
Circuit Solver C++ Code Generator
Command Line Interface Tool

User Guide

https://github.com/OpenRealTimeSimulation

Matthew Milton

December 23, 2021

https://github.com/OpenRealTimeSimulation


Copyright © 2019-2021 Matthew Milton.

Permission is granted to copy and distribute this document verbatim so long as the copyright
notice and this permission notice is preserved on all copies.

Courtesy to Michele Difronzo, Dhiman Chowdhury, Mark Vygoder, and Andrea Benigni for
their contributions to the project and some figures presented in this document.



https://github.com/OpenRealTimeSimulation

Contents

1 Introduction 4
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Where to Download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Licensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Usage 7

3 Netlist Format 8

4 Supported Components 10
4.1 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1.1 Basic Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.2 Ideal Voltage Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.3 Dependent Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Basic Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Power Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3.1 Three-Leg Bridge Converter with Ideal Switches . . . . . . . . . . . . . . . . 12
4.3.2 One-Leg Bridge Converter with Ideal Switches and Anti-parallel Diodes . . 13
4.3.3 Three-Leg Bridge Converter with Ideal Switches and Anti-parallel Diodes . 14
4.3.4 N-Level, 3-Leg Modular Multilevel Converter with Ideal Switch Half-Bridge

Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.5 N-Level, 1-Leg Modular Multilevel Converter with Ideal Switch + Anti-

parallel Diode Half-Bridge Modules . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.6 Dual Active Bridge Converter with Ideal Switches and Transformer Equiv-

alency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Port Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4.1 Norton Equivalent Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Misc. Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.5.1 Ideal Switch with Series Resistance and Inductance . . . . . . . . . . . . . . 19
4.5.2 Mutual Inductance with Three Windings . . . . . . . . . . . . . . . . . . . . 20

5 Generated Solver Functions 21
5.1 Solver Function Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 How to Use in Offline C++ Simulation Testbench . . . . . . . . . . . . . . . . . . . . 22

Circuit Solver C++ Code Generator CLI Tool UG 2

https://github.com/OpenRealTimeSimulation


CONTENTS https://github.com/OpenRealTimeSimulation

6 FPGA Synthesis of Generated Solvers with Xilinx Vivado HLS 26
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Solver HLS Procedure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Top-Level Function Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4 Using Fixed Point Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.5 HLS Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.5.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.5.2 Array Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.5.3 Inlining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.5.4 Loop Unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.5.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.6 Simulating and Synthesizing in Xilinx Vivado HLS . . . . . . . . . . . . . . . . . . . 32

7 Troubleshooting 33
7.1 Netlist Syntax Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 Singularity and Solver Stability Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.2.1 Singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2.2 Solver Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8 Building CLI Tool From Source 36
8.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.2 Downloading the Tools Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.3 Building the Sources Manually using GCC-based Suites . . . . . . . . . . . . . . . . 37
8.4 Building The Sources Using Code::Blocks IDE . . . . . . . . . . . . . . . . . . . . . 38

Appendix 39
LB-LMC Method Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Circuit Solver C++ Code Generator CLI Tool UG 3

https://github.com/OpenRealTimeSimulation


https://github.com/OpenRealTimeSimulation

Chapter 1

Introduction

1.1 Overview

As part of the Open Real-Time Simulation (ORTiS) framework, the C++ Circuit Solver Code
Generator Command Line Interface (CLI) tool, shortened to solver codegen tools, generates C++
source code for solvers of multi-physics networked systems such as electrical, power electronic,
and energy conversion systems. These systems are defined with a netlist file which is input to the
tool. The solver algorithm used in the generated solvers is the Latency-Based Linear Multi-step
Compound (LB-LMC) method.

The solver codegen tools create simulation solvers of given systems as C++ function defini-
tions tailored to the given system expressed by a plain-text netlist. The function definitions are
created by the tools through first parsing the parameters and component listings in the given
netlist. Then, the tools search for and customize model code taken from a built-in or user pro-
vided library of component model definitions using given parameters. Next, the tools generate
C++ code to solve system equations and read/write I/O signals. Finally, the tools concatenate
the resultant model and system solver code into a C++ solver function definition. These C++
solver definitions can then be passed to High-Level Synthesis (HLS) tools, such as Xilinx Vivado
HLS, to be systematically converted to FPGA execution cores described in Hardware Descrip-
tion Languages (HDL) such as VHDL or Verilog. These FPGA execution cores of the solvers can
then be incorporated in FPGA-based real-time simulator designs to simulate the system of in-
terest. Moreover, the generated solver definitions can also be used for high performance offline
simulations or CPU-based real-time simulation as well.

This document serves as a basic user guide for how to use the CLI tool and to define netlists
of systems. Information on the generated solver function definitions and how to utilize them in
offline testbenches, and to synthesize them for FPGA execution, are also provided.

1.2 Where to Download

The Solver Code Generator CLI tool (solver codegen tool) is part of the Open Real-Time Simu-
lation (ORTiS) framework. Tools and development libraries of the ORTiS framework are found
here on Github:
https://github.com/OpenRealTimeSimulation

Circuit Solver C++ Code Generator CLI Tool UG 4

https://github.com/OpenRealTimeSimulation
https://github.com/OpenRealTimeSimulation


CHAPTER 1. INTRODUCTION https://github.com/OpenRealTimeSimulation

Presently, the solver codegen tools are publicly distributed only as C++ source code, with
binaries occasionally released. C++ source code of the tools can be compiled with C++14 com-
pliant compiler suites such as GCC or Mingw-w64, among others. The tools may have static
dependencies on third-party libraries which must be downloaded from their respective sources
and configured within your C++ build environment. See Chapter 8 for instructions on how to
build the sources.

1.3 Licensing

The LB-LMC Solver C++ Code Generator CLI tool is licensed under the GNU General Public
License (GPL) v3.0 (https://www.gnu.org/licenses/).

Librar(y/ies) used by the tool are licensed under their own terms by their respective owners.

1.4 Literature

The LB-LMC solver method, and the codegen solver tools generating solvers using this method,
has been presented in several publications over the years. The following are papers in which the
LB-LMC method, the codegen tools, and their applications have been proposed.

The main papers on the solver codegen tools:

M. Milton, A. Benigni, “ORTiS solver codegen: C++ code generation tools for high performance,
FPGA-based, real-time simulation of power electronic systems,” SoftwareX, vol. 13, Jan. 2021.
Available: [https://www.sciencedirect.com/science/article/pii/S2352711021000054]

M. Milton, A. Benigni, “Software and Synthesis Development Libraries for Power Electronic
System Real-Time Simulation,” 2019 IEEE Electric Ship Technologies Symposium (ESTS), Arling-
ton VA, 2019, Aug. 2019.
Available: [https://ieeexplore.ieee.org/document/8847940]

The LB-LMC solver method was first proposed in this paper:

A. Benigni and A. Monti, “A Parallel Approach to Real-Time Simulation of Power Electronic
Systems,” IEEE Trans. Power Electronics, vol. 30, no. 9, pp. 5192–5206, Sept. 2015.
Available: [https://ieeexplore.ieee.org/document/6918539]

The use of the LB-LMC method and the solver codegen tools for power electronic system
FPGA-based real-time simulation are presented in the following papers (earliest to latest):

M. Milton, “A Comparison of FPGA Implementation of Latency-Based Solvers for Power Elec-
tronic System Real-Time Simulation,” M.S. Thesis. University of South Carolina, Columbia, SC,
2016. Available: [http://www.proquest.com/], [https://scholarcommons.sc.edu/etd/3903/]

M. Milton, A. Benigni, and J. Bakos, “System-Level, FPGA-Based, Real-Time Simulation of Ship
Power Systems,” IEEE Transactions on Energy Conversion, vol. 32, no. 2, pp. 737-747, June 2017.
Available: [https://ieeexplore.ieee.org/document/7894204]

Circuit Solver C++ Code Generator CLI Tool UG 5

https://github.com/OpenRealTimeSimulation
https://www.gnu.org/licenses/
https://www.sciencedirect.com/science/article/pii/S2352711021000054
https://ieeexplore.ieee.org/document/8847940
https://ieeexplore.ieee.org/document/6918539
http://www.proquest.com/
https://scholarcommons.sc.edu/etd/3903/
https://ieeexplore.ieee.org/document/7894204


CHAPTER 1. INTRODUCTION https://github.com/OpenRealTimeSimulation

M. Difronzo, M. Milton, M. Davidson, and A. Benigni, “Hardware–in–the–loop testing of high
switching frequency power electronics converters,” 2017 IEEE Electric Ship Technologies Sympo-
sium (ESTS), Arlington VA, 2017, pp. 299–304.
Available: [https://ieeexplore.ieee.org/document/8069297]

M. Milton, M. Vygoder, J. Gudex, R. Cuzner, A. Benigni, “Power Electronic System Real-Time
Simulation on National Instruments FPGA Platforms,” 2019 IEEE Electric Ship Technologies Sym-
posium (ESTS), Arlington VA, 2019, Aug. 2019.
Available: [https://ieeexplore.ieee.org/document/8847934]

M. Milton, A. Benigni, and A. Monti, “Real-Time Multi-FPGA Simulation of Energy Conver-
sion Systems,” IEEE Transactions on Energy Conversion, Dec. 2019.
Available: [https://ieeexplore.ieee.org/document/8822485]

M. Difronzo, Md. M. Biswas, M. Milton, H. Ginn III, and A. Benigni, “System Level Real-Time
Simulation and Hardware-in-the-Loop Testing of MMCs,” Energies, vol. 14, no. 11, p. 3046, May
2021.
Available: [https://www.mdpi.com/1996-1073/14/11/3046]

M. Vygoder, M. Milton, J. Gudex, R. Cuzner, A. Benigni, “A Hardware-in-the-Loop Platform
for DC Protection,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 3,
pp. 2605–2619, June 2021.
Available: [https://ieeexplore.ieee.org/document/9171341]

Circuit Solver C++ Code Generator CLI Tool UG 6

https://github.com/OpenRealTimeSimulation
https://ieeexplore.ieee.org/document/8069297
https://ieeexplore.ieee.org/document/8847934
https://ieeexplore.ieee.org/document/8822485
https://www.mdpi.com/1996-1073/14/11/3046
https://ieeexplore.ieee.org/document/9171341


https://github.com/OpenRealTimeSimulation

Chapter 2

Usage

This chapter presents how to use the solver codegen CLI tool in your command shell.

The basic usage of the Solver C++ Code Generator CLI tool to generate C++ source code from
a netlist file is this in a command shell/console:

codegen netlist_file

where netlist file is the name of the netlist file. The codegen tool will parse the netlist file and then
produce a single C++ solver function definition header file for the network system described in
the netlist. The header file will be stored in current directory in the console. Examples of using
the tool include:

codegen rlc_circuit.netlist

codegen X:\ some_dir\system_models\ShipZonalSystem.netlist

./ codegen /projects/models/inverter_model.netlist

No real restrictions are put on the name of the netlist file itself, though in general, the file can be
postfixed with .netlist for easier user identification of the type of file. If no argument is given to
the tool, it will print out information about itself. Should one want to get help from the tool, or
learn more about the tool, one can pass the options -help and -about respectively to the tool, like
so:

codegen -help

codegen -about

Circuit Solver C++ Code Generator CLI Tool UG 7

https://github.com/OpenRealTimeSimulation


https://github.com/OpenRealTimeSimulation

Chapter 3

Netlist Format

This chapter discusses the format for netlist files or strings used to define system networks that
will have a solver generated for by the codegen tools.

The netlist file that the codegen CLI tool can read is merely a plain-text file. Each line of the
file specifies only one of either a command, a comment, or a component definition. Commands
are started by a # sign, comments are started with a %, and component definitions are started by
the name of the component.

The following is a specification for netlist file format.

% some comment goes here.

Lines starting with % are comments used to document the netlist. These lines are ignored by the
codegen tool. For multi-line comments, merely start each line with the % character.

#name system_model_label

The #name command defines the name/label of the system model which the netlist defines. The
label must only start with or contain letters (a-z, A-Z) or underscore ( ). Digits (0-9) can also
be in the label but the label cannot start with digits. Other characters and white space are not
allowed in the label. All netlists must contain this command to be valid (mandatory).

#const constant_label constant_value

The #const command defines a constant value which can be applied in the component defini-
tions. The constant label item defines the label of the constant, while constant value is the numer-
ical value assigned to the constant. Only one constant definition per given label is allowed. The
label must only start with or contain letters (a-z, A-Z) or underscore ( ). Digits (0-9) can also
be in the label but the label cannot start with digits. Other characters and white space are not
allowed in the label. The value must be a decimal value defined in base 10 (i.e. 5.5, 3, 100.0e-6,
etc.) and cannot be defined as a math expression nor in terms of another constant. Constants are
used in component definitions by merely refering to the constant label. During parsing of the
netlist, the constant labels will be replaced by the corresponding value.

ComponentType component label ( param1 , . . . , paramP ) {node index1 , . . . , node indexN}

The above is a component definition (listing). All component listings start with the type of the
component ComponentType (Resistor, VoltageSource, etc.), followed by the component’s unique
label. The label must only start with or contain letters (a-z, A-Z) or underscore ( ). Digits (0-9)
can also be in the label but the label cannot start with digits. Other characters and white space are
not allowed in the label. After the label, the component’s parameters are defined in parentheses

Circuit Solver C++ Code Generator CLI Tool UG 8

https://github.com/OpenRealTimeSimulation


CHAPTER 3. NETLIST FORMAT https://github.com/OpenRealTimeSimulation

(), such as time step, capacitance, converter levels, etc. Each component type can have its own
number of parameters. The parameters must be decimal values defined in base 10 (i.e. 5.5, 3,
100.0e-6, etc.) and cannot be defined as a math expression. Parameters can be set by constants
defined by the #const command; merely place constant label into where parameter can go.

The node/terminal connections of the component into the system are defined in curly brack-
ets {}. Each index must be a positive integer (0 and up) and cannot contain exponents (such as
25e3). The indices must increment sequentially from 0 onwards for system to be solvable. The
index value 0 refers to the grounding/common node in the system network. All system net-
works must have at least 1 common node (node 0) to be nonsingular and uniquely solvable. In
general, all components will have at least 2 or more node/terminal connections. Constants can
be used for the node index values, but the constant value must follow the rules for index values.

Note that each line of a netlist must contain only 1 statement: comment, command, or com-
ponent definition. Multiple statements in a line will cause errors and/or malformed generated
code. All labels should be unique in the netlist (one instance) and must only start with or contain
letters (a-z, A-Z) or underscore ( ). Digits (0-9) can also be in the labels but the labels cannot start
with digits. Other characters and white space are not allowed in any label. Currently, no math
expressions are supported in the netlist format.

Figure 3.1: RLC Circuit Example with Nodes Indexed

An example of a netlist file for a RLC circuit system, seen in Figure. 3.1 is shown below:

% an example of a netlist: example.netlist

#name RLC_Circuit

#const DT 50.0e-9

#const V 100.0

#const RV 0.001

#const R 10.0

#const L 1e-3

#const C 10.0e-3

% components of model

VoltageSource vs (V,RV) {1, 0}

Resistor res (R) {2,0}

Inductor ind (DT , L) {1,2}

Capacitor cap (DT,C) {2,0}

Circuit Solver C++ Code Generator CLI Tool UG 9

https://github.com/OpenRealTimeSimulation


https://github.com/OpenRealTimeSimulation

Chapter 4

Supported Components

This chapter lists all of the component types currently supported by the codegen tool. All com-
ponents listed in the netlist definition format.

4.1 Sources

4.1.1 Basic Sources

Figure 4.1: Basic Sources; top fixed sources, bottom functional sources

VoltageSource l a b e l ( voltage , s e r i e s r e s i s t a n c e ) {P ,N}

CurrentSource l a b e l ( current ) {P ,N}

Funct ionalVoltageSource l a b e l ( s e r i e s r e s i s t a n c e ) {P ,N}

Funct ionalCurrentSource l a b e l ( ) {P ,N}

The series resistance parameter cannot be zero. Indices P and N are the respective positive and
negative terminals.

The functional sources will be generated to take as input each time step a real-valued signal
which is the magnitude of the source.

4.1.2 Ideal Voltage Sources

IdealVol tageSource l a b e l ( voltage , s o l u t i o n i d ) {P ,N}

Idea lFunct ionalVol tageSource l a b e l ( s o l u t i o n i d ) {P ,N}

Circuit Solver C++ Code Generator CLI Tool UG 10

https://github.com/OpenRealTimeSimulation


CHAPTER 4. SUPPORTED COMPONENTS https://github.com/OpenRealTimeSimulation

Figure 4.2: Ideal Voltage Sources; left fixed, right functional

Indices P and N are the respective positive and negative terminals.
The functional source will be generated to take as input each time step a real-valued signal

which is the magnitude of the source.
The use of ideal voltage sources induces the use of modified nodal analysis within the gen-

erated LB-LMC solver, where instead of the ideal voltage sources’ across terms are computed as
solution, their through terms are computed as solution (think of super nodes in nodal analysis).
With modified nodal analysis, the ideal voltage source introduces new equations into Gx=b at
the end of the system. Due to this setup, each ideal voltage source is given an unique solution ID
number which is a value greater than the largest node index in the netlist and must be integrally
sequential to this node index (in other words, if a system has 6 non-zero nodes, the ideal voltage
sources should have solution ids 7, 8, 9, etc., without any integers skipped). The use of solution
ID numbers ensures the ideal voltage source equations are inserted into last rows of the system.

Note that the use of ideal voltage sources, due to modified nodal analysis, can make the
LB-LMC solver less efficient. Consider using VoltageSource and FunctionalVoltageSource compo-
nents instead, which are non-ideal from series resistance, where ideal voltage sources are not
absolutely necessary. The series resistance of the voltage sources can be set small (≤1.0e-6) to
approximate being ideal.

4.1.3 Dependent Sources

Figure 4.3: Voltage Controlled Current Source

VoltageControl ledCurrentSource l a b e l ( transconductance ) {PV,NV, PI , NI}

Indices PV and NV are the respective positive and negative terminals where the voltage
input is measured from. Indices PI and NI are the respective positive and negative terminals of
the controlled current source. Transconductance is the voltage-to-current gain Y of the controlled
source (I = YV).

Note that VoltageControlledCurrentSource can be used to model transconductance between two
ports of a system.

Dependent sources are different from functional sources in that dependent sources’ magni-
tudes are directly affected by measured voltages and currents within the given system without
delays. Whereas with functional sources, their magnitude is based on an input signal given
to simulation solver. Functional sources can be setup to be like dependent sources but can in-
sert 1 unit delay in the measurement inputs. Use dependent sources where the magnitude of
the source is based on voltage and currents measured in the system and no inserted delays are
allowed for modeling (i.e., op-amp modeling).

Circuit Solver C++ Code Generator CLI Tool UG 11

https://github.com/OpenRealTimeSimulation


CHAPTER 4. SUPPORTED COMPONENTS https://github.com/OpenRealTimeSimulation

4.2 Basic Elements

R e s i s t o r l a b e l ( r e s i s t a n c e ) {P ,N}

Capaci tor l a b e l ( t ime step , capac i tance ) {P ,N}

Inductor l a b e l ( t ime step , inductance ) {P ,N}

Figure 4.4: Basic Elements

The parameters cannot be zero. Indices P and N are the respective positive and negative ter-
minals. The time step parameter is the simulation time step length (in seconds) for discretization
of the components state equations. All components that have this parameter should use same
value for the time step length. Capacitor and Inductor component state equations are implicitly
discretized with Trapezoidal method and solved using nodal methods.

4.3 Power Electronics

This section covers the power electronics components presently supported natively in the code-
gen tools. All of these components are considered non-linear and therefore their models are
explicitly integrated as specified in LB-LMC method.

4.3.1 Three-Leg Bridge Converter with Ideal Switches

Figure 4.5: 3-Leg Bridge Converter with Ideal Switches

BridgeConverter3LegIdealSwitches l a b e l ( t ime step , dc cap , leg ind , l e g r e s ) {P ,G,N,A, B ,C}

Models a 3-leg bridge converter with split-bus (bipolar) DC side. Inductors with series resistance
are in series of each leg terminated at A-C; capacitors are on the DC side (P,N terminals), with

Circuit Solver C++ Code Generator CLI Tool UG 12

https://github.com/OpenRealTimeSimulation


CHAPTER 4. SUPPORTED COMPONENTS https://github.com/OpenRealTimeSimulation

center point at terminal G. The converter can be used for DC/DC, DC/AC, and AC/DC config-
uration. Depending on how converter is connected into system network, it can be of half-bridge,
full-bridge, or ”delta”-bridge configuration. State equations of the converter are discretized ex-
plicitly with a first order method, with time step given by time step. Switching elements are
modeled as purely ideal switches without anti-parallel diodes. Either the upper or lower switch
can be turned on per leg. If the converter is disabled, the switches are replaced with anti-parallel
diodes for diode bridge behavior.

No parameter, sans leg res can be zero. The time step parameter is the simulation time step
length (in seconds) for discretization of the components state equations. All components that
have this parameter should use same value for the time step length. The dc cap is capacitance
of each capacitor on split-bus DC side of converter. Inductance and series resistance of each
inductor on the leg side is set with the leg ind and leg res parameters. Indices P, G, N refer
to respective positive, center-point, and negative terminals of split-bus DC side of converter.
Indices A,B,C refer to the DC or AC leg side of the converter.

This component has four boolean signal inputs, where three are gate signals and one is a
disable signal. The gate signals each control a phase leg, deciding if upper arm is conducting
(high, 1) or lower arm is conducting (low, 0). If the disable signal is high, then the switches are
no longer controlled by the gates, instead acting as diodes whose conduction is dependent solely
on phase leg inductor current.

4.3.2 One-Leg Bridge Converter with Ideal Switches and Anti-parallel Diodes

Figure 4.6: 1-Leg Bridge Converter with Ideal Switches and Anti-parallel Diodes

BridgeConver ter 1LegIdealSwitchesAnt iPara l le lDiodes l a b e l
( t ime step , dc cap , leg ind , l e g r e s , d i o d e t h r e s h o l d v o l t a g e ) {P ,G,N,A}

Models a 1-leg bridge converter with split-bus (bipolar) DC side and anti-parallel diodes across
each switch element. Inductors with series resistance are in series of the 1 leg terminated at A; ca-
pacitors are on the DC side (P,N terminals), with center point at terminal G. The converter can be
used for DC/DC, DC/AC, and AC/DC configuration. State equations of the converter are dis-
cretized with Euler Forward method, with time step given by time step. Switching elements are
modeled as purely ideal switches with ideal anti-parallel diodes. The upper and lower switches
can be turned on or off independently per leg.

Note that this component definition must be done in a single line within a netlist; the defini-
tion is shown on multiple lines here to fit on the page.

Circuit Solver C++ Code Generator CLI Tool UG 13

https://github.com/OpenRealTimeSimulation


CHAPTER 4. SUPPORTED COMPONENTS https://github.com/OpenRealTimeSimulation

No parameter, sans leg res can be zero. The time step parameter is the simulation time step
length (in seconds) for discretization of the components state equations. All components that
have this parameter should use same value for the time step length. The dc cap is capacitance
of each capacitor on split-bus DC side of converter. Inductance and series resistance of each
inductor on the leg side is set with the leg ind and leg res parameters. The threshold voltage
across the anti-parallel diodes for when they conduct is set with diode threshold voltage parameter.
Note that the threshold voltage is not the forward bias voltage of the diodes since the diodes are
purely ideal short or open with no series source; the threshold voltage is merely the level that
must be exceeded for a diode to conduct. Indices P, G, N refer to respective positive, center-point,
and negative terminals of split-bus DC side of converter. Index A refer to the DC or AC leg side
of the converter.

This component can be used with a unipolar DC bus by tying the G to a high resistance to
common and setting dc cap to double the capacitance expected across the DC P and N terminals.

This component has two boolean signal inputs acting as gate signals for the switches. If
first gate signal is high, then upper arm conducts; same for second gate signal and lower arm.
Should both gate signals be high, the converter will short out. Otherwise, if both gate signals are
low, conduction of the converter is based on the diode conduction, determined from their across
voltage and through currents.

4.3.3 Three-Leg Bridge Converter with Ideal Switches and Anti-parallel Diodes

Figure 4.7: 3-Leg Bridge Converter with Ideal Switches and Anti-parallel Diodes

BridgeConver ter 3LegIdealSwitchesAnt iPara l le lDiodes l a b e l
( t ime step , dc cap , leg ind , l e g r e s , d i o d e t h r e s h o l d v o l t a g e ) {P ,G,N,A, B ,C}

The same as BridgeConverter 1LegIdealSwitchesAntiParallelDiodes above but the 3 leg version. Ter-
minals B and C are the terminals for the additional legs.

This component can be used with a unipolar DC bus by tying the G to a high resistance to
common and setting dc cap to double the capacitance expected across the DC P and N terminals.

This component has six boolean signal inputs acting as gate signals for the switches. The first
two signals control phase leg A, next control leg B, and last control leg C. If first gate signal is
high, then upper arm of phase leg A conducts; same for second gate signal and lower arm of
phase leg A. The remaining gate signals control the other arms of the converter. Should both
gate signals of a phase leg be high, the converter will short out. Otherwise, if both gate signals
are low, conduction of the converter is based on the diode conduction, determined from their
across voltage and through currents.

This component model was used in this journal paper:
(M. Vygoder, et al.) [https://ieeexplore.ieee.org/document/9171341].

Circuit Solver C++ Code Generator CLI Tool UG 14

https://github.com/OpenRealTimeSimulation
https://ieeexplore.ieee.org/document/9171341


CHAPTER 4. SUPPORTED COMPONENTS https://github.com/OpenRealTimeSimulation

4.3.4 N-Level, 3-Leg Modular Multilevel Converter with Ideal Switch Half-
Bridge Modules

Figure 4.8: N-Level, 3-Leg Modular Multilevel Converter with Half Bridge Modules using only
ideal switches

ModularMulti levelConverter HalfBridgeModules l a b e l
(

t ime step ,
b l e e d i n g r e s i s t a n c e ,
arm inductance ,
arm res is tance ,
sw mod capacitance ,
i n i t c a p v o l t a g e ,
num levels

) {P ,N,A, B ,C}

Models a 3-leg Modular Multilevel Converter (MMC) with half-bridge switching modules each
containing a capacitor and two ideal switches (diodes not fully modeled). The component type
name may be altered to ModularMultilevelConverter 3LegHalfBridgeModules in future versions of
the tools. Note that this component definition must be done in a single line within a netlist; the
definition is shown on multiple lines here to fit on the page.

• time step is the time step length for the discretization of the converter model, in seconds;
cannot be zero.

• bleeding resistance is the bleeding parallel resistance value across the switching module
capacitors; cannot be zero.

• arm inductance is the series inductance value of the converter arms; cannot be zero.

• arm resistance is the series resistance value of the converter arms; can be zero.

• sw mod capacitance is the switching module capacitor value; cannot be zero.

• init cap voltage is the initial voltage of each of the switching module capacitors at simula-
tion startup.

• num levels is the number of voltage levels for the MMC; cannot be less than 2.

Circuit Solver C++ Code Generator CLI Tool UG 15

https://github.com/OpenRealTimeSimulation


CHAPTER 4. SUPPORTED COMPONENTS https://github.com/OpenRealTimeSimulation

This model takes as signal inputs boolean gate signals per switching module (one signal per
module). If a gate signal is high, the corresponding module capacitor is inserted into arm; else,
the module is bypassed. This model also outputs capacitor voltages and arm inductor currents
as real-valued signals for use in measurements and control feedback.

This MMC component can exhibit some numerical instability if the legs do not have sufficient
current draw during operation. To remedy this issue, either ensure the component is sufficiently
loaded during simulation, utilize linear filtering circuits on terminals in netlist, or insert linear
parasitic components on the MMC terminals (like small capacitance) in netlist as seen in real
systems.

This component model was used in this journal paper:
(M. Difronzo, et al.) [https://www.mdpi.com/1996-1073/14/11/3046].

4.3.5 N-Level, 1-Leg Modular Multilevel Converter with Ideal Switch + Anti-
parallel Diode Half-Bridge Modules

Figure 4.9: N-Level, 1-Leg Modular Multilevel Converter with Half Bridge Modules using ideal
switches + anti-parallel diodes

ModularMult i levelConverter 1LegHalfBridgeAntiParal le lDiodes l a b e l
(

t ime step ,
num sm per arm ,
sm capacitance ,
arm inductance ,
arm res is tance ,
i n i t c a p v o l t a g e ,
i n i t i n d c u r r e n t ,
d iode vol tage threshold ,
d i o d e c u r r e n t t h r e s h o l d

) {P ,N,A}

Models a 1-leg Modular Multilevel Converter (MMC) with half-bridge switching modules each
containing a capacitor with two ideal switches and their ideal anti-parallel diodes. Unlike
the other component model BridgeConverter 3LegIdealSwitchesAntiParallelDiodes, this model
uses fully modeled ideal anti-parallel diodes across the switches and can handle all conduction

Circuit Solver C++ Code Generator CLI Tool UG 16

https://github.com/OpenRealTimeSimulation
https://www.mdpi.com/1996-1073/14/11/3046


CHAPTER 4. SUPPORTED COMPONENTS https://github.com/OpenRealTimeSimulation

modes of the modules (inserted, bypassed, open, short). Note that this component definition
must be done in a single line within a netlist; the definition is shown on multiple lines here to fit
on the page.

• time step is the time step length for the discretization of the converter model, in seconds;
cannot be zero.

• num sm per arm is the integer number of switching modules per arm of the converter.
Must be one or greater.

• sm capacitance is the switching module capacitor value; cannot be zero.

• arm inductance is the series inductance value of the converter arms; cannot be zero.

• arm resistance is the series resistance value of the converter arms; can be zero.

• init cap voltage is the initial voltage of each of the switching module capacitors at simula-
tion startup; should be greater than 0.

• init ind current is the initial current of each of arm going down the arms from top at sim-
ulation startup.

• diode voltage threshold is the conduction voltage threshold for diodes to start conducting;
NOT necessarily related to forward bias voltage. Should be greater than 0.

• diode current threshold is the conduction current threshold for diodes to continue con-
ducting; NOT necessarily related to forward bias current. Should be >= 0.

• P node index of positive DC terminal of converter (upper arm).

• N node index of negative DC terminal of converter (lower arm).

• A node index of leg/phase A terminal of converter (between arms).

This model takes as signal inputs boolean gate signals per switching module (two signals per
module). If a switch module’s gate signals are:

• Stop=1, Sbot=0, then it is inserted

• Stop=0, Sbot=1, then it is bypassed

• Stop=1, Sbot=1, then it is shorted

• Stop=0, Sbot=0, then it’s conduction is dependent on diode conduction

This model also outputs capacitor voltages and arm inductor currents as real-valued signals for
use in measurements and control feedback.

The model is discretized using an explicit first order method. To build a 3-Leg MMC using
this component, use three of these components in parallel, where the P terminals are connected,
same for N terminals.

This MMC component can exhibit some numerical instability if the legs do not have sufficient
current draw during operation. To remedy this issue, either ensure the component is sufficiently
loaded during simulation, utilize linear filtering circuits on terminals in netlist, or insert linear
parasitic components on the MMC terminals (like small capacitance) in netlist as seen in real
systems.

