
[LSF/MM/BPF TOPIC]

SMDK inspired MM changes for CXL

Kyungsan Kim / Samsung Electronics

2

On behalf of SMDK* team

 We appreciate LSF/MM/BPF program committee for inviting and giving us the discussion opportunity.

 Also, we sincerely appreciate all the experts here for the advices, comments, interests on this topic.

SMDK*: Scalable Memory Development Kit, Samsung CXL SW for CXL Memory

3

Agenda Today

 Background

 CXL Requirement and SMDK Proposal

4

Background - SMDK

 CXL is a promising technology that leads to fundamental changes in computing architecture.

 As CXL DRAM provider, Samsung has developed both CXL DRAM HW and SW over last couple of years.
To facilitate adoption and widespread of CXL DRAM, we have been developing a CXL SW development Kit,
SMDK[1], since 2021 March working with industry and academic partners.
Meantime, we gained some kernel requirements from the works and customized SMDK kernel.

 Also, CXL technology has been evolving thanks to many industry’s efforts.
As a result, CXL adoption stage is gradually moving forward from basic enablement to real-world memory tiering
usecases. Around the stage, we would like to discuss CXL requirements and introduce some of SMDK’s kernel changes
to kernel maintainers/contributors here.

 But, please do not get us wrong. We want to explain our thoughts and approaches, but never force the approach.
Personally, I majored OS and experienced kernel development since v2.4 around 2004.
I respect kernel experts and strongly believe OS should be changed for a rationale reason and public use.

[1] SMDK: https://github.com/openMPDK/SMDK

https://github.com/openMPDK/SMDK

5

 A system with CXL DRAM would consider a memory tiering solution.
In terms of a memory tiering solution, it is typical that the solution attempts to
locate hot data on near memory, and cold data on far memory as accurately as possible.

 The hot/coldness of data is determined by a memory consumer while near/far memory is determined by a
memory provider. Thus, memory consumer needs an identifier to determine near/far memory.

 As memory vendor, SMDK put more weight on near/far memory determinism rather than hot/cold determinism,
offering memory tiering interfaces for a memory consumer context at user/kernelspace.

 The following 5 requirements and 2 proposals are originated from the backgrounds.

Memory Tiering Abstraction

Locality
Cold
Data

Hot
Data

Latency Far
Memory

Near
Memory

Memory Provider

Memory Consumer

Background - Memory Tiering Solution

6

CXL Requirements (1)

 1. CXL DRAM identifier (API and ABI)

Issue: a user/kernel context has to use the node id of a CXL memory-

node to access CXL DRAM.

Thought: Node id would be ephemeral information that can be changed.

In addition, it does not present a near/far attribute of the node. A

userspace and kernelspace memory tiering solution need API and/or ABI

to identify near/far memory node.

 2. Prevention of unintended CXL page migration

Issue: In order to store swapped-out page on far memory(CXL DRAM), a

page on near memory(DIMM DRAM) is allocated while zswap works.

Thought: On the swap flow, a context that was employed a far memory

should not be promoted to employ near memory accidentally.

Node ID

near? far?

Could be changed during

logical memory on/offline,

physical hot add/remove

VMM

User

Kernel

CXL

Page PFRA

Zswap

(frontswap)

DDR

Page

Diskswap

CXL->DDR

promotion

7

LSF/MM – SMDK Proposal (1)

 We provide userspace/kernelspace programming interfaces to explicitly (de)allocate memory out of
DIMM DRAM and CXL DRAM.

– Syscall - mmap(), mbind(), set_mempolicy()

– Kernelspace - alloc_page()

 Currently, only a userspace context is able to allocate CXL DRAM implicitly.

– Kernelspace has to request CXL memory explicitly to avoid unpluggable condition by chance.

Syscall sys_mmap
(GFP_NORMAL)

sys_mmap
(GFP_EXMEM)

Allocator, Binder
(libc, libnuma, etc)

mmap
(,,,MAP_NORMAL,,)

mmap
(,,,MAP_EXMEM,,)

User

Usersapce Memory Tiering

Kernelspace
Memory Tiering

zswap pagecache TPPalloc_page
(GFP_NORMAL)

alloc_page
(GFP_EXMEM)

explicit

sys_mmap()

mmap(,,,,,)

implicit

alloc_page ()

mbind(,, MPOL_F_ZONE_NOEXMEM / EXMEM),
set_mempolicy(,, MPOL_F_ZONE_NOEXMEM /EXMEM),

mbind(,,)
set_mempolicy(,,)

... ...
Kernel

explicit

8

CXL Requirements (2)

 3. CXL DRAM pluggability

Issue: a random unmovable allocation can make a CXL DRAM unpluggable.

It happened out of kernelspace - pinning for metadata such as struct task_struct, page, zone, etc - or even rarely

userspace - pinning for DMA buffer.

By the way, we should separately think logical memory on/offline and physical memory add/remove for this issue.

Thought: a CXL DRAM should be able to be used in a selective manner, pluggable or unpluggable.

I apology for confusion while discussion. Don't get this wrong. Those are mutual-exclusive, so it cannot happen at the

same time on a single CXL DRAM channel.

CXL.mem

CXL Node

ZONE_NORMAL: free_pagelist

Unmovable

Page

page

allocation

fail to offline/remove

9

CXL Requirements (2)

4. Too many CXL nodes appearing in userland

Issue: many CXL memory nodes would be appeared to userland along with development of a CXL capable server, switch,

and fabric topology. Currently, a userland needs to be aware and manage the nodes using a 3rd party SW such as

numactl and libnuma. e.g.) lead to aggregated bandwidth among the CXL nodes.

Thought: Kernel would provide an abstraction layer to deal with the node seamlessly.

Traditionally a node implies multiple memory channels from the same distance, so we thought that multiple CXL DRAMs

can be appeared as a single node as well as separated nodes.

By the way, node is the largest management unit in MM. i.e.) Node - Zone – Page. Also, historically a new zone has been

added to properly deal with a new different HW and SW algorithm. What if the management dimension for a single CXL

DRAM would be smaller than node? or do we need a superset node?

CXL
Node 1

CXL.mem

CXL
Node 2

CXL.mem

CXL
Node 3

CXL.mem

User

Kernel
CXL

Node N

CXL.mem

…

numactl

HW

userspace management

10

CXL Requirements (2)

 5. Flexible ways to use CXL DRAM to allow a variety of potential usecases

Issue : -

Thought:

– CXL channel interleaving(HW), DDR/CXL channel interleaving(BIOS) +software interleaving

– HDM grouping(BIOS) +after OS boot

11

LSF/MM – SMDK Proposal (2)

 A new zone, ZONE_EXMEM as a separated logical management dimension for physical CXL DRAM device.

 What ZONE_EXMEM concern?

 1. Pluggability

– Not confine movable or unmovable attribute

– It is the same with ZONE_NORMAL in that aspect, but it works on CXL DRAM

 2. CXL Identifier for

– Beneath the Syscall and kernel allocator

– MAP_EXMEM and GFP_EXMEM flag traverse free_pagelist of ZONE_EXMEM

 3. Node Abstraction

– Node – Zone_EXMEM(1:CXL N) – Subzone(1:CXL 1) – Buddy list

– Capacity/Bandwidth and Aggregation/Isolation

 e.g.) mdadm --create /dev/md0 --level=0 --raid-devices=2 /dev/sdb1 /dev/sdc1

 e.g.) cxl group-add --target_node 1 --dev cxl1 cxl2

 4. Zone level Algorithm (potential)

– Logical Management for CXL - Compaction, Reclaim watermark

– Error handling - RAS, Switch/Fabric connection error

– Async operation - Background (FW Update, Sanitize, etc)

Memory
Node

CXL.mem CXL.mem CXL.mem

ZONE_EXMEM

management

User

Kernel

Memory Node

ZONE
EXMEM

ZONE
NORMAL

Buddylist [CXL_DEVICE #N]Buddylist [CXL_DEVICE #2]Buddylist [CXL_DEVICE #1]

CXL sub
zone#N

…CXL sub
zone#2

……CXL sub
zone#1

Sub Zone: CXL.mem = 1:1

buddylist buddylist buddylist

ZONE_EXMEM : CXL.mem = 1 : N

..

12

Thank you !

