,9,4,1,0,5,2,7,1,1,4,5,9,2,6,2,3,6,4,8,2,3,1,5,6,2,6,7,2,8,9,5,2,5,8,2,1,9,0,6,4,5,6,1,0,9,5,7,9,7,0,0,5,6,4,0,3,5,6,4,7,8,6,3,3,7,0,3,9,0,7,2,2,8,7,3,1,6,5,0,0,8,7,9,6,7,8,8,8,3,1,1,5, @@ -262723,7 +262723,7 @@ A262718 ,0,0,2,18,194,2550,39962,730002,15257090,359376750,9424209002,2723850294 A262719 ,1,6,21,55,110,203,357,544,808,1177,1670,2215,2865,3599,4558,5621,6637,8041,9769,11413,13394,15593,17683,20317,23249,26063,29506,33287,37461,41692,46306,50707,55667,61723,67547,73939,80767,87941,94913,101613,111422, A262720 ,1,2,8,22,68,198,586,1718,5047,14808,43470,127636,374957,1102078,3241082,9537070,28079357,82718212,243809138,718994032,2121378272,6262089436,18493519148,54639914652,161503493023,477558890378,1412658185320, A262721 ,1,11,14,1215,1811,111211,1419,2215,1120,1116,1811,111211,1419,2215,1120,1116,1811,111211,1419,2215,1120,1116,1811,111211,1419,2215,1120,1116,1811,111211,1419,2215,1120,1116,1811,111211,1419,2215,1120,1116, -A262722 ,1,41,56,74,103,157,384,491,537,868,1490,1710, +A262722 ,1,41,56,74,103,157,384,491,537,868,1490,1710,4322,4523,4877,4942,5147,5407,7564,17576,67722, A262723 ,105,231,627,897,935,1581,1729,2465,2967,4123,4301,4715,5487,7685,7881,9717,10707,11339,14993,16377,17353,20213,20915,23779,25327,26331,26765,29341,29607,32021,33335,40587,40807,42911,48635,49321,54739,55581,55637,59563,60297,63017, A262724 ,1,3,10,28,36,91,1081,2278,2926,8001,46665,5639761,10911456,166066200,341532180,3137785371,1647882316985625,875366737297292691171,465198187808352499674075441, A262725 ,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1, @@ -263617,7 +263617,7 @@ A263612 ,0,1,4,121,10201,12321,114411,1002001,1234321,100020001,102030201,121242 A263613 ,0,1,1331,1030301,1003003001,1000300030001,1000030000300001,1000003000003000001,1000000300000030000001,1000000030000000300000001,1000000003000000003000000001,1000000000300000000030000000001,1000000000030000000000300000000001,1000000000003000000000003000000000001, A263614 ,0,0,1,2,2,4,4,8,8,16,15,30,26,52,42,84,64,128,93,186,130,260,176,352,232,464,299,598,378,756,470,940,576,1152,697,1394,834,1668,988,1976,1160,2320,1351,2702,1562,3124,1794,3588,2048,4096,2325,4650,2626,5252,2952,5904,3304,6608,3683,7366, A263615 ,2,4,8,12,20,28,44,59,89,115,167,209,293,357,485,578,764,894,1154,1330,1682,1914,2378,2677,3275,3653,4409,4879,5819,6395,7547,8244,9638,10472,12140,13128,15104,16264,18584,19935,22637,24199,27323,29117,32705,34753,38849,41174,45824,48450, -A263616 ,4,3,8,5,11,6,19,14,25,18, +A263616 ,4,3,8,5,11,6,19,14,25,18,49, A263617 ,4,7,15,20,31,37,56,70,95,113, A263618 ,4,0,3,0,7,1,5,0,11,0,5,1,19,0,13,1,25,0,18,0, A263619 ,4,4,7,7,14,15,20,20,31,31,36,37,56,56,69,70,95,95,113,113, @@ -276134,7 +276134,7 @@ A276129 ,1,3,6,13,27,54,106,204,387,725,1344,2469,4500,8145,14652,26213,46665,82 A276130 ,1,1,1,1,1,4,10,55,649,38881,6414706,24978826228,2913605221297249,112139525368095766797655,8403341152380185679389503620974065,146904111947501701959735285821948223340424963459227, A276131 ,1,1,1,1,1,10,136,20251,413100001,170660037240000001,2912484838126132813026335712191641,62371823031725048177115183368983888882661870237372850050710016335, A276132 ,2,3,5,7,11,13,17,31,37,71,73,79,97,131,151,157,179,337,353,359,373,727,733,739,751,757,929,937,953,971,1733,1979,3319,3371,3373,3719,3733,7177,7717,9133,9173,9791, -A276133 ,0,2,1,4,2,5,1,3,6,1,8,4,1,3,7,6,2,8,3,3,4,5,6,9,3,1,4,2,5,11,8,6,1,10,1,6,7,3,6,6,2,8,6,3,1,12,10,6,2,4,4,4,8,11,4,6,1,7,4,1,11,13,3,3,3,15,7,8,2,6,4,7,7,5,3,10,7,5,7, +A276133 ,0,2,1,4,2,5,1,3,6,1,8,4,1,3,7,5,2,8,3,3,4,5,6,9,3,1,4,2,5,11,8,6,1,10,1,6,7,3,6,6,2,8,6,3,1,12,10,6,2,4,4,4,8,11,4,6,1,7,4,1,11,13,3,3,3,15,7,8,2,6,4,7,7,5,3,10,7,5,7, A276134 ,0,1,1,1,1,1,2,2,2,2,1,2,2,2,2,1,2,2,2,2,1,2,2,2,2,1,2,2,2,2,2,3,3,3,3,2,3,3,3,3,2,3,3,3,3,2,3,3,3,3,1,2,2,2,2,2,3,3,3,3,2,3,3,3,3,2,3,3,3,3,2,3,3,3,3,1,2,2,2,2,2,3,3,3,3,2,3,3,3,3,2,3,3,3,3,2,3,3,3,3,1,2,2,2,2,2,3,3,3,3,2,3,3,3,3,2,3,3,3,3,2, A276135 ,0,0,1,20,51,2604,6665,720600,1864135,348678440,909090909,261535698060,685853880635,281241170407092,740800455037201,410525522232055664,1085102592571150095,781282469559318055056,2070863582910344082917,1879498672877297909667780,4993219047619047619047619,5577014881186619679500164220, A276136 ,6,11,12,13,23,47,192,193,383,786432, @@ -277588,7 +277588,7 @@ A277583 ,1,4,1,10,5,2,4,14,1,12,3,2,3,9,1,31,2,1,15,7,5,6,2,3,12,20,1,19,11,2,2, A277584 ,0,1,25,784,27225,1002001,38291344,1502337600,60101954649,2440703175625,100300325150025,4161829109817600,174077451630810000,7330421677037621904,310467090932230849600,13214837914326197526784,564927069263895118093401, A277585 ,1,3,15,21,315,3465,45045,15015,765765,14549535,14549535,25741485,1673196525,1003917915,145568097675,265447707525,1504203675975,4512611027925,166966608033225,33393321606645,1369126185872445,58872425992515135,294362129962575675, A277586 ,1,4,22,32,488,5408,70544,23552,1202048,22846976,22850816,40431616,2628156416,1576923136,228655904768,416962576384,2362792902656,7088385949696,262270410489856,52454094798848,2150618140770304,92476585387491328,462382939977023488, -A277587 ,0,0,1,1,9,9,7,3,2,2,2,3, +A277587 ,0,0,1,1,9,9,7,3,2,2,2,3,1,0,3,2,8,8, A277588 ,1,10,11,21,31,41,51,61,71,81,91,100,101,110,111,121,131,141,151,161,171,181,191,201,210,211,221,231,241,251,261,271,281,291,301,310,311,321,331,341,351,361,371,381,391,401,410,411,421,431,441,451,461,471, A277589 ,2,12,20,22,32,42,52,62,72,82,92,102,112,120,122,132,142,152,162,172,182,192,200,202,212,220,222,232,242,252,262,272,282,292,302,312,320,322,332,342,352,362,372,382,392,402,412,420,422,432,442,452,462,472, A277590 ,3,13,23,30,33,43,53,63,73,83,93,103,113,123,130,133,143,153,163,173,183,193,203,213,223,230,233,243,253,263,273,283,293,300,303,313,323,330,333,343,353,363,373,383,393,403,413,423,430,433,443,453,463,473, @@ -280927,7 +280927,7 @@ A280922 ,2,24,1744,769408,2063048448,33639061257216,3336558889746769920,20135476 A280923 ,4,16,80,768,9536,223232,6867200,393936896,29989282816,4225123221504,795427838939136,275571189819113472,128240735455510216704,109332361699222156738560,125729867860804073988096000,263919716304200619134696816640,749827702212803707621023160729600,3876699219598969046471294814225694720, A280924 ,0,2,3,4,14,27,35,42,53,60,89,117,126,137,162,207,281,472,2752,3381,6462,12183,14910,29205,40883,50675,78717,83880,99113, A280925 ,1,13,25,29,33,46,57,61,129,187,676,779,828,1621,1666,1693,2237,2249,2872,3993,5148,6190,6457,25019,30358,60100, -A280926 ,5,7,29,47,119,699,1407,4911,18971,46803,119951,363209, +A280926 ,5,7,29,47,119,699,1407,4911,18971,46803,119951,363209,1276197,3722389,19973297,73605289,183273481,390720475,1671075265,4541314567,22107473795,44810965685,172567099183,617945607281,1835952288687,3938674815741,19847928172101, A280927 ,1735,2469,4341,4569,4989,5469,5637,5961,6879,7149,7407,8675,9969,11569,12949,13057,13089,13707,15829,15969,16407,18597,18969,19959,20109,20487,20721,21081,21309,21729,22107,22221,22513,23469,24355,25269,25617,26305,27021, A280928 ,1255,12955,17482,25105,100255,101299,105295,107329,117067,124483,127417,129595,132565,145273,146137,149782,163797,174082,174298,174793,174982,250105,256315,263155,295105,297463,307183,325615,371893,536539,687919,1002955,1004251,1012099,1025095,1029955, A280929 ,2,3,2,1,4,1,2,2,3,1,2,2,4,1,2,3,3,4,2,2,6,1,4,3,3,1,2,2,4,3,2,4,6,1,2,5,5,1,2,3,3,7,8,2,4,1,2,4,3,4,6,2,6,3,2,3,3,1,2,4,4,1,17,5,6,7,2,2,5,3,2,6,5,1,2,2,4,3,4,4,3,1,6,8,8,1,2,3,3,5,2,2,6,1,15,5,3,4,2,5, @@ -282445,7 +282445,7 @@ A282440 ,0,1276,378380,28043694,2301995900,177265299282,12904221882656,926611650 A282441 ,0,0,0,0,0,0,0,2,2,0,0,12,96,12,0,0,58,784,784,58,0,0,280,6498,10232,6498,280,0,0,1276,50962,152726,152726,50962,1276,0,0,5592,378380,2129756,3997136,2129756,378380,5592,0,0,24004,2744000,28043694,98841792, A282442 ,2,3,3,4,6,5,5,9,9,8,10,11,11,15,15,11,12,18,19,16,20,17,15,24,25,18,20,28,19,24,26,21,21,31,31,20,28,25,21,32,40,33,31,39,39,25,25,35,35,51,47,32,40,54,55,48,50,41,39,60,59,58,63,59,49,50,58, A282443 ,1,2,2,3,5,4,4,8,8,7,9,10,10,14,14,10,11,17,18,15,19,16,14,23,24,17,19,27,18,23,25,20,20,30,30,19,27,24,20,31,39,32,30,38,38,24,24,34,34,50,46,31,39,53,54,47,49,40,38,59,58,57,62,58,48,49,57,39, -A282444 ,1,2,5,8,14,50,119,200,269,299,1154,5369, +A282444 ,1,2,5,8,14,50,119,200,269,299,1154,5369,47249,48299,58643,130325,148979,282074,887480, A282445 ,4,3,3,3,4,3,4,3,4,3,7,3,12,6,8,4,13,7,8,4,11,3,20,5,6,22,11,23,13,16,14,9,10,10,24,29,6,40,31,0,3,4,40,11,32,45,13,7,30,3,53,20,6,30,35,27,54,26,0,63,46,57,16,67,67,38,0,39,52,5,61,75,3, A282446 ,1,2,2,3,2,4,2,3,3,4,2,6,2,4,4,4,2,6,2,6,4,4,2,6,3,4,3,6,2,8,2,3,4,4,4,9,2,4,4,6,2,8,2,6,6,4,2,8,3,6,4,6,2,6,4,6,4,4,2,12,2,4,6,5,4,8,2,6,4,8,2,9,2,4,6,6,4,8,2,8,4,4,2,12,4,4, A282447 ,1,0,111,100,11011,11110,1110011,1010110,110101111,111011000,11101111111,10111000000,1101101111111,1111111000000,111000001111111,101011101000000,11010110110011111,11101111111010000,1110111000001100111,1011101011111100100, @@ -282975,7 +282975,7 @@ A282970 ,1,0,1,0,1,1,1,1,1,1,2,1,2,2,2,3,2,4,3,4,4,4,5,5,5,6,6,7,7,8,9,9,10,10,1 A282971 ,1,0,1,0,1,1,1,2,1,3,2,4,4,6,7,9,11,15,18,24,29,37,48,58,78,92,124,149,195,243,308,393,490,629,786,1004,1263,1603,2024,2564,3239,4106,5184,6571,8301,10508,13298,16807,21296,26895,34082,43060,54528,68952,87245,110392,139622,176696,223484,282798,357731, A282972 ,1,1,1,1,2,2,3,1,2,4,3,2,2,4,4,2,2,3,5,2,2,4,4,2,3,3,3,2,2,3,2,2,1,4,2,1,4,2,3,1,4,3,2,1,3,5,2,1,3,6,3,2,2,5,5,2,4,3,4,2,3,5,2,2,2,6,5,2,4,5,6,1,5,6,5,4,5,5,6,2,4, A282973 ,3,31,314159,314159265359, -A282974 ,1,2,6,12,1902,3971,5827, +A282974 ,1,2,6,12,1902,3971,5827,16208,47577, A282975 ,0,1,6,13,18,28,40,45,50,70,101,210,248,298,1246,1340,1586,2466,6548,6713,7394,23904,32450,38171,39120,67816,108610,112400,129038, A282976 ,1,0,1,0,111,101,10000,111,1110011,1010001,100100100,1,11111111100,10000100101,1000110000000,10110111111,111000101000011,101010000011011,10010000111010101,110110000010,1111110110110111000,1000010011100001011,100011000011101100111, A282977 ,1,0,100,0,11100,101000,100,11100000,110011100,1000101000,100100100,100000000000,11111111100,10100100001000,11000100,1111110110100000,11000010100011100,110110000010101000,1010101110000100100,1000001101100000000,111011011011111100, @@ -286397,7 +286397,7 @@ A286392 ,1,6,231,1284066,352654485156,3553786240466361696,1289303099816839265917 A286393 ,1,7,406,5105212,4154189102413,167633579843887699759,331466355732596931093508048522,32115447190132359991237336502881651018804,152470060954479462517322396167243320349298407119379801, A286394 ,1,8,666,16912512,35184646816768,4722366500530551259136,40564819207305653446303190876160,22300745198530623151211847196048401987796992,784637716923335095479473759060307277562325323313332617216, A286395 ,1,3,7,8,9,11,15,19,29,55,76,159,266,311,394,908,1732,1875,4335,6334,7641,16421,33721,139239,157705,160143, -A286396 ,1,9,1035,48700845,231628411446741,89737248564744874067889,2816049943117424212512789695666175,7158021121277935153545945911617993395398302485, +A286396 ,1,9,1035,48700845,231628411446741,89737248564744874067889,2816049943117424212512789695666175,7158021121277935153545945911617993395398302485,1473773072217322896440109113309952350877179744639518847951721, A286397 ,1,10,1540,125512750,1250002537502500,1250000000501250002500000,125000000000000250375000000250000000,1250000000000000000005001250000000002500000000000, A286398 ,1,7,143,7429,94395,70514711,68421139647,3628781953225,180465781280744001,1051696554978819009,2043771643161196817,455757414124192757820663,145129235359794615466069,1358004768744860147421669766123,9043798410819212324167588503127725, A286399 ,0,0,1,8,32,96,244,528,1024,1856,3126,5016,7808,11616,16808,23856,32768,44352,59293,77352,100032,128128,161052,201264,249856,305280,371294,450128,537856,640992,762744,894528,1048576,1228224,1419858,1642080,1897376,2167008, @@ -290789,7 +290789,7 @@ A290784 ,1,3,6,19,213,379687,80990506,22635546606, A290785 ,2,16,150,5771,270411,51462132, A290786 ,1,1,-1,-23,3429,8425506,-412878084725,-497641562809372379,17436260499054618815283977,20503694883570579788445502041773422,-917439693541287252616828116888122637934368489,-1746281566732870051764961051797990328294109372786185933382, A290787 ,1,8,44,83,265,378,58,267,783,2890,289,5802,6781,9866,12390,15274,4288,9223,22764,30890,6595,42130,49725,58010,1575,76770,87305,7670,110835,123890,53786,127309,168575,11048,10389,1884,164216,116326,86857,188924,73351,15241,30690,81318,45139,157378,511828,41849,594784,638890, -A290788 ,6,56,656,8656,38656,238656,7238656,47238656,447238656, +A290788 ,6,56,656,8656,38656,238656,7238656,47238656,447238656,7447238656,27447238656,227447238656,3227447238656, A290789 ,1,1,1,1,1,1,1,1,0,1,1,1,-1,-1,1,1,1,-2,-7,0,1,1,1,-3,-23,47,2,1,1,1,-4,-55,586,873,0,1,1,1,-5,-109,3429,48778,-26433,-5,1,1,1,-6,-191,13436,885137,-11759396,-1749159,0,1,1,1,-7,-307,40915,8425506,-904638963,-8596478231,220526159,14,1, A290790 ,1,6,32,590,21555,1598353, A290791 ,6,9,16,27,28,95,96,121,122,123,124,125,126,537,538,539,540,905,906,1149,1150,1349,1350,1351,1352,1353,1354,1355,1356,1357,1358,1359,1360,9585,9586,15719,15720,15721,15722,15723,15724,15725,15726,19653,19654,19655, @@ -301739,7 +301739,7 @@ A301734 ,1,-1,1,0,-1,1,1,0,-1,0,2,1,1,-1,-2,0,2,3,2,1,0,-3,-2,1,4,4,5, A301735 ,1,-1,-2,-2,-2,0,1,5,7,11,13,16,14,14,8,0,-12,-26,-46,-66,-90,-114,-135,-155,-169, A301736 ,1,0,1,1,7,11,281,449,20719,75403,3066769,1234967,821856311,2223747371,273942958057,1238828105761,12489209350781,511763293389419,13479473195610647,356089289643109313,78908612931754624999,373825489242185563339,83933730864756536571961, A301737 ,1,1,2,3,8,30,144,840,5760,45360,403200,570240,43545600,518918400,6706022400,93405312000,126804787200,22230464256000,53801459712000,6758061133824000,128047474114560000,2554547108585472000,53523844179886080000, -A301738 ,3,3,3,5,3,3,3,49,7,35,67,75,157,107,71,137,275, +A301738 ,3,3,3,5,3,3,3,49,7,35,67,75,157,107,71,137,275,531, A301739 ,2,4,10,17,30,44,67,91,126,163,213,265,333,403,491,582,693,807,944,1084,1249,1418,1614,1814,2044,2278,2544,2815,3120,3430,3777,4129,4520,4917,5355,5799,6287,6781,7321,7868,8463,9065,9718,10378,11091,11812,12588,13372,14214,15064, A301740 ,3,9,24,50,96,164,267,408,603,856,1186,1598,2115,2742,3505,4411,5489,6746,8215,9904,11849,14059,16573,19401,22586,26138,30103,34493,39357,44707,50596,57037,64086,71757,80109,89157,98964,109545,120966,133244,146448,160595,175758,191955, A301741 ,1,2,10,76,778,10026,155884,2839880,59339004,1399069450,36746349496,1064024248068,33676500286840,1156685567791586,42850609041047760,1703182952266379536,72299420602524921616,3264579136056004359570,156238968782480840396704,7900247992586138688381500, @@ -304658,7 +304658,7 @@ A304653 ,1,-1,-1,0,-1,1,-1,0,0,1,-1,-1,-1,1,1,0,-1,-1,-1,-1,1,1,-1,1,0,1,0,-1,-1 A304654 ,0,0,4,27,328,6500,192216,7952112,438941952,31185057024,2772643115520,301622403456000,39413353102848000,6091955683706880000,1099401414283210752000,229088914497045356544000,54589580461769879715840000,14750581694440372638842880000, A304655 ,0,0,8,81,2480,175000,23825904,5563712448,2051674085376,1124193889529856,873600549068759040,927968580453961728000,1307864687259363065856000,2386263863328126193631232000,5521179117888960788194394112000,15917227342113559040727019683840000, A304656 ,5,4,4,1,3,9,8,0,9,2,7,0,2,6,5,3,5,5,1,7,8,2,2,3,4,7,7,2,9,2,6,4,6,7,1,9,6,8,5,2,1,9,8,7,4,4,2,7,8,2,2,1,7,2,6,7,0,9,6,5,4,8,0,6,1,6,4,3,6,9,5,4,3,3,7,9,0,6,1,6,5,1,0,5,2,3,7,4,9,6,4,6,3,6,1,8, -A304657 ,604,176,11008,1460,176,35392,176,604,51648,1888,176,107552,176,176,51648,1460,15488,179712,604,1460,132928,176,1460,312896,7880,3172,211728,604,176,179712,176,1460,132928,1460,604,586688,1888,1460,132928,1460,176,468352,176, +A304657 ,26,76,76,208,176,252,176,544,208,604,176,768,176,604,604,1376,176,768,176,1888,604,604,176,2208,818,604,544,1888,176,2316,176,3392,604,604,1460,2568,176,604,604,5536,176,2316,176,1888,1888,604,176,6080,818,3172, A304658 ,7,3,5,4,6,7,0,6,2,6,0,1,2,2,4,1,4,5,9,3,3,0,7,2,6,3,3,0,9,6,4,8,4,7,7,3,7,7,4,3,7,6,9,7,0,6,8,6,3,8,8,0,4,5,5,3,7,3,9,3,9,3,0,8,9,2,3,2,2,2,0,6,8,9,3,0,0,3,2,0,3,9,3,1,7,1,2, A304659 ,0,5,31,94,210,395,665,1036,1524,2145,2915,3850,4966,6279,7805,9560,11560,13821,16359,19190,22330,25795,29601,33764,38300,43225,48555,54306,60494,67135,74245,81840,89936,98549,107695,117390,127650,138491,149929,161980,174660,187985, A304660 ,1,2,4,6,8,18,16,30,36,54,32,150,64,162,108,210,128,450,256,750,324,486,512,1470,216,1458,900,3750,1024,2250,2048,2310,972,4374,648,7350,4096,13122,2916,10290,8192,11250,16384,18750,4500,39366,32768,25410,1296, @@ -306886,7 +306886,7 @@ A306881 ,0,1,4,18,120,1100,13092,192360,3362128,68063760,1565077220,40275499264, A306882 ,22,34,38,46,58,62,76,78,82,86,92,98,102,106,118,122,138,142,152,154,158,164,166,172,178,182,190,194,202,212,214,218,226,238,244,254,258,262,266,274,278,282,298,302,304,310,316,318,322,328,332,334,338,344,346,356,358,362, A306883 ,5,9,3,2,3,7,2,9,7,7,6,9,7,2,8,4,6,4,5,5,2,0,6,0,1,9,7,9,4,7,0,8,1,7,0,0,4,2,3,8,8,3,8,8,2,3,6,2,1,6,5,7,7,7,4,5,7,6,7,1,2,8,6,0,9,6,9,9,5,0,5,8,7,1,0,6,7,8,5,7,9,1,5,2,9,0,7,1,4,3,3,3,5,3,7,9,4,8,8,4,9,4,3,2,5,4,3,5,1, A306884 ,1,1,3,6,14,28,93,270,86170,7625640881546, -A306885 ,1,1,1,0,2,5,6,17,1,6,1,19,6,2,2, +A306885 ,1,1,1,0,2,5,6,17,1,6,1,19,6,2,2,10,26, A306886 ,0,5,14,26,41,60,82,105,134,164,197,234,272,314,359,407,456,507,566,623,686,748,812,883,956,1030,1107,1181,1267,1354,1445,1529,1620,1721,1814,1920,2022,2121,2232,2344,2460,2573,2691,2815,2936,3061,3189,3321,3462, A306887 ,0,6,396,200100,1368937020, A306888 ,0,1,1,2,1,4,3,8,11,20,31,64,105,202,367,696,1285,2452,4599,8776,16651,31838,60787,116640,223697,430396,828525,1598228,3085465,5966000,11545611,22371000,43383571,84217616,163617805,318150720,619094385,1205614054,2349384031,4581315968, @@ -309109,7 +309109,7 @@ A309104 ,0,1,3,9,25,72,199,545,1487,4048,11007,29930,81371,221199,601295,1634499 A309105 ,1,1,3,9,25,71,198,543,1486,4045,11007,29931,81371,221197,601294,1634497,4443046,12077467,32829975,89241140,242582583,659407855,1792456409,4872401706,13244561047,36002449653,97864804698,266024120284,723128532126,1965667148553, A309106 ,1,1,1,1,2,2,1,3,6,2,1,4,12,16,4,1,5,20,44,10,2,1,6,30,96,90,36,6,1,7,42,174,240,84,28,4,1,8,56,288,690,336,168,48,6,1,9,72,440,1344,984,336,144,36,4,1,10,90,640,2590,3060,2100,1200,450,100,10, A309107 ,0,0,0,2,0,2,2,3,0,4,0,2,5,0,3,7,0,3,3,4,10,0,5,10,3,6,0,5,5,6,4,11,0,6,4,4,5,8,0,6,6,7,26,0,5,8,8,9,0,5,5,6,11,21,0,6,4,21,4,2,48,0,7,21,6,9,18,0,6,4,11,18,5,22,0,7,13,0,3,54,0,3,3,4,14,0,5,14,3,6,21,27,0,7,18,23,0,4,14,11, -A309108 ,1,1,1,2,3,2,5,6,7,4,10,9,7,11,12,8,13,11,17,19,15,23,7,14,16,12,10,13,29,16,31,25,27,37,26,19,33,31,41,34,35,18,43,41,47,40,32,43,25,23,53,29,9,59,21,43,51,52,53,38,28,49,54,58, +A309108 ,1,1,1,2,3,2,5,6,7,4,10,9,7,11,12,8,13,11,17,19,15,23,7,14,16,12,27,13,25,29,31,37,33,30,26,16,20,27,34,29,35,18,41,43,47,53,39,37,49,51,59,38,40,41,46,47,42,19,31,44,55,56,61,57,67,64,45,71,62, A309109 ,1,1,933120,2681795837952000,237391215092234044047360000000,647223519675870437718855767650467840000000000000,254101032901646255941392101056649724780871931658240000000000000000000, A309110 ,1,81,75582720,217225462874112000,19228688422470957567836160000000,52425105093745505455227317179687895040000000000000,20582183665033346731252760185588627707250626464317440000000000000000000, A309111 ,1,1,2009078326886400,25130033447370922318407480728239472640000000,5759627596191312699511553760965199283079808523515804251057792885981184000000000000000, @@ -327361,8 +327361,8 @@ A327356 ,0,0,1,3,40,1365, A327357 ,1,0,1,1,1,4,1,3,1,30,13,33,32,6,546,421,1302,1915,1510,693,316,135,45,10,1, A327358 ,1,1,0,2,1,0,5,3,2,0,20,14,10,6,0,180,157,128,91,54,0, A327359 ,1,1,0,1,1,0,2,1,2,0,6,4,4,6,0,23,29,37,37,54,0, -A327360 ,3,44,355,3195,99733,833719,5419351,80143857,657408909, -A327361 ,1,14,113,1017,31746,265381,1725033,25510582,209259755, +A327360 ,3,44,355,3195,99733,833719,5419351,80143857,657408909,6167950454,42106686282,983339177173,8958937768937,94960529682104,428224593349304,6134899525417045,66627445592888887,430010946591069243,5293386250278608690,31760317501671652140, +A327361 ,1,14,113,1017,31746,265381,1725033,25510582,209259755,1963319607,13402974518,313006581566,2851718461558,30226875395063,136308121570117,1952799169684491,21208174623389167,136876735467187340,1684937174853026414,10109623049118158484, A327362 ,0,0,1,3,28,475,14646,813813,82060392,15251272983,5312295240010,3519126783483377,4487168285715524124,11116496280631563128723,53887232400918561791887118,513757147287101157620965656285,9668878162669182924093580075565776, A327363 ,1,1,0,2,1,0,8,4,1,0,64,38,10,1,0,1024,728,238,26,1,0, A327364 ,0,0,1,6,46,655,17991,927416,89009740,16020407709,5468601546685,3578414666656214,4529751815161579194,11175105490563109463875,54043272967471942825421219,514566625051705610110588073460,9677104749727084630538798805505880, @@ -331388,7 +331388,7 @@ A331383 ,0,0,0,0,0,0,1,0,2,2,1,1,1,2,2,2,1,4,2,2,2,4,2,3,4,1,3,4,5,0,3,3,1,6,2,1 A331384 ,35,65,95,98,154,324,364,476,623,763,791,812,826,938,994,1036,1064,1106,1144,1148,1162,1288,1484,1708,1736,2044,2408,2632,4320,5408,6688,6974,8000,10208,12623,12701,12779,14144,19624,23144,25784,26048,44176,47696, A331385 ,1,0,1,0,1,1,0,0,2,1,0,0,1,3,1,0,0,0,2,3,1,1,0,0,0,1,4,3,1,2,0,0,0,0,2,5,3,2,2,0,1,0,0,0,0,1,4,6,3,4,2,0,2,0,0,0,0,0,2,6,6,4,6,2,1,2,0,1,0,0,0,0,0,1,4,8,6,6,7,2,4,2,0,1,0,0,0,1, A331386 ,3,5,6,9,10,11,12,15,17,18,20,21,22,24,25,27,30,31,33,34,35,36,39,40,41,42,44,45,48,50,51,54,55,57,59,60,62,63,65,66,67,68,69,70,72,75,77,78,80,81,82,83,84,85,87,88,90,93,95,96,99,100,102,105,108, -A331387 ,1,2,4,7,11,16,24,34,47,64,86,113,148,191,245,310,390,486,602,740,907,1104,1338,1613,1937,2315,2758,3272,3871,4562,5362, +A331387 ,1,2,4,7,11,16,24,34,47,64,86,113,148,191,245,310,390,486,602,740,907,1104,1338,1613,1937,2315,2758,3272,3871,4562,5362,6283,7344,8558,9952,11542,13356,15419,17766,20425,23440,26846,30696,35032,39917,45406, A331388 ,1,0,2,3,9,3,20,12,24,10,54,15,77,21,48,48,135,24,170,57,103,55,252,60,240,78,216,123,405,47,464,192,273,136,390,144,665,171,388,228,819,102,902,327,456,253,1080,240,1008,240,678,465,1377,216,1036,492,853,406,1710, A331389 ,1,1,3,29,666,28344,1935054,193926796,26892165502,4946464286746,1168900475263013,346080409272270888,125798338606148948325,55204084562033205121607,28834556615453989801860765,17710828268156331289770544579,12658784968736373972502731143309, A331390 ,1,9,29,68,134,237,388,600,887,1265,1751,2364,3124,4053,5174,6512,8093,9945,12097,14580,17426,20669,24344,28488,33139,38337,44123,50540,57632,65445,74026,83424,93689,104873,117029,130212,144478,159885,176492,194360,213551, @@ -332725,7 +332725,7 @@ A332720 ,1,1,5,19,59,150,349,745,1515,2936,5514,10036,17851,31039,53006,88943,14 A332721 ,1,1,3,72,5752,1501620,1171326960,2571831080160,15245263511750160,236246829658682027760,9325247205993698149853760,917699267902161951609308035200,221117091698491444413008381486903040,128433050637127079872089064922773889126400, A332722 ,1,1,2,9,74,711,7312,77793,848557,9426039,106218592,1210785512,13933358426,161624712815,1887635428421,22176331059637,261881397819259,3106736469937751,37006306302036790,442425926101676831,5306994321265281854,63851605555921588684,770371217568310624912, A332723 ,1,2,1,3,4,4,10,0,1,5,19,3,3,6,31,13,6,7,46,35,10,8,65,74,14,9,92,131,18,10,140,192,27,1,11,202,274,46,3,12,275,396,62,3,13,363,563,79,9,14,467,784,100,14,15,598,1054,126,12,2, -A332724 ,0,0,1,6,14,32,65,128,243, +A332724 ,0,0,1,6,14,32,65,128,243,452,826,1490,2659,4704,8261,14418,25030,43252,74437,127648,218199,371920,632306,1072486,1815239,3066432,5170825,8705118,14632958,24562952,41177801,68947520,115313979,192656924,321554986,536191418, A332725 ,90,126,180,198,234,252,270,306,342,350,360,378,396,414,450,468,504,522,525,540,550,558,594,612,630,650,666,684,700,702,720,738,756,774,792,810,825,828,846,850,882,900,910,918,936,950,954,975,990,1008,1026,1044, A332726 ,1,1,2,4,8,16,31,61,120,228,438,836,1580,2976,5596,10440,19444,36099,66784,123215,226846,416502,763255,1395952,2548444,4644578,8452200,15358445,27871024,50514295,91446810,165365589,298730375,539127705,972099072,1751284617,3152475368, A332727 ,0,0,0,0,0,0,1,3,8,28,74,188,468,1120,2596,5944,13324,29437,64288,138929,297442,632074,1333897,2798352,5840164,12132638,25102232,51750419,106346704,217921161,445424102,908376235,1848753273,3755839591,7617835520,15428584567,31207263000, @@ -332875,7 +332875,7 @@ A332870 ,0,0,0,0,0,0,2,9,32,92,243,587,1361,3027,6564,13928,29127,60180,123300,2 A332871 ,0,0,0,0,1,4,8,24,55,128,282,625,1336,2855,6000,12551,26022,53744,110361,225914,460756,937413,1902370,3853445,7791647,15732468,31725191,63907437,128613224,258626480,519700800,1043690354,2094882574,4202903667,8428794336,16897836060, A332872 ,1,1,3,10,34,116,396,1352,4616,15760, A332873 ,0,0,0,0,22,340,3954,44716,536858, -A332874 ,0,0,0,0,0,0,0,0,0,0,10,10,20,30,50,150,180,290,420,630,860, +A332874 ,0,0,0,0,0,0,0,0,0,0,10,10,20,30,50,150,180,290,420,630,860,1828,2168,3326,4514,6530,8576,12188,20096,25314,35576,48062,65592,86752,117222,152060,237590,292346,402798,524596,711270,910606,1221204,1554382,2044460,2927124, A332875 ,3,3,3,3,3,4,2,3,3,3,3,3,3,3,3,2,3,4,3,3,3,3,3,3,3,2,4,3,3,3,3,3,4,2,3,3,3,3,3,3,3,4,2,3,4,3,3,3,2,4,3,2,3,4,3,3,3,2,3,4,2,3,3,3,3,3,2,4,3,3,3,3,3,3,3,3,4,3,2,3,3,3,4,2,3,4,3, A332876 ,12,14,36,28,105,102,147,136,108,120,242,204,286,238,330,352,374,306,2109,140,462,484,2047,408,150,572,594,756,3219,360,682,864,2937,1326,770,792,4107,2128,4329,280,3649,1638,3827,1232,990,2530,5217,1344,5439,1050, A332877 ,6,15,21,35,55,77,91,143,187,221,253,323,391,493,551,667,713,899,1073,1189,1271,1517,1591,1763,1961,2183,2419,2537,2773,3127,3233,3599,3953,4189,4331,4757,4897,5293,5723,5963,6499,6887,7171,7663,8051,8633,8989,9797,9991,10403,10807,11303, @@ -333194,7 +333194,7 @@ A333189 ,0,0,0,0,1,0,1,0,0,1,1,0,1,1,1,0,0,1,0,1,1,0,1,1,0,0,1,0,1,0,1,1,1,1,0,0 A333190 ,1,1,2,2,4,5,7,10,13,15,21,26,29,39,49,50,68,80,92,109,129,142,181,201,227,262,317,343,404,456,516,589,677,742,870,949,1077,1207,1385,1510,1704,1895,2123,2352,2649,2877,3261,3571,3966,4363,4873,5300,5914,6466, A333191 ,1,1,2,2,5,8,10,18,24,29,44,60,68,100,130,148,201,256,310,396,478,582,736,898,1068,1301,1594,1902,2288,2750,3262,3910,4638,5510,6538,7686,9069,10670,12560,14728,17170,20090,23462,27292,31710,36878,42704,49430, A333192 ,1,1,2,2,4,5,7,10,14,16,24,31,37,51,67,76,103,129,158,199,242,293,370,450,538,652,799,953,1147,1376,1635,1956,2322,2757,3271,3845,4539,5336,6282,7366,8589,10046,11735,13647,15858,18442,21354,24716,28630,32985, -A333193 ,1,1,2,3,5,7,11,15,21,29,40,53,71,93,122,158,204,260,332,419,528, +A333193 ,1,1,2,3,5,7,11,15,21,29,40,53,71,93,122,158,204,260,332,419,528,661,825,1023,1267,1560,1916,2344,2860,3476,4217,5097,6147,7393,8872,10618,12685,15115,17977,21336,25276,29882,35271,41551,48872,57385,67277,78745,92040, A333194 ,1,2,4,4,8,8,11,11,19,16,21,21,30,30,37,29,45,45,51,51,66,56,67,67,88,83,96,84,105,105,112,112,144,130,147,135,159,159,178,162,197,197,208,208,241,209,232,232,277,270,290,270,309,309,324,308,357,335,364,364, A333195 ,8,16,24,27,30,32,40,48,54,56,60,64,72,80,81,88,96,104,105,108,110,112,120,125,128,135,136,144,150,152,160,162,168,176,184,189,192,200,208,210,216,220,224,232,238,240,243,248,250,256,264,270,272,273,280,288, A333196 ,1,2,6,6,30,10,70,70,210,210,2310,2310,30030,30030,30030,30030,510510,510510,9699690,1939938,646646,646646,14872858,44618574,223092870,223092870,223092870,223092870,6469693230,6469693230,200560490130,200560490130,18232771830, @@ -335460,7 +335460,7 @@ A335455 ,0,0,0,1,1,5,11,30,69,142,334,740,1526,3273,6840,14251,29029,59729,12200 A335456 ,1,2,5,12,32,84,211,556,1446,3750,9824,25837,67681,178160,468941,1233837,3248788, A335457 ,1,2,5,12,31,80,196,486,1171,2787,6564,15323,35403,81251,185087,418918,942525,2109143,4695648,10405694,22959156, A335458 ,1,2,2,3,2,3,3,4,2,3,3,5,3,5,5,5,2,3,3,5,3,5,5,7,3,5,5,8,5,8,7,6,2,3,3,5,3,4,5,7,3,5,4,7,5,7,8,9,3,5,5,8,4,8,7,11,5,8,7,11,7,11,9,7,2,3,3,5,3,4,5,7,3,5,5,7,5,7,8,9,3,5,5,8,5,7, -A335459 ,0,0,0,0,4,18,102,786,3960,51450,675570,10804710,139674024,2793377664, +A335459 ,0,0,0,0,4,18,102,786,3960,51450,675570,10804710,139674024,2793377664,58662908640,1798893694080,26985313555200,782574083010720,25992638958686400,857757034323189000,30021498596590300800,1563341714743040232000,64179292280096037844800,2631350957341279888915200, A335460 ,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,2,0,0,0,1,1,0,0,3,0,1,0,1,0,2,0,2,0,0,0,6,0,0,1,0,0,0,0,1,0,0,0,8,0,0,1,1,0,0,0,3,0,0,0,6,0,0,0, A335461 ,1,0,1,0,1,2,0,1,4,8,0,1,6,24,44,0,1,8,48,176,308,0,1,10,80,440,1540,2612,0,1,12,120,880,4620,15672,25988,0,1,14,168,1540,10780,54852,181916,296564,0,1,16,224,2464,21560,146272,727664,2372512,3816548, A335462 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, @@ -337514,7 +337514,7 @@ A337513 ,1,-1,0,1,0,-1,-5,13,5,-43,4,98,122,-638,-246,2912,-537,-9419,-1648,4700 A337514 ,1,-1,0,1,0,-2,1,-1,13,-16,-39,76,122,-365,-64,537,1103,-1565,-6850,6630,38704,-58273,-108054,204722,366920,-598506,-1526994,1111475,9656314,-7254090,-43224847,39704799,171028427,-177129071,-604754108, A337515 ,1,1,1,4,1,2,1,8,4,21,29, A337516 ,1,2,4,9,23,57,151,421,1202,3397,9498,25970,70005,187259,500061, -A337517 ,1,1,2,4,9,23,57,151,427,1263,3823,11724,36048,110953,342079,1064468,3341067,10583564, +A337517 ,1,1,2,4,9,23,57,151,427,1263,3823,11724,36048,110953,342079,1064468,3341067,10583564,33727683, A337518 ,1,1,2,1,2,1,0,0,1,0,2,2,0,0,1,2,0,1,0,2,1,2,0,0,2,0,0,1,1,1,0,0,2,0,1,0,2,1,0,0,2,2,0,2,0,0,2,1,2,1,0,1,0,1,1,1,0,1,2,2,1,0,1,2,0,1,2,1,1,1,1,0,0,2,1,1,2,0,2,0,0,0,2,1,2,2,1, A337519 ,4,15,28,47,68,95,124,159,196,239,284,335,388,447,508,575,644,719,796,879,964,1055,1148,1247,1348,1455,1564,1679,1796,1919,2044,2175,2308,2447,2588,2735,2884,3039,3196,3359,3524,3695,3868,4047,4228,4415,4604,4799,4996, A337520 ,1,1,2,4,10,22,64,147,409,1092,3253,8661,28585,83190,274001,912373,3366384,13253582,61533277,290493694, @@ -337999,8 +337999,8 @@ A337998 ,2,3,9,9,6,3,5,2,4,4,9,5,6,3,0,9,5,5,3,3,7,5,7,4,3,1,0,1,6,0,5,7,7,2,2,5 A337999 ,2,2,0,0,11,33,29,60,3905,19524,62879,275436,10187165,71191608,481719419,3211782240,101121160145,904977244224,10099756468559,89733565369536,2746252055597525,29900664884062848,479479605967022099,5296351543857279360,166991194742961246905, A338000 ,0,0,2,4,1,1,151,604,1135,3652,163921,983020,4781635,26455096,880441381,7019296864,62338135855,485246558272,14909515819441,147911335595200,2005509679122475,19997668777814656,618177354753297901,7327199316870984064,135962126415847073095, A338001 ,1,0,1,0,2,2,0,6,2,3,0,24,8,4,3,4,0,120,8,12,6,6,4,5,0,720,48,16,48,18,6,18,8,8,5,6,0,5040,48,48,240,18,24,12,72,12,8,24,10,10,6,7,0,40320,384,96,192,1440,36,36,24,36,360,32,12,32,16,96,15,10,30,12,12,7,8, -A338002 ,56,816,6064,18152,52088,100608,208168, -A338003 ,37,653,5517,17153,50349,97037,204329, +A338002 ,56,816,6064,18152,52088,100608,208168,336840,579136,846560,1310960,1784888, +A338003 ,37,653,5517,17153,50349,97037,204329,330613,571021,835713,1298533,1764125, A338004 ,6,6,3,4,8,2,9,7,0,5,1,1,4,3,4,8,0,8,0,5,7,5,6,8,8,4,7,4,3,7,2,3,9,9,5,0,0,0,5,0,4,2,8,9,8,5,1,5,6,9,6,2,5,5,4,5,7,1,8,2,4,4,9,9,5,0,5,9,3,3,1,5,0,9,3,7,7,6,8,3,8,5,0,6,8,1,0,9,7,9,1,5,6,8,7,8,5,8,9,8,7,3,3,3,0,1,0,9,0,8,3,3,8,9,1,3,9,4,5,4, A338005 ,1,2,16,2592,466308864, A338006 ,1,2,3,3,4,5,6,6,7,7,8,8,9,9,10,10,11,11,12,13,13,13,14,14,15,15,15,16,17,17,18,18,19,19,19,19,20,20,20,21,22,23,24,24,24,24,25,25,25,25,26,26,27,27,28,28,29,29,30,30,31,31,31,31,31,31,32,32,33,33,34,34,35,35,36,36,36,36,37,37,37,37,38, @@ -338193,7 +338193,7 @@ A338193 ,1,1,2,10,100,1556,33016,888952,29035280,1115554960,49300214176,24638594 A338194 ,1,1,4,42,828,24840,1009440,51906960,3232993680,236644571520,19911894206400,1893868822137600,200939416407576000,23530201619699174400,3014512836056949427200,419416309548107359488000,62979130153042151656608000,10151678353264190993682432000, A338195 ,18,20,35,36,40,45,54,56,60,70,72,77,80,84,90,100,104,105,108,110,112,120,126,135,140,143,144,154,160,162,168,170,175,176,180,182,189,198,200,208,209,210,216,220,221,224,225,231,234,240,245,252,260,264,266,270, A338196 ,1,2,4,8,3,5,6,10,12,16,20,24,32,13,26,40,48,7,9,11,14,17,18,22,28,34,36,44,52,56,21,42,64,68,72,80,84,19,25,29,38,50,58,76,88,96,33,66,100,104,37,74,112,116,128,132,45,90,136,144,49,98,148,152,15, -A338197 ,1,2,4,8,20,44,114,312,894,2639,8005,24362,74918,231123,722388,2276599,7242497, +A338197 ,1,2,4,8,20,44,114,312,894,2639,8005,24362,74918,231123,722388,2276599,7242497,23144119, A338198 ,1,0,1,2,1,1,2,3,2,1,6,5,4,3,1,10,11,8,5,4,1,22,21,16,11,6,5,1,42,43,32,21,14,7,6,1,86,85,64,43,26,17,8,7,1,170,171,128,85,54,31,20,9,8,1,342,341,256,171,106,65,36,23,10,9,1,682,683,512,341,214,127,76,41,26,11,10,1, A338199 ,1,1,3,1,1,1,2,2,1,3,5,1,1,1,2,3,1,1,3,1,1,1,2,2,1,2,4,1,1,2,2,4,1,1,3,1,1,3,2,2,1,5,7,1,1,1,2,3,1,1,3,1,1,1,2,2,1,2,4,1,1,3,2,5,1,1,3,1,1,1,2,2,1, A338200 ,0,0,1,2,4,6,9,12,17,21,27,33,41,48,58,67,79,90,104,117,134,149,168,186,208,228,253,276,304,330,361,390,425,457,495,531,573,612,658,701,751,798,852,903,962,1017,1080,1140,1208,1272,1345,1414,1492,1566,1649, @@ -338466,6 +338466,7 @@ A338466 ,0,1,2,3,4,5,6,7,8,9,10,12,11,13,14,15,16,19,18,17,20,21,22,23,26,24,27, A338467 ,1,3,4,7,8,13,12,19,16,25,24,29,32,35,36,41,44,49,48,57,54,61,62,67,70,77,76,81,82,85,88,101,94,109,98,121,102,129,110,135,118,143,122,155,126,161,130,175,144,181,148,187,156,191,168,199,176,207,180,215, A338468 ,15,33,35,51,55,69,77,85,93,95,105,119,123,141,143,145,155,161,165,177,187,195,201,205,209,215,217,219,221,231,249,253,255,265,285,287,291,295,309,323,327,329,335,341,345,355,357,381,385,391,395,403,407,411, A338469 ,125,275,425,575,605,775,935,1025,1175,1265,1331,1445,1475,1675,1705,1825,1955,2057,2075,2255,2425,2575,2585,2635,2645,2725,2783,3175,3179,3245,3425,3485,3565,3685,3725,3751,3925,3995,4015,4175,4301,4475,4565,4715, +A338470 ,1,0,0,0,0,1,0,3,2,5,5,13,7,23,21,33,35,65,55,104,97,151,166,252,235,377,399,549,591,846,858,1237,1311,1749,1934,2556,2705,3659,3991,5090,5608,7244,7841,10086,11075,13794,15420,19195,21003,26240,29089,35483, A338471 ,8,20,44,50,68,92,110,124,125,164,170,188,230,236,242,268,275,292,310,332,374,388,410,412,425,436,470,506,508,548,575,578,590,596,605,628,668,670,682,716,730,764,775,782,788,830,844,902,908,932,935,964,970, A338472 ,3,109,14519,2024592291,1536463613637,2449395996564189425,4686662617019462175259,33724155827962966577589860263,2606282943971359343146382147809434583605,15159042500551578738018590862773479717960671,6576976543997974825092367662248938303820921894460988333, A338473 ,8,10,12,13,14,15,16,18,19,20,21,23,24,25,27,28,29,30,31,34,35,36,39,40,41,42,44,45,46,49,50,53,55,56,58,59,60,63,64,70,74,84,98,125,127,130,131,135,136,142,146,147,149,152,153,156,157,158,164,168,170, @@ -338794,12 +338795,12 @@ A338857 ,1,8,15,23,30,38,45,52,60,67,74,82,89,97,104,111,119,126,134,141,148,156 A338858 ,2,1,0,9,3,2,9,9,2,7,6,2,0,0,4,9,1,8,9,3,9,1,9,5,2,8,6,4,0,2,1,5,6,5,7,6,7,5,9,2,1,1,1,5,3,8,5,1,7,3,2,6,1,1,0,1,9,3,7,8,4,7,9,5,0,1,8,8,6,4,2,0,7,6,8,4,7,2,6,6,2,1,6,0,2,0,8,8,8,6,3,9,3,6,0,0,2,1,0,6,6,4,1,9,8, A338859 ,1,1,0,1,1,0,1,1,1,0,1,2,1,1,0,1,4,3,1,1,0,1,9,10,4,1,1,0,1,20,45,20,6,1,1,0,1,48,210,165,55,8,1,1,0,1,115,1176,1540,1035,136,13,1,1,0,1,286,6670,19600,22155,6273,430,18,1,1,0,1,719,41041,260130,692076,324008,46185,1300,30,1,1,0, A338860 ,0,1,0,2,1,3,4,6,8,11,17,21,30,38,53,68,90,115,150,192,243,312,390,496,613,775,951,1193,1456,1810,2200,2715,3285,4026,4856,5909,7106,8595,10301,12394,14809,17728,21118,25171,29891,35489,42018,49702,58678,69180, -A338861 ,1,2,6,15,42,143,399,1190,4209,10920,37245,109886,339745,1037186,3205734,9784263,29837784,93313919, +A338861 ,1,2,6,15,42,143,399,1190,4209,10920,37245,109886,339745,1037186,3205734,9784263,29837784,93313919,289627536, A338862 ,1,1,4,13,49,175,655,2437,9208,34867,132952,508621,1953580,7524625,29061835,112493680,436330753,1695388480,6598016866,25714222228,100343852938,392023844362,1533182752336,6001993189687,23517048084424,92220047277892,361906295452669,1421252193947311, A338863 ,1,1,2,3,4,5,1,1,2,3,4,5,2,2,4,6,8,10,3,3,6,9,12,15,4,4,8,12,16,20,5,5,10,15,20,25,1,1,2,3,4,5,1,1,2,3,4,5,2,2,4,6,8,10,3,3,6,9,12,15,4,4,8,12,16,20,5,5,10,15,20,25,2,2,4,6,8,10,2,2,4, A338864 ,1,4,1,12,12,1,72,96,24,1,240,840,360,40,1,2880,7200,4920,960,60,1,10080,70560,65520,19320,2100,84,1,161280,745920,887040,362880,58800,4032,112,1,1088640,7983360,12640320,6652800,1481760,150192,7056,144,1, A338865 ,1,6,1,24,18,1,168,204,36,1,720,2280,780,60,1,8640,25200,14400,2100,90,1,40320,292320,252000,58800,4620,126,1,604800,3729600,4334400,1486800,183120,8904,168,1,4717440,46811520,76265280,35743680,6335280,474768,15624,216,1, -A338866 ,0,0,0,0,0,0,4,5,18,65,267,1238,6196,33480,187932,1095882,6629220, +A338866 ,0,0,0,0,0,0,4,5,18,65,267,1238,6196,33480,187932,1095882,6629232, A338867 ,1,1,5,38,424,6284, A338868 ,0,0,0,0,0,0,0,0,0,0,0,2,3,9,28,138,613,2798, A338869 ,1,1,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,30,30,30,30,6,30,6,6,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, @@ -339468,7 +339469,7 @@ A339544 ,3,17,19,29,31,71,79,83,103,113,151,211,229,293,331,337,347,349,421,439, A339545 ,3,19,29,691, A339546 ,1,1,1,1,1,1,1,1,1,1,1,1,2,3,6,6,15,17,40,45,89,116,199,271, A339547 ,15,172,1114,5378,22321,83995,293744,968965, -A339548 ,2,3,4,7,11,19,35,56,105,177,321,610,1001,1893,3186,5714, +A339548 ,2,3,4,7,11,19,35,56,105,177,321,610,1001,1893,3186,5714,10073, A339549 ,1,1,2,1,2,4,3,1,4,4,3,8,3,9,16,1,2,16,3,8,18,9,4,16,6,9,16,27,4,256,5,1,12,4,18,64,3,9,24,16,3,324,4,27,128,16,5,32,9,36,16,27,4,256,30,81,24,16,5,4096,5,25,216,1,12,144,3,8,24,324,4,256,3, A339550 ,1,9,85,697,1285,2605,4573,5845,6001,6241,6613,7141,7453,8005,10897,12453,13141,15445,19789,20345,21445,21913,22873,25957,36565,36601,39597,44761,46405,53677,56137,56593,61013,63445,70094,72913,76977,80913,82405,87085,87601, A339551 ,513059433,3007912105,4791685641,11555664153,44615854297,111890605585,121111724905,163901238153, @@ -339482,6 +339483,8 @@ A339558 ,0,1,1,1,0,3,0,1,2,1,0,3,0,1,2,1,0,4,0,1,2,1,0,3,0,1,2,1,0,5,0,1,1,1,0,5 A339559 ,0,0,1,0,2,1,4,3,7,6,14,14,23,27,41,47,70,84,114,141,190,225,303,370,475,578,738,890,1131,1368,1698,2058,2549,3048,3759,4505,5495,6574,7966,9483,11450, A339560 ,1,0,0,1,1,2,2,4,5,8,8,13,17,22,28,39,48,62,81,101,127,167,202,253,318,395,486,608,736,906,1113,1353,1637,2011,2409,2922,3510,4227,5060,6089,7242, A339561 ,1,6,10,14,15,21,22,26,33,34,35,38,39,46,51,55,57,58,60,62,65,69,74,77,82,84,85,86,87,90,91,93,94,95,106,111,115,118,119,122,123,126,129,132,133,134,140,141,142,143,145,146,150,155,156,158,159,161,166, +A339562 ,1,15,33,35,51,55,69,77,85,91,93,95,105,119,123,141,143,145,155,161,165,177,187,195,201,203,205,209,215,217,219,221,231,247,249,253,255,265,285,287,291,295,299,301,309,323,327,329,335,341,345,355,357,377,381, +A339563 ,2,3,5,6,7,10,11,13,14,17,19,21,22,23,26,29,30,31,34,37,38,39,41,42,43,46,47,53,57,58,59,61,62,65,66,67,70,71,73,74,78,79,82,83,86,87,89,94,97,101,102,103,106,107,109,110,111,113,114,115,118,122,127, A339565 ,1,3,17,101,627,3999,25955,170571,1131433,7559301,50795985,342935689,2324278669,15804931797,107775401349,736723618773,5046774983235,34636814325087,238114193665451,1639378334244867,11301978856210543,78010917772099207,539055832175992119, A339566 ,5,137,3967,25087,242899421, A339567 ,1,5,15,25,55,91,137,525,625,925,3967,5995,7625,10767,25087,57225,68817,565027,591415,2515825,2757625,4162019,5276309,96689255,115686005,133890625,242899421,492029715,588620625,1839399055,7786281065,11231388063,17251448809,71050380625, @@ -339657,6 +339660,7 @@ A339742 ,1,1,1,0,1,2,1,0,0,2,1,1,1,2,2,0,1,1,1,1,2,2,1,0,0,2,0,1,1,4,1,0,2,2,2,1 A339743 ,1,1,2,4,6,6,6,30,30,60,60,210,210,210,210,210,210,210,2310,2310,2310,2310,18480,120120,120120,150150,150150,150150,150150,660660,1531530,2492490,3063060,3063060,4594590,38798760,38798760,38798760,38798760,38798760,48498450,193993800, A339744 ,4,8,9,16,18,24,25,27,32,36,48,49,54,64,72,80,81,96,100,108,112,121,125,128,135,144,160,162,169,192,196,200,216,224,225,243,250,256,288,289,320,324,343,352,360,361,375,384,392,400,405,416,432,441,448,450,480,484,486,500, A339745 ,9,9,9,0,0,5,4,4,2,4,8,0,9,8,9,4,7,5,2,7,3,7,8,4,5,3,5,8,5,4,2,2,7,2,4,5,8,6,0,5,9,0,9,7,3,8,5,3,6,4,7,3,6,9,0,8,2,2,8,9,6,2,3,9,9,2,8,9,5,9,9,4,1,9,5,9,8,9,8,1,0,0,7,4,1,1,8,6,0,3,5,0,2,7,7,3,1,7,1,3,0,5,0,9,0,6, +A339746 ,1,5,6,7,8,11,13,17,19,23,25,27,29,30,31,35,36,37,40,41,42,43,47,48,49,53,55,56,59,61,64,65,66,67,71,73,77,78,79,83,85,88,89,91,95,97,101,102,103,104,107,109,113,114,115,119,121,125,127,131,133,135, A339747 ,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,31,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,31,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,31,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,31, A339748 ,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,43,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,43,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1, A339749 ,2,3,2,4,2,7,2,3,2,4,2,6,2,3,2,4,2,7,2,3,2,4,2,5,2,3,2,4,2,9,2,3,2,4,2,8,2,3,2,4,2,6,2,3,2,4,2,7,2,3,2,4,2,5,2,3,2,4,2,11,2,3,2,4,2,8,2,3,2,4,2,6,2,3,2,4,2,7,2,3,2,4,2,5,2,3,2, @@ -339667,6 +339671,7 @@ A339753 ,1,2,3,11,23,24,29,31,108,109,198,199,240,241,243,244,245,246,247,248,24 A339754 ,1,0,2,0,2,3,0,2,6,6,0,4,12,16,10,0,8,24,40,40,20,0,20,60,104,120,90,35,0,50,150,270,350,330,210,70,0,140,420,768,1040,1080,840,448,126,0,392,1176,2184,3080,3468,3108,2128,1008,252, A339755 ,1,2,5,11,27,55,131,263,571,1168,2445,4891,10113,20227,40979,82229,165632,331265,665365,1330731,2666729,5334769,10679319,21358639,42740683,85482096,171004645,342015001,684113793,1368227587,2736633741,5473267483,10946869669,21893763789,43788190107, A339756 ,1,4,4,8,4,17,12,15,14,33,12,58,28,43,52,113,39,140,57,124,129,240,66,241,173,270,217,362,58,388,292,454,351,539,166,783,471,723,463,880,229,1134,642,843,763,1441,311,1415,740,1295,987,1888,357,1629,1063,1750,1231,2381,289,2652, +A339757 ,9,1,2,1,1,1,1,2,3,0,1,2,3,1,0,0,1,3,2,0,1,2,3,0,0,0,1,2,2,0, A339758 ,3,3,53,503,4297,947,10589,17903,624401,7151083,45543077,30611047,612126937,2280521251,649288301,26566080479,28921314337,303937208923,1086758949557,12299159511127,39118361784041,18314722943123,64249761922429,2484777068103119,1148475719438129,14810825716436683, A339759 ,1,2,4,6,30,60,210,2310,18480,120120,150150,660660,1531530,2492490,3063060,4594590,38798760,48498450,193993800,446185740,6915878970,13831757940,80313433200,129393864600,1061029689720,5014012253250,9225782545980,12033629407800,40312658516130,135378330837750, A339760 ,1,12,48,208,768,2752,9472,32000,106496,351232,1150976,3756032,12222464,39698432,128778240,417398784,1352138752,4378591232,14175698944,45886734336,148520304640,480679821312,1555633799168,5034389536768,16292153131008,52723609239552,170619454881792,552140862914560, @@ -339676,6 +339681,7 @@ A339763 ,1,768,43676,4743130,364618672,28808442502,2125185542510,153198148096800 A339764 ,6,9,7,2,6,5,6,5,1,0,7,7,0,3,2,0,8,9,2,3,3,3,9,8,4,3,7,5,0,0,0,0,0,0,0,0,2,5,8,6,0,8,7,5,7,1,8,0,9,0,3,2,5,1,7,5,3,1,2,2,0,3,8,1,8,8,8,9,4,0,4,9,1,2,0,1,0,6,4,2,2,4,8,9,8,5,9,2,5,4,7,3,1,9,2,5,3,7,5,3,8,1,2,5,1,7,9,7,0,8,0,0,3,9,9,7,8,0,2,7,3,4,3,7,5,0,0,0,0,0,0, A339765 ,-1,0,-1,0,1,0,1,0,1,2,1,2,3,2,3,2,3,4,3,4,3,4,5,4,5,6,5,6,5,6,7,6,7,8,7,8,7,8,9,8,9,8,9,10,9,10,11,10,11,10,11,12,11,12,11,12,13,12,13,14,13,14,13,14,15,14,15,16,15,16,15,16,17,16,17,16, A339766 ,2,6,1,2,0,0,0,7,4,0,4,3,4,5,2,6,0,6,4,4,3,7,3,7,1,1,3,0,9,5,4,4,5,6,7,2,4,3,3,4,0,4,5,8,7,3,7,0,9,3,8,2,6,6,0,9,3,5,1,0,8,0,6,0,5,1,5,6,0,4,1,0,8,8,7,4,9,3,0,1,3,6,2,5,1,3,6, +A339767 ,2,3,0,5,1,7,-2,0,3,11,-1,13,5,2,-4,17,-2,19,1,4,9,23,-3,0,11,-3,3,29,0,31,-6,8,15,2,-4,37,17,10,-1,41,2,43,7,-1,21,47,-5,0,-2,14,9,53,-5,6,1,16,27,59,-2,61,29,1,-8,8,6,67,13,20,0,71,-6,73, A339768 ,1,1,1,1,1,1,1,1,3,1,1,1,5,25,1,1,1,7,109,543,1,1,1,9,289,9449,29281,1,1,1,11,601,63487,3068281,3781503,1,1,1,13,1081,267249,69711361,3586048685,1138779265,1, A339769 ,1,2,4,4,5,6,10,12,9,7,4,9,13,11,7,6,8,10,13,14,10,15,14,21,8,7,13,21, A339770 ,1,15,170,2766,46127,811265,14605298,268039329, @@ -339716,7 +339722,7 @@ A339804 ,0,1,4,13,22,50,68,116,162,236,278,437,498,634,794,1018,1118,1450,1574,1 A339805 ,5,17,47,97,98,159,279,359,485,489,749,879,1679,1979,2399,2499,3968,5669,6749,7199,7799,8099,8639,9719,12799,19199,25599,31999,37499,39599,44799,68599,78399,78749,79379,94499,134999,143999,146999,161999,172799,175999,194399,199679,209999,218699,259999, A339806 ,1,2,3,7,43,239,1663,9242,47523,351115,2015403,4026914,10143015,72872619,144151023,413384223, A339807 ,1,2,11,5,10,154,540,581,272,49,122,3418,27304,90277,150948,150519,95088,37797,8714,893,3346,142760,1938178,12186976,42696630,94605036,145009210,161845163,134933733,84656743,39632149,13481441,3156845,455917,30649, -A339808 ,1,2,3,6,10,18,34,55,104,176,320,592,1071,1855,3311,5943, +A339808 ,1,2,3,6,10,18,34,55,104,176,320,592,1071,1855,3311,5943,10231, A339809 ,0,1,2,5,4,9,14,29,6,13,20,41,34,69,104,209,10,21,32,65,54,109,164,329,76,153,230,461,384,769,1154,2309,12,25,38,77,64,129,194,389,90,181,272,545,454,909,1364,2729,142,285,428,857,714,1429,2144,4289,1000,2001,3002,6005,5004,10009,15014,30029,16,33,50, A339810 ,1,2,2,4,4,6,2,6,2,12,2,6,6,24,6,6,6,32,6,24,2,12,6,12,12,30,2,384,2,6,2,12,4,6,6,64,6,6,2,60,2,48,6,6,12,60,2,6,30,12,2,210,2,96,2,216,30,30,6,180,2,6,2,16,6,12,2,60,4,6,2,6,6,12,6,120,6,24,6,30,2,240,6,6,30,12,6,60,2,30,2,48, A339811 ,1,2,2,3,3,4,2,4,2,5,2,4,4,6,4,4,4,7,4,6,2,5,4,5,5,8,2,9,2,4,2,5,3,4,4,10,4,4,2,11,2,12,4,4,5,11,2,4,8,5,2,13,2,14,2,15,8,8,4,16,2,4,2,17,4,5,2,11,3,4,2,4,4,5,4,18,4,6,4,8,2,19,4,4,8,5,4,11,2,8,2,12,4,4,4,11,20,4,5,19,3,4,4,4,4, @@ -339793,7 +339799,7 @@ A339883 ,24,72,25440,33840,38880,48960,99360,123120,208320,458640,510720,519360, A339884 ,1,1,1,1,1,1,0,2,1,1,0,1,2,1,1,0,1,2,2,1,1,0,0,2,2,2,1,1,0,0,1,3,2,2,1,1,0,0,1,2,3,2,2,1,1,0,0,0,2,3,3,2,2,1,1,0,0,0,1,3,3,3,2,2,1,1,0,0,0,1,2,4,3,3,2,2,1,1, A339885 ,1,1,1,0,1,1,0,1,1,1,-1,0,1,1,1,0,-1,1,1,1,1,-1,-1,-1,1,1,1,1,0,-1,-1,0,1,1,1,1,0,-1,-2,-1,0,1,1,1,1,0,1,-1,-2,0,0,1,1,1,1,0,0,0,-2,-2,0,0,1,1,1,1, A339887 ,1,1,1,1,1,2,1,1,1,2,1,2,1,2,2,1,1,2,1,2,2,2,1,2,1,2,1,2,1,4,1,1,2,2,2,3,1,2,2,2,1,4,1,2,2,2,1,2,1,2,2,2,1,2,2,2,2,2,1,5,1,2,2,1,2,4,1,2,2,4,1,3,1,2,2,2,2,4,1,2,1,2,1,5,2,2,2, -A339888 ,1,1,3,5,13,23,55,104,236,470,1039, +A339888 ,1,1,3,5,13,23,55,104,236,470,1039,2140,4712,9962,21961,47484,105464,232324,521338,1167825,2651453,6031136,13863054,31987058,74448415,174109134,410265423,971839195,2317827540,5558092098,13412360692,32542049038,79424450486, A339889 ,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70, A339890 ,0,1,1,1,1,1,1,2,1,1,1,2,1,1,1,2,1,2,1,2,1,1,1,3,1,1,2,2,1,2,1,4,1,1,1,4,1,1,1,3,1,2,1,2,2,1,1,6,1,2,1,2,1,3,1,3,1,1,1,5,1,1,2,5,1,2,1,2,1,2,1,8,1,1,2,2,1,2,1,6,2,1,1,5,1,1,1, A339891 ,1,4,7,12,20,34,74,131,260,524,1030,2054,4118,8196,16389,32804,65554,131074,262216,524292,1048580,2097304,4194312,8388619,16777478,33554436,67108906,134218244,268435464,536870914,1073742880,2147483720,4294967300,8589936646,17179869193, @@ -339855,7 +339861,7 @@ A339946 ,2,24,812,52920,5635002,889789866,195289709624,56872979140536,2122230852 A339947 ,1,5,5,13,5,33,23,30,25,69,23,150,79,119,161,385,125,501,178,443,548,1105,273,1119,921,1339,1202,2049,228,2237,2041,2792,2431,3096,1006,5905,4216,5230,3433,7596,1531,10026,6556,6939,8201,14190,3105,13431,7068,12673,12587,22075,4080,17211,13183,19462,18667,29950,2709,34199, A339948 ,1,1,4,7,4,16,4,16,10,16,4,40,4,16,16,36,4,40,4,40,16,16,4,80,10,16,20,40,4,64,4,52,16,16,16, A339949 ,2,3,5,6,7,3,2,12,4,4,4,4,18,2,3,6,20,5,3,2,30,4,3,4,4,9,2,3,9,4,4,3,4,47,2,3,5,10,6,3,2,15,4,4,4,4,13,2,3,7,8,5,3,2,77,4,3,5,6,8,3,2,10,4,4,3,4,24,2,3,6,78,6,3,2,22,4,3,4,4,11,2, -A339950 ,1,7,14,20,27,35,41,48,54,62,69,75,82,90,96, +A339950 ,1,7,14,20,27,35,41,48,54,62,69,75,82,90,96,103,109,117,124,130,137,143,151,158,164,171,179,185,192,198,206,213,219,226,234,240,247,253,260,268,274,281,287,295,302,308,315,323,329,336,342,350,357,363,370,376,384,391,397,404, A339951 ,1,2,4,8,64,70,280,287,0,2,16,16,32,40,280,280,560,561,3366,3367,20202,20205,40410,40414,0,2,16,16,32,40,0,5,30,30,150,156,156,159,477,483,2898,2901,8703,8709,60963,60965,0,2,0,2,4,4,8,8,40,44,0,4,4,4, A339952 ,5,13,17,25,29,37,41,45,53,61,65,73,85,89,97,101,109,113,117,125,137,145,149,153,157,169,173,181,185,193,197,205,221,225,229,233,241,245,257,261,265,269,277,281,289,293,305,313,317,325,333,337,349,353,365,369,373,377, A339953 ,5,7,11,13,29,47,67,71,73,83,131,151,233,307,461,467,479,571,577,587,613,619,643,727,853,947,953,967,991,1063,1093,1231,1249,1291,1297,1427,1489,1493,1867,1871,1879,2017,2083,2111,2251,2309,2311,2473,2749,2753,2767,3011,3089,3191,3313,3691, @@ -340349,6 +340355,7 @@ A340454 ,1,0,1,1,1,-1,2,0,1,1,1,0,1,-1,1,2,1,0,2,-1,1,0,1,0,2,0,0,2,2,-1,1,0,1,0 A340455 ,1,-1,2,0,0,0,2,-2,2,1,0,0,1,-2,2,0,2,0,2,-2,0,0,0,2,2,-2,2,0,-1,0,4,-2,2,-1,0,0,0,0,2,0,2,0,2,-2,2,0,-2,0,2,-2,2,2,0,0,2,-2,2,1,2,-2,0,-2,2,0,1,2,2,-2,0,0,0,0,2,-2,4, A340456 ,1,2,2,1,2,2,2,1,2,2,2,0,2,4,2,0,1,2,2,2,2,2,2,0,3,2,2,0,2,2,2,2,2,2,0,2,2,4,2,-1,2,2,2,0,2,2,4,0,2,4,2,1,0,0,2,2,2,4,2,0,2,2,2,0,2,2,2,2,4,2,0,0,1,4,2,0,2,2,2,2,2,0,2,2,2,4, A340457 ,0,0,1,4356,164025, +A340458 ,1,2,2,3,4,3,4,5,5,4,5,6,6,7,5,6,7,7,8,8,6,7,8,8,9,9,9,7,8,9,9,10,10,10,11,8,9,10,10,11,11,11,12,12,9,10,11,11,12,12,12,13,13,14,10,11,12,12,13,13,13,14,14,15,14,11,12,13,13,14,14,14,15,15,16,15,16,12,13,14,14,15,15,15,16,16,17,16,17,17, A340459 ,3,9,10,18,26,23,31,44,50,40,48,68,74,80,61,69,98,104,110,116,86,94,134,140,146,152,158,115,123,176,182,188,194,200,206,148,156,224,230,236,242,248,254,260,185,193,278,284,290,296,302,308,314,320,226,234,338, A340460 ,1,14,36,58,80,168,190,212,234,256,278,300,322,344,611,633,655,677,699,988,1010,1032,1054,1365,1387,1409,1720,1742,1764,2075,2097,2119,2452,2474,2807,2829,3162,3184,3517,3539,3872,3894,4227,4249,4582,4604,4937,4959,5292,5314,5647,5669,6002, A340461 ,1,0,3,2,9,0,17,6,15,4,25,2,43,10,15,14,45,6,59,10,35,14,49,6,59,30,51,28,83,0,113,30,51,28,85,20,145,40,81,22,139,14,149,40,75,26,97,14,143,34,75,68,143,24,125,64,125,54,121,2,275,82,119,62,183,18,221,58,99, @@ -340593,7 +340600,7 @@ A340704 ,3,6,3,5,3,4,7,4,10,4,4,3,3,4,3,3,4,4,4,4,4,4,4,4,4,4,3,3,4,4,3,3,3,4,4, A340705 ,5,4,7,8,10,3,3,3,3,3,7,4,4,3,5,4,3,3,7,3,3,5,3,3,3,3,4,4,3,3,4,4,4,3,3,4,3,4,4,3,3,4,4,3,3,4,4,4,3,3,3,4,3,3,3,3,4,4,3,4,4,4,5,3,4,4,3,4,4,4,4,4,5,4,5,4,3,4,4,3,3,4,4,4,4,3,3,3,3,4, A340706 ,5,17,3,13,24,35,10,28,270,631,95,443,531,440,1487,1934,503,8138,6276,12311,16911,33892,11573,17000,3807,45197,30753,31457,65170,105597,127209,206808,109516,139456,377711,530040,561600,690742,952332,457704,671064,353107, A340707 ,0,1,-1,2,0,1,-2,3,2,-2,0,8,12,-8,-7,14,-1,10,2,4,6,-3,20,-2,5,-5,-27,4,-16,5,5,4,-8,11,13,-8,-19,8,-36,3,2,-14,-5,2,-3,-55,-19,-6,14,-54,-13,-53,63,-26,38,-2,21,38,-30,7,39,2,-23,41,2,-8,5,5,-5,-110, -A340708 ,1,2,3,5,8,13,24,40,69,130,231,408,689,1272,2153,3960,6993, +A340708 ,1,2,3,5,8,13,24,40,69,130,231,408,689,1272,2153,3960,6993,12560, A340709 ,0,1,2,3,5,4,7,6,10,8,12,9,15,11,17,13,20,14,22,16,25,18,27,19,30,21,32,23,35,24,37,26,40,28,42,29,45,31,47,33,50,34,52,36,55,38,57,39,60,41,62,43,65,44,67,46,70,48,72,49,75,51,77,53,80,54,82,56,85,58,87, A340710 ,1,7,5,5,1,7,3,8,4,1,1,6,8,7,3,7,7,7,6,6,0,7,4,7,2,1,2,2,8,4,0,5,2,3,7,0,1,1,1,5,1,1,8,1,3,9,4,5,5,4,3,9,9,1,5,5,8,1,7,9,0,6,2,1,6,1,7,5,6,8,6,2,1,6,4,6,4,5,1,1,9,2,7,5,9,7,9,9,0,2,4,8,5,2,5,6,3,9,7,6,9,6,3,6,8,9,5,1,6,8,2,5,3,0,2,5,1,5,1,1, A340711 ,1,2,7,3,9,8,6,6,1,3,2,0,6,8,3,3,9,2,5,1,5,8,1,6,8,3,8,2,1,3,8,9,4,7,2,7,3,4,7,6,2,7,4,4,4,6,7,6,7,3,5,7,8,9,4,0,0,2,9,6,8,1,4,4,0,9,8,7,4,8,6,6,8,1,5,3,7,7,6,0,6,9,5,5,6,2,0,1,2,2,8,5,4,3,8,1,1,4,6,6,0,7,3,0,5,9,2,7,4,0,5,9,2,2,4,4,6,8,1,3, @@ -340611,7 +340618,7 @@ A340722 ,1,1,6,4,2,2,9,7,1,3,7,2,5,3,0,3,3,7,3,6,3,6,3,2,0,9,3,8,2,6,8,4,5,8,6,9 A340723 ,2,9,9,1,5,6,8,9,8,7,6,8,7,5,9,0,6,2,8,3,1,2,5,1,6,5,1,5,9,0,4,9,1,7,7,9,1,1,1,2,8,0,6,0,2,4,9,2,1,7,1,5,1,1,2,7,4,4,1,1,9,6,5,0,9,5,6,3,8,8,7,6,7,8,7,6,3,2,0,2,1,7,9, A340724 ,1,2,9,8,0,5,5,3,3,2,6,4,7,5,5,7,7,8,5,6,8,1,1,7,1,1,7,9,1,5,2,8,1,1,6,1,7,7,8,4,1,4,1,1,7,0,5,5,3,9,4,6,2,4,7,9,2,1,6,4,5,3,8,8,2,5,4,1,6,8,1,5,0,8,1,8,9,7,5,7,9,8,6, A340725 ,1,0,6,8,6,2,8,7,0,2,1,1,9,3,1,9,3,5,4,8,9,7,3,0,5,3,3,5,6,9,4,4,8,0,7,7,8,1,6,9,8,3,8,7,8,5,0,6,0,9,7,3,1,7,9,0,4,9,3,7,0,6,8,3,9,8,1,5,7,2,1,7,7,0,2,5,4,4,7,5,6,6,9,1, -A340726 ,1,2,6,15,42,143,399,1190,4209,13130,41591,118590,404471,1158696,3893831,12222320,39428991, +A340726 ,1,2,6,15,42,143,399,1190,4209,13130,41591,118590,404471,1158696,3893831,12222320,39428991,123471920,397952081,1297210320, A340727 ,12,48,240,1440,8640,60480,604800,5443200,59875200,718502400,9340531200,124540416000,1743565824000,29640619008000,502146957312000,8536498274304000,162193467211776000,3406062811447296000,68121256228945920000,1498667637036810240000, A340728 ,0,0,1,1,0,1,0,2,0,1,0,1,0,2,1,0,0,3,0,1,0,0,0,3,0,1,0,1,0,3,0,1,0,0,1,1,0,2,0,1,0,3,0,2,0,0,0,3,0,2,0,0,0,2,0,0,0,0,0,4,0,2,1,0,0,3,0,2,0,1,0,1,0,1,0,0,0,3,0,3,0,0,0,3,0,1,0,1,0,3,0,1,0,0,0,1,0,3,1, A340729 ,1,3,8,18,60,150,210,420,390,840,7770,5460,9282,2310,3570,2730,10710,39270,117810,60060,154770,43890,53130,46410,66990,62790,176358,106260,30030,642180,1111110,1919190,930930,1688610,1360590,1531530,1291290,570570,1138830,510510,690690,1141140,870870, @@ -340633,6 +340640,7 @@ A340744 ,31,23,19,43,73,53,43,37,61,43,83,73,43,73,53,67,79,73,61,59,173,151,109 A340745 ,0,2,3,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70, A340746 ,24,40,60,67,88,100,132,136,147,150,184,204,220,227,232,276,307,323,328,330,340,376,387,424,460,472,492,499,510,547,550,564,568,580,627,636,664,675,690,707,708,712,726,748,767, A340747 ,24,40,60,67,72,88,96,100,120,132,136,144,147,150,160,168,180,184,200,204,216,220,227,232,240,264,267,276,280,288,300,307,312,323,328,330,340,348,352,360,367,376,384,387,395,396,400,408,420,424, +A340748 ,2,3,4,22,94,142,262,334,358,694,862,934,1174,1678,1822,2182,2854,3022,3862,3958,4054,4702,4894,5062,5398,5854,6022,6238,6382,6694,7534,7558,7822,8038,8422,9502,9934,10078,10342,10558,11062,11758,12574,12622,13942,14038, A340749 ,6,10,12,14,15,18,20,21,22,26,28,30,33,34,36,38,39,42,45,46,48,50,51,52,54,55,56,57,58,62,65,66,68,69,70,72,74,75,78,80,82,84,85,86,87,90,91,93,94,95,98,100,102,105,106,110,111,112,114,116,118,120,122, A340750 ,5,7,11,29,43,53,89,109,113,127,131,173,179,181,199,263,311,379,419,433,443,449,461,467,479,523,571,577,593,601,613,631,653,709,719,733,739,757,811,823,829,853,929,937,967,971,1019,1031,1049,1153,1181,1321,1381,1399,1409,1439,1451,1453,1459, A340751 ,0,0,0,0,1,1,1,2,2,3,4,5,6,8,9,11,15,13,20,21,26,28,34,32,46,44,56,54,70,62,87,80,100,94,126,105,152,127,167,154,197,171,232,200,256,237,292,251,349,291,378,336,419,355,497,405,528,458,583,487,680,549,700,620,786, @@ -340769,6 +340777,7 @@ A340886 ,1,1,6,76,1720,60816,3096384,214579296,19422473088,2224980891904,3146755 A340887 ,1,1,7,99,2511,99531,5680125,441226521,44766049599,5748319130283,911271895816077,174799606363478361,39903413238125862309,10690643656077551475921,3321750648705212259711063,1184831658624977151885176859,480843465699932167142334581919, A340888 ,1,1,8,124,3456,150656,9453056,807373568,90066059264,12716049596416,2216452086693888,467465806422867968,117332539562036035584,34562989958399757647872,11807922834511544081973248,4630865359842075866336067584,2066370767828213666946077425664, A340889 ,7,23,113,139,199,211,293,317,523,691,887,1039,1069,1129,1259,1327,1381,1637,1669,1759,1831,1933,1951,2113,2179,2297,2311,2423,2477,2503,2557,2593,2633,2861,2971,3089,3137,3229,3271,3433,3739,3889,3947,3967,4159,4177,4297,4463,4523,4733,4759,4831, +A340890 ,1,8,5184,1719926784,990677827584000000,2495937495082991616000000000000,58001506007267709490243656115814400000000000000,23264754073069200132851692722771970253637181903994880000000000000000, A340891 ,1,1,1,2,6,20,70,255,961,3726,14797,59986,247606,1038632,4420837,19071954,83321966,368400431,1647706426,7452622503,34082926816,157595263361,736806253045,3483636843142,16660303710511,80618576499123,394863246977469,1958369414771028, A340892 ,1,1,2,6,22,90,394,1807,8577,41810,208218,1055418,5429926,28294906,149091449,793344134,4258741610,23043290306,125589061313,689061968319,3804200404388,21125338986694,117963378773322,662200103423786,3736364727815999,21186955753874840, A340893 ,1,1,1,3,12,51,229,1079,5288,26768,139255,741804,4035428,22374787,126262588,724423620,4222889705,24999907277,150274982778,917156371139,5684147494421,35782117189675,228878225147773,1488242327844714,9842110656790201, @@ -340923,6 +340932,7 @@ A341042 ,1,1,3,1,5,3,7,1,6,5,11,3,13,7,15,1,17,6,19,5,21,11,23,3,10,13,9,7,29,15 A341043 ,1,35,189,559,1241,2331,3925,6119,9009,12691,17261,22815,29449,37259,46341,56791,68705,82179,97309,114191,132921,153595,176309,201159,228241,257651,289485,323839,360809,400491,442981,488375,536769, A341044 ,8,9,10,14,15,21,22,25,26,33,34,39,42,46,57,62,65,66,69,72,74,76,80,82,87,91,92,93,94,95,100,106,111,116,119,121,122,129,133,134,145,146,159,162,166,172,176,177,183,184,190,194,202,203,206,208,213,214,215,219,232,236,237,238,240,243, A341045 ,1,4,6,28,45,120,496,672,6048,8128,14421,30240,32760,523776,2178540,23569920,26409026,29270772,30685402,33550336,45532800, +A341046 ,1,36,106,29486,32876,66317,1360120,22060516,78256779,1151791169,6701487259,6701487259,1142027682075,2851718461558,91822653867264,136308121570117,1952799169684491,21208174623389167,842468587426513207,842468587426513207,84383735478118508040, A341047 ,3,113,333,92633,103283,208341,4272943,69305155,245850922,3618458675,21053343141,21053343141,3587785776203,8958937768937,288469374822515,428224593349304,6134899525417045,66627445592888887,2646693125139304345,2646693125139304345, A341048 ,224,2464,2912,3159,3808,4256,5152,6318,6496,8288,9184,9632, A341050 ,1,1,1,3,1,1,3,1,5,8,1,1,3,1,5,8,1,7,21,19,1,1,3,1,5,8,1,7,21,20,1,9,40,81,43,1,1,3,1,5,8,1,7,21,20,1,9,40,81,47,1,11,65,208,295,94,1,1,3,1,5,8,1,7,21,20,1,9,40,81,48,1,11,65,208,297,107,1,13,96,425,1024,1037,201, @@ -341074,6 +341084,9 @@ A341208 ,9,12,43,101,276,711,1873,4892,12819,33549,87844,229967,602073,1576236,4 A341209 ,1,5,12,23,39,61,90,127,173,229,296,375,467,573,694,831,985,1157,1348,1559,1791,2045,2322,2623,2949,3301,3680,4087,4523,4989,5486,6015,6577,7173,7804,8471,9175,9917,10698,11519,12381,13285,14232,15223,16259,17341,18470,19647, A341210 ,3,29,41,73,113,157,167,173,199,599,607,617,1213,1747,1979,2027,2237,2377,2441,2593,2659,2689,2693,3061,3137,3413,3457,3539,3673,3733,3769,4091,4157,4273,4289,4547,4603,4759,4877,4909,4957,5039,5231,5233,5303,5419, A341211 ,3,3,3,13,3,3,3,113,331,3631,827,3109,4253,7487,71, +A341212 ,154379,1075198,4211518,4700758,4745227,5954379,6036043,6330235,6485998,6524878,6851227,7846798,8536027,8556358,11718598,12100027,12126838,13584838,14869379,15320587,16934998,17074379,18154379,18904027,19013129,19774379,19779995, +A341213 ,1,7,47,1019,154379,59423129,3100501318,126544656838, +A341214 ,2,7,47,1019,55414379, A341215 ,5,7,11,19,29,31,37,43,53,113,127,163,173,199,257,271,317,353,397,439,457,461,557,599,659,757,809,991,997,1019,1069,1129,1289,1327,1439,1447,1549,1621,1733,1747,1759,1831,1913,2027,2113,2141,2153,2309,2339,2357,2383,2423,2473,2663,2741,2801, A341216 ,1,1,2,1,1,2,1,2,3,4,1,1,1,1,2,1,2,3,4,5,6,1,1,1,1,1,1,2,1,2,2,3,3,4,5,6,1,1,2,3,3,3,4,5,6,1,2,3,4,5,6,7,8,9,10,1,1,1,1,1,1,1,1,1,1,2,1,2,3,4,5,6,7,8,9,10,11,12,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,2,2, A341217 ,3,11,5,1720949,22362444257,57703877539769, @@ -341266,12 +341279,15 @@ A341410 ,0,0,1,2,0,0,3,2,1,0,10,6,10,2,10,2,10,12,10,14,16,8,10,18,0,4,1,18,10,0 A341411 ,0,1,0,3,0,1,1,3,0,5,4,7,2,13,0,3,15,13,15,19,15,11,15,19,0,3,0,27,15,25,15,3,27,21,15,31,15,17,30,19,15,19,15,11,0,9,15,19,1,25,21,43,15,31,25,27,54,55,15,19,15,55,36,3,5,55,15,27,18,55,15,67,15,55, A341412 ,0,1,0,3,1,1,0,3,0,1,10,7,8,7,6,3,4,13,2,15,0,3,21,19,1,13,0,7,21,1,21,3,12,23,21,31,21,15,12,35,21,13,21,31,36,45,21,19,0,1,33,39,21,31,46,35,42,33,21,55,21,29,0,3,46,49,21,31,27,21,21,67,21,17, A341413 ,0,0,1,0,3,2,0,4,1,0,6,8,2,0,4,4,11,14,9,16,7,8,5,20,8,10,1,0,28,20,28,4,25,4,14,32,28,26,4,36,28,20,28,12,28,2,28,20,0,0,19,48,28,32,34,28,43,24,28,56,28,16,28,4,18,20,28,52,25,0,28,68,28,66,19,40, +A341414 ,0,1,3,8,1,5,4,7,7,4,5,1,8,3,1,0,9,7,2,9,5,6,3,3,6,5,9,2,7,9,0,1,3,8,1,5,4,7,7,4,5,1,8,3,1,0,9,7,2,9,5,6,3,3,6,5,9,2,7,9,0,1,3,8,1,5,4,7,7,4,5,1,8,3,1,0,9,7,2,9,5,6,3,3,6,5,9,2,7,9, A341415 ,1,0,2,2,0,4,4,8,0,8,14,16,24,0,16,44,64,48,64,0,32,148,208,216,128,160,0,64,504,736,720,640,320,384,0,128,1750,2592,2672,2176,1760,768,896,0,256,6156,9280,9696,8448,6080,4608,1792,2048,0,512, A341416 ,1,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,31,32,37,35,36,47,49,40,59,61,52,45,71,56,79,55,68,89,63,65,103,107,92,77,121,72,127,85,91,137,139,88,151,112,124,115,169,104,119,99,148,193,197,133,211,223,117,145,161,136,241,155,196, A341417 ,1,2,2,3,2,3,1,2,0,2,0,4,2,7,5,10,6,11,5,10,3,10,3,13,6,19,11,25,14,29,14,30,12,31,12,36,16,45,23,56,30,65,33,71,34,76,35,84,40,97,48,113,58,129,66,144,71,157,76,172,83,192, A341418 ,1,1,1,0,2,1,0,1,3,1,-1,0,3,4,1,0,-2,1,6,5,1,-1,-2,-3,4,10,6,1,0,-2,-6,-3,10,15,7,1,0,-2,-6,-12,0,20,21,8,1,0,1,-6,-16,-19,9,35,28,9,1,0,0,0,-16,-35,-24,28,56,36,10,1,1,2,3,-6,-40,-65,-21,62,84,45,11, A341419 ,1,1,2,0,4,2,0,-2,8,6,8,-2,0,-2,-8,-2,16,14,24,-2,32,14,-8,-18,0,-2,-8,-2,-32,-18,-8,14,32,30,56,-2,96,46,-8,-50,128,94,120,-34,-32,-50,-136,-18,0,-2,-8,-2,-32,-18,-8,14,-128,-98,-136,30,-32,14,120,46,64,62, A341420 ,1,4,5,8,13,17,20,25,29,37,40,41,52,53,61,65,68,73,85,89,97,100,101,104,109,113,116,125,136,137,145,148,149,157,164,169,173,181,185,193,197,200,205,212,221,229,232,233,241,244,257,260,265,269,277,281,289,292,293,296, +A341421 ,0,0,0,-1,-2,-2,-2,-3,-3,-2,-1,-2,-2,-3,-2,-2,-2,-2,-2,-2,-2,-3,-3,-3,-3,-4,-4,-5,-5,-5,-6,-5,-4,-3,-3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,1,0,-1,-1,-1,-1,-1,-2,-3,-3,-3,-3,-3,-3,-4,-5,-4,-5,-6,-7, +A341422 ,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,2,2,2,2,2,2,2,4,2,2,2,2,2,2,2,2,2,2,2,2,4,2,2,2,2,2,4,4,2,4,2,2,2,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,2,2,2,4,2,2,2,2,2,4,2,4,2,2,2,2,4,2,2,2,2,4,4,2,2,2,4,2,2, A341423 ,1,5,32,94,219,437,804,1362,2177,3271,4768,6708,9227,12381,16254,20954,26707,33461,41480,50884,61703,74183,88606,104862,123481,144241,167604,193648,222799,254731,290244,329512,372545,419661,470822,526646,587481,653505, A341424 ,6,51,177,547,1348,2958,5574,10084,16974,27450,41970,62671,90216,128082,175867,238018,316373,414998,534094,682144,859705,1075165,1326551,1627896,1976582,2390057,2862607,3411273,4039483,4760419,5571729,6500650,7541560,8722096, A341425 ,7,48,331,1269,3698,9382,20927,42683,79844,142173,238810,387615,603589,915324,1345294,1939221,2729723,3783313,5138567,6895632,9108626,11909496,15362753,19642539,24832744,31179476,38757032,47877886,58647957,71447776,86391220, @@ -341299,6 +341315,7 @@ A341446 ,2,5,6,11,14,17,18,23,26,31,35,38,41,42,47,54,58,59,65,67,73,74,78,83,86 A341447 ,3,7,13,15,19,29,33,37,43,51,53,61,69,71,75,77,79,89,93,101,107,113,119,123,131,139,141,151,161,163,165,173,177,181,193,199,201,217,219,221,223,229,239,249,251,255,263,271,281,287,291,293,299,309,311,317, A341448 ,6,14,15,24,26,33,35,38,51,54,56,58,60,65,69,74,77,86,93,95,96,104,106,119,122,123,126,132,135,140,141,142,143,145,150,152,158,161,177,178,185,201,202,204,209,214,215,216,217,219,221,224,226,232,234,240, A341449 ,1,5,11,17,23,25,31,41,47,55,59,67,73,83,85,97,103,109,115,121,125,127,137,149,155,157,167,179,187,191,197,205,211,227,233,235,241,253,257,269,275,277,283,289,295,307,313,331,335,341,347,353,365,367,379,389, +A341450 ,1,0,0,0,0,1,0,2,1,3,3,6,3,9,9,12,12,20,18,28,27,37,42,55,51,74,80,98,105,136,137,180,189,232,255,308,320,403,434,512,551,668,706,852,915,1067,1170,1370,1453,1722,1860,2145,2332,2701,2899,3355,3626,4144, A341451 ,1,0,0,1,0,1,1,1,2,2,2,3,3,4,6,5,7,8,9,10,13,13,17,17,22,21,27,27,34,34,41,40,51,49,62,59,71,70,86,82,101,97,117,112,135,131,155,150,180,170,202,196,228,222,259,248,291,281,324,314,361,348,404,388,445,431, A341452 ,1,0,0,1,0,1,1,1,2,2,2,3,3,4,6,6,7,9,9,12,14,16,18,22,24,29,31,38,40,49,50,62,65,77,81,97,98,120,122,144,149,176,178,212,214,251,255,299,304,352,355,412,417,482,485,559,564,643,650,742,745,850,856,965, A341453 ,1,0,0,1,0,1,1,1,2,2,2,3,3,4,6,6,7,9,10,12,15,16,20,23,27,30,36,40,48,53,62,68,81,87,105,112,130,141,166,176,208,219,256,271,314,331,385,403,468,488,561,588,674,702,804,837,952,991,1126,1168,1321,1372, @@ -341401,6 +341418,7 @@ A341549 ,3,6,23,50,131,294,687,1530,3419,7502,16391,35490,76467,163830,349535,74 A341550 ,29,103,1229,2609,3733,4229,4903,11239,21013,47507,65033,73453,75629,105601,112241,132499,172213,257069,330641,361213,379459,570029,667477,893033,950633,976147,1054717,1240999,1435219,1934837,2149151,2775559,2829011,3189799, A341551 ,996787,87880249,6458329435,437811072433,28577902283587,1831839463314409,116388761878654315,7363089071153371873,464825043098493809107,29313469954934882953369,1847663299656911486659195,116431149842916469716759313,7336041758469840870854326627, A341552 ,129,975,7041,49935,351489,2466255,17281281,121021455,847307649,5931625935,41522798721,290663842575,2034659652609,14242655832015,99698705615361,697891283681295,4885240018890369,34196683231596495,239376791919267201,1675637571329145615, +A341553 ,3451,61567,996787,15478951,235916971,3565011727,53659360867,806180862391,12101749545691,181589509846687,2724285545507347,40867383560793031,613032456339776011,9195638766433606447,137935644948388268227,2069042118396589446871, A341554 ,1,6,-810,-22134,-278634, A341555 ,0,1,-36,-81,784,-1314, A341556 ,1,72,2376,47592,646344, @@ -341432,6 +341450,7 @@ A341581 ,0,1,2,5,10,20,37,70,130,243,450,836,1549,2874,5326,9875,18302,33928,628 A341582 ,0,1,2,4,6,12,22,42,76,142,262,488,902,1674,3100,5750,10654,19752,36606,67858,125772,233134,432118,800968,1484630,2751866,5100732,9454534,17524526,32482792,60208782,111600642,206858476,383424702,710700742,1317326728,2441744422, A341583 ,0,1,3,8,18,42,94,208,450,966,2052,4330,9074,18920,39266,81182,167268,343634,704122,1439496,2936906,5981174,12161332,24691514,50066690,101400616,205150098,414653998,837377988,1689714242,3407154474,6865700808,13826659450,27829885126, A341584 ,0,1,2,2,2,2,4,3,4,4,4,4,4,4,6,4,6,5,8,6,8,6,8,6,8,7,8,8,8,8,8,8,9,8,10,9,10,10,12,10,11,9,12,9,12,10,12,10,13,10,14,11,14,11,16,11,16,12,16,12,16,13,16,13,16,14,16,13,16,14,18,14,16,14,20,14,16,14,20,15,18, +A341585 ,1,0,1,1,0,2,3,0,4,4,0,5, A341586 ,1,0,-4,-5,22,98,-5,-1458,-5136,9053,161328,549822,-1954067,-30099188,-114161728,500200027,8875931202,42311243830,-149028931789,-3816065804086,-24704581255020,33033659868037,2184285021783940,20047242475274290,30117550563701293, A341587 ,1,6,40,315,2908,30989,375611,5112570,77305024,1286640410,23387713930,461187042992,9808283703684,223833267479764,5456669750439788,141540592345674800,3892707724320135616,113153294901088030320,3466501398608272647984,111636571036702743967104,3770483138507706753943584, A341588 ,1,12,130,1485,18508,253400,3805723,62437500,1113510409,21479997957,446094038806,9930796412082,236037249893092,5968192832899412,160007282538148508,4534905316824903144,135500246340709682692,4257646241716404353684,140366073694357927723936,4845119946789226304526392, @@ -341479,6 +341498,7 @@ A341629 ,1,1,0,1,0,1,0,1,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,1 A341630 ,2,3,6,14,36,94,250,675,1832,5005,13746,37901,104902,291312,811346,2265905,6343854,17801383,50057400,141034248,398070362,1125426581,3186725646,9036406687,25658313188,72946289247,207628101578,591622990214,1687527542874,4818113792640, A341631 ,2,7,9,14,19,27,28,29,30,36,44,60,61,68,70,71,87,88,89,100,101,104,105,108,109,112,113,138,157,174,192,193,199,201,202,203,204,210,274,275,276,277,304,305,306,364,365,366,372,373,384,387,388,389,399,400,401,405,471,472,473,511,512,513, A341632 ,5,31,41,59,139,281,281,281,311,479,593,1153,1153,1283,1559,1559,2213,2213,2213,3167,3167,2963,2963,3067,3067,3181,3181,5153,6779,7451,9463,9463,9859,10061,10061,10061,10061,10889,17539,17539,17539,17539,22229,22229,22229,30869,30869,30869,32717, +A341633 ,1,2,4,24,621,492288,81203064840, A341634 ,101,11,2,3,41,5,23,7,181,19,251,43,127,53,281,29,541,37,83,11551,139,47,523,1481,157,149,12451,67,59,283,11177,2551,239,1187,1453,79,881,257,89,1553,2851,199,347,563,1483,277,14551,1753,269,827,853,15551,367, A341635 ,1,-2,-3,1,-5,6,-7,0,2,10,-11,-3,-13,14,15,0,-17,-4,-19,-5,21,22,-23,0,4,26,0,-7,-29,-30,-31,0,33,34,35,2,-37,38,39,0,-41,-42,-43,-11,-10,46,-47,0,6,-8,51,-13,-53,0,55,0,57,58,-59,15,-61,62,-14,0,65, A341636 ,1,4,6,13,10,24,14,38,29,40,22,78,26,56,60,103,34,116,38,130,84,88,46,228,79,104,124,182,58,240,62,264,132,136,140,377,74,152,156,380,82,336,86,286,290,184,94,618,153,316,204,338,106,496,220,532,228,232,118,780,122,248, @@ -341539,6 +341559,7 @@ A341690 ,16,95591589000729770,57770815231373815452404527382911050,15942241394469 A341691 ,0,1,2,1,4,1,2,5,8,1,2,9,4,9,10,5,16,1,2,17,4,17,18,5,8,17,18,9,20,9,10,21,32,1,2,33,4,33,34,5,8,33,34,9,36,9,10,37,16,33,34,17,36,17,18,37,40,17,18,41,20,41,42,21,64,1,2,65,4,65,66,5,8,65, A341692 ,1,10,100,101,102,20,103,104,105,11,106,120,2,200,107,108,30,13,109,40,14,110,50,15,12,16,130,60,61,21,201,202,22,203,70,140,150,170,17,160,80,38,230,180,31,113,190,90,49,204,210,41,114,18,301,205,250,310, A341694 ,1,1,1,2,1,1,2,2,2,1,1,1,2,3,1,1,1,3,2,5,1,3,2,1,4,2,8,1,3,3,3,3,7,2,13,1,1,1,3,5,5,11,2,21,1,1,2,4,3,8,9,18,2,34,1,2,1,1,5,3,13,17,29,2,55,1,2,1,1,4,9,3,21,31,47,2,89,1, +A341695 ,1,1,1,2,2,2,4,6,6,6,8,16,22,22,22,16,40,68,90,90,90,32,96,192,304,394,394,394,64,224,512,928,1412,1806,1806,1806,128,512,1312,2656,4552,6752,8558,8558,8558,256,1152,3264,7264,13712,22664,33028,41586,41586,41586, A341696 ,2,1,4,6,40,20,46,8,42,400,60,62,64,26,406,80,48,4000, A341697 ,1,1,1,1,2,2,4,4,6,7,11,11,17,17,25,29,38,38,54,54,72,80,102,102,136,140,174,186,228,228,300,300,366,388,464,480,594,594,702,736,874,874,1068,1068,1250,1324,1528,1528,1828,1844,2144,2220,2534,2534,2982,3026,3464,3572,4028,4028, A341698 ,1,1,-1,1,-2,2,0,0,-2,1,3,-3,1,-1,1,-5,4,-4,12,-12,14,-14,8,-8,10,-14,12,-16,18,-18,26,-26,36,-30,22,-22,24,-24,0,2,20,-20,-10,10,12,-18,2,-2,14,-14,-2,10,16,-16,-8,20,14,10,-46,46,-52,52,-104,132,-70,74,-186,186,-134,150, @@ -341613,6 +341634,7 @@ A341767 ,1,4,9,4,2,9,7,1,9,11,22,39,41,54,69,71,88,99,11,41,93,77,78,99,44,11,99 A341768 ,0,-2,-2,3,16,40,78,133,208,306,430,583,768,988,1246,1545,1888,2278,2718,3211,3760,4368,5038,5773,6576,7450,8398,9423,10528,11716,12990,14353,15808,17358,19006,20755,22608,24568,26638,28821,31120,33538,36078,38743,41536,44460, A341769 ,3,12,64,436,3624,35516,400544,5106180,72574936,1137563980,19489399824,362279121044,7261032943688,156078126597084,3581487541784704,87378336982197028,2258453972652164280,61646205047945592428,1771962416919392083184,53498826047517147678132, A341770 ,1,8,23,34,61,62,97,138,189,248,315,390,473,564,663,770,885,1008,1139,1278,1425,1580,1743,1914,2093,2280,2475,2678,2889,3108,3335,3570,3813,4064,4323,4590,4865,5148,5439,5738,6045,6360,6683,7014,7353,7700,8055,8418, +A341771 ,2,1,1,2,2,2,3,1,2,3,2,3,2,4,1,2,4,2,3,2,3,2,4,2,5,1,2,4,2,3,3,3,3,4,2,3,3,2,4,3,3,3,3,4,3,4,2,5,2,5,2,3,4,3,5,2,6,1,2,3,3,3,4,2,3,6,2,3,3,3,4,3,5,2,4,3,7,1,2,3,4,2,3,4,2,3,3,8, A341772 ,1,4,10,17,28,40,54,70,94,112,130,170,180,216,280,284,304,376,378,476,540,520,550,700,716,720,858,918,868,1120,990,1144,1300,1216,1512,1598,1404,1512,1800,1960,1720,2160,1890,2210,2632,2200,2254,2840,2682,2864,3040,3060,2860,3432,3640, A341773 ,1,0,0,1,0,0,1,0,0,2,0,0,2,0,0,2,0,0,3,1,0,3,1,0,3,1,0,4,2,0,4,2,0,4,3,0,5,4,1,5,4,1,5,5,1,6,6,2,6,6,2,6,7,3,7,9,4,8,9,4,8,10,5,9,12,6,10,12,7,10,13,8,12,15,10,13,16,11,13,17,12, A341774 ,1,0,0,1,0,0,1,0,0,2,0,0,1,0,0,1,0,0,1,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0,1,0,0,2,1,0,1,1,0,1,0,0,1,1,0,0,0,0,1,1,0,1,1,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,1,1,1,0,0,2,0,0,0,0,0,2,0,0,1,1,0,2,0,0,2, @@ -341722,6 +341744,7 @@ A341879 ,1,0,2,2,0,2,3,2,0,0,0,4,3,2,4,0,0,4,0,2,0,0,0,4,0,0,0,6,0,2,5,4,0,0,0,4 A341880 ,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,6,0,0,0,4,0,0,0,0,0,0,0,16,0,0,0,0,0,4,0,4,0,0,0,12,0,0,0,10,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,16,1,0,0,12,0,0,0,4,0,12,0,0,0,0,0,40,0,0,0,6,0,0,0,4,0,0,0,28,0,0,0,16, A341881 ,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,25,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,5,0,0,0,0,0,0,0,20,0,0,0,0,0,0,0,15, A341882 ,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6, +A341883 ,0,1,1,2,3,3,3,4,3,4,4,4,3,4,2,3,3,3,5,5,5,5,6,6,9,9,8,8,7,5,8,5,8,7,7,6,7,6,8,8,7,9,7,7,8,7,6,8,6,6,6,5,6,9,8,12,10,9,9,8,8,8,9,7,7,5,6,6,8,9,10,8, A341884 ,1,2,6,22,342,1444,33184,399235,12502550,117906198,7740054144,74673569118,4724493959332,121637216075836,4503600768557056,89450720590507768,10119960926575526448,152232968281237988010,16384000020089600480000,552020693349464673399080,35271474934322858202723576, A341885 ,0,3,6,6,15,9,28,9,12,18,66,12,91,31,21,12,153,15,190,21,34,69,276,15,30,94,18,34,435,24,496,15,72,156,43,18,703,193,97,24,861,37,946,72,27,279,1128,18,56,33,159,97,1431,21,81,37,196,438,1770,27,1891,499,40,18,106,75,2278,159,282, A341886 ,512,1024,2048,5632,8192,11264,16384,22528,54272,57856,97792,108544,122368,131072,150016,165376,169984,180224,188928,195584,210432,244736,248320,256000,276480,279040,300032,317440,333312,334336,335872,337408,352256,367616,371712, @@ -341774,6 +341797,7 @@ A341948 ,1,1,2,2,4,4,6,5,8,6,10,7,12,9,15,10,18,12,21,14,25,15,29,18,33,21,37,20 A341949 ,1,1,2,2,4,4,7,6,9,8,12,10,16,12,19,15,24,18,29,21,35,25,41,29,49,33,56,37,63,41,72,46,82,51,91,58,105,63,115,68,128,77,143,83,158,90,174,101,193,107,211,116,231,128,250,134,273,142,294,157,321,165,347,176,374, A341950 ,1,1,2,2,4,4,7,7,10,9,14,12,19,16,23,19,30,24,37,29,44,35,55,41,65,49,75,56,89,63,102,72,116,82,134,91,153,105,171,115,194,128,220,143,242,158,273,174,305,193,334,211,374,231,412,250,447,273,494,294,541,321, A341951 ,1,1,2,2,4,4,7,7,11,10,15,14,21,19,27,23,35,30,44,37,54,44,67,55,81,65,96,75,115,89,133,102,155,116,180,134,206,153,236,171,271,194,305,220,346,242,391,273,438,305,489,334,551,374,608,412,674,447,750,494,823, +A341952 ,1,1,-1,1,-1,1,-1,0,1,0,-1,1,-1,0,0,1,0,-1,1,0,-1,0,1,-1,1,-1,1,-1,1,-1,0,1,-1,1,0,0,-1,0,0,1,-1,1,-1,1,0,0,-1,1,-1,0,1,-1,0,0,0,1,0,-1,1,-1,1,-1,1,-1,1,0,-1,1,-1,0,1,0,0,-1,0,1,-1,1,-1,1,-1,1,0,-1,0,1,-1,1,-1,0,1,-1,1,-1,0,0,1,0,0,-1,0,0,1,0,-1, A341953 ,1,4,9,4,2,9,7,1,9,10,11,11,19,17,18,19,14,11,19,40,81,77,59,11,25,49,81,71,59,90,91,94,99,94,92,99,97,91,99,40,71,11,49,77,18,49,74,11,49,70,81,47,29,11,55,79,81,41,29,90,91,94,99,94,92,99,97, A341954 ,1,2,13,99,839,7606,72190,708294,7126305,73125017,762337935,8051642336,85971106450,926481778388,10064065073450,110080177918855,1211363817278035,13401851361051323,148978925959605763,1663181275248666597, A341955 ,1,2,11,80,659,5865,54954,534087,5334509,54423368,564713959,5941244370,63230204938,679510980507,7363532850004,80372780735971,882818219523503,9751004973855748,108236495732967482,1206750569591821120,13507907804245679450, @@ -341811,6 +341835,7 @@ A341986 ,1,7,28,77,168,308,511,785,1155,1603,2142,2723,3430,4207,5202,6216,7497, A341987 ,1,8,36,112,274,560,1016,1688,2647,3928,5580,7568,9990,12832,16332,20336,25167,30472,37004,44136,53054,62272,73788,85240,100276,114752,134072,151144,174834,194616,224304,247240,283467,308448,352668,381032,436368,467272,533520, A341988 ,1,9,45,156,423,954,1887,3384,5661,8935,13446,19332,26838,36126,47691,61668,78696,98631,122665,150516,184230,222438,268146,318564,379383,445572,525942,610344,712872,817290,947166,1075680,1238148,1391475,1591236,1773684,2022241, A341989 ,1,10,55,210,625,1542,3310,6390,11400,19090,30353,46060,67210,94780,130230,174862,230650,298800,382115,482090,603373,746860,918770,1118100,1355110,1626742,1949190,2312380,2740220,3212640,3769784,4375900,5092485,5854680,6758935,7703112, +A341990 ,0,1,4,12,40,128,402,1278,4040,12776,40417,127803,404136,1277995,4041401,12779996,40413886,127799963, A341991 ,1,1,1,1,2,2,1,1,4,12,6,6,6,6,3,1,8,8,12,12,6,6, A341992 ,123,124,132,135,142,145,153,154,213,214,231,236,241,246,263,264,312,315,321,326,351,356,362,365,412,415,421,426,451,456,462,465,513,514,531,536,541,546,563,564,623,624,632,635,642,645,653,654, A341993 ,0,1,2,4,8,3,6,5,7,9,10,20,40,80,11,22,44,88,12,24,48,96,13,26,14,28,56,15,16,17,18,19,38,76,21,42,84,168,23,46,92,184,368,25,27,29,58,30,60,31,62,32,64,128,256,33,66,34,68,35,36,37,74,148,296,39, @@ -341841,6 +341866,7 @@ A342017 ,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,2 A342018 ,8,16,24,36,44,52,64,72,80,88,92,100,108,116,120,126,128,136,144,156,164,172,184,192,200,208,216,222,224,232,244,252,260,268,271,272,280,288,296,300,308,316,324,336,344,348,352,364,372,380,388,392,397,400,408,416,424,432,440,444,448,452,460,468,476,480,488,493,496, A342019 ,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1, A342020 ,0,2,0,1,2,6,13,32,63,124,244,453,862,1568,2835,5150,9251,16093,27830,48605,84765,145300,245730,417251,721100,1267411,2247106,3997263, +A342021 ,5,8,41,47057, A342022 ,1,2,2,3,4,5,2,5,6,7,8,9,4,10,11,12,13,14,15,11,16,17,18,19,20,8,21,22,23,24,2,10,25,9,21,26,27,24,28,29,30,31,18,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,4,11,8,14,49,50,21,51,52,53,54,55,56,57,58,59,60,61,7,62,63,64,65,66, A342023 ,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,1,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1, A342024 ,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,1,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1, @@ -341898,6 +341924,7 @@ A342076 ,1,11,12,2,3,31,13,32,21,14,4,5,51,15,52,22,23,33,34,41,16,6,7,71,17,72, A342077 ,1,2,20,3,30,4,5,50,6,7,70,8,9,10,11,12,21,13,31,14,15,51,16,17,71,18,19,22,33,40,41,42,23,32,24,43,34,44,45,52,25,53,35,54,46,47,72,26,48,49,55,60,61,62,27,73,36,63,37,74,64,65,56,66,67,75,57,76,68,69,77,80,81,82,28,83,38, A342078 ,1,10,2,3,30,4,5,50,6,7,70,8,9,90,11,20,21,12,22,23,31,13,32,24,25,51,14,26,27,71,15,52,28,29,91,16,33,40,41,17,72,42,43,34,44,45,53,35,54,46,47,73,36,48,49,92,55,60,61,18,62,63,37,74,64,65,56,66,67,75,57,76,68, A342079 ,1,2,21,3,4,41,5,6,61,7,8,81,9,11,12,22,23,13,14,42,24,43,15,16,62,25,17,18,82,26,63,19,31,32,27,33,34,44,45,35,36,64,46,65,37,38,83,39,51,52,28,84,47,53,54,48,85,55,56,66,67,57,58,86,68,87,59,71,72,29,73,74,49,75,76,69,77,78,88,89, +A342080 ,18872,18874,18890,18892,22085,22111,22112,22116,22120,22121,22130,22210,22211,22220,22256,22310,22570,22571,22580,22607,22616,22652,22670,22679,22697,22706,22710,22724,22762,22825,22832,22841,22850,22859,22864, A342081 ,1,2,3,4,5,6,7,8,10,11,13,14,16,17,19,20,22,23,26,28,29,31,32,34,37,38,41,43,44,46,47,52,53,58,59,61,62,64,67,68,71,73,74,76,79,82,83,86,88,89,92,94,97,101,103,104,106,107,109,113,116,118,122,124, A342082 ,9,12,15,18,21,24,25,27,30,33,35,36,39,40,42,45,48,49,50,51,54,55,56,57,60,63,65,66,69,70,72,75,77,78,80,81,84,85,87,90,91,93,95,96,98,99,100,102,105,108,110,111,112,114,115,117,119,120,121,123,125, A342083 ,1,1,1,1,1,2,1,2,1,2,1,3,1,2,2,2,1,3,1,3,2,2,1,4,1,2,2,3,1,4,1,3,2,2,2,4,1,2,2,4,1,5,1,3,3,2,1,6,1,3,2,3,1,5,2,4,2,2,1,7,1,2,3,3,2,5,1,3,2,4,1,8,1,2,3,3,2,5,1,6,2,2,1,7,2,2,2, @@ -341918,6 +341945,7 @@ A342097 ,1,1,1,1,2,1,2,2,3,3,3,3,4,6,6,7,8,8,9,11,13,15,18,20,24,25,29,32,39,42, A342098 ,1,1,1,2,2,2,3,3,3,4,5,5,6,7,7,8,9,10,11,12,13,14,15,16,18,20,21,23,25,26,28,31,33,35,38,40,42,45,48,51,55,58,61,65,68,72,77,81,85,90,94,98,104,109,114,121,127,132,139,146, A342099 ,1,1,2,32,8704,69074944,24438162587648,546639076930132901888,1040668139730671025101058605056,218400176068773166949459169210753567686656,6353017630286823410670432558608528274164598967780769792, A342100 ,12,18,20,24,40,42,56,60,72,80,84,88,90,102,104,108,112,114,354,366,368,372,380,384,392,396,400,402,464,468,476,480,492,500,504,552,560,564,572,576,580,582,650,654,836,840,945,948,952,954,1002,2002,2004,2024, +A342101 ,1,2,3,1,3,1,2,1,3,1,2,3,1,1,2,1,3,1,2,3,1,3,1,2,1,1,2,3,1,1,2,1,3,1,2,3,1,3,1,2,1,3,1,2,3,1,1,2,1,1,2,3,1,3,1,2,1,1,2,3,1,1,2,1,3,1,2,3,1,3,1,2,1,3,1,2,3,1,1,2,1,3,1,2,3,1,3, A342102 ,0,1,2,3,6,5,4,7,14,12,10,13,9,11,8,15,30,28,26,25,24,22,21,29,20,19,18,27,17,23,16,31,62,60,58,56,57,52,50,54,53,49,44,51,42,48,46,61,45,41,38,43,37,40,39,59,35,36,34,55,33,47,32,63,126,124,122, A342103 ,1,3,6,14,15,30,35,42,56,70,78,105,140,168,190,210,248,264,270,357,418,420,570,594,616,630,714,744,812,840,910,1045,1240,1254,1485,1672,1848,2090,2214,2376,2436,2580,2730,2970,3080,3135,3339,3596,3720,3828,3956,4064,4180, A342104 ,2,12,18630,27000,443394,6242022,14412720,22315419,26744100,44630838,50496960,106034880,128710944,148536990,162907584,212072880,218470770,296259930,349444530,397253968,535267776,641250900,641418960,666274653,684165552,688208724,709639408, @@ -341940,6 +341968,7 @@ A342120 ,1,1,0,1,1,0,1,2,2,0,1,3,6,3,0,1,4,12,16,5,0,1,5,20,45,44,8,0,1,6,30,96, A342121 ,0,0,0,0,0,0,0,0,0,0,2,0,2,0,0,0,0,0,6,0,0,9,6,0,6,4,0,0,6,0,0,0,0,0,14,0,4,13,18,0,4,0,10,5,0,17,14,0,14,12,0,8,10,0,4,0,18,12,4,0,14,0,0,0,0,0,30,0,12,21,42,0,0,33,30,1,12,21,42,0, A342122 ,0,1,0,1,0,3,0,1,0,5,2,3,11,7,0,1,0,9,6,5,0,13,6,3,19,11,0,7,23,15,0,1,0,17,14,9,4,25,18,5,37,21,10,13,0,29,14,3,35,19,0,11,43,27,4,7,39,23,55,15,47,31,0,1,0,33,30,17,12,49,42,9,0,41,30, A342123 ,0,0,0,0,0,0,0,0,0,0,11,0,2,0,0,0,0,0,19,0,0,9,23,0,6,4,0,0,6,0,0,0,0,0,35,0,37,13,39,0,4,0,43,5,0,17,47,0,14,12,0,8,10,0,55,0,18,12,4,0,14,0,0,0,0,0,67,0,69,21,71,0,0,33,75,1,77,21, +A342124 ,2,18,121,124,313,484,797,2016,2211,2862,4507,6188,6325,9660,12669,13016,16857,19530,23069,28184,38761,46302,42515,49846,59087,70260,73385,78960,97267,98316,111023,124454,134641,152952,163043,180596,195975,218432,237623, A342125 ,2,6,10,30,70,210,770,2310,10010,30030,34034,170170,510510,646646,3233230,9699690,14872858,74364290,223092870,431312882,2156564410,6469693230,13370699342,66853496710,200560490130,494715875654,2473579378270,7420738134810,20283350901814, A342127 ,0,1,5,6,10,47,50,60,75,78,100,125,152,457,500,600,750,1000,1025,1052,1250,1520,5000,5625,6000,7500,10000,10025,10052,10250,10520,12266,12500,15200,23258,43567,50000,56250,60000,62656,75000,82291,90625,98254,100000,100025,100052,100250,100520, A342128 ,0,1,0,2,0,0,3,2,0,0,4,6,2,0,0,5,12,18,2,0,0,6,20,84,114,2,0,0,7,30,260,2652,2970,2,0,0,8,42,630,29660,1321860,1185282,2,0,0,9,56,1302,198030,187430900,130253748108,100301050602,2,0,0,10,72,2408,932862,10199069190,2157531034816940, @@ -341974,6 +342003,7 @@ A342159 ,0,1,4,13,40,41,172,85,464,145,980,221,1784,313,2940,421,4512,545,6564,6 A342160 ,0,7,19,26,37,56,63,98,117,124,152,189,208,215,218,279,316,335,342,387,448,485,504,511,513,604,665,702,721,728,784,875,936,973,992,999,1115,1206,1267,1304,1323,1330,1385,1512,1603,1664,1701,1720,1727,1854,1981, A342161 ,0,1,3,4,-3,-14,63,274,-1383,-7934,50523,353794,-2702763,-22368254,199360983,1903757314,-19391512143,-209865342974,2404879675443,29088885112834,-370371188237523,-4951498053124094,69348874393137903,1015423886506852354,-15514534163557086903, A342162 ,11,9,13,14,15,16,17,18,19,20,180,1,13,37,55,73,91,109,127,145,221,17,1,34,37,55,73,91,109,127,231,35,17,1,55,37,55,73,91,109,241,53,35,17,1,76,37,55,73,91,251,71,53,35,17,1,97,37,55,73,261,89,71,53,35,17,1,118,37,55,271,107, +A342163 ,2,6,15,29,60,87,137,176,247,360,422,568,689,776,923,1136,1369,1494,1764,1978,2128,2451,2710,3074,3562,3870,4077,4411,4638,4995,6026,6426,6987,7271,8180,8493,9134,9802,10319,11030,11767,12139,13314,13712,14329,14742, A342164 ,0,1,2,3,4,5,6,7,8,9,10,11,12,15,17,19,16,23,18,27,30,27,22,27,24,39,41,44,28,47,50,41,52,56,50,56,56,56,50,56,53,72,42,75,54,80,80,76,83,80,85,92,90,80,54,99,94,99,86,99,98,99,108,99,108,99,108,99,126,99, A342165 ,1,2,3,2,4,3,5,2,4,3,6,5,7,2,4,3,8,6,9,5,7,2,10,4,3,8,6,9,11,5,12,7,2,10,4,3,13,8,6,9,14,11,15,5,12,7,16,2,10,4,3,13,17,8,6,9,14,11,18,15,19,5,12,7,16,2,20,10,4,3,21,13,22,17,8,6,9,14, A342166 ,1,1,3,39,2925,1582425,7410496275,350464600333575,191295845123076910125,1355763582602823185129417625,138623522325287867599380791765497875,224935042709004795568466587349227029537282375,6318777956744220129890735589019782971247629409914638125, @@ -341995,11 +342025,15 @@ A342182 ,1,1,8,117,3184,134025,8141436,672837277,72634878016,9923765772177,16738 A342183 ,3,7,11,13,31,41,43,59,73,113,139,179,197,211,223,241,263,277,349,367,449,563,587,631,659,683,739,773,823,829,977,1033,1049,1217,1471,1487,1553,1571,1583,1607,1609,1669,1697,1753,1901,1907,2089,2111,2281,2531, A342184 ,7,13,31,97,109,157,271,523,601,691,769,829,1063,1069,1201,1249,1291,1483,1489,1567,1579,1609,1693,1747,1831,2203,2281,2383,2803,2887,2953,3511,3967,4513,4651,5023,5059,5437,5653,5779,5821,6151,6163,6199,6361,6367, A342185 ,2,11,23,101,149,227,239,269,353,479,557,569,647,683,809,827,983,1289,1607,1619,1823,1901,1907,2039,2213,2411,2447,2843,2879,2957,2963,3011,3119,3257,3389,3557,3671,3833,3923,4001,4019,4397,4943,5099,5309,5441,5471, +A342186 ,1,-1,1,3,-4,1,-21,31,-11,1,315,-486,196,-26,1,-9765,15381,-6562,1002,-57,1,615195,-978768,428787,-69688,4593,-120,1,-78129765,124918731,-55434717,9279163,-652999,19833,-247,1, A342187 ,44,48,49,63,75,80,98,99,116,147,171,175,207,244,260,275,288,315,324,332,360,363,368,387,404,475,476,495,507,524,528,531,539,548,549,575,603,604,624,636,656,675,692,724,725,747,764,774,800,819,832,844,845,846, A342188 ,80,624,2511,5264,6399,7695,7856,10287,13040,14640,15471,15632,18063,19375,20624,20816,23247,23408,25839,27135,28560,28592,31023,31184,33615,35072,36015,36368,38799,38960,39375,40816,41391,44144,46250,46575,46736,49167,51920, A342189 ,135,296,343,351,375,512,728,999,1160,1215,1375,1431,1592,1624,2079,2240,2295,2375,2456,2624,2727,2888,2943,3104,3159,3429,3591,3624,3752,3992,4023,4184,4616,4671,4832,4887,4913,5048,5144,5319,5480,5535,5696,5831,6183, A342190 ,1,2,3,5,7,9,10,11,12,13,14,15,17,19,23,24,26,27,29,31,34,35,37,39,40,41,43,44,46,47,49,53,55,56,58,59,61,62,63,67,68,70,71,73,74,75,76,78,79,80,81,83,89,90,94,95,97,98,100,101,103,104,107,109,110, A342191 ,1,2,3,4,5,6,7,8,9,11,12,13,15,16,17,18,19,21,23,24,25,27,29,30,31,32,35,36,37,41,42,43,45,47,48,49,53,54,55,59,60,61,63,64,65,67,71,72,73,75,77,79,81,83,84,89,90,91,96,97,101,103,105,107,108,109, +A342192 ,6,10,14,22,26,34,38,46,58,62,74,82,86,94,100,106,118,122,134,140,142,146,158,166,178,194,196,202,206,214,218,220,226,254,260,262,274,278,298,300,302,308,314,326,334,340,346,358,362,364,380,382,386,394,398, +A342193 ,1,15,33,35,45,51,55,69,75,77,85,91,93,95,99,105,119,123,135,141,143,145,153,155,161,165,175,177,187,195,201,203,205,207,209,215,217,219,221,225,231,245,247,249,253,255,265,275,279,285,287,291,295,297,299, +A342194 ,1,1,1,3,3,5,7,7,7,13,11,11,17,13,15,25,17,17,29,19,23,35,25,23,39,29,29,45,33,29,55,31,35,55,39,43,65,37,43,65,51,41,77,43,51,85,53,47,85,53,65,87,61,53,99,67,67,97,67,59,119,61,71,113,75,79,123,67,79,117, A342195 ,0,1,1,-5,-8,61,130,-1385,-3680,50521,160816,-2702765,-10026368,199360981,844583440,-19391512145,-92369507840,2404879675441,12722897618176,-370371188237525,-2154662195222528,69348874393137901,440001333689382400,-15514534163557086905,-106615331831035289600,4087072509293123892361, A342196 ,1,1,5,23,155,1355,14371,183911,2781283,48726355,976903875,22183097191,565060532965,16016170519017,501714014484813,17265124180702953,649178961366102597,26544344366333824055,1175291769917975444817,56133021061270139242637,2881893164859601701738005, A342197 ,1,1,9,63,919,18919,505639,18602319,877402487,51212704151,3688010412503,321523601578079,33283248550719793,4050897039400696253,574469890816237292037,93943844587040615104177,17565329004174205621822169,3730161837629377369026433019, @@ -342065,6 +342099,7 @@ A342256 ,2,3,4,5,6,7,8,9,10,11,13,14,16,17,18,19,20,21,22,23,25,26,27,29,31,32,3 A342257 ,1,2,3,2,5,3,7,2,3,5,11,1,13,7,1,2,17,3,19,5,7,11,23,1,5,13,3,1,29,1,31,2,1,17,1,1,37,19,13,1,41,7,43,1,1,23,47,1,7,5,1,13,53,3,11,1,19,29,59,1,61,31,1,2,1,1,67,17,1,1,71,1,73,37,1, A342258 ,62,74,188,194,195,275,278,363,398,422,423,483,494,495,614,662,663,747,758,764,782,867,1028,1071,1094,1095,1235,1238,1268,1394,1419,1454,1658,1659,1682,1844,1910,1916,1955,1970,2043,2067,2138,2139,2223,2235,2247,2259, A342259 ,65,104,129,164,194,272,284,314,344,384,398,464,524,608,614,626,662,692,734,758,824,968,1025,1094,1172,1238,1280,1304,1364,1424,1448,1454,1532,1544,1595,1658,1664,1682,1724,1754,1832,1868,1869,1934,1952,2000,2001,2012, +A342260 ,3,31,217,268,8399,29110,711243,4676815,31622764,376863606,12638826343,38121744938,1511790122972, A342262 ,1,2,3,4,5,6,7,8,9,10,12,20,24,30,36,40,50,60,70,80,90,100,102,110,111,112,120,132,135,140,144,150,200,210,216,220,224,240,300,306,312,315,360,400,432,480,500,510,540,550,600,612,624,630,700,735,800,900,1000,1002,1008, A342263 ,0,0,0,1,1,1,1,2,2,1,2,1,1,1,2,3,3,2,2,1,2,3,2,2,2,1,2,2,2,2,3,4,4,3,2,2,3,2,2,2,2,2,4,3,2,3,2,3,3,2,2,2,2,3,3,2,2,2,2,2,3,3,4,5,5,4,3,3,3,2,2,2,3,4,3,2,3,2,2,3,3,2,3,2,4,5,3, A342264 ,0,1,2,3,4,5,6,7,8,9,13,11,12,14,15,18,16,17,19,25,22,23,24,33,26,29,27,28,38,39,49,66,45,34,35,44,55,56,57,58,59,67,46,68,47,69,48,77,36,78,37,79,88,89,99,123,111,112,113,114,115,118,116,117,119,125,122,124,133,126,129,127,128,138, @@ -342103,6 +342138,7 @@ A342296 ,1,1,9,113,1649,2655,440985,7711009,138792929, A342297 ,1,1,2,2,3,2,4,5,2,6,5,7,8,2,9,5,7,11,10,12,13,2,14,5,7,16,10,17,13,15,19,18,20,21,2,22,5,7,24,10,25,13,15,27,18,20,29,23,30,26,28,32,31,33,34,2,35,5,7,37,10,38,13,15,40,18,20,42,23,43,26,28,45,31,46,34,36,48, A342298 ,2,25,931,504455,67539587599,585462196329239562271,21690980800898420269408456526391711768639,14792097944732868603877386771665610972834204784426907551800717772696470224928895, A342299 ,41,281,827,857,2081,2801,8087,20981,21191,21491,81197,88607,206411,225941,227531,233141,249131,255971,261971,279551,283571,825107,827537,828407,834857,857567,861977,864047,869777,879167,883577,895787,2051111,2125601,2128601,2130701,2141801,2147021,2163221, +A342302 ,6,12,48,90,252,294,300,420,432,720,798,864,930,1020,1140,1218,1368,1428,1602,1716,1890,1938,2088,2184,2190,2196,2250,2760,2880,3588,3660,3708,3774,3810,4452,4710,4902,5280,5340,5412,5754,5850,6174,6240,6462,6768,7014,7182,7632,8322,8820,9144, A342303 ,1,1,0,3,0,5,6,4,0,0,7,14,0,16,10,15,13,0,21,0,39,10,58,8,0,49,16,81,68,36,49,72,0,39,33,25,25,0,40,16,11,106,6,7,0,9,10,26,60,85,11,70,40,9,214,30,32,52,16,0,65,30,6,226,0,24,130,161,20,0,99,0,68,216,136,0,62,26,129, A342304 ,1,2,3,4,5,6,7,8,9,21,23,25,27,29,41,43,45,47,49,61,63,65,67,69,81,83,85,87,89,101,104,107,110,111,112,113,114,115,116,117,118,119,122,125,128,131,134,137,140,141,142,143,144,145,146,147,148,149,152,155,158,161, A342306 ,1,0,0,0,240,0,20160,0,0,0,319334400,0,77127879628800, @@ -342120,10 +342156,14 @@ A342317 ,0,2,6,9,44,60,35,234,564,504,135,1144,3816,6112,4080,527,5430,23000,511 A342318 ,1,1,1,1,1,5,1,61,1,1385,1,50521,691,2702765,1,199360981,3617,19391512145,43867,2404879675441,174611,370371188237525,77683,69348874393137901,236364091,15514534163557086905,657931,4087072509293123892361,3392780147,1252259641403629865468285, A342319 ,1,2,12,56,120,992,252,16256,240,261632,132,4192256,32760,67100672,12,1073709056,8160,17179738112,14364,274877382656,6600,4398044413952,276,70368735789056,65520,1125899873288192,12,18014398375264256,3480,288230375614840832, A342320 ,0,1,5,17,41,53,125,161,293,341,377,485,881,1025,1133,1313,1457,1805,2057,2393,2645,3077,3401,3941,4373,5333,5417,6173,6497,7181,7937,9197,9233,10205,11825,12641,13121,14153,14405,16001,16253,16757,18521,19493,21545, +A342321 ,1,0,1,0,-1,2,0,1,-4,3,0,-3,22,-33,12,0,1,-13,33,-26,5,0,-5,114,-453,604,-285,30,0,5,-200,1191,-2416,1985,-600,35,0,-35,2470,-21465,62476,-78095,42930,-8645,280,0,14,-1757,21912,-88234,156190,-132351,51128,-7028,126, +A342322 ,1,0,1,0,-1,2,0,0,-1,1,0,1,1,-9,6,0,0,1,1,-4,2,0,-1,-1,6,6,-15,6,0,0,-2,-2,5,5,-9,3,0,3,3,-17,-17,25,25,-35,10,0,0,3,3,-7,-7,7,7,-8,2,0,-5,-5,28,28,-38,-38,28,28,-27,6,0,0,-10,-10,23,23,-21,-21,12,12,-10,2, A342323 ,1,1,1,1,2,1,1,1,3,1,1,2,1,2,1,1,1,1,1,5,1,1,2,3,2,1,1,1,1,1,1,1,1,3,7,1,1,2,1,2,1,1,1,2,1,1,1,3,1,1,1,1,1,3,1,1,2,1,2,5,3,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,11,1,1,2,3,2,1,1,1,2,3,1,1,1,1, A342324 ,1,1,1,4,5,12,16,36,81, A342325 ,174999,4,187,1,274,11,990213634,320741,108,59,16972551346,98100646316, A342326 ,0,4,16,81,471,2031,1381,11781,6906,17956,34531,123256,40056,305256,863281,448906,200281,1957231,520731,10563906,1001406,11222656,7631406,3454506,1482081,75865156,7172606106,8852431,25035156,334020781,13018281,38531031,7410406,7014160156, +A342327 ,64705,2542687,87880249,2867519047,91094247025,2857310964847,89080092692329,2769052985833687,85954322576134945,2666290098653287807,82680590830861862809,2563482326383161959527,79473712585542654112465,2463771499324688282695567, +A342328 ,1068475,89633839,6458329435,433976684431,28211055010555,1804746233554159,114556965257054875,7243790885015626831,457188176014823960635,28828588756092946562479,1816999192589895468925915,114495695622871975031439631, A342329 ,2,90,356232,152505051772,6961765466482521226, A342330 ,1,1,2,2,3,4,4,7,9,11,17,23,32,44,63,91,127,180,255,363,516,732,1044,1485,2109,3002,4277,6089,8660,12323,17550,24986,35562,50628,72084,102616,146077,207980,296114,421555,600153,854469,1216543,1731983,2465842,3510713, A342331 ,1,1,1,3,2,2,5,4,3,9,6,4,14,9,8,22,15,11,37,24,21,58,40,30,95,67,53,157,114,85,264,187,147,428,315,244,732,527,410,1207,892,681,2034,1490,1155,3416,2508,1927,5731,4215,3259,9597,7091,5454,16175,11914,9194,27134,20033,15425,45649,33672,25967,76714, @@ -342138,6 +342178,7 @@ A342339 ,1,2,3,4,5,6,7,8,9,11,12,13,16,17,18,19,21,23,24,25,27,29,31,32,36,37,41 A342340 ,1,1,2,4,6,9,17,24,41,67,109,173,296,469,781,1284,2109,3450,5713,9349,15422,25351,41720,68590,112982,185753,305752,503041,827819,1361940,2241435,3687742,6068537,9985389,16431144,27036576,44489533,73205429,120460062,198214516,326161107, A342341 ,1,1,1,1,1,3,1,3,3,5,5,5,9,7,13,15,17,19,29,31,39,43,63,59,75,121,119,169,167,199,279,305,343,479,537,733,789,883,1057,1421,1545,1831,2409,2577,3343,4001,4657,5131,6065,7755,8841,10473,12995,14659,17671,20619,25157,28255,33131,38265,47699,53171,62611,80005,88519,105937,119989, A342342 ,1,1,1,3,1,3,5,5,3,11,9,11,17,15,29,39,31,39,65,57,107,127,149,155,187,265,293,419,523,571,781,763,941,1371,1387,2125,2383,2775,3243,4189,4555, +A342343 ,1,1,1,3,3,5,8,10,13,18,27,32,44,55,73,97,121,151,194,240,299,384,465,576,706,869,1051,1293,1572,1896,2290,2761,3302,3973,4732,5645,6759,7995,9477,11218,13258,15597,18393,21565,25319,29703,34701,40478,47278,54985, A342344 ,0,0,2,3,1,3,1,2,1,2,1,2,1,1,1,2,1,2,1,2,1,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,1,1,1,2,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,2, A342345 ,3,33,363,36663,6306036,63066666036,6304963866683694036,6304963866689998999866683694036, A342346 ,4,44,484,48884,8408048,84088888048,8408888888888888048, @@ -342149,9 +342190,13 @@ A342351 ,11881,11882,11883,11884,11885,11886,11887,11888,11889,11890,11891,11892 A342352 ,0,0,0,0,4,15,41,98,218,465,967,1980,4016,8099,16277,32646,65398,130917,261971,524096,1048364,2096919,4194049,8388330,16776914,33554105,67108511,134217348,268435048,536870475,1073741357,2147483150,4294966766,8589934029, A342353 ,0,8,80,416,1512,4216,10000,21256, A342354 ,1,3,7,9,5,17,19,11,15,31,33,21,13,29,49,51,35,23,27,47,71,73,53,37,25,45,69,97,99,75,55,39,43,67,95,127,129,101,77,57,41,65,93,125,161,163,131,103,79,59,63,91,123,159,199,201,165,133,105,81,61,89,121,157,197,241,243,203,167,135,107,83,87,119,155,195,239,287, +A342355 ,3,1,9,9,9,9,9,8,7,3,8,4,9,0,0,8,2,6,7,5,7,5,8,3,9,3,0,2,6,5,5,6,5,4,7,9,4,1,0,9,0,6,5,1,4,9,2,0,8,2,9,3,9,6,9,6,4,0,9,9,0,9,6,6,9,6,3,1,9,5,7,6,8,4,6,6,0,8,3,2,2,1,1,7,1,2,9,5,9,5,8,9,1,8,4,9,0, A342356 ,1,10,12,2,20,22,24,4,14,16,6,26,28,8,18,15,5,25,35,30,3,33,36,32,34,38,48,40,42,21,27,57,45,50,52,54,44,46,56,58,68,60,62,64,66,63,39,9,69,90,70,7,77,147,49,84,74,37,333,93,31,124,72,75,51,17,102,80,78,76,86,82,88,98,91, A342357 ,1,2,11,125,1469,30970,1424807,25646168,943532049,66190291008,1883023236995,119209289551407,8338590851427689,366451025462807402,25231464507361789935,2996947275258886238380,211289282287835811874277,12680220578500976681544666,1815313698001596651227722787, A342358 ,1,6,140,270,2970,332640,14303520,5297292000, +A342359 ,6,4,5,4,7,5,2,4,4,5,6,5,0,0,3,9,2,4,4,3,5,7,3,1,5,5,4,5,6,6,0,6,6,3,6,5,2,2,4,6,7,7,2,0,5,5,9,4,0,2,1,5,1,6,1,8,1,6,8,0,0,6,7,5,3,1,7,5,0,9,5,5,3,7,3,1,2,5,6,8,8,3,6,5,1,3,9,2,5,3,9,2,7,1,9,0, +A342360 ,4,0,7,1,7,6,3,8,7,2,9,6,5,6,7,1,5,7,9,0,2,8,9,0,2,0,4,7,3,5,3,9,7,6,7,7,3,1,0,5,1,0,6,4,4,1,3,4,5,2,8,4,6,5,1,4,4,9,3,3,3,9,6,9,2,9,8,1,3,2,0,9,6,6,7,5,4,1,8,5,8,6,9,5,0,8,4,0,5,5,0,8,9,6,6,6, +A342361 ,1,3,0,9,6,8,9,0,0,5,6,6,3,4,5,6,0,0,8,5,8,0,7,5,4,3,3,6,9,5,6,3,7,0,4,8,4,2,2,6,4,2,9,6,1,5,5,6,4,7,3,1,8,4,3,0,5,9,6,7,0,0,9,6,2,9,1,2,9,0,0,7,5,5,4,0,2,1,6,9,2,6,1,3,0,8,0,3,5,0,0,6,8,6,1,1, A342362 ,1,10,31,76,145,254,399,600,849,1170,1551,2020,2561,3206,3935,4784,5729,6810,7999,9340,10801,12430,14191,16136,18225,20514,22959,25620,28449,31510,34751,38240,41921,45866,50015,54444,59089,64030,69199,74680,80401,86450,92751,99396,106305,113574, A342363 ,3,3,3,19,3,3,3,19,3,3,3,3,19,3,3,3,19,3,3,3,3,19,3,3,3,19,3,3,3,19,3,3,3,3,19,3,3,3,19,3,3,3,3,19,3,3,3,19,3,3,3,19,3,3,3,3,19,3,3,3,19,3,3,3,3,19,3,3,3,19,3,3,3,19, A342364 ,3,17,73,191,709,1289,3181,5449,7681,17477,33889,87961,437389,2290573,7160227,10429681,19196227,24504049,47577857,70513979,82605937,156671243,271785793,328939937,568119509,1125978241,1534657963,1710749497,4936728373,7647104183, @@ -342175,6 +342220,7 @@ A342382 ,0,1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,19,18,17,20,21,23,26,24,27,25,29, A342383 ,0,1,2,3,4,5,7,6,8,9,10,13,12,14,15,16,18,17,19,20,21,24,23,25,26,27,29,28,30,31,32,35,34,36,37,38,40,39,41,42,43,46,45,47,48,49,53,50,52,51,54,69,56,64,59,61,62,58,65,60,63,57,67,68,70,72,71,74,73,75,78,76,80,79,81,82,83, A342384 ,0,1,1,1,1,2,0,4,6,4,0,2, A342385 ,0,1,1,2,1,2,3,2,2,3,4,3,4,3,4,5,4,6,6,4,5,6,5,8,9,8,5,6,7,6,10,12,12,10,6,7,8,7,12,15,16,15,12,7,8,9,8,14,18,20,20,18,14,8,9,10,9,16,21,24,25,24,21,16,9,10,11,10,18,24,28,30,30,28,24,18,10,11, +A342386 ,2,5,23,5,13,7,7,79,37,23,67,89,131,31,71,47,43,73,277,353,41,67,127,223,79,13,193,5,23,43,5,67,3,19,5,59,59,653,19,19,97,409,5,383,29,137,379,349,653,1187,47,41,37,17,619,89,283,283,43,479,191,1009,571, A342387 ,20,175,1500,29600,253075,1124039,2163720,1620864179,3120083460,13857908224,118481007099,2337285022799,19983094049524,170849530073079,28815607761506104,127985053235771120,246364903884373539,1094234263598927875,184554358010701244300,1577885049278315692375, A342388 ,6,55,474,9360,80029,355452,684228,512562258,986657022,4382255359,37466984190,739114421304,6319209189385,54027365220036,9112295268838531,40472427468293976,77907423180308442,346027256676968725,58361212342395772530,498971064164650006699,4266054677084570952198, A342389 ,1,5,30,264,3135,46709,823564,16777528,387420759,10000003265,285311670666,8916100500148,302875106592331,11112006826381965,437893890380965260,18446744073726350224,827240261886336764313,39346408075296928032645, @@ -342192,10 +342238,11 @@ A342400 ,1,3,3,3,3,12,3,3,3,15,3,13,3,15,15,3,3,15,3,13,15,15,3,15,3,15,3,15,3,7 A342401 ,1,2,6,10,30,42,60,66,78,90,110,130,170,190,210,330,390,462,510,546,570,690,798,858,870,930,1050,1110,1218,1230,1290,1410,1470,1554,1590,1722,1770,1830,1974,2010,2130,2190,2310,2730,3570,3990,4290,4830,5610,6006, A342402 ,36,100,144,324,400,576,784,900,1296,1600,1764,1936,2304,2500,2704,2916,3136,3600,4356,4624,4900,5184,5776,6084,6400,7056,7744,8100,9216,9604,10000,10404,10816,11025,11664,12100,12544,12996,14400,15876,16900,17424,18496, A342403 ,1,-1,-1,1,-1,4,-1,-3,2,6,-1,-24,-1,8,7,21,-1,-38,-1,-58,9,12,-1,288,4,14,-16,-108,-1,-180,-1,-315,13,18,11,930,-1,20,15,1126,-1,-314,-1,-256,-116,24,-1,-6960,6,-154,19,-354,-1,1078,15,2940,21,30,-1,6664,-1,32,-198,9765,17, +A342404 ,0,0,0,0,6,40,165,546,1596,4320,11115,27610,66858,158808,371553,858690,1964280,4454272,10024407,22410234,49803750,110096280,242216205,530573890,1157621556,2516575200,5452587075,11777596506,25367140386,54492386200,116769410745, A342405 ,0,45,2268,76221,2245320,62858025,1723364748,46836754821,1268169391440,34282547074305,926123262507828,25011175461289821,675371104361586360,18235844869321055385,492377645105637260508,13294313813660319607221,358947876218708733778080, A342406 ,11,13,19,23,31,41,53,59,61,67,79,89,103,139,167,179,193,199,241,251,257,277,347,367,373,409,461,463,467,479,523,541,563,601,613,641,653,691,719,743,811,823,853,881,887,937,947,977,1039,1063,1087,1117,1129,1151,1223,1249,1259,1277,1283, A342407 ,0,5,51,498,5004,50028,500014,4999954,49999325,499998777,5000002329,49999998413,499999949299,4999999991841,49999999683763,499999999022579,5000000005362272,50000000022520652,500000000055534895,5000000000274296550,50000000000909149240, -A342408 ,2,3,53,53,523,6337,36947,36947,277363,8177791,8622017,8622017,565337239,3361495721, +A342408 ,2,3,53,53,523,6337,36947,36947,277363,8177791,8622017,8622017,565337239,3361495721,16747915297,76675792867,76675792867,633679985683,633679985683,4443195645419,21685290410821,205793034752197, A342409 ,9,21,166,317,596,4167,26448,48970,90652,302042, A342411 ,1,2,7,34,501,2600,100843,1048610,28697821,400000502,23579476911,247669459528,21505924728445,340163474352620,15569560546875507,576460752304472098,45798768824157052689,728637186579594211070,98646963440126439346903, A342412 ,1,2,7,37,501,2771,100843,1056833,28702189,401562757,23579476911,247792605523,21505924728445,340246521979079,15569565432876147,576478345026355201,45798768824157052689,728648310343004595593,98646963440126439346903, @@ -342216,6 +342263,7 @@ A342426 ,1,2,6,9,14,21,40,42,56,72,84,108,110,120,126,130,143,154,156,162,165,16 A342427 ,1,168,459,1817,2196,2197,2655,3128,3280,3699,4199,4575,4927,5184,5795,6600,7215,7259,7656,7657,8448,9636,11304,11339,12492,14160,14175,14424,14805,15624,15625,16335,16336,16925,17802,19170,20349,20811,21624,21735,22197, A342428 ,2196,7656,15624,16335,64375,109224,171624,202824,328887,329427,392733,393640,447578,482238,494450,520695,631824,723519,773790,785695,820960,876987,981783,986607,1021824,1026750,1030455,1084048,1108094,1160670,1235070,1242824,1412908, A342429 ,1649373,4029519,15281054,31906263,43387386,58198173,94468958,100084949,131393766,131986502,140282279,156786124,211004079,246960048,253000850,278206663,310135917,330168203,351204398,363280904,412296883,504736647,515831624,537255647,566300238, +A342430 ,0,1,1,2,1,12,5,108,145,974,2210,17073,31950,238591, A342431 ,1,2,5,8,13,18,21,24,29,31,34,38,42,46, A342432 ,1,2,5,22,129,1411,16813,266372,4787349,100391653,2357947701,61980047702,1792160394049,56707753687079,1946197516142925,72061992621375496,2862423051509815809,121441389759089405193,5480386857784802185957, A342433 ,1,3,11,74,629,8085,117655,2113796,43059849,1001955177,25937424611,743379914746,23298085122493,793811662313709,29192938251553759,1152956691126550536,48661191875666868497,2185928270773974154773, @@ -342231,6 +342279,7 @@ A342442 ,2,3,4,5,6,7,8,9,42,14,17,18,15,16,13,19,32,22,23,26,29,12,25,24,34,27,3 A342443 ,5,97,991,9949,99971,999983,9999991,99999989,999999937,9999999943,99999999977,999999999989,9999999999763,99999999999959, A342444 ,2,3,5,9,5,29,281,1575,599,7,17,3,6449,2725361, A342445 ,22,33,44,48,55,66,77,88,99,122,124,126,155,162,168,184,202,204,222,244,248,264,280,288,303,324,330,333,336,366,396,404,408,412,420,424,440,444,448,488,505,515,555,606,636,648,660,666,707,728,770,777,784,808,824,840, +A342446 ,1,4,1,9,2,1,21,3,1,1,44,4,1,1,1,90,6,2,1,1,1,182,9,2,1,1,1,1,367,13,3,1,1,1,1,1,736,19,3,1,1,1,1,1,1,1475,27,4,1,1,1,1,1,1,1,2952,38,5,2,1,1,1,1,1,1,1,5907,54,6,2,1,1,1,1,1,1,1,1, A342447 ,1,1,1,1,1,1,3,1,1,4,8,2,1,1,4,11,29,12,5,1,1,4,12,43,105,92,45,12,3,1,1,4,12,46,156,460,582,487,204,71,14,7,1,1,4,12,47,170,670,2097,3822,4514,3271,1579,561,186,44,16,4,1,1,4,12,47,173,731,2954,10513,24584,40182, A342448 ,1,3,7,10,18,25,30,36,52,67,80,94,103,113,125,136,168,199,228,258,283,309,337,364,381,399,419,438,462,485,506,528,592,655,716,778,835,893,953,1012,1061,1111,1163,1214,1270,1325,1378,1432,1465,1499,1535,1570, A342449 ,1,5,29,262,3129,46705,823549,16777544,387421251,10000003469,285311670621,8916100581446,302875106592265,11112006826387025,437893890391180013,18446744073743123788,827240261886336764193,39346408075299116257065, @@ -342263,6 +342312,8 @@ A342477 ,1,1,2,1,1,1,3,2,1,1,1,2,1,1,3,1,5,2,1,1,1,2,6,1,3,1,2,1,1,7,1,2,1,3,1,1 A342478 ,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,20,21,24,28,30,32,33,35,36,39,40,42,44,45,48,51,52,55,56,57,60,63,91,117,126,133,171,182,189,217,234,247,252,259,266,273,275,279,341,451,550,671,682,775,781,825,902, A342479 ,0,1,1,1,46,44,288,33216,613248,151296,391584768,2383570944,86830424064,206470840320,21270238986240,987259950858240,1262040231444480,3022250536693923840,3884253754215628800,1102040800033347993600,1892288242221318144000,5616902226049109065728000, A342480 ,1,6,10,15,1155,1365,12155,1616615,37182145,11849255,33426748355,247357937827,10141675450907,25652473199353,2928046583754721,155186468939000213,223317113839049087,558516101711461766587,796182527971658263007,241532826894674874877669,430046252763689411367557, +A342482 ,0,12,50,150,392,952,2214,5010,11132,24420,53066,114478,245520,524016,1113806,2358954,4980356,10485340,22019634,46136838,96468440,201325992,419429750,872414530,1811938572,3758095572,7784627354,16106126430,33285995552,68719475680, +A342483 ,0,30,150,525,1568,4284,11070,27555,66792,158730,371462,858585,1964160,4454136,10024254,22410063,49803560,110096070,242215974,530573637,1157621280,2516574900,5452586750,11777596155,25367140008,54492385794,116769410310,249644959665, A342484 ,4,4,4,8,2,2,1,6,1,5,2,6,0,5, A342485 ,1,2,17,34,4097,146,1679617,262178,60466193,4198402,1000000000001,67109042,1283918464548865,470186664194,281474976714769,2251799813947426,4722366482869645213697,609359800476818,12748236216396078174437377,9223372036858974242, A342486 ,1,7,8,2,6,6,1,9,2,1,6,2,7,8,9,7,7,0,3,1,8,1,0,4,0,7,6,1,8,9,3,3,6,2,9,6,9,9,5,2,1,2,4,5,6,4,9,1,2,9,2,0,7,7,4,3,9,8,9,5,9,7,4,5,9,6,5,8,6,5,3,1,3,2,3,7,0,9,5,5,8,5,7,1,5,5,3,7,8,4,1,4,7,2,8,4,1,7,8,0, @@ -342311,7 +342362,7 @@ A342528 ,1,1,2,4,7,12,20,32,51,79,121,182,272,399,582,839,1200,1700,2394,3342,46 A342529 ,1,1,2,3,7,13,19,36,67,114,197,322,564,976,1614,2729,4444,7364,12357,20231,33147, A342530 ,1,2,2,3,2,6,2,6,3,6,2,12,2,6,6,9,2,12,2,12,6,6,2,28,3,6,6,12,2,26,2,14,6,6,6,31,2,6,6,28,2,26,2,12,12,6,2,52,3,12,6,12,2,28,6,28,6,6,2,66,2,6,12,25,6,26,2,12,6,26,2,76,2,6,12,12,6,26, A342531 ,1,1,0,1,0,0,1,1,0,0,1,0,1,0,0,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,1,0,1,0,0,1,0,2,1,1,0,1,0,0,1,2,1,1,1,1,0,1,0,0,1,1,2,2,1,1,1,0,1,0,0,1,1,2,3,1,1,1,1,0,1,0,0, -A342532 ,1,0,1,2,3,4,9,14,28,44,83,136,250,424,757,1310,2313,4018,7081,12314,21650,37786,66264,115802, +A342532 ,1,0,1,2,3,4,9,14,28,44,83,136,250,424,757,1310,2313,4018,7081,12314,21650,37786,66264,115802,202950,354858,621525,1087252,1903668,3330882,5831192,10204250,17862232,31260222,54716913,95762576,167614445,293356422,513456686, A342534 ,1,2,6,7,20,12,42,26,50,40,110,42,156,84,120,100,272,100,342,140,252,220,506,156,484,312,438,294,812,240,930,392,660,544,840,350,1332,684,936,520,1640,504,1806,770,1000,1012,2162,600,2022,968,1632,1092,2756,876,2200,1092,2052, A342535 ,1,2,10,11,68,20,222,78,238,136,1010,110,1740,444,680,604,4112,476,5850,748,2220,2020,10670,780,8276,3480,6330,2442,21980,1360,27030,4792,10100,8224,15096,2618,46692,11700,17400,5304,64040,4440,74130,11110,16184,21340,97382,6040, A342536 ,1,1,3,4,10,17,36,65,126,227,419,743,1323,2295,3965, @@ -342323,6 +342374,8 @@ A342541 ,1,2,4,5,8,10,12,14,28,28,20,62,24,54,272,68,32,198,36,676,1224,130,44,1 A342542 ,1,2,3,4,5,7,7,9,15,13,11,33,13,19,105,33,17,91,19,209,469,31,23,641,1045,37,1627,841,29,4217,31,673,10461,49,29785,10281,37,55,49465,68769,41,65197,43,12281,529625,67,47,273185,279979,1049661,1049121,52657,53,803647, A342543 ,1,2,10,19,1028,76,279942,65558,10077718,1049608,100000000010,16777334,106993205379084,78364444044,35184372090920,281474976776236,295147905179352825872,101559966746268,708235345355337676357650,1152921504607897676,46005119909369702026044,10000000000100000000020, A342544 ,1,2,6,11,260,40,46662,16398,1679630,262408,10000000010,4194366,8916100448268,13060740684,4398046511640,35184372105244,18446744073709551632,16926661124436,39346408075296537575442,144115188076118572,3833759992447475215524,1000000000010000000020, +A342545 ,2,24,16,280,216,3430,4096,19683,100000,4348377,2985984,154457888,105413504,4442343750,4294967296,313909084845,198359290368,8712567840033,10240000000000,500396429346030,584318301411328,38112390316557080,36520347436056576,298023223876953125, +A342546 ,3,7,73,141,1417,17130,11677,187955,10252371,20440221,1550384575,10645648530,80224807014,829050923579,17071371319785, A342550 ,2,2,2,5,2,2,5,6,2,5,2,2,10,6,2,5,2,2,11,6,2,5,7,2,5,13,2,5,2,2,5,6,7,19,2,2,5,6,2,5,2,2,19,6,2,5,9,2,11,6,2,5,17,2,5,6,2,5,2,2,5,14,7,22,2,2,5,13,2,5,2,2,10,6,2,17,2,2,20,6,2,5,7,2,5, A342551 ,1,4,9,8,16,32,27,25,64,128,81,72,512,1024,108,2048,243,49,4096,8192,16384,288,729,32768,125,225,200,131072,262144,2187,524288,1152,1048576,432,2097152,4194304,972,196,8388608,648,33554432,4608,864,67108864,19683,268435456, A342552 ,2,3,4,3,5,6,9,11,8,12,24,19,34,14,27,14,28,17,46,26,24,55,28,14,86,50,38,66,28,67,76,41,64,40,43,93,53,87,67,48,89,66,42,72,69,76,49,76,42,49,59,73,260,109,145,169,70,137,193,292, @@ -342332,6 +342385,7 @@ A342570 ,0,1,1,3,4,9,13,29,46,101,167,375,644,1461,2563,5899,10534,24469,44237,1 A342571 ,1,7,9,8,0,7,9,7,4,3,4,1,0,4,7,7,3,4,2,1,5,2,4,5,4,9,5,9,0,4,3,9,6,3,8,8,2,0,4,2,6,5,9,3,5,0,6,0,0,7,3,9,8,3,9,3,1,0,3,2,3,4,8,7,8,1,2,8,3,0,6,7,3,4,6,6,7,3,3,5,5,7,3,3,3,9,2, A342572 ,1,3,5,7,9,15,17,21,25,27,31,35,45,49,51,63,73,75,81,85,93,105,107,119,125,127,135,147,153,155,175,189,217,219,225,243,245,255,257,279,289,313,315,321,343,357,365,375,381,405,425,441,443,459,465,511,525,527, A342573 ,1,2,24,5184,39813120,17915904000000,702142910300160000000,3330690501757390081228800000000,2534703826002712645182542460223488000000000,395940866122425193243875570782668457763038822400000000000, +A342574 ,9,2,5,3,5,8,3,5,6,2,3,6,0,4,0,6,3,3,3,7,0,8,8,4,1,6,6,3,7,0,7,6,3,8,2,8,0,4,9,5,6,5,0,1,5,9,9,1,6,1,0,7,2,8,7,1,0,4,0,7,1,4,8,5,1,7,8,6,7,9,5,3,3,0,7,3,1,8,5,8,4,4,4,4,9,3,2,9,8,8,5,2,1,0,3,6,8,6,8,7,4,4,6,0,3,7, A342575 ,4,5,6,7,14,15,26,102,103,104,224,103,104,105,506,507,452,1169,1170,1171,8228,10419,15186,5227,16619,16620,16621,25102,130090,62640,330791,330792,351403,273100,681504,649069,352375,3045104,3045105,3635007,9532211,7819691,3091425,3091426, A342576 ,1,4,4,4,5,8,13,14,14,16,22,24,29,33, A342577 ,1,3,4,6,9,11,11,13,15,19,16,20,25,25,27,27,29,35,30,34,41,41,39,41,47,45,44,48,57,53,57,55,57,67,56,62,73,71,67,69,73,79,68,76,89,83,87,83,93,89,86,90,105,99,95,97,109,99,100,104,121,109,117,111, @@ -342340,6 +342394,7 @@ A342579 ,5,10,17,23,23,24,34,39,39,45,46,71,71,71,71,95,95,95,95,95,95,95,95,96, A342581 ,7,13,14,16,31,31,31,32,55,55,55,55,55,61,62,64,69,74,81,127,127,127,127,127,127,127,127,127,127,127,127,128,133,138,145,223,223,223,223,223,223,223,223,223,223,223,223,223,223,223,223,223,223,223,223, A342582 ,2,2,12,12,10,12,42,56,558,10,682,12,52,42,150,240,170,558,38,240,42,682,598,240,150,52,3132,56,232,150,558,992,8382,170,2730,936,666,38,936,240,738,42,3010,3784,535230,598,11938,240,2254,150,204,52,212,3132, A342583 ,3,6,18,42,82,271,284,369,445,682,1069,1193,1900,2241,3894,6137,7108,8164,9658,10126,12645,14842,14936,17913,18420,19480,23893,24605,28959,32913,36279,40847,43936,44559,45500, +A342584 ,7,25,627,2454,136120,376847,2886750,21546984,278567575,2437795018,97974268952,4836489478578,4836489478578,147895359776636,308788493220129,4193528956200935,25999253094360135,650467164953053602,2161492060929047665,26769019461318409710, A342586 ,1,63,6087,608383,60794971,6079301507,607927104783,60792712854483,6079271032731815,607927102346016827,60792710185772432731,6079271018566772422279,607927101854119608051819,60792710185405797839054887,6079271018540289787820715707,607927101854027018957417670303, A342587 ,1,1,2,1,12,6,1,86,108,24,1,840,2310,960,120,1,11642,65700,42960,9000,720,1,227892,2583126,2510760,712320,90720,5040,1,6285806,142259628,199357704,71310960,11481120,987840,40320,1,243593040,11012710470,21774014640,9501062760,1781015040, A342588 ,1,0,2,0,0,12,0,0,0,128,18,0,0,0,0,2000,960,100,0,0,0,0,0,41472,43320,15000,1710,140,0,0,0,0,0,0,1075648,1985760,1453200,490560,90594,10080,770,0,0,0,0,0,0,0,33554432,96937680,122360000,82220880,32527488,8205288,1396640,179760,20048,1050, @@ -342355,12 +342410,14 @@ A342597 ,1,2,4,6,6,8,9,11,12,14,15,18,17,22,21,22,25,26,27,31,31,32,33,34,38,39, A342598 ,1,8,216,19584,5542200,4551802560,10225942680240, A342599 ,1,3,12,74,788,16016,658220, A342601 ,10,224,278,286,452,473,502,510,645,656,698,744,871,889,909,921,955,960,966,972,1010,1062,1086,1113,1121,1163,1182,1200,1201,1208,1271,1273,1282,1315,1327,1328,1377,1431,1444,1510,1541,1550,1564,1570,1583,1610,1626,1630,1674,1677,1693,1706,1719,1720,1726,1738, +A342602 ,0,0,1,1,1,4,6,14,29,63,129,300,756,1677,4134,9525,22841,57175,141819,354992,882420,2218078,5588989,14173217,35918542, A342603 ,0,1,1,7,1,13,7,43,1,19,13,85,7,85,43,259,1,25,19,127,13,163,85,517,7,127,85,553,43,517,259,1555,1,31,25,169,19,241,127,775,13,241,163,1063,85,1027,517,3109,7,169,127,847,85,1063,553,3361,43,775,517,3361,259,3109,1555,9331,1, A342604 ,2,5,10,17,39,52,69,126,195,224,255,403,649,821,868,921,1216,1826,2496,2851,2924,3003,3501,4836,6776,8291,8909,9016,9125,9916,12583,17168,21963,24882,25925,26076,26233,27537,32213,41901,54431,64567,69915,71459,71656,71855,73754,81782,100850,129704, A342605 ,1,2,4,14,20,26,31,39,42,57,64,69,87,92,114,127,150,152,172,213,274,301,326,379,436,460,499,523,597,708,747,817,819,912,1382,1452,1595,1600,1603,1632,1647,1670,1768,1833,1834,1873,1890,1986,2137,2696,2702,2859,3080,3154,3167,3173,3386,3933, A342606 ,2,5,17,821,2851,8291,12583,32213,64567,193283,481409,507979,2889443,3026911,15233891,24430993,95635361,95754697,221519339,1147397567,12921783863,28711457651,63521027291,305580335353,1449155675287,3157505489581,6839699592347,14717764856273,67875393766057, A342607 ,1,2,2,3,2,11,2,19,66,1027,2,835,2,279939,1052674,69635,2,10114563,2,1074855939,78364426242,100000000003,2,4315152387,1099511627778,106993205379075,101559973445634,21937029021319171,2,1162183941554179,2,562950221856771,10000000000001073741826, A342608 ,1,2,65,258,1048577,4610,78364164097,4294971394,101559956672513,1100585369602,10000000000000000000001,281474977071106,11447545997288281555215581185,6140964151415455875074,1237940039285381374411014145,79228162514264619068521709570, +A342609 ,17,49,161,197,199,209,251,391,419,449,649,685,769,799,883,967,1057,1189,1249,1301,1457,1481,1681,1793,1937,1979,2001,2029,2089,2177,2209,2311,2377,2379,2419,2431,2449,2549,2551,2575,2591,2705,2729,2899,3041,3073, A342610 ,0,1,5,6,25,11,30,31,125,36,55,41,150,61,155,156,625,161,180,91,275,96,205,191,750,211,305,216,775,311,780,781,3125,786,805,341,900,271,455,366,1375,371,480,301,1025,396,955,941,3750,961,1055,516,1525,521,1080,991, A342611 ,0,1,7,8,49,15,56,57,343,64,105,71,392,113,399,400,2401,407,448,169,735,176,497,463,2744,505,791,512,2793,799,2800,2801,16807,2808,2849,855,3136,617,1183,904,5145,911,1232,673,3479,960,3241,3207,19208,3249,3535,1296,5537, A342612 ,1,2,5,10,257,50,46657,16450,1679681,327682,10000000001,4196098,8916100448257,15237476354,4398063289345,35184640528386,18446744073709551617,19747769389058,39346408075296537575425, @@ -342372,9 +342429,15 @@ A342617 ,1,2,3,4,5,20,7,38,135,4102,11,1670,13,1679624,4202505,270346,17,6053991 A342618 ,1,2,129,514,4194305,9218,470184984577,17179877378,609359740018689,4402341478402,100000000000000000000001,1125899907563522,137370551967459378662586974209,36845784908492735250434,9903520314283046597240029185, A342619 ,1,2,9,18,1025,98,279937,65666,10077825,1310722,100000000001,16780802,106993205379073,91424858114,35184439199745,281476050460674,295147905179352825857,118486616186882,708235345355337676357633,1152921796664688642,46005120518729441509377,11000000000000000000002, A342620 ,1,2,33,66,16385,770,10077697,1050626,362805249,83886082,10000000000001,268664834,15407021574586369,19747769352194,2252074693689345,18014673389486082,75557863725914323419137,25593109118189570,229468251895129407139872769,73788172563556335618,6624765697237267477692417,11000000000000000000000002, +A342621 ,0,2,3,4,7,5,15,6,6,9,56,7,101,17,10,8,297,8,490,11,18,58,1255,9,14,103,9,19,4565,12,6842,10,59,299,22,10,21637,492,104,13,44583,20,63261,60,13,1257,124754,11,30,16,300,105,329931,11,63,21,493,4567,831820, +A342622 ,0,0,1,3,5,7,7,6,4,4,5,8,12,16,21,26,30,33,33,32,30,26,23,23,24,28,30,33,38,38,37,35,29,21,14,6,-3,-12,-21,-29,-38,-47,-54,-60,-61,-63,-68,-71,-78,-82,-88,-88,-87,-85,-77,-68,-58,-47,-35, +A342623 ,0,1,2,2,1,-1,-4,-7,-10,-14,-18,-21,-23,-26,-27,-29,-33,-38,-44,-50,-56,-61,-67,-74,-81,-87,-94,-101,-107,-115,-123,-131,-137,-140,-145,-149,-149,-148,-146,-141,-138,-134,-127,-119,-109,-99,-90,-80, +A342624 ,0,1,2,2,2,0,-1,-2,0,1,3,4,4,5,5,4,3,0,-1,-2,-4,-3,0,1,4,2,3,5,0,-1,-2,-6,-8,-7,-8,-9,-9,-9,-8,-9,-9,-7,-6,-1,-2,-5,-3,-7,-4,-6,0,1,2,8,9,10,11,12,12,11,12,10,12,11,12,9,8,5,7,2, +A342625 ,1,1,0,-1,-2,-3,-3,-3,-4,-4,-3,-2,-3,-1,-2,-4,-5,-6,-6,-6,-5,-6,-7,-7,-6,-7,-7,-6,-8,-8,-8,-6,-3,-5,-4,0,1,2,5,3,4,7,8,10,10,9,10,8,10,9,11,11,11,8,7,6,4,0,-1,-5,-2,-7,-3,-6,-4,-9, A342628 ,1,2,2,6,2,45,2,322,731,3383,2,132901,2,827641,10297068,33570818,2,2578617270,2,44812807567,678610493340,285312719189,2,393061010002613,95367431640627,302875123369471,150094917726535604,569939345952661545,2,105474306078445349841,2, A342629 ,1,3,10,69,626,7866,117650,2101265,43047451,1000390658,25937424602,743069105634,23298085122482,793728614541474,29192926269590300,1152925902670135553,48661191875666868482,2185913413229070900339,104127350297911241532842, A342630 ,5,6,7,14,18,24,29,34,39,41,47,53,77,114,119,148,150,159,176,188,189,190,191,205,215,217,218,241,268,288,312,314,331,334,339,342,346,352,364,367,387,390,402,418,429,438,439,440,446,449,480,493,494,500,504,510,521,523,546,549,553,561,580, +A342631 ,2,4,2,4,3,3,2,4,3,4,4,9,6,6,9,5,11,12,10,7,2,13,8,5,5,4,5,5,8,13,4,7,10,12,11,5,9,6,6,9,3,11,12,10,7,5,4,3,4,3,3,3,4,3,4,5,7,10,12,11,2,9,6,6,9,5,11,12,10,7,4,13,8,5,5,4,5,5,8,13,3,7,10,12,11,5, A342632 ,1,3,11,43,159,647,2519,10043,39895,159703,637927,2551171,10200039,40803219,163198675,652774767,2611029851,10444211447,41776529287,167106121619,668423198491,2673693100831,10694768891659,42779072149475,171116268699455,684465093334979,2737860308070095, A342633 ,0,1,1,4,1,7,4,13,1,10,7,25,4,25,13,40,1,13,10,37,7,46,25,79,4,37,25,88,13,79,40,121,1,16,13,49,10,67,37,118,7,67,46,163,25,154,79,241,4,49,37,136,25,163,88,277,13,118,79,277,40,241,121,364,1,19,16,61,13,88,49,157, A342634 ,0,1,1,5,1,9,5,21,1,13,9,41,5,41,21,85,1,17,13,61,9,77,41,169,5,61,41,185,21,169,85,341,1,21,17,81,13,113,61,253,9,113,77,349,41,333,169,681,5,81,61,285,41,349,185,761,21,253,169,761,85,681,341,1365,1,25,21,101,17, @@ -342419,7 +342482,9 @@ A342672 ,1,3,20,63,42,60,88,135,325,126,156,1260,238,264,840,2511,342,975,460,12 A342673 ,1,2,3,1,1,6,1,8,1,2,1,6,1,2,3,1,1,2,1,4,3,2,1,24,1,2,3,4,1,6,1,4,3,2,1,1,1,2,3,40,1,6,1,2,1,2,1,6,7,2,3,26,1,6,1,8,3,2,1,12,1,2,3,1,1,6,1,4,3,2,1,8,1,2,3,4,7,6,1,8,1,2,1,12,5,2,3,8,1,2,1,2,3,2,1,24,1,14,1,1,1,6,1,8,3, A342674 ,1,1,2,36,1,2,5,120,1,4,2,4,336,19,2,36,8,4,264,1,2,24,30,56,8,1092,1,2,1,12,28,56,4,612,1,4,9,11,12,418,8,20,2280,1,6,2,10,1,48,26,8,20,5520,1,2,4,4,266,1,48,34,24,40,6960,1,2,180,4,42,308,1,12,76,24,60,1984,3,2,18,240,4,798,26,1,20,138,12,4,2812,1,2, A342675 ,1,3,4,13,6,120,8,1161,2197,16148,12,603190,14,5773008,50422464,201359377,18,16590656229,20,269768284118,4748723771432,3138430473896,24,2972582195034162,476837158203151,3937376419253748,1350852564961601560,4066515044181860654,30,1036488835382356683530,32, +A342676 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7, A342677 ,1,5,28,265,3126,46916,823544,16793633,387422677,10001953190,285311670612,8916464313700,302875106592254,11112103714568680,437893891601739648,18446779258148749825,827240261886336764178,39346424755299348744797,1978419655660313589123980, +A342678 ,0,1,2,2,3,3,3,3,4,4,5,5,6,6,6,6,7,7,8,8,8,8,9,9,10,10,10,10,11,11,11,11,12,12,13,13,14,14,15,15,16,16,17,17,17,17,17,17,18,18,18,18,19,19,19,19,20,20,20,20,20,20,20,20,21,21,22,22,23,23,24, A342680 ,9,6,1,3,9,4,3,1,5,9,4,5,7,3,6,5,4,7,2,4,7,6,4,5,9,5,3,1,6,1,5,4,7,3,0,6,8,6,8,5,8,2,6,9,3,0,1,0,5,8,4,6,0,4,5,5,1,1,5,1,4,9,1,8,1,8,6,3,3,7,8,0,2,9,1,4,6,9,9,7,0,6,6,7,5,4,2,4,3,2,5,5,4,9,5,5,5,5,2,6,9,8,7,9,2, A342681 ,241,443,613,641,811,20011,20047,20051,20101,20161,20201,20347,20441,20477,21001,21157,21211,21377,21467,22027,22031,22147,22171,22247,22367,23017,23021,23131,23357,23417,23447,24007,24121,24151,24407,25031,25111,25117,25121,26021,26107,26111,26417,27011,27407,28001, A342697 ,0,0,0,1,0,1,3,3,0,0,2,3,6,7,7,7,0,0,0,1,4,5,7,7,12,12,14,15,14,15,15,15,0,0,0,1,0,1,3,3,8,8,10,11,14,15,15,15,24,24,24,25,28,29,31,31,28,28,30,31,30,31,31,31,0,0,0,1,0,1,3,3,0,0,2,3,6, @@ -342429,26 +342494,37 @@ A342700 ,0,0,2,0,7,0,0,0,15,6,10,0,3,0,0,0,31,14,30,12,23,4,16,0,7,6,2,0,3,0,0,0 A342701 ,3,7,5,14,9,34,7,16,15,26,11,68,39,28,15,32,33,72,25,40,35,56,17,101,45,37,45,56,29,152,31,61,39,56,35,144,37,61,39,74,41,128,35,88,45,161,47,192,49,82,51,74,95,216,43,97,75,203,59,304,91,88,63,122, A342702 ,1,2,4,6,12,18,24,30,48,60,78,90,120,150,180,210,330,360,390,420,630,840,1050,1260,1470,1680,1890,2100,2310,3360,3570,3990,4200,4620,5460,6300,6930,9240,10710,10920,11550,13860,16380,17220,17850,18480,20790,27720,30030,39270, A342703 ,1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,2,3,2,4,2,5,2,6,2,7,2,8,2,9,3,4,3,5,3,6,3,7,3,8,3,9,4,5,4,6,4,7,4,8,4,9,5,6,5,7,5,8,5,9,6,7,6,8,6,9,7,8,7,9,8,9,1362,1816,1635,1962,2334,2723,3366,3927, +A342704 ,0,1,1,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,1,0,1,0,1,0,1,0,1,0,0,0,1, A342705 ,5,7,13,17,19,59,97,101,107,109,191,223,229,277,283,569,613,631,643,709,719,743,829,857,881,1031,1049,1051,1091,1109,1171,1193,1249,1277,1301,1327,1489,1579,1637,1697,1949,1979,2003,2081,2089,2113,2141,2203,2357,2423,2539,2593,2659,2749,2789,2819, A342706 ,13,31,79,109,151,1201,3271,3469,3889,4111,12289,16879,17791,25951,27673,108301,126079,134857,138679,169957,174259,186019,231877,245389,259309,355009,367501,371737,397489,412939,461017,477619,524197,544429,565069,602401,741031,833191,904303,961069,1267501, +A342708 ,1,0,1,0,-1,1,0,1,-1,1,0,-1,0,-1,1,0,1,0,0,-1,1,0,-1,1,-1,0,-1,1,0,1,-1,2,-1,0,-1,1,0,-1,0,-1,1,-1,0,-1,1,0,1,0,1,0,1,-1,0,-1,1,0,-1,1,-2,1,-1,1,-1,0,-1,1,0,1,-1,2,-1,2,-1,1,-1,0,-1,1, A342709 ,1,64,3025,142129,6677056,313679521,14736260449,692290561600,32522920134769,1527884955772561,71778070001175616,3372041405099481409,158414167969674450625,7442093853169599697984,349619996931001511354641,16424697761903901433970161, A342710 ,3,18,123,843,5778,39603,271443,1860498,12752043,87403803,599074578,4106118243,28143753123,192900153618,1322157322203,9062201101803,62113250390418,425730551631123,2918000611027443,20000273725560978,137083915467899403,939587134549734843, +A342711 ,1,3,6,9,13,17,22,27,32,38,44,50,57,64,71,78,86,94,102,110,119,128,137,146,155,165,175,185,195,205,216,227,238,249,260,271,283,295,307,319,331,343,356,369,382,395,408,421,434,448,462,476,490,504,518,532,547, +A342712 ,0,0,0,1,2,4,6,9,13,17,22,28,34,41,49,58,67,77,88,100,112,125,139,154,170,186,203,221,240,260,280,301,323,346,370,395,420,446,473,501,530,560,590,621,653,686,720,755,791,827,864,902,941,981,1022,1064,1106, A342713 ,2,9,21,54,90,144,234,350,504,714,950,1350,1764,2156,2772,3500,4374,5390,6380,7812,9504,10890,12740,14850,17442,20475,23100,26334,30444,34320,38709,43146,48510,55250,61047,66780,74925,83600,92169,100485,109350,121512,133331,144000,156195,171171, +A342714 ,1,0,5,9,0,6,4,2,6, A342715 ,5,7,13,15,15,20,23,26,31,31,39,41,41,47,49,52,57,57,62,65,68,73,75,81,83,83,89,91,94,99,99,107,109,109,115,117,123,125,125,130,133,136,141,143,149,151,151,157,159,162,167,167,172,175,178,183,185,191,193, A342716 ,3,16,19,42,42,42,55,58,76,79,79,110,110,110,118,121,144,144,144,155,160,173,181,181,207,207,207,220,223,254,254,254,275,275,275,283,283,309,309,309,320,325,343,346,346,377,377,377,385,388,406,409,409,422, +A342717 ,7,13,139,1049,4481,8147,11047,11411,13049,17191,17921,25913,26321,28057,30169,33349,37561,38177,40487,42139,60493,65563,72871,74507,74521,77041,77069,93491,112363,127849,130621,138389,142787,144577,145109,158227,161561,165311, A342718 ,0,1,2,1,3,3,2,1,1,1,4,1,3,4,4,1,2,1,2,3,2,2,2,1,1,1,2,1,5,2,2,1,2,1,2,1,3,5,5,1,3,2,3,5,4,2,2,1,3,1,2,1,3,5,2,5,4,1,3,5,3,2,1,1,3,2,2,3,2,2,2,1,4,1,1,1,2,3,2,1,1,1, A342719 ,21,36,45,55,78,78,78,120,136,120,105,171,210,210,171,136,231,300,325,300,231,171,300,406,465,465,406,300,210,378,528,630,666,630,528,378,253,465,666,820,903,903,820,666,465,300,561,820,1035,1176,1225,1176,1035,820,561, +A342720 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,1,3,1,2,2,3,1,4,2,4,2,5,3,7,1,2,4,3,13,7,20,12,5,3,7,10,3,8,2,14,12,10,15,17,8,11,10,20,13,15,10,45,9,18,25,46,38,18,2,25,20,30,18,32,17,32,43, +A342721 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,2,0,0,0,3,1,1,0,0,1,3,0,0,0,2,1,0,6,0,4,4,2,1,0,0,1,0,0,6,0,2,8,6,2,0,1,2,0,2,0,9,0,0,2,0,13,1,0,4,0,3,0,3,5,10,11, +A342724 ,1,1,2,1,3,1,1,3,4,2,5,3,4,3,2,0,4,5,5,6,5,2,5,3,4,5,5,6,9,6,5,7,10,7,9,6,6,7,9,6,7,4,6,7,6,6,9,10,10,11,10,7,12,10,9,9,8,8,11,11,11,12,12,10,13,9,11,12,11,7,9,10,13,14,13,10,12,11,10, A342725 ,0,1,13,17,189,205,257,273,3005,3069,3277,3341,4033,4097,4305,4369,48061,48317,49149,49405,52173,52429,53261,53517,64449,64705,65537,65793,68561,68817,69649,69905,768957,769981,773309,774333,785405,786429,789757,790781,834509, A342726 ,1,2,3,4,5,6,7,10,12,15,16,18,20,24,25,30,32,33,35,36,40,42,44,45,48,50,54,60,64,65,66,70,77,80,88,90,96,99,100,110,112,120,124,125,126,130,140,144,145,147,150,156,160,168,170,180,182,184,185,186,190,192, A342727 ,2,21,26,31,36,41,46,51,310,315,325,330,335,340,345,350,355,360,365,370,375,390,395,405,410,415,420,425,430,435,455,470,475,485,490,495,535,550,555,565,570,575,580,585,590,595,600,605,610,620,625,630,635,645, A342728 ,0,1,2,3,4,5,6,7,23,39,55,71,87,103,359,615,871,1127,1383,1639,5735,9831,13927,18023,22119,26215,91751,157287,222823,288359,353895,419431,1468007,2516583,3565159,4613735,5662311,6710887,23488103,40265319,57042535,73819751, A342729 ,1,3,5,7,9,22,24,26,39,41,43,56,58,60,73,75,77,90,92,94,107,109,111,136,138,140,153,155,157,170,172,174,199,201,203,216,218,220,233,235,237,262,264,266,279,281,283,296,298,300,313,315,317,330,332,334,347,349, +A342730 ,2,5,7,8,20,20,22,19,40,42,36,70,66,57,49,94,88,73,129,116,99,85,149,135,120,197,172,149,121,206,196,165,271,236,211,172,291,256,216,175,309,262,223,364,316,263,219,392,335,273,445,390,325,268,459,395, A342731 ,0,2,3,4,4,4,5,8,10,14,5,5,6,5,5,16,11,6,15,6,9,11,6,6,10,16,15,6,6,11,17,16,6,11,6,10,16,6,6,11,10,6,12,6,7,7,7,10,16,11,7,12,16,6,7,6,7,11,12,6,18,7,8,18,10,7,12,10,7,7,11,12,17,9,7,12, A342732 ,3,7,14,17,19,35,37,49,51,60,66,70,74,80,82,89,91,103,155,161,163,170,172,184,218,224,225,226,230,233,235,238,256,266,270,273,277,297,300,304,318,322,326,328,330,336,340,357,363,367,372,376,382,398,404, A342733 ,2,5,6,9,11,12,15,16,18,20,23,24,26,27,28,29,30,32,34,36,38,41,42,44,45,46,47,50,53,54,55,56,57,59,61,63,65,68,69,71,72,73,75,77,78,79,81,83,84,85,86,87,88,90,92,93,96,97,99,101,104,105,107,108, A342734 ,1,4,8,10,13,21,22,25,31,33,39,40,43,48,52,58,62,64,67,76,94,95,98,100,102,106,112,116,118,121,130,143,144,145,148,149,152,154,157,175,176,179,181,183,187,193,197,199,202,211,216,219,223,229,237,241,247, A342735 ,1,2,4,5,9,10,12,13,15,19,20,24,25,26,31,32,34,35,38,40,41,43,44,50,52,54,55,57,58,59,63,64,68,70,71,75,76,77,82,83,87,88,90,91,93,94,96,100,102,103,104,108,109,111,114,117,118,120,121,126,127,129, A342736 ,3,6,7,8,11,14,16,17,18,21,22,23,27,28,29,30,33,36,37,39,42,45,46,47,48,49,51,53,56,60,61,62,65,66,67,69,72,73,74,78,79,80,81,84,85,86,89,92,95,97,98,99,101,105,106,107,110,112,113,115,116,119,122, +A342737 ,19,71,181,379,701,1189,1891,2861,4159,5851,8009,10711,14041,18089,22951,28729,35531,43471,52669,63251,75349,89101,104651,122149,141751,163619,187921,214831,244529,277201,313039,352241,395011,441559,492101,546859,606061,669941,738739,812701,892079, A342738 ,5,7,19,41,197,2549,4159,8467,9433,26701,27551,46817,57037,91097,130859,153281,157049,197683,351727,423103,466181,517991,526291,567181,575231,652903,663167,772339,1055231,1062013,1088239,1171199,1232461,1551871,1603297,1662833,2782469,2920531,2957917,3226159, A342739 ,1,1,2,2,2,3,2,3,3,3,4,3,3,4,4,3,4,5,4,4,4,3,5,5,4,4,5,4,6,5,4,5,5,5,4,6,4,6,5,4,5,6,5,5,7,5,6,5,4,6,6,5,6,5,6,7,5,5,7,6,5,5,6,5,7,6,4,6,8,6,6,7,6,6,5,5,7,7,5,6,7,6,6,7,5,8, A342741 ,2,5,7,9,12,15,16,20,22,24,26,28,32,35,37,38,41,44,46,49,50,54,57,59,61,63,67,68,71,73,75,77,79,83,85,87,90,93,96,97,102,104,106,108,111,112,114,115,117,120,124,126,129,132,133,137,139,141,146,147, @@ -342456,7 +342532,16 @@ A342742 ,1,4,10,13,19,25,31,34,40,43,52,55,58,64,70,76,82,88,91,94,100,103,109,1 A342743 ,7,16,22,28,37,46,49,61,67,73,79,85,97,106,112,115,124,133,139,148,151,163,172,178,184,190,202,205,214,220,226,232,238,250,256,262,271,280,289,292,307,313,319,325,334,337,343,346,352,361,373,379,388,397, A342744 ,3,6,8,11,14,17,18,21,23,27,29,30,33,36,39,42,45,47,48,51,53,56,60,62,65,66,69,72,74,78,80,81,84,86,89,92,95,98,99,101,105,107,110,113,116,119,122,123,125,128,131,134,135,138,140,143,144,149,150,152, A342745 ,2,5,9,12,15,20,24,26,32,35,38,41,44,50,54,57,59,63,68,71,75,77,83,87,90,93,96,102,104,108,111,114,117,120,126,129,132,137,141,146,147,155,158,161,164,168,170,173,174,177,182,188,191,195,200,201,207,210, +A342746 ,2,3,5,8,12,6,9,21,35,17,26,14,20,11,15,62,102,48,75,39,57,30,44,33,54,27,41,23,32,18,24,183,143,116,170,89,129,98,161,80,120,66,93,53,71,95,155,74,114,60,87,47,68,51,83,42,63,36,50,29,38,197,156, +A342747 ,2,1,7,5,4,22,3,16,13,12,67,10,9,49,40,8,37,202,35,31,28,6,148,121,26,25,112,21,607,106,20,94,85,102,19,445,17,364,79,15,76,337,75,64,62,319,61,14,283, +A342748 ,0,1,1,0,2,2,1,1,3,1,3,2,0,2,4,2,2,4,2,3,1,1,3,5,1,3,3,3,5,3,1,4,2,3,2,4,2,6,2,0,4,4,2,4,6,4,4,2,2,5,3,2,4,3,4,5,3,2,7,3,3,1,5,1,5,3,1,5,7,3,5,5,5,3,3,1,6,4,3,3,5,3,4,5,3,6, +A342749 ,1,1,2,1,1,2,2,2,1,3,2,3,1,2,1,2,4,2,3,3,2,2,2,1,3,3,4,2,2,4,3,3,2,3,3,2,4,1,4,1,3,4,3,3,2,2,4,4,2,3,2,5,4,3,3,2,5,3,1,4,4,2,3,3,4,4,2,3,2,3,3,4,2,4,3,3,3,2,4,6,4,5,3,4,2,2, +A342750 ,1,2,4,5,9,10,12,13,15,19,24,34,35,38,40,41,52,55,57,59,76,88,90,93,102,104,114,121,130,136,137,142,145,147,182,207,208,211,228,241,248,260,284,294,305,312,316,328,338,350,355,364,370,376,406,430,432, +A342751 ,1,2,6,8,9,10,12,13,16,18,22,23,24,27,30,32,33,34,39,41,43,44,45,46,48,52,54,56,57,58,59,61,62,64,65,72,75,76,77,78,79,81,84,85,88,92,94,96,101,102,104,105,106,107,108,109,111,112,113,115,121,122, +A342752 ,3,4,5,7,11,14,15,17,19,20,21,25,26,28,29,31,35,36,37,38,40,42,47,49,50,51,53,55,60,63,66,67,68,69,70,71,73,74,80,82,83,86,87,89,90,91,93,95,97,98,99,100,103,110,114,116,117,118,119,120,123,124,128, +A342753 ,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,1,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,0,0,1,1,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1, A342755 ,2,3,4,5,6,7,8,9,42,15,22,14,55,12,37,16,25,36,29,47,23,46,13,44,18,32,17,38,19,33,26,35,174,53,76,59,34,27,43,67,49,62,87,106,493,57,24,75,48,65,122,39,54,72,88,45,66,73,56,77,52,79,84,63,78,123,69,58,64,92,74,68,114,85,314, +A342756 ,28,63,125,213,362,489,696,823,1104,1443,1642,2089,2433,2616,3060,3555,4103,4396,5072,5477,5792,6550,7033,7781,8614,9342,9749,10258,10773,11449,13173,13814,14682,15433,16669,17262,18248,19363,20269, A342757 ,9,12,17,14,22,28,17,27,37,42,19,32,45,55,59,22,37,54,68,78,79,24,42,62,81,96,104,102,27,47,71,94,115,129,135,128,29,52,79,107,133,154,167,169,157,32,57,88,120,152,179,200,210,208,189,34,62,96,133,170,204,232,251,258,250,224, A342758 ,12,15,23,19,30,37,22,37,48,54,26,44,60,71,74,29,51,71,88,97,97,33,58,83,105,121,128,123,36,65,94,122,144,159,162,152,40,72,106,139,168,190,202,201,184,43,79,117,156,191,221,241,250,243,219,47,86,129,173,215,252,281,299,303,290,257, A342759 ,1,2,3,4,6,10,16,25,43,73,133,241,457,865,1681,3265,6433,12673,25153,49921,99457,198145,395521,789505,1577473,3151873,6300673,12595201,25184257,50356225,100700161, @@ -342465,21 +342550,32 @@ A342761 ,4,7,10,15,25,43,79,147,283,547,1075,2115,4195,8323,16579,33027,65923,13 A342762 ,1,1,1,1,1,3,5,10,20,42,86,178,362,738,1490,3010,6050,12162,24386,48898,97922,196098,392450,785410,1571330,3143682,6288386, A342763 ,1,2,2,2,3,6,10,15,27,45,85,153,297,561,1105,2145,4257,8385,16705,33153,66177,131841,263425,525825,1051137,2100225,4199425,8394753,16787457,33566721,67129345,134242305,268476417,536920065,1073823745,2147581953,4295131137, A342764 ,1,1,2,4,7,13,26,51,97,191,366,713,1375,2673,5164,10031,19405,37663,72922,141461,274019,531405,1029640,1996395,3868793,7500411,14536342,28179521,54617039, +A342765 ,1,2,2,3,2,3,4,3,3,4,5,4,3,4,5,6,5,6,6,5,6,7,6,5,4,5,6,7,8,7,6,10,10,6,7,8,9,8,7,6,5,6,7,8,9,10,9,12,14,10,10,14,12,9,10,11,10,9,8,7,6,7,8,9,10,11,12,11,10,9,20,14,14,20,9,10,11,12, +A342766 ,1,2,3,6,10,10,14,28,42,42,66,66,78,78,78,156,204,204,228,228,228,228,276,276,460,460,690,690,870,870,930,1860,1860,1860,1860,1860,2220,2220,2220,2220,2460,2460,2580,2580,2580,2580,2820,2820,3948,3948,3948,3948, +A342767 ,1,1,1,1,2,1,1,2,2,1,1,4,3,4,1,1,2,4,4,2,1,1,4,3,8,3,4,1,1,2,6,4,4,6,2,1,1,8,3,8,5,8,3,8,1,1,4,8,4,6,6,4,8,4,1,1,4,9,16,5,12,5,16,9,4,1,1,2,6,8,8,6,6,8,8,6,2,1,1,8,3,8,9,16,7,16,9,8,3,8,1, +A342768 ,1,2,3,8,5,12,7,32,27,20,11,48,13,28,45,128,17,108,19,80,63,44,23,192,125,52,243,112,29,180,31,512,99,68,175,432,37,76,117,320,41,252,43,176,405,92,47,768,343,500,153,208,53,972,275,448,171,116,59,720, A342769 ,1,1,1,3,2,2,1,5,2,4,3,3,1,7,2,6,3,5,4,4,1,9,2,8,3,7,4,6,5,5,1,11,2,10,3,9,4,8,5,7,6,6,1,13,2,12,3,11,4,10,5,9,6,8,7,7,1,15,2,14,3,13,4,12,5,11,6,10,7,9,8,8,1,17,2,16,3,15,4,14,5,13,6,12,7, A342770 ,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,2,0,1,0,1,0,0,3,0,1,0,1,0,5,0,3,0,1,0,1,0,0,7,0,3,0,1,0,1,0,14,0,8,0,3,0,1,0,1,0,0,22,0,8,0,3,0,1,0,1,0,42,0,24,0,8,0,3,0,1,0,1,0,0,66,0,25,0,8,0, A342771 ,43,53,79,103,227,769,977,1303,2179,2803,3019,5179,5503,8089,8101,10651,10789,13339,13729,14419,16069,17053,17341,18077,23203,25111,26153,26161,32839,34127,34351,34519,38791,39103,44027,54319,56629,57503,59053,60811,62869,63079,64579,64591,65203,69019, A342772 ,3,4,5,9,7,8,13,13,11,17,13,14,24,20,17,25,19,20,32,27,23,33,29,26,37,37,29,41,31,32,45,41,40,56,37,38,53,48,41,57,43,44,70,55,47,65,53,50,74,62,53,73,65,56,77,69,59,81,61,62,85,80,73,98,67,68,93,88,71,97, A342773 ,2,4,8,17,18,25,38,72,118,121,161,234,245,275,329,347,521,614,720,830,944,998,1016,1318,1355,1664,1829,2041,2169,2183,2189,2384,2786,3115,3464,3710,4082,4472,4891,4900,5027,5315,6230,6543,6836,7889,8173,10190,10592,10601,11435,11858,12154,12752, +A342774 ,1,2,1,3,2,2,4,3,3,3,5,2,4,4,4,4,6,3,3,5,3,5,5,5,5,7,4,4,4,4,6,4,4,6,6,6,6,6,3,8,5,5,5,5,5,5,7,5,5,5,5,7,7,7,7,7,4,7,4,4,9,6,6,6,6,4,6,6,6,6,8,6,6,6,6,6,6,6,8,8,8,8,8,5,8,5, A342800 ,0,0,0,0,0,0,24,72,0,0,1704,5184,0,0,193344,600504,0,0,34321512,141520752,0,0,9205815672,37962945288,0,0, A342801 ,127,173,181,257,281,359,563,569,577,719,751,1061,1381,1879,1901,4327,4759,5441,6397,6977,7207,7933,8387,8419,8521,9349,10009,10891,11311,11443,11467,12323,13567,13873,14369,14929,15299,15683,16073,17351,18041,18749,24407,24481,24767,25819,27067,27739, +A342802 ,0,1,-3,-2,9,10,6,7,-27,-26,-30,-29,-18,-17,-21,-20,81,82,78,79,90,91,87,88,54,55,51,52,63,64,60,61,-243,-242,-246,-245,-234,-233,-237,-236,-270,-269,-273,-272,-261,-260,-264,-263,-162,-161,-165,-164,-153,-152,-156,-155,-189,-188,-192,-191,-180,-179,-183,-182, +A342803 ,13,67,449,1367,1230127,4004009,121200307,10022234347,10203242527,52281509069,90608667517,100200322224127,121022023024027,9659504223792743, +A342804 ,0,0,1,1,1,5,8,18,39,91,185,460,1051,2526,6280,15645,35516,93765,225989,611503, A342805 ,1,1,1,3,1,1,4,3,1,5,1,1,18,4,1,7,1,1,24,5,1,9,4,1,10,18,1,11,1,1,12,7,5,156,1,1,14,8,1,15,1,1,288,9,1,17,4,1,90,10,1,19,21,1,20,11,1,21,1,1,22,48,8,414,1,1,24,65,1,25,1,1,234,14,1,81,1,1,784,15, A342806 ,15,21,78,300,528,903,990,1830,2628,3240,3570,4278,5253,5460,7503,8778,9870,13203,13530,16653,18528,20100,22578,24753,25200,29403,31878,37128,39903,45753,48828,55278,64980,65703,72390,73920,81003,88410,98790,106953,107880, A342807 ,1,6,30,150,750,3750,18630,92406,458262,2270478,11245590,55697766,275769654,1365260862,6758345838,33450929886,165549052326,819248589606,4054005363918, A342808 ,1,2,6,4,8,28,14,48,55,98,154,54,495,1034,504,559,208,440,2078,2000,350,3519,6578,2574,5983,2924,21734,25023,11934,30303,120175,81718,11438,73150,71630,43470,50048,511784,371448,37960,1478048,391950,812174,393470,217854,576288, +A342809 ,8,12,14,24,54,84,114,234,264,294,354,444,504,564,654,684,744,864,954,984,1164,1194,1284,1554,1584,1734,1914,2004,2154,2214,2244,2334,2394,2544,2844,2964,3084,3204,3414,3594, A342810 ,1,2,3,4,5,6,7,8,9,21,27,81,191,243,729,999,2187,2997,6561,8991,19683,26973,33321,36963,39049,59049,80919,100389,110889,118827,177147,177897,183951,242757,332667,356481,531441,551853,728271,998001,1069443,1367631,1594323,1655559,2184813, A342811 ,1,13,1009,354161,496376001,2632501072321,52080136110870785,3872046158193220660993,1099175272489026844687825921,1210008580962784935280673680079873,5225407816779297641534116390319222362113, A342812 ,1,1,7,142,5895,417201,45046558,6891812712,1417730229765,377158121463025, A342813 ,4,3,1,4,0,7,1,2,5,4,6,6,7,7,2,9,5,0,3,3,0,2,2,9,1,9,8,6,4,1,6,3,0,9,3,7,3,0,0,9,2,6,6,3,4,2,2,4,7,6,6,2,7,8,6,3,6,5,4,4,0,3,7,7,7,2,9,8,2,9,0,3,4,1,7,4,0,3,6,3,9,6,1,3,1,3,4, +A342814 ,12,14,18,38,68,98,158,308,338,368,398,488,548,758,788,908,968,998,1118,1568,1658,1748,1868,1988,2288,2438,2618,2708,2858,2888,3038,3068,3218,3308,3458,3548,3638,3698,3848,4058, +A342815 ,3,13,53,213,227,853,909,3413,3637,13653,14549,14563,54613,58197,58253,218453,232789,233013,873813,931157,932053,932067,3495253,3724629,3728213,3728269,13981013,14898517,14912853,14913077,55924053,59594069,59651413,59652309, A342817 ,1,-4,4,16,52,112,-48,-1984,-11212,-33360,6224,713536,4441872,13004480,-17374656,-432012032,-2525831628,-6454496208,21147389392,326358047552,1794285832464,4124461926592,-19727734694848,-263598020446976,-1416694290412784,-3151402998261312, A342818 ,2,2,8,2,6,8,8,2,10,6,4,8,4,8,20,2,18,10,5,6,8,4,6,8,6,4,11,8,5,20,32,2,34,18,4,10,7,5,9,6,7,8,8,4,10,6,6,8,6,6,9,4,7,11,9,8,13,5,9,20,6,32,68,2,66,34,6,18,12,4,9,10,6,7,9,5,8,9,11,6, A342819 ,4,4,7,6,9,10,6,11,12,13,8,13,16,17,16,8,15,18,21,20,19,10,17,22,25,26,25,22,10,19,24,29,30,31,28,25,12,21,28,33,36,37,36,33,28,12,23,30,37,40,43,42,41,36,31,14,25,34,41,46,49,50,49,46,41,34,14,27,36,45,50,55,56,57,54,51,44,37, @@ -342497,9 +342593,12 @@ A342834 ,7,797,797997,7979979973,797997997399991,797997997399991999983,797997997 A342835 ,2,2,8,16,8,4,64,4,32,8,128,64,16,64,512,8,8,64, A342836 ,7,797,3,7,37,3023681,43,1249,7,3,23,11,3,19,3,13390093693131976661567,193,2069,11,41,3,71,3,996370591,3,101,1123,54367,159469,151,29,3,7, A342837 ,0,0,3,3,16,40,8,44,112,85,48,24,168,15,182,18,13,151,348,204,437,612,771,75,51,310,796,111,811,350,644,350,469,159,571,544,2239,4,1474,97,2177,175,1400,1791,75,1983,337,2503,854,2397,830,246,5350,1682,153,1581,622, +A342838 ,21,31,32,39,42,62,67,75,82,91,93,97,104,109,121,127,135,137,139,140,145,146, A342839 ,1,4,7,9,10,15,16,22,23,24,25,34,36,37,39,40,47,55,56,57,58,64,67,82,84,86,87,88,91,93,94,95,96,97,98,99,100,102,104,105,106,107,130,133,134,135,136,137,138,139,140,141,142,144,146,147,148,149,150,153, A342840 ,1,1,2,6,23,1,103,10,6,1,512,77,69,30,21,5,6,2740,548,598,330,335,123,174,58,58,37,26,3,9,1,15485,3799,4686,2970,3411,1676,2338,1040,1317,878,777,363,608,230,252,165,133,30,93,26,31,4,1,3,4,91245,26165,35148,24550,30182,17185,24685,12976,16867,12248,12360,7203,11086,5692,6391,5194,5006,2751,3917,2019,2482,1622,1371,812,1233,490,495,416,360,157,282,54,78,41,29,22,49,7,4,0,6, A342841 ,1,841,832693,832046137,831916552903,831908477106883,831907430687799769,831907383078281024371,831907373418800027750413,831907372722449100147414487,831907372589073124899487831735,831907372581823023465031521920149,831907372580768386561159867257319711, +A342843 ,0,4,3,4,5,3,6,7,4,3,9,6,10,6,3,4, +A342844 ,27,34,38,46,49,54,56,57,58,68,69,74,76,78,86,87,94,98,203,207,209,247,249,253,259,267,289,299,308,323,329,334,338,343,346,356,358,370,374,376,377,380,386,388,394,398,403,406,407,429,430,434,437,446,447,454, A342845 ,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,2,1,1,1,2,1,2,1,2,1,1,0,1,0,1,0,1,0,1,0,2,1,2,1,1,1,2,1,2,1,1,0,1,0,1,0,1,0,1,0,2,1,2,1,2,1,1,1,2,1,1,0,1,0,1,0,1,0,1,0,2,1,2,1,2,1,2,1,1,1,1,0,1,0,1,0,1,0,1,0,2,2,3,2,3, A342846 ,0,0,0,0,0,0,0,0,0,1,1,1,2,1,2,1,2,1,2,0,1,0,1,0,1,0,1,0,1,1,2,1,1,1,2,1,2,1,2,0,1,0,1,0,1,0,1,0,1,1,2,1,2,1,1,1,2,1,2,0,1,0,1,0,1,0,1,0,1,1,2,1,2,1,2,1,1,1,2,0,1,0,1,0,1,0,1,0,1,1,2,1,2,1,2,1,2,1,1,1,1,1,2,1,2, A342847 ,1,1,1,2,3,2,3,4,6,5,4,7,2,5,3,4,5,11,3,6,2,11,4,3,2,14,5,12,4,14,9,18,11,17,5,24,8,12,25,28,11,26,19,14,27,12,18,5,2,34,22,32,26,9,17,29,23,12,43,6,47,4,16,32,16,4,16,30,9,12,57,37,29,28, @@ -342508,10 +342607,11 @@ A342849 ,0,0,1,2,-3,-8,-9,944,-6336,-27745,-565504,-436807,-57869312,123505175,- A342851 ,0,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,48,49,51,52,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,71,72,73,74,75,76,77,78,79,81,82, A342852 ,2,5,5,7,8,12,33,52,93,236,479,1265,2782,6650,15539, A342853 ,0,0,0,0,1,3,6,13,24,42,68,106,153,217,300, -A342854 ,0,0,0,0,1,2,5,9,17,26,41,60,88,120,163, +A342854 ,0,0,0,0,1,2,5,9,17,26,41,60,88,120,163,213, A342855 ,10,20,30,40,50,60,70,80,90,100,101,102,104,105,110,120,140,150,200,202,204,208,210,220,240,250,280,300,303,306,330,360,400,404,408,420,440,480,500,505,510,520,540,550,600,606,630,660,700,707,770,800,808,840,880,900,909,990,1000, A342856 ,1,24,120,720,5040,40320,362880,3628800,39916800,479001600,6227020800,87178291200,1307674368000,20922789888000,355687428096000,6402373705728000,121645100408832000,2432902008176640000,51090942171709440000,1124000727777607680000, A342858 ,13530,136,35,5,4510,10,100,45,51,1404, +A342859 ,0,1,1,2,1,2,3,2,2,3,4,3,3,3,4,5,4,5,5,4,5,6,5,8,7,8,5,6,7,6,11,11,11,11,6,7,8,7,14,17,17,17,14,7,8,9,8,17,24,26,26,24,17,8,9,10,9,20,31,39,39,39,31,20,9,10,11,10,23,38,55,60,60,55,38, A342860 ,1,1,2,6,23,1,103,9,8,512,62,82,34,28,2,2740,402,612,384,466,94,232,42,60,8,15485,2593,4187,3036,4356,1746,3132,1064,1918,909,654,333,612,144,104,22,24,1,91245,16921,28065,21638,33274,17598,31180,12942,24000,14290,15434,7770,15692,5965,6896,3947,5660,2226,3674,1314,1512,516,508,204,332,37,40, A342861 ,1,1,2,6,23,1,103,10,6,1,513,75,74,26,17,9,6,2762,522,645,321,290,130,166,47,54,48,41,4,8,2,15793,3579,5023,3058,3232,1527,2228,874,1159,893,875,340,503,281,269,207,156,112,123,21,54,2,0,6,5, A342862 ,1,1,2,6,23,1,103,11,4,2,513,88,53,33,18,8,6,0,0,1,2761,642,495,340,262,160,172,65,58,39,14,6,18,0,0,6,0,0,2,15767,4567,4099,3007,2692,1832,2171,1152,1291,968,728,457,566,174,176,221,129,14,122,29,38,52,8,0,32,9,0,10,0,0,8,0,0,0,0,0,1, @@ -342522,6 +342622,8 @@ A342866 ,1,2,3,2,3,2,3,2,3,3,3,2,3,3,4,2,3,2,3,3,4,3,3,2,3,3,3,3,3,4,3,2,6,3,5,2 A342867 ,1,2,3,15,35,33,65,215,221,551,455,2001,3417,3621,11523,16705,16617,69845,107545,157285,324569,358883,1404949,1569295,3783970,3106285,7536065,12216295,10589487,24038979,57759065,51961945,177005465,131462695,741703701,1467144445, A342868 ,1,4,8,16,32,64,112,128,224,256,448,896,1568,1792,3136,3584,5824,6272,7168,11648,12544,14336,23296,25088,28672,39424,40768,46592,50176,78848,81536,93184,128128,157696,163072,186368,256256,326144,372736,512512,652288,885248,1025024, A342869 ,1,9,27,45,90,180,270,360,540,1080,2160,2700,4320,4860,5400,8100,9720,10800,16200,19440,29160,32400,48600,58320,64800,97200,129600,162000,165240,183600,194400,275400,291600,330480,367200,388800,550800,583200,660960,777600,972000, +A342871 ,1,3,5,8,10,12,14,17,20,22,24,26,28,30,32,36,38,40,42,44,46,48,50,52,55,57,60,62,64,66,68,71,73,75,77,80,82,84,86,88,90,92,94,96,98,100,102,104,107,109,111,113,115,117,119,121,123,125,127,129,131,133, +A342872 ,0,1,2,3,2,1,0,1,2,3,4,5,6,7,8,9,8,7,6,5,4,3,2,1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, A342873 ,0,7,16,62,92,213,276,508,616,995,1160,1722,1956,2737,3052,4088,4496,5823,6336,7990,8620,10637,11396,13812,14712,17563,18616,21938,23156,26985,28380,32752,34336,39287,41072,46638,48636,54853,57076,63980,66440,74067, A342874 ,293,2106,2161,2763,3698,3793,3812,3922,3959,4000,4205,4224,4260,4728,4953,5065,5283,5617,5700,5751,5932,6326,6333,6422,6539,6623,7375,7475,7501,7533,7542,8306,8568,8751,8777,8994,9102,9259,9354,9480,10389,10700,10791, A342875 ,1,4,6,2,7,0,8,5,5,0,9,3,1,8,5,7,9,4,3,3,7,7,3,6,9,7,0,4,9,2,6,2,3,1,5,6,2,6,5,4,6,2,3,9,7,8,1,7,3,8,3,2,3,7,3,7,5,3,6,9,8,8,4,7,1,4,4,9,9,5,6,8,2,5,8,6,4,7,8,2,6,0,3,7,2,6,7, @@ -342537,31 +342639,464 @@ A342885 ,1,18,306,5202,88146,1493874,25300530,428518386,7256300850,122876680626, A342886 ,1,20,380,7220,136820,2593100,49121660,930556460,17625825740,333857601020,6323384122580,119767717450100,2268399952520660,42963566150826380,813721674662589980,15411746407417290020,291893918240586194660,5528387235193561980740, A342887 ,1,22,462,9702,203302,4260542,89253582,1869809502,39167457582,820458452462,17185914925542,359989506212182,7540511273930822,157947298263243742,3308420553034902382,69299392385043268822,1451565583054963249302,30404929596858248780502, A342888 ,1,24,552,12696,291480,6692424,153614760,3526063752,80931227016,1857565708968,42634594787160,978544945823832,22459264078075992,515478463349872200,11831064537706447464,271542137952854806776,6232321082672399260152,143041632747658763159736, -A342907 ,1,4,20,304,6784,407684,39072966,9449433606, +A342889 ,1,1,1,1,11,1,1,66,66,1,1,286,1716,286,1,1,1001,26026,26026,1001,1,1,3003,273273,1184183,273273,3003,1,1,8008,2186184,33157124,33157124,2186184,8008,1,1,19448,14158144,644195552,2254684432,644195552,14158144,19448,1, +A342890 ,1,1,1,1,12,1,1,78,78,1,1,364,2366,364,1,1,1365,41405,41405,1365,1,1,4368,496860,2318680,496860,4368,1,1,12376,4504864,78835120,78835120,4504864,12376,1,1,31824,32821152,1837984512,6892441920,1837984512,32821152,31824,1, +A342891 ,1,1,1,1,13,1,1,91,91,1,1,455,3185,455,1,1,1820,63700,63700,1820,1,1,6188,866320,4331600,866320,6188,1,1,18564,8836464,176729280,176729280,8836464,18564,1,1,50388,71954064,4892876352,19571505408,4892876352,71954064,50388,1, +A342892 ,1,1,1,1,1,0,1,0,1,1,0,1,1,0,0,0,1,1,1,1,0,0,1,0,1,1,0,1,0,0,0,0,1,1,1,1,1,0,1,0,0,1,0,1,1,0,0,0,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0,1,1,1,1,1,0,1,0,1,1,0,1,1,0,0,0,0,1,1,1,0,0,1,0,1,1,0,1,0, +A342893 ,54,5104,811538, +A342894 ,28,1225,16578,1479604544,1885800643779, +A342895 ,29,766,4225,13124675,224688658, +A342896 ,30,221,2676,696467,17886882, +A342897 ,129,13896,5978882, +A342898 ,52,1979,236674, +A342899 ,53,1252,20995,287618651, +A342900 ,36,626,6626,12047994,353563195, +A342901 ,37,470,2932,893604,82718691, +A342902 ,1729,251,219,157,158,131,132,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126, +A342903 ,50,27,28,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86, +A342904 ,5,27,251,2673,1375298099,106426514, +A342905 ,1,2,2,3,2,3,2,6,6,2,5,2,3,2,5,6,10,6,6,10,6,7,6,15,2,15,6,7,2,14,6,10,10,6,14,2,3,2,21,6,5,6,21,2,3,10,6,6,14,30,30,14,6,6,10,11,10,3,2,35,6,35,2,3,10,11,6,22,30,6,10,42,42,10,6,30,22,6, +A342906 ,0,2,11,50,214,892,3667,14954,60674,245348,989790,3986292,16034316,64434424,258740611,1038384154,4165322506,16702230484,66952213546,268313786524,1075045360756,4306563947464,17249126430766,69078840030340,276613030309204,1107532553770472,4434066076454492, +A342907 ,1,4,20,304,6784,407684,39072966,9449433606,3830070645700,3762885306351756,6402694828334379856, A342908 ,1,1,1,1,1,2,2,1,3,5,3,4,1,4,9,9,4,12,10,12,1,5,14,19,14,5,25,35,42,18,35,25,34,1,6,20,34,34,20,6,44,84,100,72,140,100,28,72,84,44,136,112,112,136,1,7,27,55,69,55,27,7,70,168,198,196,378,268,126,324,378,198,40,126,196,168,70,364,504,504,612,256,420,504,256,504,364,496, +A342909 ,1,0,1,2,0,1,4,0,2,7,0,3,2,9,0,4,13,0,5,3,13,20,0,6,5,18,1,10,4,18,28,0,7,24,1,12,7,26,1,13,33,0,8,13,36,0,9,32,2,19,7,31,3,22,7,33,54,0, A342911 ,1,0,1,0,1,4,0,1,8,15,0,1,16,35,54,0,1,32,83,134,185,0,1,64,199,340,481,622,0,1,128,479,872,1265,1658,2051,0,1,256,1155,2254,3361,4468,5575,6682,0,1,512,2787,5854,8993,12132,15271,18410,21549, +A342912 ,1,1,3,6,15,36,91,232,603,1585,4213,11298,30537,83097,227475,625992,1730787,4805595,13393689,37458330,105089229,295673994,834086421,2358641376,6684761125,18985057351,54022715451,154000562758,439742222071,1257643249140,3602118427251, A342913 ,1,1,3,1,2,2,5,1,4,2,3,3,7,1,6,2,5,3,4,4,9,1,8,2,7,3,6,4,5,5,11,1,10,2,9,3,8,4,7,5,6,6,13,1,12,2,11,3,10,4,9,5,8,6,7,7,15,1,14,2,13,3,12,4,11,5,10,6,9,7,8,8,17,1,16,2,15,3,14,4,13,5,12,6,11,7, +A342914 ,1,12,36,73,123,186,262,351,453,568,696,837,991,1158,1338,1531,1737,1956,2188,2433,2691,2962,3246,3543,3853,4176,4512,4861,5223,5598,5986,6387,6801,7228,7668,8121,8587,9066,9558,10063,10581,11112,11656,12213,12783,13366, A342915 ,1,3,4,1,6,1,8,3,2,1,12,1,14,3,8,1,18,1,20,3,2,1,24,1,2,3,4,1,30,1,32,3,2,1,12,1,38,3,8,1,42,1,44,9,2,1,48,1,2,3,4,1,54,1,8,3,2,1,60,1,62,3,32,1,6,1,68,3,2,1,72,1,74,3,4,1,6,1,80,9,2,1,84,1,2,3,8,1,90,1,4,3,2,1,24,1,98,3,4,1,102, A342916 ,2,1,1,5,1,7,1,3,5,11,1,13,1,5,2,17,1,19,1,7,11,23,1,25,13,9,7,29,1,31,1,11,17,35,3,37,1,13,5,41,1,43,1,5,23,47,1,49,25,17,13,53,1,55,7,19,29,59,1,61,1,21,2,65,11,67,1,23,35,71,1,73,1,25,19,77,13,79,1,9,41,83,1,85,43,29,11,89,1,91,23,31, A342917 ,1,1,1,6,1,12,1,4,6,18,1,24,1,8,3,24,1,36,1,12,16,36,1,48,15,14,9,48,1,72,1,16,24,54,4,72,1,20,7,72,1,96,1,8,36,72,1,96,28,30,18,84,1,108,9,32,40,90,1,144,1,32,3,96,14,144,1,36,48,144,1,144,1,38,30,120,16,168,1,16,54,126,1,192,54,44,15,144, A342918 ,1,1,1,5,1,7,1,3,5,11,1,13,1,5,2,17,1,19,1,7,11,23,1,25,13,9,7,29,1,31,1,11,17,35,3,37,1,13,5,41,1,43,1,15,23,47,1,49,25,17,13,53,1,55,7,19,29,59,1,61,1,21,8,65,11,67,1,23,35,71,1,73,1,25,19,77,13,79,1,27,41,83,1,85,43,29,11,89,1,91,23, A342919 ,0,1,1,2,1,5,1,1,1,7,1,2,1,3,1,4,1,7,1,2,5,13,1,11,1,5,3,2,1,31,1,5,7,19,1,5,1,7,2,17,1,41,1,2,13,25,1,7,1,1,5,2,1,3,2,23,11,31,1,23,1,11,17,2,3,61,1,2,13,59,1,13,1,13,11,2,3,71,1,11,1,43,1,31,11,15,4,35,1,41,5,2,17,49,1,17,1,11,25, +A342920 ,1,1,1,2,1,2,1,8,12,2,1,4,1,2,6,16,1,24,1,4,6,2,1,26,50,2,16,4,1,62,1,10,6,2,126,48,1,2,6,18,1,24,1,4,46,2,1,22,1486,100,6,4,1,32,94,8,6,2,1,54,1,2,72,20,264,12,1,4,6,120,1,376,1,2,1142,4,242,12,1,36,342,2,1,48,272,2,6,8,1,92,318, +A342921 ,0,1,1,5,1,7,8,31,1,9,10,41,12,59,71,247,1,13,14,61,16,87,103,371,18,113,131,493,167,719,886,2927,1,15,16,71,18,101,119,433,20,131,151,575,191,837,1028,3421,24,191,215,859,263,1241,1504,5153,311,1623,1934,6871,2556,10117,12673,40361,1,19,20,91,22,129, +A342922 ,6,28,29,496,857,1721,8128,164284,6511664,33550336, +A342923 ,120,672,963,1036,264768,523776,459818240, +A342924 ,6,28,120,496,672,963,1036,5871,8128,10479,164284,264768,523776,2308203,6511664,33550336,41240261,75384301,400902412,459818240, +A342925 ,0,1,4,1,5,16,12,8,1,21,16,32,9,44,44,1,21,16,24,41,80,60,44,92,1,41,68,92,31,156,80,51,112,81,112,20,21,92,92,123,41,272,48,124,71,156,112,128,22,34,156,77,81,244,156,244,176,123,92,332,33,272,164,1,124,384,72,165,272,384,156,119,39,101,128,188, +A342926 ,-1,-1,1,-3,0,10,5,0,-8,11,5,20,-4,30,29,-15,4,-2,5,21,59,38,21,68,-24,15,41,64,2,126,49,19,79,47,77,-16,-16,54,53,83,0,230,5,80,26,110,65,80,-27,-16,105,25,28,190,101,188,119,65,33,272,-28,210,101,-63,59,318,5,97,203,314,85,47,-34,27,53,112,195, A342927 ,3,4,3,5,4,7,5,9,4,10,11,12,7,5,14,8,15,9,17,4,10,19,20,11,21,22,8,24,25,14,15,29,10,30,16,31,5,32,17,11,34,35,19,37,39,13,21,4,42,22,14,44,23,45,8,47,25,50,51,17,54,28,55,29,57,4,30,59,60,31, A342928 ,3,3,4,3,4,3,4,3,5,3,3,3,4,5,3,4,3,4,3,7,4,3,3,4,3,3,5,3,3,4,4,3,5,3,4,3,8,3,4,5,3,3,4,3,3,5,4,11,3,4,5,3,4,3,7,3,4,3,3,5,3,4,3,4,3,13,4,3,3,4,3,3,4,5,3,3,4,5,3,4,3,4,5,7,3,4, A342929 ,1,2,4,4,6,7,9,10,8,11,12,14,13,15,16,17,18,17,22,21,22,16,22,24,21,26,28,25,25,29,29,24,33,37,30,34,34,34,36,28,38,37,39,39,44,34,44,43,44,41,30,49,44,32,52,45,54,39,53,48,58,48,36,58,49,49,67,56, A342930 ,1,7,26,511,3124,16767,823542,33554431,387420488,1787109375,285311670610,6737830608896,302875106592252,10190301669556224,12913848876953124,36893488147419103231,827240261886336764176,22831345258932427292672,1978419655660313589123978,35357007743740081787109375, A342931 ,1,7,13,511,1562,3013,411771,33554431,193710244,159687996,142655835305,2545864168851,151437553296126,4672524492952950,190419981278726,36893488147419103231,413620130943168382088,6624115793937660813847,989209827830156794561989,5961027129129868073483022,579547002657587965773234693, +A342935 ,1,7,55,439,3433,27541,218773,1749223,13964245,111725197,893433661,7147232467,57169672861,457364647435,3658819119307,29270432746633,234161501271463,1873293863661469,14986321908515773,119890565631185995,959124025074311215,7672992332048493361, +A342936 ,1,1,1,1,0,1,1,2,2,1,1,0,4,0,1,1,4,6,6,4,1,1,0,13,0,13,0,1,1,8,20,34,34,20,8,1,1,0,43,0,120,0,43,0,1,1,16,66,187,320,320,187,66,16,1,1,0,142,0,1137,0,1137,0,142,0,1,1,32,218,1026,3026,5321,5321,3026,1026,218,32,1, A342937 ,2,1,8,1,3,2,3,3,3,4,3,5,3,6,3,7,2,1,10,1,11,1,9,1,2,1,9,2,2,1,8,1,5,1,8,1,3,1,2,1,8,1,3,1,3,1,8,1,3,1,2,2,1,8,1,3,1,3,2,1,8,1,3,2,5,1,8,1,3,2,3,1,2,1,8,1,3,2,3,2,2,1,8,1,3,2, +A342938 ,1,1,1,3,4,4,5,4,4,5,6,7,8,8,7,8,9,9,10,11,10,12,13,12,13,13,13,15,16,16,17,16,16,17,18,19,20,20,19,20,21,21,22,23,22,24,25,24,25,25,25,27,28,28,29,28,28,29,30,31,32,32,31,32,33,33,34,35,34,36, +A342939 ,1,2,5,7,11,16,22,29,37,46,56,67,79,92,106,121,137,154,172,191,211,232,254,277,301,326,352,379,407,436,466,497,529,562,596,631,667,704,742,781,821,862,904,947,991,1036,1082,1129,1177,1226,1276,1327,1379,1432,1486, +A342940 ,2,3,4,4,6,8,5,8,11,14,6,10,14,18,22,7,12,17,22,27,32,8,14,20,26,32,38,44,9,16,23,30,37,44,51,58,10,18,26,34,42,50,58,66,74,11,20,29,38,47,56,65,74,83,92,12,22,32,42,52,62,72,82,92,102,112,13,24,35,46,57,68,79,90,101,112,123,134, +A342941 ,15,16,24,25,26,32,35,38,39,42,43,47,54,55,58,62,65,71,73,75,78,85,87,92,95,99,105,107,108,115,116,117,119,123,125,127,131,135,137,138,139,141,142,145,146,147,155,165,175,176,178,179,181,185,189,191,193,195,197,199, A342942 ,12,13,34,48,67,102,123,146,408,449,696,698,942,1002,1030,1234,1367,4008,5221,6948,10002,10030,10203,10406,12124,12345,12568,40008,40409,52280,61732,94206,100002,102214,106625,121024,123456,400008,637832,1000002,1000300,1002003, A342943 ,13,19,31,37,79,103,113,127,139,163,179,181,193,199,307,353,719,727,773,787,907,937,967,983,1093,1117,1123,1129,1153,1163,1193,1201,1303,1327,1409,1447,1489,1579,1583,1597,1609,1657,1777,1823,1831,1879,1951,1987,1993,3001, +A342946 ,1,8,6,2,12,16,24,19,15,34,14,21,43,20,25,17,39,29,23,32,42,35,45,53,28,54,63,73,84,50,59,47,56,69,80,92,108,95,83,72,62,75,44,55,89,101,86,98,111,125,140,94,107,121,173,156,137,122,174,157,141,126, +A342947 ,1,9,4,3,13,7,5,10,26,18,11,30,37,48,22,31,38,46,58,49,41,52,27,33,40,51,60,70,57,67,81,93,106,123,79,68,82,71,61,74,64,36,65,78,118,77,88,100,85,97,110,124,139,155,172,193,138,154,212,232,256,191,213, +A342948 ,1,8,9,6,4,2,3,12,13,16,7,24,5,19,10,15,26,34,18,14,11,21,30,43,37,20,48,25,22,17,31,39,38,29,46,23,58,32,49,42,41,35,52,45,27,53,33,28,40,54,51,63,60,73,70,84,57,50,67,59,81,47,93,56,106,69,123, A342949 ,1,3,5,7,9,11,15,111,115,135,175,315,735,1111,1113,1115,1131,1197,1311,1575,1715,3111,3171,3915,7119,9315,11111,11115,11133,11313,11331,11711,13113,13131,13311,17115,31113,31131,31311,33111,35175,51975,77175,111111,111115,111135, A342950 ,1,2,3,4,5,6,7,8,9,12,14,15,16,18,21,24,25,27,28,32,35,36,42,45,48,49,54,56,63,64,72,75,81,84,96,98,105,108,112,125,126,128,135,144,147,162,168,175,189,192,196,216,224,225,243,245,252,256,288,294,315,324, A342951 ,1,2,3,4,5,6,7,8,9,12,112,15,112,36,315,24,175,135,112,128,175,36,672,135,144,735,216,112,315,128,144,1575,1296,672,384,1176,315,216,112,1551375,3276,128,135,144,735,1296,672,175,16632,384,1176,216,224,1575,2916, A342952 ,1,2,3,4,5,6,7,8,9,216,7112,135,128,36,3171,432,0,11111391,12712,1184,175,11111292,1176,111195,624,1171111711,19116,147112,1197,4224,114192,0,113319,672,384,171171112,735,1296,11872,0,17136,21248,3915,3168,3177111,13932,21672, A342953 ,2,13,11,19,499,8851471, +A342954 ,1,3,6,11,14,21,24,31,36,39,46,53,56,63,70,75,78,85,92,99,102,109,116,123,128,131,138,145,152,159,162,169,176,183,190,195,198,205,212,219,226,233,236,243,250,257,264,271,276,279,286,293,300,307,314,321,324,331,338, +A342955 ,0,0,0,0,1,0,0,1,1,0,0,1,2,1,0,0,1,2,2,1,0,0,1,2,3,2,1,0,0,1,2,3,3,2,1,0,0,1,2,3,4,3,2,1,0,0,1,2,3,4,4,3,2,1,0,0,1,2,3,4,5,4,3,2,1,0,0,0,2,3,4,5,5,4,3,2,0,0,0,1,0,3,4,5,6,5,4,3,0,1,0, A342956 ,0,1,1,2,1,1,1,2,2,1,1,1,1,2,3,3,1,3,1,2,2,1,1,2,2,2,2,1,1,2,1,2,2,1,3,2,1,2,4,1,1,3,1,2,1,2,1,1,2,3,3,1,1,1,4,1,2,1,1,3,1,2,1,3,3,4,1,2,2,2,1,3,1,2,1,1,3,3,1,1,3,1,1,2,2,3,5,1,1,1,3,3,2,2,4,1,1,4,1, -A342957 ,1,2,4,15,39,87,183,951,1255,1527,3063,15335,12279,61431,49143,516047,491495,1703767,1310695,8257487,3145719,15728631,12582903,94371815,50331639, +A342957 ,1,2,4,15,39,87,183,951,1255,1527,3063,15335,12279,61431,49143,516047,491495,1703767,1310695,8257487,3145719,15728631,12582903,94371815,50331639,352321527,335544295, A342958 ,2,13,547,10559,246349,20020109,20020163, +A342959 ,1,6,62,618,6180,61804,618034,6180340,61803399,618033989,6180339888,61803398875,618033988750,6180339887499,61803398874990,618033988749895,6180339887498949,61803398874989485,618033988749894848,6180339887498948482,61803398874989484821, A342960 ,38377,70957,106867,278177,278393,380377,432199,435763,526397,1093159,2025577,2761147,3068119,3656129,3672659,5649079,6863173,7366453,8083937,9015863,9346507,9497353,14198467,15099901,15467423,15479273,16020607,16437427,17602547,18804173,20020019,20794141,22866121, A342961 ,11,19,29,37,41,53,61,73,89,101,109,149,181,191,199,229,233,257,269,277,281,307,331,359,379,383,401,409,419,433,449,461,491,499,563,587,593,601,619,641,653,661,673,677,691,727,797,809,811,821,881,911,919,937,941,977,991,1009,1019,1033, A342962 ,2,29,229,5639,35969,54191353, +A342963 ,1,2,15,110,1051,10636,113290, +A342964 ,1,12,2100,1751680,4190017860,20874801722544,177661172742061008,2295966445175463883680,41848194615009705993547620,1022849138778659709119846990032,32304962696573489860535097887683296, +A342965 ,0,0,1,2,1,6,6,10,27,105,245,525, +A342966 ,0,1,1,1,1,3,10,55,199,1915,13679,86296, +A342967 ,1,2,5,22,177,2606,70226,3457742,311348897,51177188350,15377065068510,8430169458379450,8446194335222422950,15435904380166258833482,51546769958534244310727102,313937270864810066000897492222,3493348088919874482660174997662017, +A342969 ,3,39,225,249,321,447,471,519,681,831,921,993,1119,1191,1473,1641,1671,1857,1929,1983,2361,2391,2463,2625,2631,2913,3321,3369,3561,3591,3777,3807,3831,3903,4119,4281,4287,4359,4545,4569,4791,5001,5025,5079,5241,5481, +A342970 ,3591,4545,5481,6975,8415,9639,11319,11583,11745,12225,12735,16065,18711,24255,24759,30015,31671,39105,40257,41535,41769,44631,44865,52065,52569,53055,54975,56511,60255,60705,64071,64575,69825,72009,73665,76095,81081,81855,87129, +A342972 ,1,1,1,1,3,1,1,10,10,1,1,35,105,35,1,1,126,1176,1176,126,1,1,462,13860,41580,13860,462,1,1,1716,169884,1557270,1557270,169884,1716,1,1,6435,2147145,61408347,184225041,61408347,2147145,6435,1, +A342973 ,12,18,20,24,28,36,40,44,45,48,50,52,54,56,60,63,64,68,75,76,80,81,84,88,90,92,96,98,99,100,104,112,116,117,120,124,126,132,135,136,140,144,147,148,150,152,153,156,160,162,164,168,171,172,175,176,180,184,188,189,192, +A342975 ,3,11,41,347,13901,128981,128981,113575727,2426256797,137168442221,4656625081181,101951758179851, +A342976 ,16,39,55,58,74,83,86,87,107,108,111,112,113,122,123,124,125,126,127,128,147,148,165,179,180,181,201,202,205,206,207,219,223,224,225,226,242,243,244,245,246,247,251,257,260,264,265,266,267,268,269,270,274,277,278,279,280, +A342977 ,2,8,5,3,9,8,1,6,3,3,9,7,4,4,8,3,0,9,6,1,5,6,6,0,8,4,5,8,1,9,8,7,5,7,2,1,0,4,9,2,9,2,3,4,9,8,4,3,7,7,6,4,5,5,2,4,3,7,3,6,1,4,8,0,7,6,9,5,4,1,0,1,5,7,1,5,5,2,2,4,9,6,5,7,0,0,8,7,0,6,3,3,5,5,2,9,2, +A342978 ,1,2,3,4,5,6,7,8,9,99,89,79,69,59,49,98,999,88,899,78,799,68,699,39,58,599,48,9999,989,97,499,998,8999,889,87,898,789,7999,77,38,798,689,67,6999,29,698,57,589,399,5999,598,47,99999,9899,489,9989,4999,9998, +A342979 ,2,79,131,163,167,173,191,199,263,269,277,281,283,337,349,359,367,373,397,401,419,431,439,491,521,541,557,593,599,607,613,617,619,659,677,733,751,757,761,811,857,877,907,911,919,1009,1021,1039,1051,1097,1129,1163,1181,1237,1279, +A342980 ,1,0,0,0,1,0,0,1,1,0,0,1,8,1,0,0,1,20,20,1,0,0,1,38,131,38,1,0,0,1,63,469,469,63,1,0,0,1,96,1262,3008,1262,96,1,0,0,1,138,2862,12843,12843,2862,138,1,0,0,1,190,5780,42602,83088,42602,5780,190,1,0, +A342981 ,1,0,1,0,1,2,0,1,7,5,0,1,16,37,14,0,1,30,150,176,42,0,1,50,449,1104,794,132,0,1,77,1113,4795,7077,3473,429,0,1,112,2422,16456,41850,41504,14893,1430,0,1,156,4788,47832,189183,319320,228810,63004,4862, +A342982 ,1,1,1,2,6,2,5,30,30,5,14,140,280,140,14,42,630,2100,2100,630,42,132,2772,13860,23100,13860,2772,132,429,12012,84084,210210,210210,84084,12012,429,1430,51480,480480,1681680,2522520,1681680,480480,51480,1430, +A342983 ,1,6,280,23100,2522520,325909584,47117214144,7383099180600,1229149289511000,214527522662653200,38887279926227853120,7271332144993605081120,1395321310426879365566400,273697641660657106322640000,54708248601655917595233984000, +A342984 ,1,1,1,0,2,0,0,3,3,0,0,4,20,4,0,0,5,75,75,5,0,0,6,210,604,210,6,0,0,7,490,3150,3150,490,7,0,0,8,1008,12480,27556,12480,1008,8,0,0,9,1890,40788,170793,170793,40788,1890,9,0,0,10,3300,115500,829920,1565844,829920,115500,3300,10,0, +A342985 ,1,0,0,0,2,0,0,3,3,0,0,4,36,4,0,0,5,135,135,5,0,0,6,360,1368,360,6,0,0,7,798,7350,7350,798,7,0,0,8,1568,28400,73700,28400,1568,8,0,0,9,2826,89073,474588,474588,89073,2826,9,0,0,10,4770,241220,2292790,4818092,2292790,241220,4770,10,0, +A342986 ,1,0,2,6,44,280,2100,16310,133652,1132992,9895672,88520520,808057712,7504219008,70730676392,675328163542,6521495669380,63612394972608,626076210568200,6211621325369992,62077602307372720,624488579671582880,6320044589443116720,64313288809475362888, +A342987 ,1,0,1,0,2,2,0,3,15,5,0,4,60,84,14,0,5,175,650,420,42,0,6,420,3324,5352,1980,132,0,7,882,13020,42469,37681,9009,429,0,8,1680,42240,246540,429120,239752,40040,1430,0,9,2970,118998,1142622,3462354,3711027,1421226,175032,4862, +A342988 ,1,1,4,23,162,1292,11214,103497,1000810,10039100,103725188,1098151276,11866435816,130477138014,1456320910090,16468167354971,188369396046810,2176619115192140,25379588118629856,298341351434460488,3532848638781046852,42113699799069958732, +A342989 ,1,4,4,10,39,10,20,190,190,20,35,651,1568,651,35,56,1792,8344,8344,1792,56,84,4242,33580,64667,33580,4242,84,120,8988,111100,361884,361884,111100,8988,120,165,17490,317680,1607125,2713561,1607125,317680,17490,165, +A342993 ,72,150,180,270,1032,1062,1452,1608,2028,2082,2130,2592,2790,3120,3258,3300,3360,3930,4020,4272,4650,4722,4788,4932,5442,5880,6702,7128,7332,7878,8388,8430,8862,9240,9342,9678,10008,10140,10272,10890,11490,11940,12072,12162,12918,13002,13218,13932, +A342995 ,0,0,1,1,0,1,4,8,0,3,37,80,6,17,461,868,190,364,5570,11342,3993,7307,78644, +A342996 ,1,2,11,5604,9275102575355,21565010821742923705373368869534441911701199887419, +A342999 ,1,2,3,4,5,6,23,7,8,9,10,25,11,12,13,14,27,15,35,57,319,1129,16,17,18,19,20,21,37,22,211,24,26,213,371,753,3251,28,29,30,235,547,31,32,33,311,34,217,731,1743,3783,31397,36,38,219,373,39,313,40,41,42,237,379,43,44,45,46,223,47, +A343000 ,49,81,169,361,961,1369,1849,3721,3969,4489,5329,6241,8281,9409,10609,11881,13689,16129,17689,19321,22801,24649,26569,29241,32761,37249,39601,44521,47089,49729,52441,58081,61009,67081,73441,76729,77841,80089,90601,94249,97969, +A343001 ,7,9,13,19,31,37,43,61,63,67,73,79,91,97,103,109,117,127,133,139,151,157,163,171,181,193,199,211,217,223,229,241,247,259,271,277,279,283,301,307,313,331,333,337,349,367,373,379,387,397,403,409,421,427, +A343002 ,3969,8281,13689,17689,29241,47089,61009,67081,77841,90601,110889,149769,162409,182329,219961,231361,261121,301401,305809,312481,346921,363609,431649,461041,494209,505521,519841,582169,628849,667489,758641,762129,790321,859329,900601,946729,962361, +A343003 ,63,91,117,133,171,217,247,259,279,301,333,387,403,427,469,481,511,549,553,559,589,603,657,679,703,711,721,763,793,817,871,873,889,927,949,973,981,1027,1057,1099,1141,1143,1147,1159,1251,1261,1267,1273,1333, +A343011 ,1,3,5,7,11,13,15,17,19,20,21,23,24,27,29,31,33,35,37,39,41,43,44,47,49,51,53,55,57,59,60,61,65,67,68,69,71,73,77,79,83,85,87,88,89,91,92,93,95,97,101,103,105,107,109,111,113,115,116,119,120,123, +A343012 ,1,2,4,3,6,5,8,9,10,7,12,15,14,11,16,18,20,21,22,13,24,25,27,28,30,32,33,26,17,35,36,40,42,44,39,34,19,45,48,49,50,54,55,52,51,38,23,56,60,63,64,66,65,68,57,46,29,70,72,75,77,78,80,81,84,85,76,69, +A343013 ,1,2,4,5,8,9,12,15,16,17,18,20,24,25,27,30,32,34,35,36,40,45,48,49,50,52,54,56,60,63,64,68,70,72,75,78,79,80,81,84,85,90,91,96,98,100,102,104,105,108,112,119,120,121,125,126,128,130,132,135,136,140,143, +A343014 ,1,2,4,8,12,24,48,72,96,144,288,432,576,720,864,1152,1440,2160,2880,4320,5760,8640,12960,17280,25920,34560,43200,51840,69120,77760,86400,103680,129600,155520,172800,207360,259200,345600,388800,518400,777600,907200,1036800, +A343015 ,5,0,6,8,7,6,0,9,3,1,6,5,2,7,8,4,5,5,2,2,2,4,3,9,3,1,3,1,6,0,5,1,1,2,3,7,7,7,3,5,2,6,9,9,8,2,5,4,8,5,2,6,1,0,5,6,1,9,4,1,2,1,4,3,8,1,4,1,3,7,2,5,8,4,6,7,8,6,3,3,5,4,8,4,9,5,1, +A343016 ,0,1,1,0,1,5,1,0,0,2,1,4,1,0,0,0,1,0,1,0,0,1,1,0,0,0,0,1,1,0,1,0,0,2,0,0,1,0,0,1,1,0,1,0,1,0,1,3,0,0,0,1,1,1,0,1,0,2,1,0,1,0,1,0,0,0,1,0,0,0,1,0,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0,1,1,6,0,0,0,0,0,2,1,0,1, +A343017 ,1,3,7,14,26,39,67,122,180,347,524,884,1700,2564,4893,8826,15593,28348,50527,73536,136858,251537,388362,662078,1038501,1952109,2983020,5533878,8515097,16211471,29346362,45472332,74818528,134329628,251629409,385580882, +A343020 ,2,5,23,167,839,7559,128519,1081079,20540519,397837439,8031343319,188972783999,3212537327999,125568306863999,2888071057871999,190487121512687999,4381203794791823999,215961289494494543999,13283916764437951631999,540119185025730854543999,26465840066260811872655999,1356699703068812438127791999, +A343021 ,1,2,6,90,15120,983010, +A343022 ,49,81,169,361,961,1369,1849,3721,4489,5329,6241,9409,10609,11881,16129,19321,22801,24649,26569,32761,37249,39601,44521,49729,52441,58081,73441,76729,80089,94249,97969,109561,113569,121801,134689,139129,143641,157609,167281,177241, +A343023 ,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0, +A343024 ,3969,8281,13689,17689,29241,47089,61009,67081,77841,90601,110889,149769,162409,182329,219961,231361,261121,301401,305809,312481,346921,363609,431649,461041,494209,505521,519841,582169,628849,667489,670761,758641,762129,790321,859329,900601,946729,962361, +A343025 ,63,91,117,133,171,217,247,259,279,301,333,387,403,427,469,481,511,549,553,559,589,603,657,679,703,711,721,763,793,817,819,871,873,889,927,949,973,981,1027,1057,1099,1141,1143,1147,1159,1197,1251,1261,1267, +A343026 ,1,1,2,1,1,2,3,3,2,1,1,2,1,1,2,3,3,2,4,4,2,4,4,2,3,3,2,1,1,2,1,1,2,3,3,2,1,1,2,1,1,2,3,3,2,4,4,2,4,4,2,3,3,2,5,5,2,5,5,2,3,3,2,5,5,2,5,5,2,3,3,2,4,4,2,4,4,2,3,3, +A343029 ,0,1,0,2,1,1,0,3,0,2,1,2,2,1,0,4,1,1,0,3,1,2,1,3,0,3,2,2,3,1,0,5,0,2,1,2,2,1,0,4,1,2,1,3,2,2,1,4,2,1,0,4,1,3,2,3,0,4,3,2,4,1,0,6,1,1,0,3,1,2,1,3,0,3,2,2,3,1,0,5,1,2,1,3,2,2,1, +A343030 ,0,0,1,0,0,1,2,0,1,0,1,1,0,2,3,0,0,1,2,0,1,1,2,1,2,0,1,2,0,3,4,0,1,0,1,1,0,2,3,0,1,1,2,1,1,2,3,1,0,2,3,0,2,1,2,2,3,0,1,3,0,4,5,0,0,1,2,0,1,1,2,1,2,0,1,2,0,3,4,0,1,1,2,1,1,2,3, +A343031 ,1,2,3,3,7,9,4,11,12,20,5,15,24,24,39,6,19,33,34,42,67,7,23,42,58,54,71,107,8,27,54,74,75,81,110,160,9,31,66,90,115,105,122,164,229,10,35,75,110,140,141,143,174,232,315,11,39,84,130,165,201,183,198,244,319,421, +A343032 ,1,2,4,9,24,78,313,1557,9606,73482,696736,8187149,119214337,2150935400,48085463503,1331903411529,45708405952786,1943464419169294,102378212255343442,6681679619583450775,540264005909352759970,54120992439329583459008,6716802027097934788929023, +A343033 ,1,1,1,1,2,1,1,3,3,1,1,2,5,2,1,1,5,3,3,5,1,1,6,7,4,7,6,1,1,7,15,5,5,15,7,1,1,2,11,6,11,6,11,2,1,1,3,3,7,35,35,7,3,3,1,1,10,5,4,13,30,13,4,5,10,1,1,11,21,9,5,77,77,5,9,21,11,1, +A343034 ,1,13,19,487,721,18493,27379,702247,1039681,26666893,39480499,1012639687,1499219281,38453641213,56930852179,1460225726407,2161873163521,55450123962253,82094249361619,2105644484839207,3117419602578001,79959040299927613,118379850648602419,3036337886912410087, +A343035 ,1,2,5,4,11,30,17,8,25,110,23,60,31,238,385,16,41,150,47,220,935,506,59,120,121,806,125,476,67,2310,73,32,1495,1394,2431,900,83,1786,2635,440,97,39270,103,1012,1925,2714,109,240,289,1210,3895,1612,127,750, +A343036 ,1,2,3,4,5,6,7,8,9,154,1629,1630,9014,33504,98062,243287,531870,531871,1063844,1063845,1063846,3484080,5810556,5810557,9305178,9305179,9305180,14376561,45251346,63197812,63197813,63197814,87055977,87055978,157169049,206168352,206168353, +A343037 ,2,1,1,0,3,0,4,6,6,4,3,1,5,1,3,2,4,1,1,4,2,1,8,8,11,8,8,1,0,0,16,18,18,16,0,0,6,4,1,15,4,15,1,4,6,5,9,4,31,22,22,31,4,9,5,4,15,5,34,49,37,49,34,5,15,4,3,3,3,14,9,48,48,9,14,3,3,3,2,9,36,23,23,22,49,22,23,23,36,9,2, +A343038 ,1111,1111,1111,1111,1111,1111,1111,1111,102,1010,1010,200,810,400,610,600,410,800,210,1010,1010,1010,1011,810,200,1010,1010,200,810,400,610,600,410,1010,1010,1010,1011,1010,810,200,1010,1010,200,810,400,610,600,410,1010, +A343039 ,1,1,5,7,4,6,3,5,2,4,1,3,9,2,8,1,7,11,6,10,5,9,4,8,3,7,2,6,1,5,13,4,12,3,11,2,10,1,9,15,8,14,7,13,6,12,5,11,4,10,3,9,2,8,1,7,17,6,16,5,15,4,14,3,13,2,12,1,11, +A343040 ,0,1,1,2,1,2,3,3,3,3,4,3,2,3,4,5,5,3,3,5,5,6,5,4,3,4,5,6,7,7,5,5,5,5,7,7,8,7,8,5,4,5,8,7,8,9,9,9,9,5,5,9,9,9,9,10,9,8,9,10,5,10,9,8,9,10,11,11,9,9,11,11,11,11,9,9,11,11,12,11,10,9,10,11,6,11,10,9,10,11,12, +A343041 ,0,1,3,3,5,5,11,11,11,11,11,11,17,17,17,17,17,17,23,23,23,23,23,23,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71, +A343042 ,0,0,0,0,1,0,0,2,2,0,0,3,6,3,0,0,2,8,8,2,0,0,3,6,9,6,3,0,0,6,8,8,8,8,6,0,0,7,24,9,12,9,24,7,0,0,8,26,30,14,14,30,26,8,0,0,9,30,33,24,15,24,33,30,9,0,0,8,32,32,26,30,30,26,32,32,8,0, +A343043 ,0,1,6,9,12,15,120,127,150,153,156,159,240,247,270,273,300,303,360,367,390,393,420,423,5040,5065,5166,5193,5172,5199,5880,5911,5910,5913,5916,5919,6000,6031,6030,6033,6060,6063,6120,6151,6150,6153,6180,6183,10080, +A343044 ,0,1,1,2,1,2,3,3,3,3,4,3,2,3,4,5,5,3,3,5,5,6,5,4,3,4,5,6,7,7,5,5,5,5,7,7,8,7,8,5,4,5,8,7,8,9,9,9,9,5,5,9,9,9,9,10,9,8,9,10,5,10,9,8,9,10,11,11,9,9,11,11,11,11,9,9,11,11,12,11,10,9,10,11,6,11,10,9,10,11,12, +A343045 ,0,1,3,3,5,5,11,11,11,11,11,11,17,17,17,17,17,17,23,23,23,23,23,23,29,29,29,29,29,29,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,89,89,89,89,89,89,89, +A343046 ,0,0,0,0,1,0,0,2,2,0,0,3,6,3,0,0,2,8,8,2,0,0,3,6,9,6,3,0,0,6,8,8,8,8,6,0,0,7,30,9,12,9,30,7,0,0,8,32,36,14,14,36,32,8,0,0,9,36,39,30,15,30,39,36,9,0,0,8,38,38,32,36,36,32,38,38,8,0, +A343047 ,0,1,6,9,12,15,210,217,246,249,252,255,420,427,456,459,492,495,630,637,666,669,702,705,840,847,876,879,912,915,30030,30061,30246,30279,30252,30285,32550,32587,32586,32589,32592,32595,32760,32797,32796,32799,32832, +A343048 ,0,1,3,5,11,17,23,29,59,89,119,149,179,209,419,629,839,1049,1259,1469,1679,1889,2099,2309,4619,6929,9239,11549,13859,16169,18479,20789,23099,25409,27719,30029,60059,90089,120119,150149,180179,210209,240239,270269, +A343049 ,0,1,2,7,0,5,6,31,0,9,10,31,8,29,30,127,0,1,2,23,0,21,22,127,0,25,26,127,24,125,126,511,0,1,2,39,0,37,38,127,0,41,42,127,40,125,126,511,0,33,34,119,32,117,118,511,32,121,122,511,120,509,510,2047,0, +A343050 ,1,2,3,4,5,6,7,8,9,36,15,24,384,175,12,735,128,672,135,144,1575,11,1296,139968,624,3276,1886976,224,816,216,432,34992,1197,12768,315,132,3168,115,6624,8832,2916,1176,1344,3915,739935, +A343052 ,6,12,6,15,10,6,24,15,12,6,28,21,15,10,6,40,28,24,15,12,6,45,36,28,21,15,10,6,60,45,40,28,24,15,12,6,66,55,45,36,28,21,15,10,6,84,66,60,45,40,28,24,15,12,6,91,78,66,55,45,36,28,21,15,10,6,112,91,84,66,60,45,40,28,24,15,12,6, +A343053 ,15,24,24,40,42,33,54,65,56,42,77,93,90,74,51,96,126,126,115,88,60,126,164,175,165,140,106,69,150,207,224,224,198,165,120,78,187,255,288,292,273,237,190,138,87,216,308,350,369,352,322,270,215,152,96,260,366,429,455,450,420,371,309,240,170,105, +A343054 ,1,3,0,5,2,6,1,9,2,2,2,0,0,5,1,5,9,1,5,4,8,4,0,6,2,2,7,8,9,5,4,8,9,0,1,0,1,9,3,7,4,0,7,0,4,8,1,1,7,3,2,2,5,1,8,9,0,6,1,6,9,4,8,3,3,5,1,3,2,8,2,5,2,2,9,8,2,3,6,2,9,6,1,4,2,4,0,3,6,8,9,9,2,2,9,2,1,2,2,9,0,5,7,4,9,4,4,6,9,9,7,9,7,1,4,4, +A343055 ,0,9,8,0,1,7,1,4,0,3,2,9,5,6,0,6,0,1,9,9,4,1,9,5,5,6,3,8,8,8,6,4,1,8,4,5,8,6,1,1,3,6,6,7,3,1,6,7,5,0,0,5,6,7,2,5,7,2,6,4,9,7,9,8,0,9,3,8,7,3,0,2,7,8,9,0,8,7,5,3,6,8,0,7,1,1,1,0,7,7,1,4,6,3,1,8,5,5,9,5,5,4,0,7,4,2,0,6,5,2,6,4,4,4,1, +A343056 ,9,9,5,1,8,4,7,2,6,6,7,2,1,9,6,8,8,6,2,4,4,8,3,6,9,5,3,1,0,9,4,7,9,9,2,1,5,7,5,4,7,4,8,6,8,7,2,9,8,5,7,0,6,1,8,3,3,6,1,2,9,6,5,7,8,4,8,9,0,1,6,6,8,9,4,5,8,6,5,3,7,9,7,2,5,2,9,0,8,4,2,6,9,6,4,8,3,9,0,2,8,7,7,2,4,4,9,3,1,1,8,2,9, +A343057 ,0,9,8,4,9,1,4,0,3,3,5,7,1,6,4,2,5,3,0,7,7,1,9,7,5,2,1,2,9,1,3,2,7,4,3,2,2,9,3,0,5,2,4,5,0,6,9,9,2,0,2,6,9,5,9,8,0,9,1,6,1,2,1,1,3,4,4,1,9,4,3,8,7,3,0,8,1,2,9,7,2,2,5,6,4,8,5,2,1,4,1,8,0,3,7,3,6,0,0,1,3,7,0,6,7,1,6,9,7,7,9,1,7,6,5, +A343058 ,4,8,1,5,7,4,6,1,8,8,0,7,5,2,8,6,4,4,3,3,2,1,6,2,3,5,3,0,5,6,9,7,0,5,7,5,2,1,9,0,7,8,8,9,1,7,5,2,2,9,9,9,3,5,5,5,4,2,0,5,3,7,2,9,7,9,2,9,8,1,0,3,3,0,5,4,6,2,1,3,9,0,4,3,0,7,9,1,4,1,0,8,9,4,2,0,3,1,8,3,1,3,9,8,1,7,3,8,3,0, +A343059 ,2,2,8,2,4,3,4,7,4,3,9,0,1,4,9,9,3,8,0,7,7,6,1,1,3,6,2,0,6,1,0,1,4,7,8,2,7,3,8,7,8,1,6,8,0,9,8,0,3,5,2,6,3,7,9,7,9,6,8,8,9,1,9,6,0,3,8,2,4,8,5,5,7,1,3,8,8,1,8,7,8,9,1,4,6,9,3,8,7,0,3,7,7,1,5,5,5,6,8,2,6,0,2,7,1,5,9,7,1,7,3,5,3,4,2,5,3,8,7, +A343060 ,1,9,8,9,1,2,3,6,7,3,7,9,6,5,8,0,0,6,9,1,1,5,9,7,6,2,2,6,4,4,6,7,6,2,2,8,5,9,7,8,5,0,5,0,1,3,2,1,5,9,0,9,8,1,9,2,1,1,1,6,9,9,5,8,2,5,4,2,9,6,0,4,4,6,0,2,7,7,0,6,3,0,5,3,3,1,9,9,0,6,0,5,7,6,1,4,7,1,3,7,5,7,7,6,0,7,8,2,6,5,6,5,7,0,5,8, +A343061 ,1,8,6,9,3,2,3,9,7,1,0,7,9,7,7,1,4,5,9,4,8,0,7,6,2,8,4,1,2,3,0,7,6,7,7,0,6,0,3,7,2,4,4,1,0,7,8,1,9,1,4,5,4,9,3,4,8,4,6,3,6,7,5,7,3,1,4,7,8,9,2,6,9,7,0,9,0,3,0,9,2,4,5,3,7,5,5,4,1,0,3,5,0,2,6,5,9,4,5,5,0,8,3,2,1,4,6,5,1,4,8,5,7,4,0,1,5, +A343062 ,1,3,1,6,5,2,4,9,7,5,8,7,3,9,5,8,5,3,4,7,1,5,2,6,4,5,7,4,0,9,7,1,7,1,0,3,5,9,2,8,1,4,1,0,2,2,2,3,2,3,7,5,7,3,5,5,3,5,6,5,3,2,5,7,8,9,7,5,9,8,3,9,0,1,0,6,2,2,0,2,8,3,0,9,1,0,0,7,8,0,6,7,5,0,3,3,2,3,1,8,7,7,9,8,2,3,0,6,0,4,2, +A343063 ,5,6,4,7,12,9,9,20,16,11,30,25,13,42,36,15,56,49,16,15,9,17,72,64,19,90,81,21,110,100,23,132,121,24,35,25,25,156,144,27,182,169,29,210,196,31,240,225,32,63,49,33,28,16,33,272,256,35,306,289,37,342,324,39,40,25,39,380,361,40,99,81,41,420,400,43,462,441, +A343064 ,5,7,9,11,13,15,16,17,19,21,23,24,25,27,29,31,32,33,33,35,37,39,39,40,41,43,45,47,48,49,51,51,53,55,56,56,57,57,59,61,63,64,65,67,69,69,71,72,72,73,75,75,77,79,80,81,83,85,85,87,87,88,88,89,91,93,93,95,95,96,97,99, +A343065 ,6,12,20,30,42,56,15,72,90,110,132,35,156,182,210,240,63,28,272,306,342,40,380,99,420,462,506,552,143,600,70,650,702,756,45,195,88,812,870,930,992,255,1056,1122,130,1190,1260,77,323,1332,154,1406,1482,1560,399,1640,1722,66,1806,208,1892,117,483,1980,2070,238, +A343066 ,4,9,16,25,36,49,9,64,81,100,121,25,144,169,196,225,49,16,256,289,324,25,361,81,400,441,484,529,121,576,49,625,676,729,25,169,64,784,841,900,961,225,1024,1089,100,1156,1225,49,289,1296,121,1369,1444,1521,361,1600,1681,36,1764,169,1849,81,441,1936,2025,196, +A343067 ,15,28,45,66,91,120,40,153,190,231,276,84,325,378,435,496,144,77,561,630,703,104,780,220,861,946,1035,1128,312,1225,170,1326,1431,1540,126,420,209,1653,1770,1891,2016,544,2145,2278,299,2415,2556,198,684,2701,350,2850,3003,3160, +A343071 ,0,0,5,0,7,20,27,0,11,28,39,80,91,108,119,0,19,44,63,112,131,156,175,320,339,364,383,432,451,476,495,0,35,76,111,176,211,252,287,448,483,524,559,624,659,700,735,1280,1315,1356,1391,1456,1491,1532,1567,1728,1763,1804,1839,1904,1939,1980,2015, +A343072 ,2,3,8,5,12,25,32,9,20,37,48,89,100,117,128,17,36,61,80,129,148,173,192,337,356,381,400,449,468,493,512,33,68,109,144,209,244,285,320,481,516,557,592,657,692,733,768,1313,1348,1389,1424,1489,1524,1565,1600,1761,1796,1837,1872,1937,1972,2013,2048, +A343073 ,1,2,1,3,1,2,1,2,1,3,1,6,2,5,1,9,1,5,1,3,3,2,1,3,3,2,2,5,1,3,1,5,1,8,1,9,2,5,1,8,1,6,3,5,1,2,1,4,1,17,2,5,1,5,2,3,3,3,1,7,3,3,1,15,2,5,1,5,2,4,1,16,4,5,3,10,1,5, +A343074 ,1,1,15,586,112535, +A343075 ,25,121,144,169,196,256,289,324,1024,1089,1156,1296,1369,1444,1521,1681,1764,1849,1936,2500,3136,3249,3364,3481,3721,3844,3969,4096,4356,4489,4624,4761,5041,5184,6084,6241,6561,6724,6889,7056,7396, +A343076 ,2,5,6,9,12,13,16,19,20,23,28,31,32,35,38,45,52,55,58,59,62,95,98,99,102,105,112,119,134,138,141,145,160,167,174,177,282,285,292,299,314,318,321,325,340,360,446,466,481,485,488,492,507,514,521,629,665,701, +A343077 ,635318657,2673,259,260,261,262,263,264,265,266,267,268,269,270,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292, +A343078 ,1375298099,51445,4097,4098,4099,4100,4101,4102,4103,4104,4105,4106,4107,4108,4109,4110,4111,4112,4113,4114,4115,4116,4117,4118,4119,4120,4121,4122,4123,4124,1056,1057,1058,1059,1060,1061,1062,1063,1064,1065,1066,1067, +A343079 ,160426514,1063010,1063011,570947,570948,63232,63233,52489,52490,52491,16393,16394,16395,16396,16397,13122,13123,13124,13125,13126,13127,13128,13129,13130,13131,13132,13133,13134,13135,13136,13137,13138,8225,8226,8227,8228,8229,6592,6593,6594,6595,6596,6597,6598,6599,6600,6601,6602,6603,6604,6605,6606,6607,6608,6609,6610,6611,6612,6613,6614,6615,6616,4160, +A343080 ,325,54,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90, +A343081 ,5104,1225,766,221,222,223,224,197,163,164,165,166,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177, +A343082 ,811538,16578,4225,2676,2677,518,519,520,521,522,523,524,525,526,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307, +A343083 ,13124675,696467,84457,52417,52418,8194,8195,8196,8197,8198,8199,8200,8201,8202,8203,8204,7796,7797,7798,7799,7800,7801,7802,7585,7586,7587,7533,7534,7535,7536,7537,4128,4129,4130,4131,4132,4133,4134,4135,4136,4137,4138,4139,4140,4141,4142,4143,4144,4145,4146,4147,4148,4149,4150,4151,4152,4153,4154,4155,4156,4157,2112, +A343084 ,1105,129,52,53,36,37,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89, +A343085 ,13896,1979,1252,626,470,256,224,225,226,227,221,222,223,203,204,205,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205, +A343086 ,5978882,236674,20995,6626,2925,2925,2854,1620,1621,777,778,779,780,781,782,528,529,515,516,517,518,519,520,521,522,523,524,525,526,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531, +A343087 ,3,7,31,211,1321,7561,120121,1580041,24864841,328648321,7558911361,162023621761,5022732274561,93163582512001,4083134943888001,151075992923856001,5236072827921936001,188391763176048432001,8854412869274276304001,469283882071536644112001,29844457947060064452144001,1917963226026370264485744001, +A343088 ,1,0,1,0,0,3,0,0,1,16,0,0,0,15,125,0,0,0,6,222,1296,0,0,0,1,205,3660,16807,0,0,0,0,120,5700,68295,262144,0,0,0,0,45,6165,156555,1436568,4782969,0,0,0,0,10,4945,258125,4483360,33779340,100000000, +A343089 ,1,8,59,420,2940,20384,140479,964184,6598481,45059872,307197620,2091615760,14226362200,96680047568,656559634503,4456100344560,30228597199443,204971912361512,1389342336011059,9414200925647540,63772600432265968,431892497914345472, +A343090 ,1,4,4,10,47,10,20,240,240,20,35,831,2246,831,35,56,2282,12656,12656,2282,56,84,5362,52164,109075,52164,5362,84,120,11256,173776,648792,648792,173776,11256,120,165,21690,495820,2978245,5360286,2978245,495820,21690,165, +A343091 ,1,8,67,520,3978,29988,224295,1667888,12352126,91196512,671717950,4938370736,36251576684,265787720908,1946696834735,14245828801024,104173927718694,761302443498960,5560564162774202,40595140188994224,296242813675800300,2161031983823779912, +A343092 ,1,4,10,10,79,70,20,340,900,420,35,1071,5846,7885,2310,56,2772,26320,71372,59080,12012,84,6258,93436,431739,706068,398846,60060,120,12768,280120,2000280,5494896,6052840,2499096,291720,165,24090,739420,7643265,32055391,58677420,46759630,14805705,1385670, +A343093 ,1,14,159,1680,17147,171612,1696491,16631840,162090756,1572801142,15210259585,146710561296,1412132981778,13569013500024,130199055578307,1247825314752768,11947157409479180,114288613130155608,1092495810452593564,10436544808441964352, +A343094 ,1,1,4,24,201,2199,29879,486231,9228867,200272157,4892538679,132901744486,3974163191604,129735825879843,4591187990365503,175081375829138149,7157470516097359747,312267811360305253384,14481803617066951613463,711413177916751077562759, +A343095 ,1,1,0,1,1,0,1,2,1,0,1,3,6,1,0,1,4,24,140,1,0,1,5,70,4995,16456,1,0,1,6,165,65824,10763361,8390720,1,0,1,7,336,489125,1073758336,211822552035,17179934976,1,0,1,8,616,2521476,38147070625,281474993496064,37523658921114744,140737496748032,1,0, +A343096 ,1,1,6,4995,1073758336,74505806274453125,2578606199622659276537193216,64230894380264719522488136461023341060807,1569275433846670190958947355821723644654155086251882971136,49156762618888228404518977131728029071108432602235970059344750602021716398409, +A343097 ,1,1,0,1,1,0,1,2,1,0,1,3,6,1,0,1,4,21,102,1,0,1,5,55,2862,8548,1,0,1,6,120,34960,5398083,4211744,1,0,1,7,231,252375,537157696,105918450471,8590557312,1,0,1,8,406,1284066,19076074375,140738033618944,18761832172500795,70368882591744,1,0, +A343098 ,1,4,6,11,14,22,27,40,49,71,87,124,151,211,254,347,412,550,644,841,972,1244,1421,1786,2019,2497,2797,3410,3789,4561,5032,5989,6566,7736,8434,9847,10682,12370,13359,15356,16517,18859,20211,22936,24499,27647,29442,33055, +A343099 ,35,59,75,83,91,107,115,131,139,147,155,171,179,195,203,211,219,227,235,243,251,259,275,283,291,299,307,315,323,331,339,347,355,363,371,379,387,395,403,411,419,427,435,443,451,459,467,475,483,491,499,507,515,523,531, +A343100 ,0,0,1,1,2,2,4,4,6,6,10,8,14,12,16,16,24,18,30,24,32,30,44,32,50,42,54,48,70,48,79,64,80,72,96,72,113,90,112,96,138,96,153,120,144,132,182,128,195,150,192,168,232,162,239,192,240,210,287,192,305,240,288,256, +A343101 ,2,8,6,48,14,224,30,960,75,1215,62,3968,126,16128,254,65024,510,261120,1022,1046528,2046,4190208,4094,16769024,8190,67092480,16382,268402688,32766,1073676288,65534,4294836224, +A343102 ,0,0,0,0,0,0,0,0,0,0,10,1,2,2,2,2,2,2,2,2,19,11,8,8,8,8,8,8,14,9,11,8,8,0,1,0,0,0,8,2,16,11,10,1,1,1,2,1,10,3,17,19,10,1,1,0,1,1,9,4,20,26,14,3,5,3,2,3,11,6,21,30,15,6,4,3,5,1,10,5,31,42,24,16,15,14,14,10, +A343103 ,0,0,0,0,0,0,0,0,0,0,10,2,2,1,2,2,2,2,2,2,19,11,16,8,8,8,9,8,12,11,11,11,9,0,0,0,1,0,4,3,16,16,10,2,2,1,4,2,6,5,17,20,14,2,4,2,5,3,6,5,22,25,23,8,9,9,10,6,11,11,19,27,22,5,6,7,10,6,8,9,25,33,29,11,10,12,14,9, +A343104 ,1,9,81,153,891,1377,8019,3825,11025,15147,88209,31977,354375,99225,121275,95931,7144929,187425,893025,287793,1403325,1499553,1715175,675675,1091475,6024375,1576575,1686825,72335025,2027025,2264802453041139,2297295,11609325,121463793,9823275, +A343105 ,1,3,27,99,297,891,1683,8019,5049,17325,15147,99225,31977,190575,136323,121275,95931,3189375,225225,64304361,287793,1289925,1686825,15526875,675675,1091475,3239775,1576575,2590137,251644717004571,2027025,15436575,2297295,28676025,33350625,9823275,3828825,42879375,760816875, +A343106 ,1,5,45,315,585,2205,2925,14175,9945,17325,28665,178605,45045,190575,240975,143325,135135,3189375,225225,93002175,405405,1403325,1715175,2401245,675675,3583125,3239775,1576575,3468465,94918019805,2027025,15436575,2297295,11609325,16769025,27286875,3828825,42879375,117661005, +A343107 ,1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,19,20,21,22,23,24,26,28,29,30,31,32,35,37,38,39,40,42,43,44,46,47,48,52,53,55,56,58,59,60,61,62,64,67,69,70,71,74,76,77,78,79,80,83,84,86,87,88,91,92,93,94,95,96, +A343108 ,1,2,4,5,7,8,10,13,14,16,17,20,23,25,26,28,29,31,32,34,37,40,41,46,47,49,50,52,53,56,58,61,62,64,65,68,71,73,74,79,80,82,85,89,92,94,97,98,100,101,103,104,106,109,112,113,116,119,122,124,125,127,128, +A343109 ,1,2,3,4,6,7,8,9,11,12,14,16,17,18,19,22,23,24,27,28,31,32,33,34,36,38,41,43,44,46,47,48,49,51,54,56,57,59,62,64,66,67,68,71,72,73,76,79,81,82,83,86,88,89,92,94,96,97,98,99,102,103,107,108,112,113, +A343110 ,1,2,3,4,5,6,8,9,10,11,12,13,16,17,18,19,20,22,24,25,26,27,29,32,33,34,36,37,38,40,41,43,44,48,50,51,52,53,54,57,58,59,61,64,65,66,67,68,72,73,74,76,80,81,82,83,85,86,88,89,96,97,99,100,101,102, +A343111 ,9,17,18,25,27,33,34,36,41,45,49,50,51,54,57,63,65,66,68,72,73,75,82,85,89,90,97,98,100,102,105,108,113,114,117,119,121,123,125,126,129,130,132,135,136,137,144,145,146,147,150,161,164,165,169,170,175, +A343112 ,3,6,9,11,12,15,18,19,21,22,24,30,35,36,38,39,42,43,44,45,48,55,59,60,63,67,69,70,72,76,77,78,83,84,86,87,88,90,91,93,95,96,107,110,111,115,117,118,120,121,126,131,133,134,138,139,140,141,143,144, +A343113 ,5,10,13,15,20,21,25,26,29,30,35,37,39,40,42,50,52,53,55,58,60,61,63,69,70,74,75,77,78,80,84,87,91,93,95,100,101,104,106,109,110,111,115,116,120,122,126,133,138,140,141,143,147,148,149,150,154,155, +A343114 ,1,3,5,8,9,17,13,20,21,35,21,50,25,49,51,48,33,91,37,88,77,89,45,126,65,107,81,124,57,255,61,112,141,163,137,242,73,177,167,232,81,365,85,220,227,209,93,328,133,315,213,264,105,393,229,342,257,267,117,680,121,281, +A343116 ,6,24,100,112,110,364,612,342,1104,406,930,2812,1640,3784,1504,5724,3422,3660,9112,4970,10804,6162,13944,3916,19012,5050,21424,7704,11772,8588,32512,17030,37812,6394,22052,7550,49612,53464,56112,60204,31862,16290,36290, +A343117 ,3,16,80,96,100,336,576,324,1056,392,900,2736,1600,3696,1472,5616,3364,3600,8976,4900,10656,6084,13776,3872,18816,5000,21216,7632,11664,8512,32256,16900,37536,6348,21904,7500,49296,53136,55776,59856,31684,16200,36100, +A343119 ,1,1,11,41867,517934206090276988507,42635439758725572299058305546953458030363703549127905691758491973278624456679699932948789006991639715987, +A343120 ,3,3,3,205,2326161,20589460461,3847314721101, +A343121 ,2,2,2,2,2,2669,34559, +A343123 ,3,13,17,19,239,269,457,751,1091,1319,1871,2129,2141,2341,2549,2683,2969,3167,3359,3671,3821,4091,4799,5437,5843,6299,6551,6779,7559,8387,8999,9239,9419,10529,11057,11717,11777,12071,13309,13901,17027,17203,18047,18311,18521,21139,23831,26249,26861, +A343124 ,0,1,11,39,114,273,571,1086,1925,3206,5101,7800,11533,16575,23252,31911,42987,56943,74304,95662,121682,153060,190614,235200,287758,349317,421001,503975,599560,709125,834145,976206,1137011,1318314,1522059,1750248,2005011,2288611, +A343125 ,0,4,1,8,6,2,12,11,8,3,16,16,14,10,4,20,21,20,17,12,5,24,26,26,24,20,14,6,28,31,32,31,28,23,16,7,32,36,38,38,36,32,26,18,8,36,41,44,45,44,41,36,29,20,9,40,46,50,52,52,50,46,40,32,22,10, +A343126 ,6,12,18,20,21,24,28,30,35,36,40,42,48,52,54,55,56,60,63,66,70,72,78,80,84,85,88,90,95,96,99,100,102,104,105,108,110,112,114,117,119,120,126,130,132,138,140,143,144,147,150,152,154,156,160,162,165,168,170,171, +A343127 ,0,0,1,1,1,2,3,4,5,5,7,9,10,12,16,17,18,21,23,27,30,33,36,41,43,45,50,54,57,63,67,72,76,81,88,93,96,102,110,117,121,130,135,143,151,155,163,173,177,182,190,198,205,215,224,233,240,249,259,272,278,288,301,308,317, +A343128 ,7,229,417,657,26203,32553,50971,93487,231221,17064941,54784601,93007099,981668491,16040988367, +A343129 ,0,1,2,5,8,17,35,170,278,422,494, +A343130 ,0,0,0,0,1,3,2,27,44,154,1687,2925, +A343131 ,1,2,3,4,5,6,7,8,9,10,19,20,29,30,39,40,42,49,50,59,60,69,70,79,80,89,90,99,100,114,115,120,121,190,199,200,207,208,210,221,260,290,299,300,301,304,330,390,399,400,420,441,448,490,499,500,572,573,590,599,600,620, +A343132 ,1,1,1,1,1,1,1,1,1,10,1,10,1,10,1,10,3,1,10,1,10,1,10,1,10,1,10,1,100,6,5,24,11,10,1,100,9,8,42,13,13,10,1,100,43,16,22,10,1,100,30,9,2,10,1,100,4,3,10,1,100,31,6,5,10,1,100,15,10,1,100,13,11,10,1,100,10,1,1000, +A343134 ,1,9,81,153,891,1377,3825,11025,15147,31977,95931,187425,287793,675675,1091475,1576575,1686825,2027025,2297295,3828825,6185025,11486475,18555075,26801775,34459425,43648605,72747675,117515475,218243025,352546425,509233725,654729075,1003917915, +A343135 ,1,3,27,99,297,891,1683,5049,15147,31977,95931,225225,287793,675675,1091475,1576575,2027025,2297295,3828825,6185025,11486475,18555075,26801775,34459425,43648605,72747675,117515475,218243025,352546425,509233725,654729075,1003917915,1527701175,3011753745, +A343136 ,1,5,45,315,585,2205,2925,9945,17325,28665,45045,135135,225225,405405,675675,1576575,2027025,2297295,3828825,6891885,11486475,26801775,34459425,43648605,72747675,130945815,218243025,509233725,654729075,1003917915,1527701175,3011753745,4583103525, +A343137 ,1,7,63,315,945,1575,3465,10395,17325,26775,45045,135135,225225,405405,675675,1576575,2027025,2297295,3828825,6891885,11486475,26801775,34459425,43648605,72747675,130945815,218243025,509233725,654729075,1003917915,1527701175,3011753745,4583103525, +A343138 ,0,1,0,1,1,0,1,2,1,0,1,3,2,1,0,1,4,6,2,1,0,1,5,15,6,2,1,0,1,6,40,22,6,2,1,0,1,7,104,71,22,6,2,1,0,1,8,273,240,86,22,6,2,1,0,1,9,714,816,311,86,22,6,2,1,0,1,10,1870,2752,1152,342,86,22,6,2,1,0, +A343141 ,8,15,36,48,112,120,280,408,456,760,1036,1584,1785,1800,1936,2856,3294,3990,4305,4389,14868,18796,19734,21560,29145,30060,30080,30432,33558,36576,45080,47838,52271,54320,78184,78960,82038,90896,98494,99360,109668,110187,114009,117670,127140,132600, +A343142 ,7,11,19,23,41,41,71,103,113,151,223,199,239,199,241,307,487,379,491,419,1063,1777,1013,881,1741,2339,1409,3169,1597,2287,1471,2143,5009,2521,5393,2351,3389,2393,2663,2161,2887,2969,4271,3361,4889,2549,10177,3191,3499,16631,2753,10243,4481,3691, +A343144 ,1,3,9,15,0,63,729,195,96393124,0,59049,0, +A343145 ,1,7,6447,7,1,1,69,9,1,1,1,7,1,1, +A343146 ,1,2,8,40,228,1404,9046,59892,403486,2751104,18928024,131178640,914753916,6413644272,45188265984,319798943360,2272481584604,16209083200168,116019175132958,833115842931984,6000491719051994,43339577695514632,313846571416413820, +A343147 ,1,1,4,296,884987529,41144767887910339859917073881177514, +A343148 ,2,6,10,15,21,26,28,30,35,38,39,40,42,44,45,46,51,55,60,63,68,69,70,78,84,93,95,96,102,105,106,116,123,124,126,130,135,136,138,143,146,150,153,155,166,174,176,178,201,203,205,218,219,221,222,231,232,234,236,240,244,245,246,248,249, +A343151 ,1,3,4,7,8,11,19,23,25,27,36,43,47,50,64,71,107,131,163,167,179,211,223,225,242,243,251,271,307,343,359,419,431,439,443,467,503,571,691,751,800,811,827,839,863,900,907,947,967,971,991,1019,1031,1058,1063,1091,1103,1187,1279,1296,1331, +A343153 ,12,16,35,36,39,49,292,315,1352,2115,2116,4868,5006,7264,7733,8316,17063,17458,27911,38556,55092,65198,135650,138237,146289,177478,378308,388093,489155,703298,880172,1050673,1254720,1566986,1716020,2452849,3143529,3418375,11394618,14265355,15479597, +A343154 ,32,51,190,195,232,347,7718,8900,124083,283974,283999,1326735,1403268,2814688,3164372,3621931,13961672,14572007,35328757,64972093,128049565,176254869,710992136,736806007,820612935,1185644407,5040358759,5291445244,8244285370,16536997947,25445509635,35739891216, +A343155 ,1,10,36,9,78,58,136,164,25,210,318,138,300,520,356,49,406,770,654,250,528,1068,1032,612,81,666,1414,1490,1086,394,820,1808,2028,1672,932,121,990,2250,2646,2370,1614,570,1176,2740,3344,3180,2440,1316,169,1378,3278,4122,4102,3410,2238,778, +A343156 ,0,0,1,0,1,0,1,1,2,0,1,0,2,4,1,0,1,0,2,1,1,0,1,1,4,1,2,0,2,0,1,1,5,3,1,0,2,1,2,0,2,0,1,4,1,0,1,1,2,1,4,0,1,2,2,2,1,0,2,0,3,1,1,3,1,0,5,3,1,0,1,0,2,4,2,2,2,0,2,1,1,0,2,3,2,3,1,0,2,64,1,1,2,4,1,0,2,1,2, +A343157 ,407,1137,3379,31109,132393,344131,1731653,71143523,115771019,7133141039,18152375353,723112747673,1938058565667,372411163329269,646991575604859,3500960117162747,19920988418382133,479222853318661919,3877130279948783893,71942196909541476259,7170749184914732550379, +A343158 ,2,4,10,35,15,34,190,290,303,395,130,465,553,265,195,663,218,582,481,858,714,418,345,530,382,1771,1207,2098,3890,1426,2090,4834,4618,627,2321,2163,326,866,3302,1298,3886,3094,1086,6130,4807,3646,5181,905,3945, +A343159 ,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,0,1,1,0,1,1,1,1,0,1,0,1,1,1,1,0,0,1,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,1,0,1,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,1,0,1,0,1,1,1,1,0,1,0,0,0,1,1,1,1,1,0,0,1,1,1,1,0,1,1,1, +A343160 ,0,1,2,3,4,5,6,7,8,9,10,12,14,16,18,15,21,24,27,20,28,32,36,25,30,35,40,45,42,48,54,49,56,63,64,72,81,50,60,70,80,90,84,96,108,98,112,126,128,144,162,75,105,120,135,147,168,189,192,216,243,100,140, +A343161 ,1,1,1,2,3,5,8,14,24,42,72,127,221,390,684, +A343186 ,8,9,70,82,216,518,1773,1939,1970,2304,2600,2601,2726,38248,40333,48447,118209,165924,175592,234234,239683,332556,411547,743109,1010745,1272360,1413320,2132919,2392838,2521311,3078390,3252972,3516260,3709926,4273507,4718718,5009819,5750522,9766605, +A343188 ,1,1,1,1,0,0,0,-1,-1,-1,-2,-2,-1,-3,-2,-2,-3,-2,-1,-4,0,-2,-3,0,0,-4,4,0,-3,5,3,-4,9,2,-2,11,5,-1,15,4,0,16,10,-1,20,9,1,24,12,0,25,12,1,28,16,0,25,19,2,26,22,1,26,21,-2,28,25,0,20,24,-2,23,30,-3,10, +A343189 ,1,1,1,1,1,0,0,0,0,-1,-1,-1,-1,-2,-2,-1,-2,-2,-3,-1,-3,-1,-4,0,-3,0,-5,2,-4,1,-5,4,-5,6,-6,5,-4,8,-6,8,-5,11,-5,10,-6,17,-6,11,-3,21,-7,12,-3,26,-5,12,-4,33,-4,11,-1,37,-5,11,-2,42,-1,7,-1,48,-2,1,3,58,-3, +A343190 ,1,1,1,1,1,1,0,0,0,0,0,-1,-1,-1,-1,-1,-2,-2,-1,-2,-1,-3,-2,-2,-2,-1,-3,-3,0,-3,0,-3,-2,-1,-1,-1,-2,-2,1,-1,3,-3,-1,2,2,2,-1,-2,5,4,4,-2,1,5,7,6,-1,0,10,7,10,0,0,9,14,9,0,2,12,15,14,-1,3,14,18, +A343191 ,1,1,0,0,0,0,0,0,8,677,616,671,620,668,140180,33643245,31664230,33526832,31762262,33433960,14042263246,6487525619781,6205459288487,6475261866247,3885157119748074,2525352127836247843,1772797193741045985945,1340234678468230765374557,1294019689555533152775435, +A343193 ,1,9279,92434863,923988964495,9239427676877311,92393887177379735327,923938441006918271400831,9239384074081430755652624559,92393840333765561759423951663423,923938402972369921481535120722882015, +A343196 ,2,1,1,3,2,1,5,3,5,3,9,3,5,4,2,1,4,8,5,13,9,6,4,6,3,15,3,2,1,1,8,22,2,1,1,1,3,2,1,9,5,9,5,3,6,3,3,5,8,5,6,31,11,9,4,2,1,2,1,3,5,4,9,9,5,5,8,9,7,3,5,3,6,10,2,1,1,3,3,6,7,10,44,17,51,4,2,1,3,8,12,16,2,1,8, +A343197 ,2,3,6,16,29,30,34,35,36,39,57,59,76,77,88,94,101,112,126,166,177,192,206,228,238,248,251,258,259,260,271,275,276,282,299,317,318,333,345,347,353,354,370,378,386,391,402,407,417,437,445,452,455,466,470,475,478,489,494,499,508,521,530, +A343198 ,1,2,3,7,9,15,38,45,63,111,295,333,423,621,1131,3098,3393,4059,5373,8127,15123,42271,45369,52155,64665,87939,135729,256335,726734,769005,859743,1019601,1295163,1794825,2810403,5364471,15366679,16093413,17631423,20256021,24549831,31731453,44583183,70558101,135751731, +A343204 ,1,1,3,13,67,239,1031,2501,36579,109915,468653,1043851,9395751,21232827,97493519,235880373,7717800611,17385733651,82456426833,175398844079,1578297716013,3634938193489,15867173716609,34517119775523,619312307079687,1363237700933583, +A343205 ,1,2,2,3,4,4,5,6,7,6,8,9,8,10,11,12,10,13,14,12,15,16,9,17,18,19,16,20,21,8,22,23,24,20,25,26,14,27,28,18,29,30,31,20,32,33,18,34,35,36,30,37,38,15,39,40,41,34,42,43,25,44,45,37,46,47,48,28,49, +A343206 ,1,-1,2,-3,24,-20,720,-630,4480,-36288,3628800,-3326400,479001600,-444787200,5811886080,-81729648000,20922789888000,-19760412672000,6402373705728000,-6082255020441600,115852476579840000,-2322315553259520000,1124000727777607680000,-1077167364120207360000, +A343207 ,6,12,15,18,20,28,35,36,40,54,56,63,70,75,77,78,88,91,99,100,102,104,108,114,117,130,138,143,153,154,162,170,174,175,176,182,184,186,187,189,190,196,200,208,209,221,222,238,245,246,247,258,261,266,272,282,286,297, +A343208 ,1,5,27,143,744,3832,19636,100348,511969,2608905,13282011,67567527,343510966,1745495390,8865633276,45013599940,228478238613,1159398424925,5881978415019,29835289653043,151308803657699,767245632538063,3889991549017581,19720295705928713,99961847384995974, +A343209 ,45,121,1815,24000,297025,78250050,361,3509,30976,27216,403202,75,1805,1728,31500,508805,207368,1609152,227402340,29821320745,8223103375490,37158912,15482880000,5996600870820,1702422879696000,1176,324900,29859840,30950832,2518646460, +A343210 ,8,15,308,3030,29757,7825005,63,448,3116,3421,40321,9,99,156,2010,25574,13041,268260,28427091,2982139245,822310337549,6193152,1935360000,599660087082,170242287969600,152,27195,1867560,1934427,125939163,132627603,74520844992, +A343211 ,4,5,7,11,16,90,6,16,30,80,240,6,30,12,52,160,268,67,225,716,3550,794,6228,44092,194620,9,96,396,361,1350,1296,6560,6520,32560,708,718,6033,45625,45856,221970,221680,1083340,1082370,8422,162301,2751301,12817980, +A343212 ,8,10,6,8,10,10,6,8,10,8,10,12,20,12,16,20,16,6,8,10,10,6,8,10,10,8,12,16,16,20,20,10,10,20,12,12,16,20,20,10,10,20,20,6,8,10,5,10,4,4,12,4,4,4,8,4,12,10,20,4,6,4,6,6,6,8,16,10,20,4,6,10,20,4,6,10,10,2,2,20,4,2,6,8,16,4,2,4,4,8,8,6, +A343213 ,16,384,384,5184000,5184000, +A343214 ,1,3,106,15259, +A343215 ,1,1,1,1,1,1,1,1,1,1,9,2,8,3,7,4,6,5,5,6,4,7,3,8,2,9,1,1,9,1,89,2,18,2,78,3,27,3,67,4,36,4,56,5,45,5,45,6,54,6,34,7,63,7,23,8,72,8,12,9,81,9,1,1,9,1,89,1,9,1,889,2,18,2,178,2,18,2,778, +A343216 ,1,2,4,9,13,16,18,25,36,37,49,50,61,64,73,81,97,100,101,109,113,121,137,144,157,169,173,181,193,225,229,241,242,256,257,277,281,289,313,317,324,325,333,337,353,361,373,397,400,401,409,421,433,441,457,484,512,529,541,549,576,577,578,601,613,617,625,641, +A343217 ,3,5,6,7,8,10,11,12,14,15,17,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,38,39,40,41,42,43,44,45,46,47,48,51,52,53,54,55,56,57,58,59,60,62,63,65,66,67,68,69,70,71,72,74,75,76,77,78,79,80,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,98,99, +A343218 ,3,6,7,10,11,12,14,15,17,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,38,39,40,42,43,44,45,46,47,48,51,52,53,54,55,56,57,58,59,60,62,63,65,66,67,68,69,70,71,72,74,75,76,77,78,79,80,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,98,99,102,103, +A343219 ,0,0,1,0,0,1,1,0,0,1,1,1,0,1,1,0,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,0,1,1,1,1, +A343223 ,1,1,1,1,1,5,1,12,2,1,1,4,1,3,1,1,1,1,1,3,1,1,1,4,2,15,1,32,1,1,1,1,1,1,1,4,1,3,1,1,1,1,1,16,13,5,1,16,1,1,5,1,1,1,1,4,1,1,1,4,1,3,1,3,1,1,1,1,1,1,1,1,1,3,1,16,3,1,1,1,1,1,1,4,1,3,1,4,1,3,1,48,1,1,1,8,1,1,1,2,1,1,1,1,1, +A343224 ,1,2,3,3,5,7,7,3,7,11,11,12,13,15,16,-1,17,18,19,18,22,23,23,16,21,27,13,24,29,41,31,-17,34,35,36,31,37,39,40,22,41,55,43,36,39,47,47,12,43,48,52,42,53,39,56,28,58,59,59,76,61,63,53,-65,66,83,67,54,70,85,71,39,73,75,69,60,78,97,79,10,13, +A343226 ,1,3,4,1,6,1,8,5,1,1,12,28,14,1,1,1,18,39,20,2,1,1,24,4,1,1,2,4,30,1,32,7,1,1,1,1,38,1,1,18,42,1,44,4,6,1,48,4,3,1,1,2,54,15,1,4,1,1,60,8,62,1,2,1,1,1,68,14,1,3,72,3,74,1,2,4,1,1,80,2,1,1,84,16,1,1,1,12,90,3,1,4,1,1,1,4, +A343227 ,1,1,1,7,1,12,1,3,13,18,1,1,1,24,24,31,1,1,1,21,32,36,1,15,31,42,20,14,1,72,1,9,48,54,48,91,1,60,56,5,1,96,1,21,13,72,1,31,19,93,72,49,1,8,72,30,80,90,1,21,1,96,52,127,84,144,1,9,96,48,1,65,1,114,62,35,96,168,1,93,121,126,1,14,108, +A343228 ,0,1,2,2,3,4,4,5,4,4,5,6,6,7,8,8,9,8,8,9,10,10,11,8,8,9,8,8,9,10,10,11,12,12,13,12,12,13,14,14,15,16,16,17,16,16,17,18,18,19,16,16,17,16,16,17,18,18,19,20,20,21,20,20,21,22,22,23,16,16,17,16, +A343229 ,0,0,1,0,0,3,2,2,1,0,0,1,0,0,7,6,6,5,4,4,5,4,4,3,2,2,1,0,0,1,0,0,3,2,2,1,0,0,1,0,0,15,14,14,13,12,12,13,12,12,11,10,10,9,8,8,9,8,8,11,10,10,9,8,8,9,8,8,7,6,6,5,4,4,5,4,4,3,2,2,1,0, +A343230 ,0,0,0,1,0,0,1,0,2,3,2,0,1,0,0,1,0,2,3,2,0,1,0,4,5,4,6,7,6,4,5,4,0,1,0,2,3,2,0,1,0,0,1,0,2,3,2,0,1,0,4,5,4,6,7,6,4,5,4,0,1,0,2,3,2,0,1,0,8,9,8,10,11,10,8,9,8,12,13,12,14,15,14,12, +A343231 ,0,1,3,2,3,7,6,7,5,4,5,7,6,7,15,14,15,13,12,13,15,14,15,11,10,11,9,8,9,11,10,11,15,14,15,13,12,13,15,14,15,31,30,31,29,28,29,31,30,31,27,26,27,25,24,25,27,26,27,31,30,31,29,28,29,31,30,31,23, +A343232 ,0,1,2,4,3,9,7,11,4,16,5,25,10,26,16,22,6,36,18,30,7,49,13,47,29,37,8,64,23,55,9,16,74,81,25,67,35,61,46,56,45,63,10,100,19,107,49,79,11,30,102,121,42,96,67,79, +A343242 ,1,20,196,368,650,672,780,836,1888,2352,3192,11096,17816,20496,30240,51060,84660,130304,979992,1848964,2291936,3767100,4526272,8353792,15126992,15287976,23569920,33468416,45532800,74899952,381236216,623799776,712023296,1845991216, +A343243 ,20339,21159,23883,35503,43255,45375,365599,476343,493047,746383,979839,1097367,3331135,3816831,3972543,57720703,68705247,78376959,3031407415,3742563231,3866214695, +A343244 ,5,4,8,14,10,63,120,79,1270,779,1749,3410,13668,17704,20909,175782,127426, +A343245 ,1,1,16,190051,48563893286,62416511444764621,278991478506233367981237,3489283612532675861618129664796,104930321415012656258005668476458298401,6780157485532072442175423032103032983044918034, +A343246 ,0,0,1,1,2,3,4,5,7,7,10,10,14,14,17,17,22,20,27,24,29,30,37,31,41,40,45,42,53,43,59,54,61,60,66,56,78,73,78,70,90,74,98,86,92,96,110,87,113,103,116,109,132,110,129,118,135,136,153,115,162,150,151,147,165,145, +A343247 ,0,0,1,1,2,3,3,5,6,7,5,12,6,12,15,18,8,24,9,28,23,22,11,45,21,27,31,45,14,62,15,54,39,37,43,88,18,42,47,93,20,98,21,79,86,52,23,142,44,92,63,96,26,134,71,142,71,67,29,220,30,72,127,145,85,170,33,130,87,185, +A343248 ,0,0,0,0,0,0,1,0,1,1,5,0,8,4,4,3,16,3,21,5,14,18,33,3,31,29,30,20,56,13,65,31,52,59,59,20,96,78,80,40,120,49,133,82,83,124,161,50,156,116,154,129,208,109,181,119,200,213,261,80,280,248,204,196,267,193,341,255, +A343256 ,0,1,2,6,8,22,32,66,118,204,366,644,1120,1902,3300,5676,9690,16620,28152,47900,80856,136546,230754,387570,651932,1093174,1832286,3065822,5122932,8557788,14272702,23779968,39592890,65860910,109471248,181821502,301795112, +A343258 ,9,10,12,17,18,19,20,21,22,24,25,26,28,35,37,38,41,42,44,49,50,52,56,65,66,68,72,79,80,87,91,93,94,96,103,107,109,110,115,117,118,121,122,124,131,133,134,137,138,140,143,145,146,148,151,152,155,157,158, +A343259 ,2,1,2,18,194,2525,39202,710647,14760962,345946302,9034502498,260219353691,8195978831042,280256592535933,10340256951198914,409468947059131650,17322711762013765634,779742677038695037937,37210469265847998489922,1876572071974094803391179, +A343260 ,2,2,7,52,527,6726,103682,1874888,38925119,912670090,23855111399,687808321212,21687295069442,742397047217294,27420344506901023,1086932029484351248,46027034321342899967,2073668380220713167378,99042070146811639444802, +A343261 ,2,3,14,110,1154,15127,238142,4379769,92198402,2186871698,57721023502,1678243366813,53301709843202,1836220544383695,68200709735854334,2716906424134261502,115561578124838522882,5227260815326346060059,250566480717349417632398, +A343263 ,1,1,1,2,22,301554,2493675105669492542968967478, +A343264 ,1,2,4,9,21,50,119,281,656,1513,3449,7777,17363,38422,84355,183915,398526,858901, +A343267 ,1,2,4,5,7,8,11,14,17,22,27,29,32,34,37,41,44,47,53,62,95,104,107,113,116,122,125,131,134,140,143,148,155,158,160,167,407,424,441,458,475,492,509,526,552,560,569,587,599,608,613,620,638,653,671,686, +A343268 ,0,1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,20,21,22,23,25,27,28,29,30,32,34,35,37,39,41,42,44,46,47,49,51,53,56,58,62,65,67,74,83,88,95,100,104,107,109,113,116,122,125,131,134,140,143,148,149,155, +A343269 ,1,0,169,78,69,26,24,4,22,5,122,25,14,127,6,3,12,33,136,256,57,247,148,38,1478,368,79,1458,48,44,29,7,13,34,9,8,23,234,37,337,58,46,139,138,369,239,267,36,334,289,3555,49,144,45,229,2569,22888,136789,334479,1479,1233466, +A343270 ,0,0,0,0,0,1,0,1,1,2,0,3,0,3,4,5,0,6,0,6,6,5,0,11,2,6,7,9,0,23,0,11,10,8,12,15,0,9,12,21,0,34,0,15,19,11,0,41,4,18,16,18,0,36,20,31,18,14,0,61,0,15,28,33,24,56,0,24,22,65,0,48,0,18,32,27,30,67,0,77, +A343271 ,0,1,2,3,4,5,7,7,8,9,10,11,14,15,15,15,16,16,18,19,20,21,23,23,28,29,31,31,31,31,31,31,32,32,32,33,36,37,38,39,40,41,42,43,46,47,47,47,56,57,58,59,62,63,63,63,62,63,63,63,63,63,63,63,64,64,64,64, +A343277 ,1,2,6,12,60,30,210,280,2520,1260,6930,4620,60060,6006,30030,240240,4084080,1225224,11639628,2771340,19399380,1939938,44618574,178474296,4461857400,106234700,1434168450,20078358300,582272390700,19409079690,601681470390,125024721120, +A343281 ,6,12,15,18,20,24,28,30,35,36,40,42,45,48,54,56,60,63,66,70,72,75,77,78,80,84,88,90,91,96,99,100,102,104,105,108,110,112,114,117,120,126,130,132,135,138,140,143,144,150,153,154,156,160,162,165,168,170,174,175,176,180,182,184, +A343282 ,1,96601,9645718621,964407482028001,96438925911789115351,9643875373658964992585011,964387358678775616636890654841,96438734235127451288511508421855851,9643873406165059293451290072800801506621, +A343283 ,1,8,27,100,125,432,343,1144,1107,2000,1331,6156,2197,5488,6750,12906,4913,20520,6859,28500,18522,21296,12167,80136,23500,35152,43020,78204,24389,135000,29791,141848,71874,78608,85750,320760,50653,109744,118638,371000,68921,370440,79507, +A343284 ,1,16,81,392,625,2592,2401,9008,9882,20000,14641,73224,28561,76832,101250,202660,83521,368064,130321,565000,388962,468512,279841,1901232,586250,913952,1154763,2170504,707281,4050000,923521,4453520,2371842,2672672,3001250,11432664,1874161,4170272, +A343285 ,1,32,243,1552,3125,15552,16807,71520,88695,200000,161051,874800,371293,1075648,1518750,3214984,1419857,6617376,2476099,11250000,8168202,10307264,6436343,45372960,14650000,23762752,31118904,60505200,20511149,121500000,28629151,141263008,78270786,90870848, +A343286 ,1,64,729,6176,15625,93312,117649,570048,797526,2000000,1771561,10474272,4826809,15059072,22781250,51231248,24137569,119066112,47045881,224500000,171532242,226759808,148035889,1085918400,366218750,617831552,839677023,1690380832,594823321,3645000000, +A343287 ,1,128,2187,24640,78125,559872,823543,4552064,7175547,20000000,19487171,125551296,62748517,210827008,341718750,818079776,410338673,2142910080,893871739,4485000000,3602177082,4988715776,3404825447,26025929856,9155312500,16063620352,22666490820, +A343288 ,1,256,6561,98432,390625,3359232,5764801,36383488,64573362,200000000,214358881,1505775744,815730721,2951578112,5125781250,13076504640,6975757441,38570701824,16983563041,89650000000,75645718722,109751747072,78310985281,624190655232,228882031250, +A343289 ,1,512,19683,393472,1953125,20155392,40353607,290936320,581140575,2000000000,2357947691,18064270080,10604499373,41322093568,76886718750,209122656384,118587876497,694262555136,322687697779,1792500000000,1588560093162,2414538435584,1801152661463, +A343291 ,1,2,4,9,22,55,136,329,778,1803,4108,9229,20494,45071,98320,213009,458770,983059,2097172,4456469,9437206,19922967,41943064,88080409,184549402,385875995,805306396,1677721629,3489660958,7247757343,15032385568,31138512929,64424509474, +A343293 ,36,64,81,512,196,16384,1089,8589934592,3844,4611686018427387904,31329,191561942608236107294793378393788647952342390272950272,478864, +A343294 ,100,1024,625,33554432,2116,70368744177664, +A343301 ,0,1,2,5,7,8,10,12,15,19,20,21,22,24,25,27,28,30,31,35,38,39,40,41,42,44,47,48,49,52,54,55,57,59,62,64,67,68,70,71,72,75,78,80,84,85,87,89,92,94,97,98,99,100,104,105,109,110,111,112,114,115,118,119, +A343302 ,1,7,13,31,43,49,61,73,91,115,121,127,133,145,151,163,169,181,187,211,229,235,241,247,253,265,283,289,295,313,325,331,343,355,373,385,403,409,421,427,433,451,469,481,505,511,523,535,553,565,583,589,595, +A343303 ,347,1997,2207,2747,2987,2989,3005,3245,3707,3845,4505,4727,4729,5165,6227,7067,7205,7907,8885,9347,9587,9723,9725,11405,13745,14207,14765,17147,17987,18125,18587,18827,18843,18845,19547,20147,20477,21485,22187,22983,22985, +A343304 ,1,1,1,1,2,3,4,6,10,16,25,40,66,109,179,296,495,831,1396,2353,3985,6770,11523,19657,33621,57633,98969,170245,293371,506371,875284,1515029,2625842,4556806,7916943,13769900,23975073,41785251,72894759,127279673,222430235,389030773,680946436,1192794189, +A343305 ,1,1,1,1,1,2,3,4,5,7,11,17,25,36,53,81,125,191,289,439,675,1046,1621,2506,3877,6023,9395,14681,22947,35890,56231,88285,138825,218493,344145,542618,856597,1353766,2141383,3389797,5370219,8514773,13511673,21456808,34096503,54216636, +A343306 ,3,6,9,11,13,14,16,17,18,23,26,29,32,33,34,36,37,43,45,46,50,51,53,56,60,61,63,65,66,69,73,74,76,77,79,81,83,86,88,90,91,93,95,96,101,102,103,106,107,108,113,116,117,121,122,123,124,126,128,130,133,135, +A343308 ,9,6,4,3,8,7,3,4,0,4,2,9,2,6,2,4,5,9,1,2,6,4,3,6,5,8,8,4,4,4,9,8,4,5,7,1,2,3,7,6,5,0,4,6,1,3,5,1,6,4,0,2,1,8,8,5,0,6,0,9,1,1,2,1,4,8,3,3,9,0,3,4,9,0,0,2,5,5,5,1,0,6,9,6,9,5,0,5,1,8,3,2,3,2,9,2,3,4,6,9,2,5,6,1,8, +A343309 ,0,0,0,0,0,1,0,0,0,2,0,3,0,3,4,2,0,4,0,6,6,5,0,10,0,6,3,9,0,23,0,8,10,8,12,13,0,9,12,20,0,34,0,15,18,11,0,38,1,14,16,18,0,28,20,30,18,14,0,61,0,15,27,26,24,56,0,24,22,65,0,43,0,18,30,27,30,67,0,74, +A343311 ,6,10,12,14,15,16,18,20,21,22,24,26,27,28,30,32,33,34,35,36,38,39,40,42,44,45,46,48,49,50,51,52,54,55,56,57,58,60,62,63,64,65,66,68,69,70,72,74,75,76,77,78,80,81,82,84,85,86,87,88,90,91,92,93,94,95,96,98,99,100, +A343312 ,0,1,2,4,3,5,13,6,11,7,12,8,10,9,14,40,15,38,16,39,17,34,20,37,18,32,22,33,21,35,19,36,23,31,24,29,25,30,26,28,27,41,121,42,119,43,120,44,115,47,118,45,113,49,114,48,116,46,117,50,103,59,112,51,101, +A343313 ,0,1,2,4,3,5,7,9,11,13,12,8,10,6,14,16,18,20,24,30,22,28,26,32,34,36,38,40,39,35,37,33,25,27,21,29,31,23,17,19,15,41,43,45,47,51,57,49,55,53,59,63,69,71,79,93,77,91,89,61,67,65,75,87,85,73,83,81, +A343314 ,0,0,1,1,2,7,5,16,19,39,77,103,226,334,636,1106,1827,3386,5568,10059,17281,29890,52771,90283,159191,274976,479035,835476,1447278,2528496,4386143,7640592,13293308,23106132,40245277,69946521,121762316,211791205,368418674,641125867, +A343315 ,0,0,1,1,2,6,6,14,19,36,67,103,194,315,560,971,1651,2895,4933,8581,14798,25515,44165,76067,131563,227034,392032,677152,1168742,2018769,3485255,6018422,10392472,17943750,30985861,53501944,92385050,159523542,275451221,475633952, +A343316 ,0,0,0,0,1,0,0,-1,-1,0,0,0,4,0,0,0,1,3,3,1,0,0,-1,2,3,2,-1,0,0,0,-2,3,3,-2,0,0,0,1,-3,-3,4,-3,-3,1,0,0,-1,-4,-3,-4,-4,-3,-4,-1,0,0,0,1,-3,-3,13,-3,-3,1,0,0,0,1,0,0,-2,12,12,-2,0,0,1,0, +A343317 ,0,1,4,2,4,13,11,13,7,5,7,13,11,13,40,38,40,34,32,34,40,38,40,22,20,22,16,14,16,22,20,22,40,38,40,34,32,34,40,38,40,121,119,121,115,113,115,121,119,121,103,101,103,97,95,97,103,101,103,121,119,121, +A343320 ,0,0,0,0,0,0,0,2,1,1,0,6,0,2,5,11,0,13,0,19,12,6,0,43,15,9,24,40,0,52,0,55,30,16,45,136,0,20,44,141,0,110,0,105,160,30,0,258,69,141,75,149,0,216,124,298,96,49,0,509,0,56,346,362,176,295,0,260,140, +A343322 ,1,4,9,22,25,72,49,132,117,200,121,486,169,392,450,729,289,1116,361,1350,882,968,529,3132,925,1352,1542,2646,841,4500,961,4000,2178,2312,2450,8388,1369,2888,3042,8700,1681,8820,1849,6534,6975,4232,2209,19089,3577,8700,5202,9126,2809, +A343323 ,1,8,27,92,125,432,343,1080,1080,2000,1331,5940,2197,5488,6750,12070,4913,20304,6859,27500,18522,21296,12167,76680,23375,35152,42291,75460,24389,135000,29791,132408,71874,78608,85750,309204,50653,109744,118638,355000,68921,370440,79507,292820, +A343324 ,1,16,81,376,625,2592,2401,8752,9801,20000,14641,71928,28561,76832,101250,196252,83521,366768,130321,555000,388962,468512,279841,1859760,585625,913952,1148202,2132088,707281,4050000,923521,4307216,2371842,2672672,3001250,11242800,1874161,4170272, +A343325 ,1,32,243,1520,3125,15552,16807,70496,88452,200000,161051,867024,371293,1075648,1518750,3164792,1419857,6609600,2476099,11150000,8168202,10307264,6436343,44875296,14646875,23762752,31059855,59967376,20511149,121500000,28629151,138957472,78270786,90870848, +A343326 ,2,3,3,2,4,7,4,1,4,6,3,4,3,6,5,6,5,3,7,5,2,4,6,4,5,7,5,2,6,7,1,2,8,4,6,5,9,10,7,4,6,7,6,2,5,8,4,6,5,5,6,4,2,7,7,2,3,9,5,3,4,6,5,7,9,7,8,8,12,5,5,6,9,10,7,5,7,7,5,4,3,6,4,5,6,8,9,7,5,10,5,5,3,7,10,3,3,8,5,10,9, +A343328 ,0,2,4,7,10,18,33,38,86,162,284,522,928,1688,3022,5470,9826,17744,31926,57588,103696,186946,336750,606946,1093500,1970642,3550696,6398480,11529230,20775494,37435474,67457232,121552686,219031676,394679816,711190482,1281518438, +A343329 ,0,0,0,0,0,20,0,104,0,196,464,0,1372,1952,0,15376,7232,17576,0,119072,32128,476656,0,1032256,130304,7263392,0,8064128,14776336,522752,131096512,0,66324736,458066416,2087936,2024096128,0,533729792,16649257024,8382464,33759290624,27027081632,0, +A343331 ,1,1,10,110,1145,12045,126070,1319570,13798710,144217910,1506406702,15726571002,164096557935,1711386871635,17839701265570,185876723016390,1935830424374840,20152131324766520,209696974024339610,2181155691766631710,22678274833738085501,235704268837407670401, +A343332 ,0,0,0,1,0,1,1,1,2,1,2,1,3,1,3,2,2,2,3,2,3,3,3,4,2,4,2,4,3,4,3,5,2,5,3,5,3,6,3,6,3,7,3,7,4,4,4,5,4,5,4,6,4,6,4,7,4,7,5,5,5,6,5,6,5,7,5,7,6,6,6,7,6,7,7,7,8,4,8,4,8,5,8,5,8,6,8, +A343333 ,0,0,1,1,1,2,1,2,2,2,3,2,3,2,4,2,4,3,3,3,4,3,4,4,4,5,3,5,3,5,4,5,4,6,3,6,4,6,4,7,4,7,4,8,4,8,5,5,5,6,5,6,5,7,5,7,5,8,5,8,6,6,6,7,6,7,6,8,6,8,7,7,7,8,7,8,8,8,9,5,9,5,9,6,9,6,9, +A343334 ,0,0,1,1,0,2,2,1,1,2,0,3,3,2,1,3,1,4,4,3,0,4,2,2,3,1,5,5,4,1,6,6,5,3,2,4,0,5,2,5,1,7,7,6,4,1,8,8,7,5,0,6,3,3,4,2,6,2,7,4,3,5,1,9,9,8,6,1,10,10,9,7,3,6,0,7,2,8,5,2,9,6,1,11,11, +A343335 ,2,4,6,8,10,12,14,16,18,30,121,36,52,56,30,32,34,36,38,0,63,418,69,72,50,52,54,56,58,90,341,96,165,238,70,72,74,76,78,0,123,210,129,616,90,92,94,96,98,250,561,416,212,216,165,616,456,232,236,0,183,434,189,256,325,858, +A343336 ,2,2,2,2,2,2,2,2,2,3,11,3,4,4,2,2,2,2,2,0,3,19,3,3,2,2,2,2,2,3,11,3,5,7,2,2,2,2,2,0,3,5,3,14,2,2,2,2,2,5,11,8,4,4,3,11,8,4,4,0,3,7,3,4,5,13,10,4,4,3,11,3,4,4,6,6,5,3,6,0,7,5,6,3,9,3,8,7,10, +A343337 ,1,15,30,33,35,45,51,55,60,66,69,70,75,77,85,90,91,93,95,99,102,105,110,119,120,123,132,135,138,140,141,143,145,150,153,154,155,161,165,170,175,177,180,182,186,187,190,198,201,203,204,205,207,209,210,215, +A343338 ,1,15,33,35,45,51,55,69,75,77,85,91,93,95,99,105,119,123,135,141,143,145,153,155,161,165,175,177,187,201,203,205,207,209,215,217,219,221,225,231,245,247,249,253,255,265,275,279,285,287,291,295,297,299,301, +A343339 ,195,555,585,915,957,975,1295,1335,1665,1695,1755,2193,2265,2343,2535,2585,2715,2745,2775,2871,2925,3115,3345,3367,3729,3765,3885,4005,4209,4215,4575,4755,4875,4995,5085,5265,5285,5385,5457,5467,5709,5955,6205,6215, +A343340 ,30,60,66,70,90,102,110,120,132,138,140,150,154,170,180,182,186,190,198,204,210,220,238,240,246,264,270,273,276,280,282,286,290,300,306,308,310,322,330,340,350,354,360,364,372,374,380,396,402,406,408,410,414, +A343341 ,1,0,0,0,0,1,1,4,6,11,16,28,36,58,79,111,149,209,270,368,472,618,793,1030,1292,1653,2073,2608,3241,4051,4982,6176,7566,9285,11320,13805,16709,20275,24454,29477,35380,42472,50741,60648,72199,85887,101906,120816, +A343342 ,1,0,0,0,0,1,0,3,2,5,5,12,7,22,20,32,34,60,54,98,93,145,159,237,229,361,384,529,574,810,840,1194,1275,1703,1886,2484,2660,3566,3909,4987,5520,7092,7737,9907,10917,13603,15226,18910,20801,25912,28797, +A343344 ,1,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,5,1,6,4,6,7,15,6,16,15,20,17,36,18,43,36,46,48,72,45,93,82,103,88,152,104,179,158,191,194,285,202,328,292,373,348,502,391,576,519,659,634,864,665, +A343345 ,1,0,0,0,0,0,1,1,4,6,11,16,29,36,59,79,115,149,216,270,379,473,634,793,1063,1292,1689,2079,2667,3241,4142,4982,6291,7582,9434,11321,14049,16709,20545,24490,29860,35380,43004,50741,61282,72284,86680,101906,121990, +A343346 ,1,0,0,0,0,1,1,4,6,11,16,29,36,59,80,112,150,214,271,374,476,624,800,1045,1298,1669,2088,2628,3258,4087,5000,6219,7602,9331,11368,13877,16754,20368,24536,29580,35468,42624,50845,60827,72357,86078,102100,121101, +A343347 ,1,1,1,2,2,2,3,3,3,4,4,4,6,5,4,6,6,6,8,7,7,10,9,9,12,10,8,11,11,10,14,13,11,13,12,15,20,17,15,19,19,19,22,18,17,23,22,22,28,25,24,31,28,26,32,32,30,34,32,29,37,33,27,36,33,34,44,38,36,45,45, +A343349 ,1,1,5,21,95,415,1851,8155,36030,158510,696502,3052966,13359230,58346206,254405630,1107479694,4813850699,20894227355,90567536543,392066476815,1695180397145,7320927664713,31581573600685,136094434672509,585876330191950,2519701493092958, +A343350 ,1,1,6,31,171,921,5031,27281,148101,801901,4336902,23415777,126254962,679805112,3655679442,19634501447,105334380517,564471596667,3021754455157,16160029793032,86339725851558,460874548444683,2457961986888773,13097958657023523,69740119667456018, +A343351 ,1,1,7,43,280,1792,11586,74550,479892,3083640,19794678,126908502,812761299,5199586119,33230586285,212172173565,1353444677529,8626044781761,54931168743703,349524243121795,2222294161109422,14119034725444774,89639674321304392,568720801952770012, +A343352 ,1,1,8,57,428,3172,23689,176324,1312550,9757798,72480269,537854094,3987751860,29540543908,218652961074,1617159619805,11951595353413,88264810625245,651404299886762,4804261815210433,35410065096578748,260832137791524693,1920169120639498017,14127684273966098698, +A343353 ,1,1,9,73,621,5229,44293,374277,3162447,26694159,225163687,1897751079,15983278059,134519816427,1131395821587,9509592524371,79880259426102,670590654977718,5626336598011078,47179486350900358,395410837699366686,3312225325409475038,27731588831310844302, +A343354 ,1,1,10,91,865,8155,77251,730435,6905560,65233120,615847378,5810270782,54784324495,516250199827,4862041512625,45765734635702,430560567351208,4048630897384450,38051334554031551,357459295903931045,3356488167698692226,31503001136703776561, +A343355 ,1,1,11,111,1166,12166,127436,1332936,13939651,145683351,1521743103,15886781603,165770328383,1728861822083,18022063489023,187778810866043,1955660195168328,20358764860253028,211849198103034998,2203562708619192998,22911457758236641451,238129937419462634151, +A343357 ,20169691981106018776756331,21373852696395930345517903,21975933054040886129898689,23476198863254546445077041,23782174126975753483041047,23836908704943476736166573,24137500239684251978741183,24272002214551310731350839,24955720586792192723783257,24986334842265665051802619, +A343358 ,1,1,2,3,7,18,41,123,361, +A343360 ,1,1,3,12,39,138,469,1603,5427,18372,61869,207909,696537,2328039,7762266,25826142,85749969,284171598,940027872,3104280885,10234808334,33692547249,110753171784,363561071175,1191860487561,3902350627434,12761565487173,41685086306917,136012008938158, +A343361 ,1,1,4,20,86,390,1724,7644,33697,148401,651584,2855840,12491276,54540636,237733768,1034610232,4495832776,19508749928,84540638312,365888222552,1581630245756,6829047398156,29453496620000,126898489491904,546183557447366,2348560270762006,10089340886428928, +A343362 ,1,1,5,30,160,885,4810,26185,142005,769305,4159301,22455876,121057525,651737675,3504241650,18818709130,100945053055,540885242825,2895159035375,15481318817450,82704855762375,441427664993275,2354020475714775,12542918682786300,66778882780674975, +A343363 ,1,1,6,42,267,1743,11234,72470,466251,2996883,19234836,123315828,789682546,5051601010,32282443044,206104519572,1314652656453,8378283675645,53350205335626,339445117302366,2158091256282273,13710402587540469,87040883294333382,552205562345916570, +A343364 ,1,1,7,56,413,3108,23163,172711,1285256,9556603,70980000,526711507,3904946864,28926003505,214095348671,1583389916081,11701578676851,86415267247743,637732279701496,4703270177738076,34664585073280204,255332979654402524,1879629724498860397,13829015594546304600, +A343365 ,1,1,8,72,604,5148,43544,368408,3112262,26273542,221605240,1867736120,15730022540,132385106956,1113413229000,9358220560136,78606905495809,659886123312449,5536404584185376,46424396382193376,389074608184431328,3259085506224931424,27286163457927575200, +A343366 ,1,1,9,90,846,8055,76224,721389,6819192,64422126,608173020,5737815756,54100140735,509794737636,4801164836634,45192001954005,425156458320783,3997756503852489,37572655020653089,352957677187938076,3314174696310855888,31105460092251410001,291818245344169918725, +A343368 ,3,2,3,6,2,3,1,3,2,7,6,3,6,2,7,2,6,1,2,2,1,10,6,3,6,6,5,6,6,4,4,5,1,4,9,6,4,4,1,5,2,4,7,5,6,5,13,6,4,6,6,7,6,5,6,8,4,4,4,5,3,2,2,4,7,4,4,8,8,5,6,6,9,8,7,8,3,15,2,10,3,8,4,3,7,6,8,4,7,9,5,4,7,8,6,6,2,8,10,4,6, +A343370 ,1,-1,-1,-2,-1,-1,-1,-4,0,-1,-1,-4,-1,-1,1,-8,-1,-2,-1,-4,1,-1,-1,-12,0,-1,0,-4,-1,-3,-1,-16,1,-1,1,-10,-1,-1,1,-12,-1,-3,-1,-4,0,-1,-1,-32,0,-2,1,-4,-1,-4,1,-12,1,-1,-1,-16,-1,-1,0,-32,1,-3,-1,-4,1,-3, +A343371 ,1,1,2,2,3,2,5,2,5,4,6,2,9,2,8,7,7,2,12,2,12,9,9,2,13,5,12,9,12,2,22,2,14,10,10,10,18,2,15,13,16,2,26,2,20,20,12,2,22,7,23,11,19,2,26,11,23,16,15,2,30,2,25,26,16,14,36,2,22,13,27,2,32,2,21,28, +A343377 ,1,0,0,0,0,1,1,2,3,4,6,8,9,13,18,21,26,32,38,47,57,66,80,95,110,132,157,181,211,246,282,327,379,435,500,570,648,743,849,963,1094,1241,1404,1592,1799,2025,2282,2568,2882,3239,3634,4066,4554,5094,5686,6346, +A343378 ,1,1,1,2,2,2,3,3,3,4,4,3,6,5,4,6,6,4,8,6,7,9,8,5,12,9,8,9,11,6,14,10,10,11,10,10,20,12,12,15,18,10,21,13,15,19,17,11,27,19,20,20,25,13,27,22,26,23,24,15,34,23,21,27,30,19,38,24,26,27,37, +A343379 ,1,0,0,0,0,1,0,2,1,3,3,5,3,9,9,12,12,18,18,27,27,36,41,51,51,73,80,96,105,132,137,177,188,230,253,303,320,398,431,508,550,659,705,847,913,1063,1165,1359,1452,1716,1856,2134,2329,2688,2894,3345,3622,4133, +A343380 ,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,1,0,1,1,4,0,1,0,2,0,4,0,3,1,2,2,5,0,5,3,4,1,9,1,5,2,4,5,11,1,6,4,11,3,13,5,10,4,11,8,14,3,10,6,9,3,15,6,14,10,18,8, +A343381 ,1,0,0,0,0,0,1,0,2,1,3,3,6,4,9,9,14,14,20,20,30,30,39,44,59,59,77,85,106,114,145,150,191,205,247,267,328,345,418,455,544,582,699,745,886,962,1117,1209,1430,1523,1778,1932,2225,2406,2792,3001,3456,3750, +A343382 ,1,0,0,0,0,1,1,2,3,4,6,9,9,13,18,21,26,34,38,48,57,67,81,99,110,133,157,183,211,250,282,330,380,437,502,575,648,748,852,967,1095,1250,1405,1597,1801,2029,2287,2579,2883,3245,3638,4077,4557,5107,5691,6356, +A343384 ,1,1,2,2,1,2,1,3,1,3,2,3,4,3,4,3,5,4,3,4,3,5,3,4,4,3,6,5,5,2,4,5,3,6,3,3,4,6,5,2,4,5,4,7,3,5,4,4,5,3,3,4,7,6,3,6,4,5,6,5,1,3,7,3,5,3,5,3,8,4,3,2,6,3,6,4,6,4,6,5,5,1,5,5,7,4,7,6,4,6,5,2,2,5,5,5,5,6,3,7,7, +A343386 ,0,0,1,3,6,10,20,56,168,456,1137,2827,7458,20670,57577,157691,427976,1170552,3248411,9096497,25505562,71436182,200338074,564083786,1595055520,4522769520,12842772295,36514010301,103995490758,296794937626,848620165860,2430089817720, +A343387 ,1,1,2,2,3,2,3,1,3,2,3,4,3,4,4,3,3,1,6,4,3,3,4,3,3,2,4,5,4,4,3,2,3,4,5,6,5,4,6,2,6,4,4,7,5,3,4,1,5,4,8,8,2,5,5,1,5,4,3,8,5,6,2,3,5,4,6,4,6,4,5,3,5,4,4,5,8,2,7,2,3,7,6,9,3,6,10,5,5,5,5,8,3,5,3,6,7,3,9,8,6, +A343390 ,2,3,3,7,3,19,3,43,7,19,3,2395,3,19,19,1807,3,2395,3,2395,19,19,3,246546091,7,19,43,2395,3,370387,3,3263443,19,19,19,96124306951,3,19,19,246546091,3,370387,3,2395,2395,19,3,109838449356687381331,7,2395,19,2395,3,246546091,19, +A343391 ,1,1,2,2,3,2,3,2,2,4,2,3,4,1,5,3,4,6,3,5,3,4,5,3,3,6,4,4,6,3,7,1,4,6,1,5,4,6,6,4,4,6,4,4,6,3,8,4,4,8,5,9,7,4,8,2,4,9,5,6,4,4,8,4,7,6,9,8,4,5,7,3,6,8,3,7,1,10,6,5,7,7,7,4,8,4,10,3,5,4,6,7,7,8,5,3,6,6,5,8, +A343392 ,8,8,8,5,7,6,5,8,7,6,3,1,6,7,3,2,4,9,4,0,3,1,7,6,1,9,8,0,1,2,1,3,8,7,3,9,7,2,2,9,2,4,3,3,7,8,7,5,1,3,8,0,4,4,6,1,7,0,7,9,1,2,1,3,9,1,2,8,6,9,5,8,6,1,9,8,9,4,7,8,2,1,1,5,0,6,5,3,8,6,9, +A343393 ,8,8,8,5,7,6,6,0,9,2,4,7,5,0,6,7,9,9,6,3,7,3,5,2,6,7,4,5,2,4,0,2,5,3,8,5,3,1,2,7,8,3,3,1,8,2,2,3,0,2,8,1,0,5,1,6,7,7,2,4,3,8,8,0,3,2,6,3,8,2,5,9,2,9,2,8,3,7,7,1,5,3,2,1,8,4,9,5,0,1,3,5,9,9, +A343394 ,0,0,0,1,0,3,0,1,2,4,0,3,0,5,5,1,0,3,0,4,6,6,0,3,3,7,2,5,0,6,0,1,7,8,7,3,0,9,8,4,0,7,0,6,5,10,0,3,4,4,9,7,0,3,8,5,10,11,0,6,0,12,6,1,9,8,0,8,11,8,0,3,0,13,5,9,9,9,0,4,2,14,0,7,10,15,12,6,0,6, +A343395 ,1,2,3,5,5,12,7,13,13,26,11,39,13,36,37,33,17,74,19,69,57,68,23,103,41,82,55,97,29,226,31,81,109,130,103,207,37,140,129,193,41,324,43,177,183,164,47,281,85,266,163,213,53,340,175,287,201,210,59,621,61,220,289, +A343397 ,0,1,2,3,4,4,5,5,8,5,9,5,8,8,6,9,9,10,8,11,10,10,9,9,14,8,8,10,12,11,6,14,13,10,12,13,15,11,13,9,20,6,12,17,13,13,10,11,17,12,11,13,15,14,9,13,13,14,11,18,11,15,7,12,22,13,14,17,17,11,15,13,24,16,9,17,15,15,14,18, +A343400 ,1,2,3,4,4,5,4,6,4,9,5,7,8,6,9,6,7,9,7,6,9,7,8,7,7,10,6,9,11,9,12,8,9,14,5,13,11,8,11,11,7,13,9,12,11,9,9,11,8,12,11,11,11,6,16,4,11,12,11,13,12,6,10,9,8,17,8,12,11,10,8,10,12,10,8,11,12,12,13,7, +A343402 ,3,4,23,29,39,1559,1593,2435519,2435534,2485805,2485806,2485810,2485827,2486989,5936893149287,5936893149290,5936949030071,5936949030092,5936949030103,5936949030105,5936949030115,5936949030121,35246700334321411113125039,1242329884457453073932774588160466662938743561876559, +A343403 ,0,1,2,3,4,5,6,7,8,9,25,26,27,28,29,35,37,38,39,45,47,48,49,55,56,57,58,59,67,68,69,77,78,79,88,89,99,255,256,257,258,259,267,268,269,277,278,279,288,289,299,355,357,358,359,377,378,379,388,389,399,455,457,458,459,477,478,479,488,489,499, +A343404 ,0,1,4,1,2,5,6,21,16,1,26,11,12,27,22,7,2,17,18,3,28,13,8,23,24,9,4,19,14,29,120,15,190,85,50,155,36,141,106,1,176,71,162,57,22,127,92,197,78,183,148,43,8,113,204,99,64,169,134,29,30,135,100,205, +A343405 ,0,1,5,6,11,12,17,18,23,24,29,36,65,72,101,108,137,144,173,209,210,419,420,629,630,839,840,1049,1050,1259,1260,1469,1470,1679,1680,1889,1890,2099,2100,2309,2939,4200,5670,7140,8609,10079,11340,12810,14280,15749, +A343407 ,0,1,1,1,1,2,1,1,2,1,1,3,1,1,2,1,1,3,1,2,2,1,1,3,1,1,2,1,1,5,1,1,2,1,1,3,1,1,2,2,1,4,1,1,3,1,1,3,1,2,2,1,1,3,1,2,2,1,1,5,1,1,3,1,1,3,1,1,2,2,1,4,1,1,3,1,1,3,1,2,2,1,1,5,1,1,2,1,1,6,1,1,2,1,1,3,1,1,2,2,1,3,1,1,4, +A343408 ,0,1,1,1,1,4,1,1,4,1,1,10,1,1,4,1,1,10,1,11,4,1,1,10,1,1,4,1,1,35,1,1,4,1,1,10,1,1,4,11,1,31,1,1,19,1,1,10,1,11,4,1,1,10,1,29,4,1,1,35,1,1,25,1,1,10,1,1,4,11,1,46,1,1,19,1,1,10,1,11,4,1,1,59,1,1,4,1,1,80,1,1,4,1,1,10, +A343411 ,0,1,1,1,2,1,2,1,4,1,4,3,2,3,4,5,2,7,2,2,2,5,4,5,5,3,3,3,3,7,6,3,5,5,6,2,11,3,6,2,6,6,8,10,2,9,2,5,5,10,5,2,6,4,4,7,5,7,2,2,4,6,7,3,12,3,7,4,9,6,5,10,4,15,4,8,5,11,4,8,14,6,4,6,10,7,8,9,5,6,4,4,13,5,7,3,10,2,7,11, +A343412 ,1,3,8,14,17,18,28,31,42,55,59,65,82,83,88,95,97,104,112,113,118,119,123,127,131,142,147,177,180,185,186,204,207,215,218,220,243,246,253,257,263,270,274,280,286,287,299,330,332,334,335,339,343,354,365,372,379,381,384,388,392,400,413, +A343413 ,3,17,31,59,83,97,113,127,131,257,263,379,433,479,491,563,571,619,643,701,727,811,853,883,919,937,983,1117,1187,1193,1249,1307,1459,1523,1627,1747,1777,1877,1987,2053,2207,2273,2293,2311,2423,2531,2609,2633,2683,2687,2719,2749,2789,2833,2927, +A343414 ,2,8,31,105,353,1039,2961,7859,20437,53015,131605,325097,787137,1857829,4334237,10072829,23286445,52990531,120131489,270138397,601071655,1334201393,2945054825,6485229057,14277775651,31269827137,68032540043,147446383463,317906538223,683411440339,1475890477529, +A343415 ,2,31,353,1039,1857829,14277775651,6822209961271,23172461926413292644664234611981411217441459,277990346815366598975642147371422180190208141392937,563879158779728906723597933198749347203597871838981,10726692511220448398001610103693085889137778178555239341406463847718807560615202368578749, +A343416 ,1,11,15,25,22,30,29,41,44,41,42,54,50,55,56,85,61,78,68,76,70,73,80,94,90,93,73,92,99,112,105,104,97,104,99,139,134,125,116,126,137,149,146,137,119,140,154,182,117,167,146,149,172,157,131,161,151,166,191,224,218,190,150,294,155,205, +A343418 ,11,29,41,61,73,97,131,137,139,149,151,157,167,179,191,211,227,229,233,241,251,283,293,307,313,331,347,373,383,389,397,401,449,463,521,577,607,631,641,647,653,661,673,677,701,709,719,727,757,769,811,821,823,829,857,859,877,887,907,919,929, +A343420 ,1,1,1,5,9,29,173,397,1629,7105,47317,136649,612009,3239657,16725833,144512653,442002033,2348928709,13503344821,87284090069,570544117893,6090993985577,19814091021725,112414559500753,771831588041361,5354065003116817,43960328737547473, +A343421 ,4,8,16,24,40,64,104,144,216,328,496,720,1072,1584,2344,3384,4952,7264,10632,15504,22656,33136,48488,70592,103032,150352,219400,319816,466664,680872,993440,1447952,2111448,3079464,4491216,6548936,9550728,13927840,20311168, +A343426 ,276,741,17766,30876,42778,43071,44850,54946,73920,99681,163306,184528,254541,310866,446040,524800,963966,1006071,1046181,1160526,1258491,1873080,1929630,2793066,3034416,3108771,3121251,3454506,3635556,4305645,4317391,4435731,4831386,4859403, +A343427 ,1,1,-4,124,-31492,95311228,-4353197274628,3536438210329520764,-58773626061322570140840196,22612364715316383254816814332673916,-224919094679732422549471022558879877877853188,63900685360824803637692081638626416736937520172676174972, +A343428 ,1,1,-2,16,-416,47104,-31623680,151868796928,-5929687248674816,2103645975156790263808,-7506342628191723555983065088,295743482602620866090259230372134912,-140189608695401234244797733914829257462251520,865523452956329002149153403380412177220307414830546944, +A343429 ,1,1,-4,52,-1252,47380,-2589892,193480948,-18967658404,2364328255444,-365398042310020,68588722144816564,-15372942045464127076,4055513943597589455508,-1243968998818298201100868,439009056263271003371155060,-176627099114433045240563153188,80365037678138695452520237597012,-41059325231828016124174743746157316, +A343431 ,1,1,1,1,5,1,1,1,1,5,11,1,1,1,5,1,17,1,1,5,1,11,23,1,25,1,1,1,29,5,1,1,11,17,5,1,1,1,1,5,41,1,1,11,5,23,47,1,1,25,17,1,53,1,55,1,1,29,59,5,1,1,1,1,5,11,1,17,23,5,71,1,1,1,25,1,11,1,1,5,1,41,83,1,85,1,29,11,89,5, +A343435 ,2,3,4,3,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,10,10,11,11,11,12,11,11,11,12,12,12,12,12,13,13,13,14,14,14,15, +A343436 ,6,7,6,6,6,6,6,6,6,7,7,7,8,8,8,9,6,7,7,7,8,8,8,9,9,9,10,10,10,11,11,11,12,11,11,11,12,12,12,12,12,13,13,13,14,14,14,15, +A343437 ,1,2,2,2,2,2,3,3,3,3,3,2,2,1,1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,4,4,4,4,5,5,5, +A343438 ,2,3,8,26,32,40,46,64,79,100,108,111,117,135,172,175,183,189,222,243,251,254,260,279,286,314,338,346,352,370,385,406,414,417,423,445,469,477,489,496,524,548,556,562,580,595,616,624,627,633,655,687,706,712,737,740,743,764,779, +A343439 ,1,1,-2,12,-136,2736,-99616,6810816,-900563072,234247256832,-120883821425152,124271556482829312,-255006726559759042560,1045529090595650037657600,-8569159507007490469146992640,140431398588497630920722150113280,-4602217897540461023955069241211781120, +A343440 ,1,1,3,7,15,27,63,127,255,495,1023,2037,4095,8127,16365,32767,65535,130815,262143,524265,1048509,2096127,4194303,8388477,16777215,33550335,67108863,134217657,268435455,536854005,1073741823,2147483647,4294966269,8589869055,17179869105, +A343441 ,1,1,-2,14,-238,10486,-1360142,566636294,-790250356798,3769300938094006,-62394920105801115182,3626853378943129415555174,-747708300997964314376024192158,551445848326104642338923476399909526,-1465934793325188376367147565710854513799822,14139840911021914090289579305382872859520174083654, +A343442 ,1,4,5,4,7,20,9,4,5,28,13,20,15,36,35,4,19,20,21,28,45,52,25,20,7,60,5,36,31,140,33,4,65,76,63,20,39,84,75,28,43,180,45,52,35,100,49,20,9,28,95,60,55,20,91,36,105,124,61,140,63,132,45,4,105,260,69,76,125,252, +A343443 ,1,3,3,4,3,9,3,5,4,9,3,12,3,9,9,6,3,12,3,12,9,9,3,15,4,9,5,12,3,27,3,7,9,9,9,16,3,9,9,15,3,27,3,12,12,9,3,18,4,12,9,12,3,15,9,15,9,9,3,36,3,9,12,8,9,27,3,12,9,27,3,20,3,9,12,12,9,27,3,18, +A343447 ,0,2,2,8,10,2,7,8,2,10,26,13,14,32,2,2,4,20,22,20,23,12,8,28,29,8,32,32,34,3,32,12,80,40,41,21,2,14,47,98,1,16,52,53,2,55,8,23,120,14,20,20,64,8,3,22,68,32,20,73,74,71,38,38,32,80,82,38,8,42, +A343448 ,5,7,11,13,19,29,37,67,71,101,103,107,193,223,229,281,293,337,359,367,541,569,613,631,647,677,709,751,809,823,829,857,881,887,919,947,971,1009,1019,1049,1237,1249,1279,1373,1439,1471,1543,1571,1627,1637,1693,1733,1783,1907,1993,2017,2161, +A343449 ,173,337,479,727,1399,2447,3727,10859,11897,22349,23857,26267,80963,105097,112069,170081,191861,243931,276343,284593,613181,665213,771863,827521,862607,951413,1050449,1158961,1334093,1380259,1435519,1495517,1584983,1660697,1745581,1847861,1929569,2067529, +A343451 ,29,41543,230849,267667,895571,1440449,3171593,3400087,9305809,9790127,10811683,11905679,17067151,19353953,20161963,25516163,77893657,82199893,96107729,131707319,164721871,171958543,211522679,266929763,337603949,361747937,393590563,420428507,635794961,752500141, +A343454 ,21,33,35,39,111,339,473,629,735,779,795,801,959,1025,1119,1149,1245,1253,1281,1575,1589,1695,1851,1919,1961,1985,2199,2315,2523,2561,2681,2759,3003,3065,3189,3233,3315,3443,3893,3983,4175,4299,4359,4375,4455,4503,4693,4925,5247,5585,5609,5703, +A343455 ,22,14233221,14331231,14333110,15143331,15233221,15331231,15333110,16143331,16153331,16233221,16331231,16333110,17143331,17153331,17163331,17233221,17331231,17333110,18143331,18153331,18163331,18173331,18233221,18331231,18333110,19143331, +A343458 ,1,2,4,12,24,48,240,480,1440,2880,5760,40320,120960,241920,483840,2419200,4838400,14515200,29030400,319334400,638668800,1916006400,3832012800,7664025600,38320128000,498161664000,996323328000, +A343459 ,1680,175560,215760, +A343460 ,0,1,3,5,6,5,4,4,6,9,8,6,5,5,6,7,11,11,7,5,5,5,5,8,8,5,4,5,7,7,10,11,7,8,8,8,8,9,10,8,6,7,10,10,10,7,6,7,4,5,7,6,5,4,7,8,6,5,7,8,7,6,3,5,8,12,15,13,12,10,9,11,17,18,13,9,6,9,11,16, +A343463 ,1,1,2,5,11,36,117,469,2023, +A343464 ,0,0,0,1,2,0,1,1,6, +A343465 ,3,-3,11,-21,51,-119,315,-831,2195,-5883,16107,-44357,122643,-341487,956635,-2690841,7596483,-21522347,61171659,-174342165,498112275,-1426403751,4093181691,-11767920107,33891544419,-97764009003,282429537947,-817028472645,2366564736723,-6863037262207, +A343466 ,4,-6,24,-66,208,-676,2344,-8226,29144,-104760,381304,-1398476,5162224,-19172796,71582944,-268439586,1010580544,-3817734596,14467258264,-54975633768,209430787824,-799644629556,3059510616424,-11728124734476,45035996273872,-173215367702376,667199944815064, +A343467 ,5,-10,45,-160,629,-2590,11165,-48910,217045,-976258,4438925,-20346440,93900245,-435959830,2034505661,-9536767660,44878791365,-211927519090,1003867701485,-4768372070128,22706531350485,-108372079190350,518301258916445,-2483526875847690,11920928955078629, +A343468 ,1,1,0,-2,0,4,6,-8,-24,-2,48,76,-42,-224,-144,406,744,-332,-2154,-1400,4320,7702,-2016,-21428,-17802,34216,76152,-5210,-195816,-181916,300510,772432,53136,-1851770,-2055360,2388772,7515246,1755880,-16586616,-21354266,19195248,72641884,27527118, +A343472 ,1,1,0,-2,0,4,12,-8,-48,-56,-144,400,1200,1792,960,16864,-34560,-170816,-320064,-632960,-869376,-15780224,30636288,144493312,360770304,738095104,2382729216,6661606912,81815537664,-152267942912,-883849860096,-2187970242560,-6499788165120, +A343473 ,1,1,0,-4,0,16,108,-64,-864,-2660,-22464,33968,272268,1217152,4629312,68208188,-98077824,-1089798320,-5246016084,-32436365248,-180561473568,-3404617719332,5203858765248,55902314446832,354805454664396,2229923884913920, +A343476 ,0,2,10,13,14,46,67,68,77,82,85,86,238,355,356,461,466,469,470,503,526,547,548,557,562,565,566,1438,2155,2156,2861,2866,2869,2870,3503,3526,3547,3548,3557,3562,3565,3566,3719,3838,3955,3956,4061,4066,4069,4070,4103, +A343477 ,0,2,10,13,14,52,79,80,95,100,103,104,328,352,535,536,559,560,659,688,715,716,755,760,763,764,863,892,919,920,935,940,943,944,3118,3322,3478,3502,5425,5426,5629,5630,5785,5786,5809,5810,7109,7318,7525,7526,7925, +A343478 ,29,41,59,83,89,101,113,137,149,167,173,179,197,227,233,251,263,269,293,317,347,353,359,401,449,467,479,503,557,563,587,593,641,653,677,719,773,809,887,977,983,1097,1187,1193,1283,1307,1367,1373,1433,1439,1487,1493, +A343479 ,29,41,59,83,89,113,137,167,173,179,227,233,263,269,317,347,353,359,467,479,503,557,563,593,641,653,719,773,809,887,977,983,1097,1187,1193,1283,1307,1367,1433,1439,1487,1493,1523,1619,1697,1823,1907,1997,2063,2153, +A343480 ,5,7,1,6,4,9,7,1,9,1,4,3,8,4,4,0,8,6,4,8,6,0,2,6,9,3,2,1,4,5,2,7,0,1,7,5,6,0,7,8,5,9,1,1,8,5,9,9,1,3,5,2,0,5,8,0,9,7,6,1,0,1,4,4,3,8,1,0,6,1,5,1,8,0,4,5,2,5,2,6,9,3,8,7,2,2,6, +A343481 ,1,3,3,6,6,10,11,11,10,15,16,22,21,21,23,30,32,40,42,42,39,48,52,53,49,52,53,63,66,77,83,82,76,77,82,94,87,85,90,103,107,121,123,129,120,135,144,147,153,150,151,167,176,178,185,181,168,185,194,212,199, +A343484 ,0,1,1,2,3,5,8,13,18,27,41,62,90,134,198,293,423,619,908,1329,1938,2832,4142,6061,8824,12879,18794,27425,39977,58333,85109,124180,180994,263931,384933,561402,818617,1193841,1740980,2538896,3702022,5398458,7872351, +A343485 ,0,2,8,26,86,276,856,2586,7826,23628,71128,213546,641246,1925076,5777416,17333706,52006586,156031788,468115048,1404358266,4213124006,12639480276,37918617976,113755972026,341268358946,1023806051148,3071419747768,9214260306186, +A343486 ,5,2,3,2,2,3,6,8,1,4,5,3,0,9,8,3,4,9,0,8,6,4,1,6,0,8,2,3,2,9,8,9,8,9,4,4,1,8,0,6,3,9,0,8,7,0,8,8,5,5,2,4,8,1,3,9,1,8,5,8,3,5,8,3,7,6,1,0,4,7,6,5,5,2,4,5,3,3,3,4,4,5,3,4,9,2,9,5,7,7,2,4,9,5,8,5,5,0,7,2,3,5,3,4,5, +A343487 ,2,8,1,8,8,1,4,9,2,4,8,7,0,0,6,8,8,2,0,4,6,9,7,1,6,6,8,3,1,6,1,1,2,4,6,6,3,2,4,0,3,3,0,5,3,8,2,1,8,7,2,7,1,2,6,0,9,3,1,1,1,7,4,9,1,8,6,0,2,7,5,4,4,5,9,8,4,8,5,0,5,5,4,1,7,6,5,5,3,1,5,8,0,8,4,9,5,0,1,7,1,0,3,3,3, +A343488 ,1,1,2,0,3,0,3,4,4,0,16,5,0,0,0,115,6,12,42,0,0,660,7,0,0,0,0,0,5033,8,24,0,352,0,0,0,39936,9,0,153,0,0,0,0,0,362718,10,40,0,0,3830,0,0,0,0,3624920,11,0,0,0,0,0,0,0,0,0,39916789,12,60,372,1872,0,45636,0,0,0,0,0,478953648, +A343489 ,0,0,1,0,1,1,0,1,2,2,0,1,3,3,2,0,1,4,6,4,4,0,1,5,11,12,5,2,0,1,6,18,32,20,6,6,0,1,7,27,70,85,42,7,4,0,1,8,38,132,260,260,70,8,6,0,1,9,51,224,629,1050,735,144,9,4,0,1,10,66,352,1300,3162,4102,2224,270,10,10, +A343490 ,1,5,18,70,260,1050,4102,16460,65574,262420,1048586,4195500,16777228,67112990,268436040,1073758360,4294967312,17179936830,68719476754,274878169880,1099511636076,4398047559730,17592186044438,70368748407000,281474976711700,1125899923619900, +A343491 ,1,1,1,2,2,1,2,1,3,5,2,3,6,5,8,8,7,2,7,8,3,11,2,2, +A343492 ,1,6,27,132,629,3162,15631,78264,390681,1953774,9765635,48831564,244140637,1220718786,6103516983,30517656528,152587890641,762939850086,3814697265643,19073488283028,95367431672037,476837167968810,2384185791015647,11920929004069128, +A343493 ,1,1,0,0,-1,0,-1,0,-1,0,0,0,-1,0,0,1,-1,0,0,0,0,1,-1,0,-1,1,0,1,0,0,0,0,-2,0,0,2,0,0,-1,1,0,0,0,0,-2,2,0,0,-2,1,1,1,-1,0,0,1,-1,0,-1,0,0,0,-1,2,-2,2,0,0,0,1,1,0,-2,0,-1,2,-1,1,0,0,-2,1,-1,0,-1,2,-1,0,-2,0,3, +A343497 ,1,9,29,74,129,261,349,596,789,1161,1341,2146,2209,3141,3741,4776,4929,7101,6877,9546,10121,12069,12189,17284,16145,19881,21321,25826,24417,33669,29821,38224,38889,44361,45021,58386,50689,61893,64061,76884,68961,91089,79549,99234,101781, +A343498 ,1,17,83,274,629,1411,2407,4388,6729,10693,14651,22742,28573,40919,52207,70216,83537,114393,130339,172346,199781,249067,279863,364204,393145,485741,545067,659518,707309,887519,923551,1123472,1216033,1420129,1514003,1843746,1874197, +A343499 ,1,33,245,1058,3129,8085,16813,33860,59541,103257,161061,259210,371305,554829,766605,1083528,1419873,1964853,2476117,3310482,4119185,5315013,6436365,8295700,9778145,12253065,14468481,17788154,20511177,25297965,28629181,34672912,39459945,46855809, +A343500 ,2,8,10,12,18,26,28,32,34,40,42,44,48,50,58,60,66,72,74,76,82,90,92,98,104,106,108,112,114,122,124,128,130,136,138,140,146,154,156,160,162,168,170,172,176,178,186,188,192,194,200,202,204,210,218,220,226, +A343501 ,4,6,14,16,20,22,24,30,36,38,46,52,54,56,62,64,68,70,78,80,84,86,88,94,96,100,102,110,116,118,120,126,132,134,142,144,148,150,152,158,164,166,174,180,182,184,190,196,198,206,208,212,214,216,222,224,228, +A343503 ,1,2,2,3,4,6,5,5,6,4,4,5,6,4,4,8,9,6,9,8,8,6,8,7,2,7,6,6,5,7,9,8,7,10,6,11,9,9,10,6,10,9,10,6,7,10,10,6,7,6,7,7,6,7,6,11,10,9,9,9,10,10,10,9,7,7,14,8,11,9,13,11,7,13,9,7,10,8,6,7,10,11,4,9,8,12,8,11,12,6,12,11,12,13,7,12,10,11,11,9, +A343504 ,1,1,1,1,2,2,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,6,6,1,1,1,1,2,2,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,6,6,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,3,3,3,3,6,6,3,3,3,3,6,6,6,6,6, +A343505 ,1,1,2,2,4,1,6,3,6,2,60,2,120,3,3,6,1008,4,51480,1,4,30,6930,1,140,36,60,20,16380,4,243374040,12,105,504,12,6,6126120,4680,168,3,314954640,10,209969760,24,4,180180,1790848659600,6,924,6,660,1260,8303710615200, +A343508 ,1,65,731,4162,15629,47515,117655,266372,532905,1015885,1771571,3042422,4826821,7647575,11424799,17047816,24137585,34638825,47045899,65047898,86005805,115152115,148035911,194717932,244203145,313743365,388487763,489680110,594823349, +A343509 ,1,129,2189,16514,78129,282381,823549,2113796,4787349,10078641,19487181,36149146,62748529,106237821,171024381,270565896,410338689,617568021,893871757,1290222306,1802748761,2513846349,3404825469,4627099444,6103828145,8094560241, +A343510 ,1,1,3,1,5,5,1,9,11,8,1,17,29,22,9,1,33,83,74,29,15,1,65,245,274,129,55,13,1,129,731,1058,629,261,55,20,1,257,2189,4162,3129,1411,349,92,21,1,513,6563,16514,15629,8085,2407,596,105,27,1,1025,19685,65794,78129,47515,16813,4388,789,145,21, +A343511 ,1,2,2,6,2,10,2,42,6,10,2,146,2,10,10,1806,2,146,2,146,10,10,2,23226,6,10,42,146,2,314,2,3263442,10,10,10,42814,2,10,10,23226,2,314,2,146,146,10,2,542731938,6,146,10,146,2,23226,10,23226,10,10,2,141578,2,10,146,10650056950806,10, +A343512 ,1,6,28,72,90,92,96,112,118,148,160,162,184,222,282,312,314,316,330,336,390,396,418,440,444,448,472,488,524,534,552,598,604,614,638,748,758,798,824,848,906,916,970,992,1008,1010,1012,1016,1056,1078,1084,1094,1098, +A343513 ,1,2,10,30,101,137,442,526,1063,1202,3026,1965,6085,4853,7310,8654,18497,10100,29242,17630,29557,30857,64010,30397,77601,60842,89272,71913,164837,60737,216226,139470,188165,180338,265142,152544,443557,282665,371134,275726,672401,251066,815410,461645, +A343514 ,1,2,18,84,355,645,2276,3192,7413,9400,25334,18395,60711,52747,88760,106688,243849,137790,432346,275570,499867,522513,1151404,561415,1542125,1214436,1907502,1569673,3756719,1344999,5274000,3451216,4970577,4690778,7499154,4217504,12948595,8207261,11565572, +A343516 ,1,1,3,1,4,5,1,5,8,8,1,6,12,15,9,1,7,17,26,19,15,1,8,23,42,39,35,13,1,9,30,64,74,76,34,20,1,10,38,93,130,153,90,56,21,1,11,47,130,214,287,216,152,63,27,1,12,57,176,334,506,468,379,191,86,21, +A343517 ,1,4,12,42,130,506,1722,6622,24426,93427,352726,1359388,5200312,20097156,77567064,300787366,1166803126,4539197723,17672631918,68933307843,269129530770,1052113994340,4116715363822,16124224571368,63205303313900,247961973949536, +A343518 ,1,6,17,42,74,153,216,379,531,809,1011,1605,1832,2626,3268,4304,4861,6798,7333,9878,11148,13711,14972,19985,20775,25643,28503,34517,35988,46162,46406,57092,61077,70986,75099,92520,91426,108693,115774,135491,135791,165719,163227,193437, +A343519 ,1,7,23,64,130,287,468,864,1335,2156,3013,4790,6200,9072,11972,16440,20365,28209,33667,45014,54192,68853,80752,104964,119279,148778,172629,211252,237364,295288,324662,394368,442133,522403,578385,696624,749434,884443,975250,1136476, +A343520 ,1,8,30,93,214,506,930,1818,3065,5247,8018,13080,18576,28104,39300,56184,74629,104978,134614,182897,232258,304098,376762,492068,594635,754941,912384,1137106,1344932,1674374,1947822,2382888,2776997,3337364,3843360,4629687,5245822,6231194, +A343521 ,1,9,38,130,334,846,1722,3572,6513,11806,19458,32948,50400,79290,117092,174256,245173,354249,480718,670420,891690,1203578,1560802,2076496,2630915,3416352,4285152,5461348,6724548,8490884,10295502,12798224,15420213,18888861, +A343528 ,0,1,3,4,5,5,3,4,6,5,5,6,5,6,6,4,7,10,10,9,7,4,7,10,7,8,9,7,5,7,7,10,13,9,8,7,5,8,14,9,10,11,6,9,10,8,10,13,8,7,6,5,11,15,9,7,8,6,8,10,10,10,10,6,7,9,6,10,17,10,9,9,6,10,10,6,9,9,6,10,9,6,11,14,8,11,11,9,11,11, +A343531 ,2,7,15,31,51,83,119,171,231,307,395,503,627,755,919,1079,1271,1483,1703,1967,2215,2495,2795,3127,3479,3839,4267,4647,5059,5539,5991,6511,7063,7651,8211,8855,9439,10139,10887,11611,12371,13159,13951,14715,15647,16591,17431,18487,19419,20415,21491, +A343532 ,2,7,31,83,307,503,919,1483,5059,9439,10139,13159,15647,17431,21491,23671,30911,33599,47459,49199,52627,58199,62327,79379,81551,90971,98443,109171,114643,123439,162007,168863,172331,175811,278767,298303,303011,322951,376399,387631,393007,571531,592531, +A343538 ,13,61,63,67,19,99,31,69,91,87,79,37,39,43,27,49,73,51, diff --git a/demos/IntegerTriangles-checkpoint.ipynb b/demos/IntegerTriangles-checkpoint.ipynb new file mode 100644 index 0000000..4345a97 --- /dev/null +++ b/demos/IntegerTriangles-checkpoint.ipynb @@ -0,0 +1,1479 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "