
[LSF/MM/BPF TOPIC]

SMDK inspired MM changes for CXL

Kyungsan Kim / Samsung Electronics

2

On behalf of SMDK* team

 We appreciate LSF/MM/BPF program committee for inviting and giving us the discussion opportunity.

 Also, we sincerely appreciate all the experts here for the advices, comments, interests on this topic.

SMDK*: Scalable Memory Development Kit, Samsung CXL SW for CXL Memory

3

Agenda Today

 Background

 CXL Requirement and SMDK Proposal

4

Background - SMDK

 CXL is a promising technology that leads to fundamental changes in computing architecture.

 As CXL DRAM provider, Samsung has developed both CXL DRAM HW and SW over last couple of years.
To facilitate adoption and widespread of CXL DRAM, we have been developing a CXL SW development Kit,
SMDK[1], since 2021 March working with industry and academic partners.
Meantime, we gained some kernel requirements from the works and customized SMDK kernel.

 Also, CXL technology has been evolving thanks to many industry’s efforts.
As a result, CXL adoption stage is gradually moving forward from basic enablement to real-world memory tiering
usecases. Around the stage, we would like to discuss CXL requirements and introduce some of SMDK’s kernel changes
to kernel maintainers/contributors here.

 But, please do not get us wrong. We want to explain our thoughts and approaches, but never force the approach.
Personally, I majored OS and experienced kernel development since v2.4 around 2004.
I respect kernel experts and strongly believe OS should be changed for a rationale reason and public use.

[1] SMDK: https://github.com/openMPDK/SMDK

https://github.com/openMPDK/SMDK

5

 A system with CXL DRAM would consider a memory tiering solution.
In terms of a memory tiering solution, it is typical that the solution attempts to
locate hot data on near memory, and cold data on far memory as accurately as possible.

 The hot/coldness of data is determined by a memory consumer while near/far memory is determined by a
memory provider. Thus, memory consumer needs an identifier to determine near/far memory.

 As memory vendor, SMDK put more weight on near/far memory determinism rather than hot/cold determinism,
offering memory tiering interfaces for a memory consumer context at user/kernelspace.

 The following 5 requirements and 2 proposals are originated from the backgrounds.

Memory Tiering Abstraction

Locality
Cold
Data

Hot
Data

Latency Far
Memory

Near
Memory

Memory Provider

Memory Consumer

Background - Memory Tiering Solution

6

CXL Requirements (1)

 1. CXL DRAM identifier (API and ABI)

Issue: a user/kernel context has to use the node id of a CXL memory-

node to access CXL DRAM.

Thought: Node id would be ephemeral information that can be changed.

In addition, it does not present a near/far attribute of the node. A

userspace and kernelspace memory tiering solution need API and/or ABI

to identify near/far memory node.

 2. Prevention of unintended CXL page migration

Issue: In order to store swapped-out page on far memory(CXL DRAM), a

page on near memory(DIMM DRAM) is allocated while zswap works.

Thought: On the swap flow, a context that was employed a far memory

should not be promoted to employ near memory accidentally.

Node ID

near? far?

Could be changed during

logical memory on/offline,

physical hot add/remove

VMM

User

Kernel

CXL

Page PFRA

Zswap

(frontswap)

DDR

Page

Diskswap

CXL->DDR

promotion

7

LSF/MM – SMDK Proposal (1)

 We provide userspace/kernelspace programming interfaces to explicitly (de)allocate memory out of
DIMM DRAM and CXL DRAM.

– Syscall - mmap(), mbind(), set_mempolicy()

– Kernelspace - alloc_page()

 Currently, only a userspace context is able to allocate CXL DRAM implicitly.

– Kernelspace has to request CXL memory explicitly to avoid unpluggable condition by chance.

Syscall sys_mmap
(GFP_NORMAL)

sys_mmap
(GFP_EXMEM)

Allocator, Binder
(libc, libnuma, etc)

mmap
(,,,MAP_NORMAL,,)

mmap
(,,,MAP_EXMEM,,)

User

Usersapce Memory Tiering

Kernelspace
Memory Tiering

zswap pagecache TPPalloc_page
(GFP_NORMAL)

alloc_page
(GFP_EXMEM)

explicit

sys_mmap()

mmap(,,,,,)

implicit

alloc_page ()

mbind(,, MPOL_F_ZONE_NOEXMEM / EXMEM),
set_mempolicy(,, MPOL_F_ZONE_NOEXMEM /EXMEM),

mbind(,,)
set_mempolicy(,,)

... ...
Kernel

explicit

8

CXL Requirements (2)

 3. CXL DRAM pluggability

Issue: a random unmovable allocation can make a CXL DRAM unpluggable.

It happened out of kernelspace - pinning for metadata such as struct task_struct, page, zone, etc - or even rarely

userspace - pinning for DMA buffer.

By the way, we should separately think logical memory on/offline and physical memory add/remove for this issue.

Thought: a CXL DRAM should be able to be used in a selective manner, pluggable or unpluggable.

I apology for confusion while discussion. Don't get this wrong. Those are mutual-exclusive, so it cannot happen at the

same time on a single CXL DRAM channel.

CXL.mem

CXL Node

ZONE_NORMAL: free_pagelist

Unmovable

Page

page

allocation

fail to offline/remove

9

CXL Requirements (2)

4. Too many CXL nodes appearing in userland

Issue: many CXL memory nodes would be appeared to userland along with development of a CXL capable server, switch,

and fabric topology. Currently, a userland needs to be aware and manage the nodes using a 3rd party SW such as

numactl and libnuma. e.g.) lead to aggregated bandwidth among the CXL nodes.

Thought: Kernel would provide an abstraction layer to deal with the node seamlessly.

Traditionally a node implies multiple memory channels from the same distance, so we thought that multiple CXL DRAMs

can be appeared as a single node as well as separated nodes.

By the way, node is the largest management unit in MM. i.e.) Node - Zone – Page. Also, historically a new zone has been

added to properly deal with a new different HW and SW algorithm. What if the management dimension for a single CXL

DRAM would be smaller than node? or do we need a superset node?

CXL
Node 1

CXL.mem

CXL
Node 2

CXL.mem

CXL
Node 3

CXL.mem

User

Kernel
CXL

Node N

CXL.mem

…

numactl

HW

userspace management

10

CXL Requirements (2)

 5. Flexible ways to use CXL DRAM to allow a variety of potential usecases

Issue : -

Thought:

– CXL channel interleaving(HW), DDR/CXL channel interleaving(BIOS)  +software interleaving

– HDM grouping(BIOS)  +after OS boot

11

LSF/MM – SMDK Proposal (2)

 A new zone, ZONE_EXMEM as a separated logical management dimension for physical CXL DRAM device.

 What ZONE_EXMEM concern?

 1. Pluggability

– Not confine movable or unmovable attribute

– It is the same with ZONE_NORMAL in that aspect, but it works on CXL DRAM

 2. CXL Identifier for

– Beneath the Syscall and kernel allocator

– MAP_EXMEM and GFP_EXMEM flag traverse free_pagelist of ZONE_EXMEM

 3. Node Abstraction

– Node – Zone_EXMEM(1:CXL N) – Subzone(1:CXL 1) – Buddy list

– Capacity/Bandwidth and Aggregation/Isolation

 e.g.) mdadm --create /dev/md0 --level=0 --raid-devices=2 /dev/sdb1 /dev/sdc1

 e.g.) cxl group-add --target_node 1 --dev cxl1 cxl2

 4. Zone level Algorithm (potential)

– Logical Management for CXL - Compaction, Reclaim watermark

– Error handling - RAS, Switch/Fabric connection error

– Async operation - Background (FW Update, Sanitize, etc)

Memory
Node

CXL.mem CXL.mem CXL.mem

ZONE_EXMEM

management

User

Kernel

Memory Node

ZONE
EXMEM

ZONE
NORMAL

Buddylist [CXL_DEVICE #N]Buddylist [CXL_DEVICE #2]Buddylist [CXL_DEVICE #1]

CXL sub
zone#N

…CXL sub
zone#2

……CXL sub
zone#1

Sub Zone: CXL.mem = 1:1

buddylist buddylist buddylist

ZONE_EXMEM : CXL.mem = 1 : N

..

12

Thank you !