Circuit Solver C++ Code Generator CLI Tool UG 17

https://github.com/OpenRealTimeSimulation


CHAPTER 4. SUPPORTED COMPONENTS https://github.com/OpenRealTimeSimulation

4.3.6 Dual Active Bridge Converter with Ideal Switches and Transformer
Equivalency

Figure 4.10: Dual Active Bridge Converter with Ideal Switches and Transformer Equivalency

DualAct iveBridgeConverter IdealSwitches l a b e l
(

t ime step ,
r input1 ,
r input2 ,
r t ransformer1 ,
r t ransformer2 ,
r magnetizing ,
l magnetizing ,
c f i l t e r 1 ,
c f i l t e r 2 ,
l t rans former1 ,
l t rans former2 ,
t u r n s r a t i o

) {P1 , N1, P2 , N2}

Models a Dual Active Bridge (DAB) converter with ideal switches and transformer equiv-
alency. Note that this component definition must be done in a single line within a netlist; the
definition is shown on multiple lines here to fit on the page.

• time step is the time step length for the discretization of the converter model, in seconds;
cannot be zero.

• The r input1 and r input2 parameters are input terminal resistances R11, R22 of the con-
verter sides. Cannot be zero and should be significantly small (≤ 1mΩ).

• The r transformer1 and r transformer2 parameters are primary and secondary side series
resistances R1, R2 of the transformer. Cannot be zero.

• The r magnetizing and l magnetizing parameters are transformer equivalency magnetiz-
ing resistance Rm and inductance Lm. Cannot be zero.

• The c filter1 and c filter2 parameters are primary and secondary side filter capacitances
C1, C2. Cannot be zero.

• The l transformer1 and l transformer2 parameters are primary and secondary side series
inductances L1, L2 of the transformer. Cannot be zero.

• turns ratio is the turns ratio N of the transformer; Cannot be zero.

Circuit Solver C++ Code Generator CLI Tool UG 18

https://github.com/OpenRealTimeSimulation


CHAPTER 4. SUPPORTED COMPONENTS https://github.com/OpenRealTimeSimulation

4.4 Port Modeling

4.4.1 Norton Equivalent Port

Figure 4.11: Norton Port

NortonPort l a b e l ( conductance , transconductance a , transconductance b , . . . ) {a , b , Pa , Na, Pb , Nb, . . . }

The NortonPort component represents a port of a multiport system with internal sources in-
side. Across the two terminals P and N, a functional current source, a series of parallel transcon-
ductances (VCCS) from other ports, and a conductance are placed. In effect, this component is
like a combination of a FunctionalCurrentSource component, a collection of VoltageControlledCur-
rentSource components, and a Resistor component.

Indices a and b are the respective positive and negative terminals where the port is connected.
Indices Pa and Na, and so on, are the respective positive and negative terminals of the other ports
that share transconductance with the port. Conductance is the conductance seen across the port
itself. Transconductance a and so on are the transconductances from other ports seen by this port.
Note this component can have a variable number of parameters and terminal connections. The
limitation is there must be an even number of terminal connections and the number of transcon-
ductances must be half of the number of terminal connections minus 2 (each transconductance
must have 2 terminals associated with another port a, b, etc.).

4.5 Misc. Components

Components that don’t fit well in other sections.

4.5.1 Ideal Switch with Series Resistance and Inductance

Figure 4.12: Ideal Switch with Series Resistance and Inductance

Ser iesRLIdealSwitch l a b e l ( t ime step , inductance , r e s i s t a n c e ) {P ,N}

Models an ideal switch with series inductance and resistance. None of the parameters can be
zero. Indices P and N are the respective positive and negative terminals. The time step param-
eter is the simulation time step length (in seconds) for discretization of the components state

Circuit Solver C++ Code Generator CLI Tool UG 19

https://github.com/OpenRealTimeSimulation


CHAPTER 4. SUPPORTED COMPONENTS https://github.com/OpenRealTimeSimulation

equations. The component state equation is discretized with explicit Runge Kutta 4th order
method. If switch is opened, the inductor current is instantaneously set to zero.

This component is useful for modeling basic switch boxes and fault scenarios, but should
NOT be used for creating switching power electronic systems due to inefficiency in doing so.

4.5.2 Mutual Inductance with Three Windings

Figure 4.13: Mutual Inductance with 3 Coupled Windings

MutualInductance3 l a b e l ( t ime step , L1 , L2 , L3 , M12, M23, M31) {P1 , N1, P2 , N2, P3 , N3}

Models three inductors mutually coupled with following state equation:V1
V2
V3

 =

 L1 M12 M31
M12 L2 M23
M31 M23 L3

 İ1
İ2
İ3

 (4.1)

This component can be used for 3-leg/phase transformers, filters, baluns, coupled lines, etc.
None of the parameters can be zero and the matrix formed by the parameters must be invertible
(nonsingular). The indices correspond to positive (P) and negative (N) terminals of each inductor
(1,2,3). The time step parameter is the simulation time step length (in seconds) for discretization
of the components state equations. The component state equations are discretized with a first
order explicit method.

Circuit Solver C++ Code Generator CLI Tool UG 20

https://github.com/OpenRealTimeSimulation


https://github.com/OpenRealTimeSimulation

Chapter 5

Generated Solver Functions

This chapter discusses the C++ solver functions generated by the solver codegen tools.

5.1 Solver Function Definition

The solver generated by the codegen CLI tool specifically for a given netlist-defined system
network is defined as a C++ function template, similar to the general example seen below.
template <i n t ins tance , typename rea l>
void sys tem solver
(

r e a l x out [ 5 0 ] ,
r e a l& y i n t e r n a l s o l u t i o n 1 ,
r e a l * y i n t e r n a l s o l u t i o n 2 ,
. . . ,
r e a l y i n t e r n a l s o l u t i o n M [ 5 ] ,
r e a l u component input1 ,
r e a l u component input2 [ 8 ] ,
bool u component input3 [ 1 2 ] ,
. . .
i n t u component inputN

)
{

/ / s o l v e r c o d e g o e s h e r e
}

These definitions are stored entirely into a single C++ header (.h, .hpp) file.
Every call to a solver function in a C++ environment or application solves the solver’s asso-

ciated system network for a single simulation time step. Every state and variable that persists
between time steps are stored as static variables within the function.

As function templates, the solvers take as template parameters two arguments when the
function is called: instance and real. The instance parameter indicates what instance of the solver
function is being called. As a solver function might be used to solve several identical systems
in parallel during testing, and static variables persist between every call to same function, the
instance parameter allows multiple specializations of same solver function to exist in same appli-
cation without sharing of static variables. Every call to same function but with different instance
number will treat each call as a call to different function, despite being from same template; in
effect, the instance value changes the signature of the function. Calls to the solver function with
same instance value will call same instance of the function. The instance number can be any
integer value. In general, for running only one instance of the solver function, one can merely
use 0 for the instance value.

Circuit Solver C++ Code Generator CLI Tool UG 21

https://github.com/OpenRealTimeSimulation


CHAPTER 5. GENERATED SOLVER FUNCTIONS https://github.com/OpenRealTimeSimulation

The other template parameter, real, specifies the data type used for numerical, real-valued,
decimal values within the solver function. Traditionally, real is set to either float (single precision)
or double (double precision) floating point data types, especially for offline or CPU-based real-
time simulation. For low-level embedded CPU or FPGA based simulation, real can be set to
fixed point types, such as IQ for Texas Instruments platforms or ap fixed for Xilinx HLS FPGA
tool suite, among many others. Generally, real should be set to a data type that can store real
numerical values and can be assigned decimal literal values.

Each generated solver function (template) has a set of arguments which correspond to the
I/O signal ports and solution outputs for the system network (defined from a netlist) being
solved. These arguments will be tailored specifically for the system network that to the solver
corresponds. Every solver function will always have the x out[] argument which is an output
port containing the system nodal solutions for a single time step that the function is called.
Usually, this argument will contain node voltage and branch current (of ideal voltage source)
solutions. The x out[] is always a fixed sized array of type real, with the size dependent on the
number of system solutions. Index 0 of x out[] corresponds to voltage of node 1, index 1 to node
2, and so forth, with last indices corresponding to currents of any ideal voltage sources that
might exist in the system.

A solver function may contain output arguments for the internal solutions of component
quantities in the system network, solved for a single time step. These arguments are always pass-
by-reference types, either references (&), pointers (*), or be fixed sized arrays ([]), dependent on
component definition in the system network. The existence of these internal solution arguments
in the function definition are dependent on the components contained in the system network and
may not be present if contained components do not have these outputs. The data type of these
output arguments are usually real, but can be of different types, dependent on the components.
Labels of the arguments is dependent on the components.

A solver function may also contain input arguments to control behavior or values of com-
ponents in the system network. The function will read these input arguments once every time
step when the function is called. These arguments are usually pass-by-value types or can be
constant (read only) fixed-sized arrays ([]). The data type of the arguments can be either C++
integral types (bool, char, int, etc.) or be real. The existence of these input arguments and their
type, referencing, and label are dependent on the components contained in the system network.

A generic example on how these solver functions are called is shown below.

/ / l o c a l v a r i a b l e s t o s t o r e i n p u t s and o u t p u t s o f t h e s o l v e r
double x out [ 1 0 ] ; / / ou tp ut sys t em s o l u t i o n s
double y c u r r e n t i n d u c t o r 1 = 0 . 0 ; / / ou tp ut i n t e r n a l s o l u t i o n f o r a component
bool u c o n v e r t e r g a t e s [ 6 ] = {0 , 0 , 0 , 0 , 0 , 0} ; / / i n p u t g a t e s i g n a l s f o r a power e l e c t r o n i c c o n v e r t e r

/ / . . . some t h i n g s happen h e r e in t h e mid d l e . . .

/ / c a l l i n g t h e s o l v e r f o r one t ime s t e p , us ing i n s t a n c e 0 and d o u b l e d a t a t y p e f o r r e a l
system solver <0,double> ( x out , y current inductor1 , u c o n v e r t e r g a t e s ) ;

5.2 How to Use in Offline C++ Simulation Testbench

For the generated solver function (templates) to be used for simulation, a C++ testbench can be
developed to utilize the solver function. A typical C++ testbench using a solver function is like
the example code presented below.
# include <iostream> / / i n c l u d e c o n s o l e I /O

Circuit Solver C++ Code Generator CLI Tool UG 22

https://github.com/OpenRealTimeSimulation


CHAPTER 5. GENERATED SOLVER FUNCTIONS https://github.com/OpenRealTimeSimulation

# include <s t r i n g> / / i n c l u d e C++ s t r i n g s
# include <fstream> / / i n c l u d e f i l e I /O
# include <cmath> / / i n c l u d e math f u n c t i o n s l i k e t r i g f u n c s
# include <vector> / / i n c l u d e C++ v e c t o r c o n t a i n e r

# include ” system solver . hpp” / / i n c l u d e t h e s o l v e r f u n c t i o n t e m p l a t e d e f i n i t i o n

/ / a l s o i n c l u d e o t h e r h e a d e r s h e r e f o r v a r i o u s l i b r a r i e s o r t y p e s ne ede d f o r t h e t e s t b e n c h

/ / f o r w a r d d e c l a r a t i o n s f o r h e l p e r f u n c t i o n s f o r t e s t b e n c h , f u n c t i o n s d e f i n e d e l s e w h e r e by t h e u s e r
void updateConverterControl ( bool gates [ 6 ] , double x [ 1 0 ] ) ;
void l o g S o l u t i o n s ( std : : vector<double>& log , double time , double x [ 1 0 ] ) ;
void dumpSolutionsToFile ( const std : : s t r i n g& filename , std : : vector<double>& log , long num solutions , long num steps ) ;

i n t main ( )
{

const s t a t i c double DT = 5 0 . 0 e −9; / / t ime s t e p ( s )
const s t a t i c double TFINAL = 100 .0 e −3; / / c o m p l e t e s i m u l a t i o n t ime ( s )

double x out [ 1 0 ] = { 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 } ; / / ou tp ut sys t em s o l u t i o n s
double y c u r r e n t i n d u c t o r 1 = 0 . 0 ; / / ou tp ut i n t e r n a l s o l u t i o n f o r a component
bool u c o n v e r t e r g a t e s [ 6 ] = {0 , 0 , 0 , 0 , 0 , 0} ; / / i n p u t g a t e s i g n a l s f o r a power e l e c t r o n i c c o n v e r t e r

std : : vector<double> log ; / / l o g v e c t o r t o s t o r e sys t em s o l u t i o n s

double time = 0 . 0 ;

/ / s t a r t s i m u l a t i o n l o o p

l o g S o l u t i o n s ( log , time , x out ) ; / / a l l z e r o s l o g g e d f o r t ime t =0 s

std : : cout << ”Running Simulat ion . . . ” << std : : endl ;

while ( time < TFINAL)
{

/ / up da t e s i m u l a t i o n t ime

time += DT;

/ / up da t e t h e c o n v e r t e r c o n t r o l wi th some f u n c t i o n d e f i n e d e l s e w h e r e

updateConverterControl ( u co nve r te r ga tes , x out ) ;

/ / up da t e s o l v e r f o r t h i s t ime s t e p

system solver <0,double> ( x out , y current inductor1 , u c o n v e r t e r g a t e s ) ;

/ / l o g r e s u l t s somewhere

l o g S o l u t i o n s ( log , time , x out ) ;

}

std : : cout << ”done .\n” << std : : endl ;

/ / l o g s i m u l a t i o n r e s u l t s t o f i l e

dumpSolutionsToFile ( ” s i m r e s u l t s . csv ” , log , 10 , long (TFINAL/DT ) ) ;

return 0 ;
}

This particular testbench is a simple C++ source file containing the main function that is the body
of the testbench application. The testbench starts by including common C++ STL features for
I/O, strings, vectors, and math that could be used in a testbench. Headers for other libraries or
definitions can be included using the #include preprocessor directive. Then, the system network
function template definition, generated by the CLI tool elsewhere, is included into the testbench
via the system solver.hpp header. Next, forward declarations for some helper functions that a user

Circuit Solver C++ Code Generator CLI Tool UG 23

https://github.com/OpenRealTimeSimulation


CHAPTER 5. GENERATED SOLVER FUNCTIONS https://github.com/OpenRealTimeSimulation

may write for their testbench is provided so the functions can be called in the testbench; these
functions are assumed to be defined elsewhere, either in the main source file or in other source
files. Finally, the main function body of testbench is defined.

In the testbench’s main function, true constants (const static) are defined for the simulation
time step and simulation time length. Then, scoped variables are created to store the output
solutions and input signals for the solver function. Next, a vector is defined to store solutions
logged from the solver each time step. Finally, the simulation is performed in the main body via
a loop where each iteration is for each simulation time step. The body of this loop defines the
operations to be performed for each time step.

In the simulation loop, each time step starts with the simulation time being updated by
adding the time step length to it. Then, any control or signal operations are performed, either
with direct statements or via functions and objects. In this case, converter control is being up-
dated. Then, a specialization of the solver function template is called, being instance 0 and using
double data type for real values. The function takes as arguments the array to store the system
solutions for this time step, a variable to store a component’s current (passed by reference), and
an array of boolean values to act as gate signal inputs for a simulated power converter. A single
call to the solver function updates it and its states for a single time step. At end of the simulation
loop iteration, the simulation time and solutions are logged into a vector called log. After the
iteration, if simulation time is less than final time, then the simulation continues, otherwise, the
loop is ended to finish the simulation. Once the simulation has finished, the logged solutions
can then be dumped to file somewhere or be plotted. In this case, the results are dumped to a
CSV file via an user defined function labeled dumpSolutionsToFile.

This example testbench is a very simple and general one and ones for more complicated
system networks, with sophisticated external control algorithms, under complex testing will
likely contain numerous files and source definitions, with inclusion of many libraries to provide.
Moreover, the testbench would likely use more structured design for such testing. Design of
sophisticated testbenches are outside scope of this document and leans more into traditional
software engineering and development. However, some 3rd party libraries or tools are listed
here which can be useful to create offline testbenches and support them:

• Datalogger [https://github.com/MatthewMilton/DataLogger] - useful datalogger type to
log data into memory and dump to file

• Kst2 [https://kst-plot.kde.org/] - External plotter application to plot data files

• Gnuplot [http://www.gnuplot.info/] - External plotter application to plot either from
files or I/O streams/pipes

• Eigen3 [http://eigen.tuxfamily.org/index.php?title=Main_Page] - Linear Algebra li-
brary (useful for vectorized control design or other work)

• Boost C++ [https://www.boost.org/] - general purpose C++ libraries for numerous things
not found in C++ STL.

• Mathworks Matlab/Simulink [https://www.mathworks.com/products/matlab.html] - com-
merical linear algebra and simulations platform which supports integration of C++ code
(including the generated solvers).

Circuit Solver C++ Code Generator CLI Tool UG 24

https://github.com/OpenRealTimeSimulation
https://github.com/MatthewMilton/DataLogger
https://kst-plot.kde.org/
http://www.gnuplot.info/
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://www.boost.org/
https://www.mathworks.com/products/matlab.html


CHAPTER 5. GENERATED SOLVER FUNCTIONS https://github.com/OpenRealTimeSimulation

• GNU Octave [https://www.gnu.org/software/octave/] - open-source linear algebra and
simulations platform (similar to Matlab) which supports integration of C++ code (includ-
ing the generated solvers).

Circuit Solver C++ Code Generator CLI Tool UG 25

https://github.com/OpenRealTimeSimulation
https://www.gnu.org/software/octave/


https://github.com/OpenRealTimeSimulation

Chapter 6

FPGA Synthesis of Generated Solvers with
Xilinx Vivado HLS

6.1 Summary

The LB-LMC based solvers generated with the codegen tools can be synthesized to execute on
Field Programmable Gate Array (FPGA) devices as Intellectual Property (IP) execution cores.
This conversion of the solvers into FPGA IP cores involves taking the C++ code for the original
solver and then converting the code automatically into a Register Transfer Logic (RTL) behav-
ioral design described in a Hardware Description Language (HDL); this process is called High-
Level Synthesis (HLS). From the HDL code of the solver, the IP core of the solver is defined.
Then, this IP core can then be Low-Level Synthesized (LLS) into a digital logic hardware design,
described with a logic netlist, which can be implemented on the logic fabric of a FPGA.

The HLS process to allow LB-LMC solvers to run on Xilinx branded FPGAs can be performed
with the Xilinx Vivado HLS (VHLS) application. This application provides tools to simulate C++
designs in testbenches, HLS the C++ code into HDL code, validate the HDL code for correctness
to the C++ code, export the HDL code into an IP core, and implement the core to report on FPGA
resource usage and timing of the design. Other applications can be used to HLS LB-LMC solver
cores for Xilinx and other FPGA platforms (Intel/Altera, Lattice, etc.), but these are not tested
and therefore unsupported.

This chapter will go over the procedure and provide information and examples on HLS
solver cores with Xilinx Vivado HLS for Xilinx FPGAs.

For more detailed information on how to HLS C++ code into IP cores with Xilinx Vivado HLS
suite, it is recommended to read the user guide for this suite here (Xilinx UG871 v2019.2 PDF):
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug871-vivado-high-level-synthesis-tutorial.pdf

6.2 Solver HLS Procedure Overview

The general process for creation and FPGA synthesis of a LB-LMC solver is as follows:

1. Generate and test solver offline with double precision floating point real type

2. Wrap inline solver function within top-level function

3. Create Vivado HLS project and copy solver and testbench sources to it

Circuit Solver C++ Code Generator CLI Tool UG 26

https://github.com/OpenRealTimeSimulation
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug871-vivado-high-level-synthesis-tutorial.pdf


CHAPTER 6. FPGA SYNTHESIS OF GENERATED
SOLVERS WITH XILINX VIVADO HLS

https://github.com/OpenRealTimeSimulation

4. Set solver internal data type real to fixed-point (Xilinx ap fixed) and test again

5. Set HLS directives for latency, port interfaces, and inlining

6. HLS-ize solver top-level function into HDL code

7. (OPTIONAL) Run C(++)/RTL co-simulation of solver HDL code to validate it

8. Export solver HDL code as IP core and validate for resource/timing results (LLS)

9. Include solver IP core into FPGA application

/ / h e a d e r f i l e ( t o p l e v e l c o r e . hpp )

# i f n d e f GUARD HPP
# def ine GUARD HPP

# include ” s o l v e r f u n c . hpp”

void t o p l e v e l c o r e
(
p o r t r e a l x out [N] ,
PORT TYPE * output1 ,
. . .

PORT TYPE * outputA ,
PORT TYPE input1 ,
. . .

PORT TYPE inputB
) ;

# endi f / / GUARD HPP

/ / s o u r c e f i l e ( t o p l e v e l c o r e . cpp )

# include ” t o p l e v e l c o r e . hpp”

void t o p l e v e l c o r e
(
p o r t r e a l x out [N] ,
PORT TYPE * output1 ,
. . .

PORT TYPE * outputA ,
PORT TYPE input1 ,
. . .

PORT TYPE inputB
)
{
/ / HLS d i r e c t i v e s can go h e r e

TYPE input1 inner , . . . , inputB inner ;
/ / c o n v e r t PORT TYPE inputX t o TYPE i n p u t X i n n e r h e r e

r e a l x o u t i n n e r [N] ;
TYPE output1 inner , . . . , outputA inner ;

s o l v e r f u n c ( x out inner , &output1 inner , . . . , &outputA inner ,
input1 inner , . . . , inputB inner ) ;

/ / c o n v e r t r e a l / TYPE o u t p u t s t o p o r t r e a l / PORT TYPE and f o r w a r d them out h e r e
}

Figure 6.1: Solver FPGA Core Top-Level Function Sources

Circuit Solver C++ Code Generator CLI Tool UG 27

https://github.com/OpenRealTimeSimulation


CHAPTER 6. FPGA SYNTHESIS OF GENERATED
SOLVERS WITH XILINX VIVADO HLS

https://github.com/OpenRealTimeSimulation

6.3 Top-Level Function Definition

Once we have generated a LB-LMC solver function, we can wrap this function inside of a top-
level function that will serve as the definition of the FPGA IP core that will be synthesized.
This top-level function will provide the port interface of the core, handling the type/word-size
conversions between the ports and the solver function parameters, and provide HLS directives
to set how the top-level function will be HLS. While the solver function is generated as a header
defined function, the top-level function will contain both a header (.h, .hpp) file for the function
declaration and includes, and a source file (.cpp) for the definition. The need for a source file
(.cpp) is needed as VHLS requires the top-level function for an IP core to be defined in a source
file, rather than only a header file; the header file is needed if the top-level function is to be used
in a testbench.

An example pseudo declaration and definition of a solver top-level function is shown in
Figure. 6.1. Here, the top-level function calls the solver function, passing its parameters as argu-
ments to the solver function. The input/output parameters of the top-level function, the ports of
the resultant IP core, can have potentially different types (port real, PORT TYPE) than that of the
solver function (real, TYPE). Therefore, the top-level function should provide internal variables
and type conversions to handle differences between types of the top-level function parameters
and the called solver function arguments. If the top-level function parameters are same type as
the solver function arguments, than no conversion or internal variables are necessary.

Note that the top-level function cannot be a template to be HLSed as Vivado HLS does not
support HLS of top-level function templates. The top-level function must be specific and con-
crete to support HLS. All function templates called by the top-level, including the solver function
template, must be specialized with template arguments when called to be HLS by this suite.

6.4 Using Fixed Point Data Types

While floating point representation is mostly used for real numbers in C++ due to its large dy-
namic range and precision, floating point is actually very computationally expensive. Many
floating point arithmetic operators can each take multiple clock cycles, especially division, to
complete on both CPU and FPGAs, and can take massive amount of resources to reduce this la-
tency. Unlike CPUs which have heavily optimized and fast fixed logic for floating point, FPGAs
devices have performance overhead for their programmable logic and simpler computational
units that need to linked together to create similar floating point logic. Also, FPGAs typically
operate at much lower clock speeds which can handicap their speed to compute on floating
point values compared to CPUs. Though, the main benefit to using floating point on FPGA over
CPU is that multiple floating point operations can be done in parallel with unfixed amount of
independent math units, unlike CPUs which have a small, fixed number of floating point math
units to work with sequentially.

An alternative to floating point is to use fixed point representation. Fixed point stores real
numbers as integer words where one half of the word stores the integral part while the other half
stores the fractional part. The decimal point between integral and fractional parts is held fixed
between the two, with fixed amount of bits assigned to each part, hence the name. Due to the
fixed and integral nature, fixed point math operators are much more computationally cheaper
than floating point. On FPGAs, these fixed point operations can be done in less than a single
clock cycle, even division, while still maintaining a low usage of resources. This benefit of fixed-

Circuit Solver C++ Code Generator CLI Tool UG 28

https://github.com/OpenRealTimeSimulation


CHAPTER 6. FPGA SYNTHESIS OF GENERATED
SOLVERS WITH XILINX VIVADO HLS

https://github.com/OpenRealTimeSimulation

point representation makes it ideal to achieve nanosecond range simulation time steps with the
LB-LMC solvers on FPGAs.

Though C++ does not have a fixed-point data type per se, it can be done by using inte-
ger words, with a binary decimal point being assumed in each word. However, Xilinx VHLS
provides an optimized fixed-point type that supports arbitrary precision/range and synthesizes
efficiently for FPGA execution. This type is called ap fixed and is a templated numerical type that
can be parameterized to support various word sizes and precision, along with rounding meth-
ods. The ap fixed type supports most common math operators in C++. The common instancing
of this type for the LB-LMC solvers looks like this:

# include <ap f ixed . h> / / i n c l u d e a p f i x e d t e m p l a t e d e f i n i t i o n
ap f ixed <64 , 24 , AP RND> f i x e d p o i n t v a r i a b l e ;
/ / 64 b word s i z e , 24 b i n t e g r a l s i z e , use t r a d i t o n a l rounding

In the above case, a fixed point variable is instanced with 64-bits word size, 24-bits for integral
part, 40-bits for fractional part, and rounding is set to traditional rounding method; other round-
ing approaches such as truncation (AP TRN) are supported which can impact math numerical
precision and resource usage/performance. So the ap fixed types can be used, we need to in-
clude the ap fixed.h header which is only available in Xilinx VHLS. To use this fixed point type in
LB-LMC solver functions, we can typedef the real data type of the solver function to be this type,
like so:

typedef ap f ixed<WORDSIZE, INTSIZE , AP RND> r e a l ;

where WORDSIZE and INTSIZE are placeholders for size in bits for particular solver function.

6.5 HLS Directives

As the C++ code of the LB-LMC solver top-level function only defines the abstract behavior of
the solver and not how it is implemented into a logic hardware IP core, we must define special
HLS directives. These HLS directives instruct the HLS tools on how to synthesize the C++ code
into a hardware-oriented RTL behavioral design in a HDL, such as VHDL and Verilog, which
can be made into an implementable IP core. With these directives, we can specify the execu-
tion latency of the core, the interface for data ports, the usage of dataflow or pipelined designs,
resource allocation, and much more. Under Vivado HLS (VHLS), we can define these HLS di-
rectives directly in the C++ source code as #pragma commands. The #pragma commands of these
HLS directives are simply placed within a function body or region of code at the top. Below is
discussed the most common HLS directives used for LB-LMC solver functions.

6.5.1 Latency

Latency is the number of execution clock cycles for a FPGA core to update all of its outputs
when it is triggered to update. By default, VHLS will automatically choose a latency for a C or
C++ function based on its analysis of the code and general HLS strategies balancing latency and
resource usage. Usually, the VHLS will pick a latency that will not match the desired one, so
the latency needs to be manually set. For the LB-LMC solvers, we typically wish to run with
a latency of zero so that the solver can update every clock cycle to achieve very low time steps
(nanosecond range). To set the latency, we can use the titular latency HLS directive in VHLS,
given like so:

Circuit Solver C++ Code Generator CLI Tool UG 29

https://github.com/OpenRealTimeSimulation


CHAPTER 6. FPGA SYNTHESIS OF GENERATED
SOLVERS WITH XILINX VIVADO HLS

https://github.com/OpenRealTimeSimulation

#pragma HLS l a t e n c y min=0 max=0

Here, the minimum and maximum latency is set to equal 0 so that latency will be exactly zero.
A range of desired latencies can be specified with min and max to give the HLS tools some room
to decide, so long as the latency values given are positive integers. Setting both min and max
latency values to same value indicates that an exact latency is requested. Note that if VHLS
cannot find a synthesis solution to meet the requested latency, VHLS will ignore the latency di-
rective and give a warning on why it ignored the directive. The latency directive can be ignored
if the code contains rolled loops, loops with variable number of iterations, pipelined elements,
or multi-cycle operations whose latency does not fit within the top-leveled latency.

6.5.2 Array Partitioning

By default, VHLS usually synthesizes fixed-sized arrays into FPGA memory resources which use
a sequential memory interface (data, address, enable). However, the use of a memory interface
can add latency to a solver function to access each element in the array in sequence. Instead,
we may wish to treat the array as a set of individual elements that can be accessed in parallel as
regular signals. This situation is especially true for the arrays on the input/output parameters
of the solver function, such as x out[]. To direct VHLS to partition a C++ array into individual
elements, we can use the array partitioning directive, like here:

#pragma HLS a r r a y p a r t i t i o n v a r i a b l e =x out dim=0

Here, the array x out is fully partitioned (dim=0) so each element within the array is treated as an
individual object. This directive supports other features but they are usually not needed for the
solvers. Normally, the array partitioning directive is only needed for the input/output arrays of
the top-level solver function as VHLS is usually smart enough to automatically partition internal
fixed-sized arrays, depending on the array’s access pattern. This directive is not used for non-
arrays and must follow after the array is declared/defined in the code.

6.5.3 Inlining

Inlining is where the code of a called function is copied into the region where the function is
being called, effectively dissolving the called function into the code that called it. For VHLS,
it normally synthesizes the bodies of each called function in the top-level individually before
combining the synthesized results into a single unit. However, with inlining, the C++ code
of the functions can be merged into one monolithic unit which for the VHLS can synthesize
and optimize around better. Inlining can allow for redundant resources to be merged into one
resource or outright removed, which can potentially reduce latency and resource usage. To direct
for inlining during HLS, we can use the inline directive like so:

#pragma HLS i n l in e

When this directive is put inside the body of a function definition, the function will then be
inlined into calling regions. For a top-level function to recursively inline all functions it calls into
itself, we can add the recursive option to the directive:

#pragma HLS i n l in e r e c u r s i v e

Note that when code is inlined, the different functional units of code being synthesized is no
longer distinct, being merged all together, and as such can make telling what parts of the code is

Circuit Solver C++ Code Generator CLI Tool UG 30

https://github.com/OpenRealTimeSimulation


CHAPTER 6. FPGA SYNTHESIS OF GENERATED
SOLVERS WITH XILINX VIVADO HLS

https://github.com/OpenRealTimeSimulation

using what amount of latency and resources difficult. To disable inlining of particular functions
for debugging or analysis purposes, you can use off option for the inline HLS directive to tell
VHLS to not inline the function or region that the directive is in. The use of the directive in this
way is as follows:

#pragma HLS i n l in e o f f

6.5.4 Loop Unrolling

Vivado HLS will by default synthesize loops to execute each iteration sequentially, where the
execution latency is increased by one cycle per iteration, as well as adding one cycle to enter and
leave the loop each. However, to achieve zero latency, we need to synthesize the loops so each
iteration can be executed in parallel. This setup can be acheived by unrolling the loop using the
unroll directive within the body of the loop:

#pragma HLS u n r o l l

Consider that unrolling of a loop in VHLS can only work if the loop has a fixed, finite number of
iterations known during synthesis, and each iteration is independent from one another in com-
plex ways (a new iteration cannot depend on results from past iteration). However, iterations
in unrolled loops can depend on one another if pattern can be parallelized (such as summation
into adder trees).

# include ” t o p l e v e l c o r e . hpp”

void t o p l e v e l c o r e
(
p o r t r e a l x out [ 3 ] ,
bool input1 [ 3 ] ,
i n t input2
)
{
#pragma HLS a r r a y p a r t i t i o n v a r i a b l e =x out dim=0
#pragma HLS a r r a y p a r t i t i o n v a r i a b l e =input dim=0
#pragma HLS l a t e n c y min=0 max=0
#pragma HLS i n l in e r e c u r s i v e

r e a l x o u t i n n e r [ 3 ] ;

s o l v e r f u n c ( x out inner , input1 , input2 ) ;

for ( i n t i = 0 ; i < 3 ; i ++)
{
#pragma HLS u n r o l l
x out [ i ] = convertToPortType ( x o u t i n n e r [ i ] ) ; / / func d e f i n e d e l s e w h e r e
}
}

Figure 6.2: HLS Directive Example for Solver Top-Level Function

6.5.5 Example

In Fig. 6.2 is an example of using VHLS directives in a pseudo top-level LB-LMC solver func-
tion, based on Fig. 6.1. This example shows how the array partition HLS directive is used on the
array parameters of the top-level function. A latency directive is used to set latency to equal zero.

Circuit Solver C++ Code Generator CLI Tool UG 31

https://github.com/OpenRealTimeSimulation


CHAPTER 6. FPGA SYNTHESIS OF GENERATED
SOLVERS WITH XILINX VIVADO HLS

https://github.com/OpenRealTimeSimulation

The inline directive with recursive option will inline the function calls solver func() and convert-
ToPortType() into the body of the top-level during synthesis. Finally, we use a unroll directive to
unroll the loop that is converting the type of the internal output elements x out inner[] into that
of x out[] and assigning them to x out[].

6.6 Simulating and Synthesizing in Xilinx Vivado HLS

Once the LB-LMC solver function and its top-level function have been defined, we can begin
simulating and synthesizing them in Xilinx VHLS with fixed-point usage.

See Section 5.2 for how to create C++ testbenches around solver functions or their top-level
function. As of the time this document was released, Vivado HLS (2019+) only support C++03
standard, with limited support for C++11 features. Make sure your testbenches are developed in
C++03 (or limited C++11) and that any 3rd libraries used by the testbenches will compile under
VHLS with this C++ version.

A later version of this document will present details on how to synthesize top-level functions
into FPGA cores under Xilinx VHLS. The general procedure for synthesis and FPGA execution
is the following:

1. Install full version of Vivado HLx suite 2019.2 or higher (either Design or System Edition)

2. Setup Vivado licenses (floating or node-locked) for HLx suite and target FPGAs

3. Create Vivado HLS (VHLS) project

4. Setup FPGA solution target(s) in VHLS project

5. Copy LB-LMC solver top-level C++ files to VHLS project

6. Create/copy testbench C++ files in/to VHLS project

7. Test/simulate solver in testbench with target internal data type (ap fixed, float, etc.)

8. Setup HLS directives for desired latency, timing, and resource allocation

9. Synthesize (HLS) solver top-level to HDL (VHDL, Verilog, SystemC)

10. (Optional) Test/simulate HDL-based solver under C++/RTL co-simulation to validate cor-
rectness to C++ version

11. Export and validate solver top-level HDL as IP core to determine out-of-context timing and
resource usage

12. Copy solver IP core to a Vivado (HDL) project

13. Use solver IP core in desired application under Vivado HDL project

14. Build and load application bitstream onto target FPGA

15. Run the FPGA application

Circuit Solver C++ Code Generator CLI Tool UG 32

https://github.com/OpenRealTimeSimulation


https://github.com/OpenRealTimeSimulation

Chapter 7

Troubleshooting

This chapter goes over common potential issues you may encounter and how to fix them.

7.1 Netlist Syntax Errors

In general, the solver codegen CLI tool will report what type of syntax error has occurred. Follow
Chapter 3 for netlist format and syntax.

Some common errors include the following, along with their fixes.

failed to open given file

Make sure the netlist filename given to codegen tool is correct or that the file exists.

unsupported syntax at line #

Double check that syntax is correct in the given line.

line starts with unsupported sequence , character , or command at line #

Double check that syntax is correct in the given line. Lines can only start with %, #, and compo-
nent names; or, can be empty.

redefined model name at line #

Make sure only one model name, defined with #name, is given in the file.

model name error at line #

Make sure model name is formatted as a valid C++ label.

redefined constant at line #

Make sure a constant with a given label is not defined more than once.

redefined component with same label at line #

Make sure a component with same label is not defined more than once in the netlist.

model name not defined

Make sure the model name, defined with #name, is given in the netlist.

producer doesn ’t exist for given component type

This error occurs when a component defined in a netlist is not supported by the tools. Make sure
a listed component is supported by the tools; see Chapter 4 for supported components.

Circuit Solver C++ Code Generator CLI Tool UG 33

https://github.com/OpenRealTimeSimulation


CHAPTER 7. TROUBLESHOOTING https://github.com/OpenRealTimeSimulation

couldn ’t parse a node index as a number

couldn ’t parse a parameter as a number

These errors occur in component listings where a parameter or node index could not be seen as
a number. Make sure the parameter or index syntax is correctly expressed as a number, as well
as make sure a parameter or node index constant defined earlier in the netlist exists.

couldn ’t find start of node indices

couldn ’t find end of node index/indices

couldn ’t find start of parameters

couldn ’t find end of parameter(s)

These errors occur when the parameters or indices part of a component listing is missing a
bracket; () for parameters, {} for indices. Make sure the parameter and indices lists are delimited
by the appropriate brackets. Also make sure extra brackets are not accidentally included.

7.2 Singularity and Solver Stability Issues

7.2.1 Singularity

During the generation of a solver function for a given system network netlist, you could poten-
tially encounter the following error on singularity:

cannot invert conductance matrix as it is singular

This error occurs when the set of equations generated from the system network definition is
singular. In other words, the system has no unique set of solutions, only infinite number of
sets. This error occurs when the system network equations have circular dependencies between
solutions, where one solution depends on another one, leading to infinite number of solutions
possible rather than the unique one desired. The main culprit for this error is a part of the system
network is floating without a path to the system common (node 0). To fix the error, make sure
the system network has at least one connection to node 0 (common).

Due to nonlinear and switching components being discretized with explicit integration, and
to how the component model can be defined, it is possible a component can naturally decouple
parts of the system network in regards to the set of equations for the system, causing parts of
the system to lose a path to common even if network definition is correct. In other words, parts
of the system can naturally become independent in the set of equations that can end up being
singular from lack of the common path. To fix this, merely add a high resistance path to common
in a part of the network that is decoupled from rest of system by explicitly integrated compo-
nents. Components that are explicitly integrated include all nonlinear and switching compo-
nents (BridgeConverter, DualActiveBridgeConverter, ModularMultilevelConverter), and some
extra components (MutualInductance3, SeriesRLIdealSwitch). Linear components are implicitly
integrated and so never decouples parts of a system. Read on the LB-LMC method and other
Resistive Companion modeling approaches for more details on this subject.

7.2.2 Solver Stability

It is possible that a solver for a system network can become numerically unstable, despite the
model definition being correct. The two main culprits for solver instability is numerical range/-
precision and state latency for a given time step.

Circuit Solver C++ Code Generator CLI Tool UG 34

https://github.com/OpenRealTimeSimulation


CHAPTER 7. TROUBLESHOOTING https://github.com/OpenRealTimeSimulation

Since any computer (CPU or FPGA) are finite machines, they cannot represent numbers with
infinite precision or range. As such, numbers are generally expressed with finite precision and
range where there is a maximum and minimum value that can be stored by given representation.
The generated solvers, using LB-LMC method, often have to deal with very large or small num-
bers during the solving a system network’s set of equations. This situation is especially true for
dealing with small or large value parameters such as resistances, capacitances, and inductances
which may be inverted. Generally, double precision floating point provides more than suffi-
cient range and precision for the generated solvers. However, in using fixed point, care must be
taken to tune the integral and fractional part of the representation to ensure all possible values
occurring during simulation can be represented properly. In cases where the chosen numerical
representation is inadequate to deal with the needed range and precision for a solver, one may
have to modify their model parameters. Otherwise, numerical errors from limited range/pre-
cision can accumulate during simulation, causing eventual instability or at least unacceptable
persistent error.

Another culprit for instability in a solver is state latency (or element’s time constant) for a
given time step. The LB-LMC method is a mixed integration approach where some component
states are integrated explicitly, others implicitly. Generally, implicit integration for discretiza-
tion is inherently more numerically stable than explicit integration, though usually at trade off
of computational cost without term arrangement. Due to mixed integration, the solver stability
can be less stable than a purely implicitly integrated approach, especially if a system network
contains many components that are explicitly integrated (nonlinear, switching components). Sta-
bility of the solver should be the same for implicitly integrated methods if system network con-
tains only linear components (which are implicitly integrated with classic trapezoidal method).
However, despite using mixed integration, the LB-LMC based solvers are generally stable and
comparable to other methods for a wide range of typical energy system models, especially at the
small time steps achievable by the method in real-time. Despite this, there are fringe scenarios
where the solvers can become unstable. Typically, these scenarios involve using too small of
latency elements (capacitance, inductance, etc.) in nonlinear (explicitly integrated) components
for a time step chosen, causing time constants to be smaller than time step which can cause ac-
cumulating errors. Other, less common scenarios can involve a transient quantity in a system
to raise faster than what an explicitly integrated component model can handle. A common fix
for instability issues is to add damping, parasitic, or filtering linear circuit elements that might
be present in physical systems. In this way, the system model becomes more implicitly inte-
grated overall, bringing numerical stability up, as well as potentially becoming more realistic or
detailed physically.

Circuit Solver C++ Code Generator CLI Tool UG 35

https://github.com/OpenRealTimeSimulation


https://github.com/OpenRealTimeSimulation

Chapter 8

Building CLI Tool From Source

This chapter presents how to build the circuit solver codegen tool from C++ source files.

8.1 Prerequisites

To build the CLI tool of the codegen tools, you will need the following:

• ORTiS Circuit Solver Codegen Tools source

[https://github.com/OpenRealTimeSimulation/SolverCodegen]

• Eigen 3 Linear Algebra C++ Library

[https://eigen.tuxfamily.org/index.php?title=Main_Page]

• C++ compiler suite supporting C++14 or higher

(GCC, MinGW-w64, Intel, MSVC, etc.)

• (OPTIONAL) C++ IDE or make/build system

(Code::Blocks, Visual Studio, Eclipse, etc.) or (make, cmake, etc.)

Presently, the tools are internally built using MinGW-w64 (GCC 10.3.0) provided through
MSYS2 [https://www.msys2.org/], though other suites should work as well. The IDE Code::Blocks
(20.03) [https://www.codeblocks.org/] is used to internally manage building the sources.

8.2 Downloading the Tools Source

The sources of the codegen tools are available on Github. These sources can be downloaded
either manually or using GIT version control system (available on most major OS platforms).

To download the sources manually, go to the URL of the tools on github (see Prerequisites sec-
tion) using your web browser of choice, click on the Code▼ button, and then click on download
ZIP. Save the downloaded ZIP file of the sources to a directory of your choice and unzip/unpack
the contents there.

To download the sources through GIT cloning, merely run the following in your console/shell
of choice within the directory which to you wish to clone the sources:

g i t c lone ht tps :// github . com/OpenRealTimeSimulation/SolverCodegen . g i t

Circuit Solver C++ Code Generator CLI Tool UG 36

https://github.com/OpenRealTimeSimulation
https://github.com/OpenRealTimeSimulation/SolverCodegen
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://www.msys2.org/
https://www.codeblocks.org/


CHAPTER 8. BUILDING CLI TOOL FROM SOURCE https://github.com/OpenRealTimeSimulation

This command will generate a directory /SolverCodegen within the current directory containing
the tool sources.

To download Eigen 3, go to their project home page (see Prerequisites section), and follow
their instructions for downloading latest version of the library. This library is provided primarily
as a header-only library, so no pre-compilation or binaries are needed to use it. The codegen tools
use the default Eigen 3 library without any custom modifications.

To start building using instructions in following sections, create a working directory on your
computer where you wish to build the codegen tool sources. In this directory, download the
tool sources into one subdirectory, the Eigen 3 library in another. For example, your directory
organization can be this:
\working directory

\SolverCodegen // l o c a t i o n of codegen t o o l sources
\ inc lude // l o c a t i o n of header f i l e s of the codegen t o o l s
\ s r c // l o c a t i o n of source f i l e s of the codegen t o o l s
\exe // l o c a t i o n of source f i l e s of the CLI t o o l i t s e l f
\ obj // l o c a t i o n crea ted during bui ld f o r o b j e c t b i n a r i e s
\bin // l o c a t i o n created during bui ld f o r main executab le

\ eigen3 // l o c a t i o n of Eigen 3 l i b r a r y
\Eigen // a c t u a l l o c a t i o n of Eigen header f i l e s

8.3 Building the Sources Manually using GCC-based Suites

This section describes how to build the CLI tool from source manually using a GCC toolchain
(native GCC or MinGW-w64). The given instructions assume you already have a GCC toolchain
installed and are running under Windows; instructions are nearly identical for building under
Linux as well, expect for the slash used for separating directory names (/ for Linux, \ for Win-
dows) and how the GCC executables are called with extension (.exe).

This approach to building the sources is currently tedious due to complexity of the tool
sources. Later releases of the source code is planned to provide a makefile, build script, or
other means to easily build the sources automatically outside of using an IDE. In the meantime,
it is suggested you write a shell script (bash, batch, etc.) to perform this approach; or use an C++
IDE to manage building.

To start building, you will need to compile all of the .CPP sources files (translation units) of
the CLI tool into object binaries (.o). The general approach to compile C++ code with GCC suite
is using the following command:

g++.exe <options > -c <source_file_name > -o <binary_file_name >

where you replace < options > with compiler options such as for optimization (-O), binary
library directories (-l), inclusion search directories (-I), and preprocessor macros (-D) for instance.
The < source f ile name > is replaced with relative/full filename of the source file (.cpp), while
< binary f ile name > is replaced with relative/full filename of the resultant binary object file
(.o).

Following the directory example in previous section after downloading the sources, change
current directory (cd) into the directory of the tool source code (\SolverCodegen) and call the
following command (without line breaks) for each and every CPP file in the project within the
\src and \exe directories (including their sub-directories):

Circuit Solver C++ Code Generator CLI Tool UG 37

https://github.com/OpenRealTimeSimulation


CHAPTER 8. BUILDING CLI TOOL FROM SOURCE https://github.com/OpenRealTimeSimulation

g++.exe -Wall -O2 -D"VERSION <date >" -I..\ eigen3 -Itest -Iinclude

-Isrc -Isrc\codegen -Isrc\codegen\components -Isrc\codegen\netlist

-Isrc\codegen\netlist\components -c <source_file_name >

-o obj\<binary_file_name >

Replace < date > with current date/time of the build, < source f ile name > with name of .CPP
file including its relative directory from current directory, and < binary f ile name > with same
name as the .CPP file but with .o extension and without the directory attached. Calling of this
command will compile the given source file and store its binary object into the \obj folder. An
example for compiling just the main source file (\exe\codegen cli main.cpp) into an object file
is the following:

g++.exe -Wall -O2 -D"VERSION YYYY.MM.DD" -I..\ eigen3 -Itest -Iinclude

-Isrc -Isrc\codegen -Isrc\codegen\components -Isrc\codegen\netlist

-Isrc\codegen\netlist\components -c exe\codegen_cli_main.cpp

-o obj\codegen_cli_main.o

During compilation, there may be some warnings, but most can be safely ignored.
After all of the source files have been compiled into object files, you need to link them to-

gether into the CLI tool executable. The general way to do this linkage with GCC toolchain is
using the following command:

g++.exe -o <executable_file_name >

<object_file_name1 > <object_file_name2 > ...

<object_file_nameN > <options >

where < executable f ile name > is replaced with name of the executable (.exe extension in Win-
dows) and each < object f ile nameI > is replaced with the names of the built object (.o) files
(ellipses ... are removed from the command call). For linking the codegen CLI tool binaries to-
gether into its executable, this command will be very long, so it is again recommended to make
the call from a shell script. A partial example of linking the codegen CLI tool together into a
standalone executable without shared/dynamic dependencies is shown here:

g++.exe -o bin\codegen.exe

obj\codegen_cli_main.o obj\BridgeConverter3LegIdealSwitches.o

obj\SolverEngineGenerator.o //... and the rest of the .o files

-s -static -libstdc ++ -static -libgcc -static

After the main executable (bin/codegen.exe) has been built, you can test it out by calling it
from a command console/shell. See earlier chapters for how to use the now built CLI tool for
generating circuit solver source code.

8.4 Building The Sources Using Code::Blocks IDE

This section describes how to use the open-source Code::Blocks IDE [https://www.codeblocks.
org/] to build the CLI tool sources into an executable. These instructions assume you already
have Code::Blocks 20.03 installed and configured to use an installed GCC-based compiler suite.

The text of this section is currently pending.

Circuit Solver C++ Code Generator CLI Tool UG 38

https://github.com/OpenRealTimeSimulation
https://www.codeblocks.org/
https://www.codeblocks.org/


https://github.com/OpenRealTimeSimulation

Appendix

LB-LMC Method Summary

The Latency-Based Linear Multistep Compound (LB-LMC) solver method used in the solver
codegen tools is a highly-parallelizable algorithm for solving nonlinear electrical/PE systems,
similar to the Electro-Magnetic Transient Program (EMTP) and other Resistive Companion (RC)
methods (such as SPICE). Under the method, each component of a system is defined as a dis-
cretized state space (SS) model that is embodied as a collection of voltage/current sources rep-
resenting the memory terms of the model, with accompanying conductances embodying the
memoryless model terms. From the models, a set of equations Gx=b is produced to be solved
each simulation time step for x that consists of branch currents and node voltages of the sys-
tem, with G and b respectively consisting of the memoryless and memory terms of the system
component models.

Unlike EMTP or other RC methods, all nonlinear component models in a system is dis-
cretized with explicit integration (Euler Forward, Runge-Kutta), allowing nonlinear SS models
to consist of only memory terms based on only past time step solutions; linear components are
discretized implicitly (Trapezoidal). As such, the G term of Gx=b can be held constant through-
out simulation and the set of equations for nonlinear systems can be solved without iterative
process (Newton-Raphson), allowing the nonlinear system to be quickly solved using linear
approaches (LU factorization or term arrangement) without loss of nonlinearity of the system.
Moreover, the LB-LMC method is optimized to solve models of all system components entirely
in parallel, allowing for computational speedups to achieve small time steps in real-time, espe-
cially with FPGA execution of the method. In journal papers, the method has been demonstrated
to real-time execute multi-converter PE systems on FPGAs with 35-50ns time steps on modern
FPGAs.

Circuit Solver C++ Code Generator CLI Tool UG 39

https://github.com/OpenRealTimeSimulation

	Introduction
	Overview
	Where to Download
	Licensing
	Literature

	Usage
	Netlist Format
	Supported Components
	Sources
	Basic Sources
	Ideal Voltage Sources
	Dependent Sources

	Basic Elements
	Power Electronics
	Three-Leg Bridge Converter with Ideal Switches
	One-Leg Bridge Converter with Ideal Switches and Anti-parallel Diodes
	Three-Leg Bridge Converter with Ideal Switches and Anti-parallel Diodes
	N-Level, 3-Leg Modular Multilevel Converter with Ideal Switch Half-Bridge Modules
	N-Level, 1-Leg Modular Multilevel Converter with Ideal Switch + Anti-parallel Diode Half-Bridge Modules
	Dual Active Bridge Converter with Ideal Switches and Transformer Equivalency

	Port Modeling
	Norton Equivalent Port

	Misc. Components
	Ideal Switch with Series Resistance and Inductance
	Mutual Inductance with Three Windings


	Generated Solver Functions
	Solver Function Definition
	How to Use in Offline C++ Simulation Testbench

	FPGA Synthesis of Generated Solvers with Xilinx Vivado HLS
	Summary
	Solver HLS Procedure Overview
	Top-Level Function Definition
	Using Fixed Point Data Types
	HLS Directives
	Latency
	Array Partitioning
	Inlining
	Loop Unrolling
	Example

	Simulating and Synthesizing in Xilinx Vivado HLS

	Troubleshooting
	Netlist Syntax Errors
	Singularity and Solver Stability Issues
	Singularity
	Solver Stability


	Building CLI Tool From Source
	Prerequisites
	Downloading the Tools Source
	Building the Sources Manually using GCC-based Suites
	Building The Sources Using Code::Blocks IDE

	Appendix
	LB-LMC Method Summary


