-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathFF1993_style_implementation.r
230 lines (192 loc) · 6.11 KB
/
FF1993_style_implementation.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# for making FF1993 style factors from individual csvs on gdrive
# andrew 2021 05
# FF1993 style is based on WRDS:
# https://wrds-www.wharton.upenn.edu/pages/support/applications/risk-factors-and-industry-benchmarks/fama-french-factors/
# ==== ENVIRONMENT ====
library(tidyverse)
library(data.table)
library(googledrive)
library(getPass)
library(RPostgres)
# name signal to make factor from
signalname = 'BMdec'
# root of April 2021 release on Gdrive
pathRelease = 'https://drive.google.com/drive/folders/1I6nMmo8k_zGCcp9tUvmMedKTAkb9734R'
url_prefix = 'https://drive.google.com/uc?export=download&id='
# login to wrds
user = getPass('wrds username: ')
pass = getPass('wrds password: ')
wrds <- dbConnect(Postgres(),
host='wrds-pgdata.wharton.upenn.edu',
port=9737,
dbname='wrds',
user=user,
password=pass,
sslmode='require')
# login to gdrive
# this prompts a login
target_dribble = pathRelease %>% drive_ls() %>%
filter(name=='Firm Level Characteristics') %>% drive_ls() %>%
filter(name=='Individual') %>% drive_ls() %>%
filter(name=='Predictors') %>% drive_ls() %>%
filter(name==paste0(signalname,'.csv'))
# ==== DOWNLOAD DATA ====
# import signal from open ap gdrive
signal = fread(
paste0(url_prefix, target_dribble$id)
) %>%
rename(signal =!!signalname )
# CRSP monthly
# Follows in part: https://wrds-www.wharton.upenn.edu/pages/support/research-wrds/macros/wrds-macro-crspmerge/
crspraw = dbSendQuery(conn = wrds, statement =
"select a.permno, a.permco, a.date, a.ret, a.retx, a.vol, a.shrout, a.prc, a.cfacshr, a.bidlo, a.askhi,
b.shrcd, b.exchcd, b.siccd, b.ticker, b.shrcls, -- from identifying info table
c.dlstcd, c.dlret -- from delistings table
from crsp.msf as a
left join crsp.msenames as b
on a.permno=b.permno
and b.namedt<=a.date
and a.date<=b.nameendt
left join crsp.msedelist as c
on a.permno=c.permno
and date_trunc('month', a.date) = date_trunc('month', c.dlstdt)
"
) %>%
# Pull data
dbFetch(n = -1) %>%
setDT()
# incorporate delisting return
# follows WRDS
crsp = crspraw %>%
mutate(
dlret = if_else(is.na(dlret),0,dlret)
, ret = ret + dlret
, ret = ifelse(
is.na(ret) & ( dlret != 0)
, dlret
, ret
)
) %>%
# convert ret to pct, other formatting
mutate(
ret = 100*ret
, date = as.Date(date)
, me = abs(prc) * shrout
, yyyymm = year(date) * 100 + month(date)
)
# ==== ASSIGN TO 2X3 PORTFOLIOS ====
# full join to keep as many me obs as possible, ff1993, page 8
signaljune = signal%>%
filter(yyyymm %% 100 == 6) %>%
full_join(
crsp %>%
filter(yyyymm %% 100 == 6) %>%
select(permno,yyyymm,me,exchcd,shrcd)
, by = c('permno','yyyymm')
)
# FF93 is unclear about the shrcd screen here, but
# WRDS does it
nysebreaks = signaljune %>%
filter(exchcd==1, shrcd %in% c(10,11)) %>%
group_by(yyyymm) %>%
summarise(
qsignal_l = quantile(signal,0.3, na.rm=T)
, qsignal_h = quantile(signal,0.7, na.rm=T)
, qme_mid = quantile(me,0.5, na.rm=T)
)
# only exchcd in (1,2,3), shrcd in (10,11), ff93 p8-9
# we already exclude negative BE
port6 = signaljune %>%
filter(
exchcd %in% c(1,2,3), shrcd %in% c(10,11)
) %>%
left_join(nysebreaks, by=c('yyyymm')) %>%
mutate(
q_signal = case_when(
signal <= qsignal_l ~ 'L'
, signal <= qsignal_h ~ 'M'
, signal > qsignal_h ~ 'H'
)
, q_me = case_when(
me <= qme_mid ~ 'S'
, me > qme_mid ~ 'B'
)
, port6 = paste0(q_me,q_signal)
) %>%
select(
permno, yyyymm, port6
)
# ==== FIND MONTHLY FACTOR RETURNS ====
# find VW returns for port6
port6ret = crsp %>%
# merge annual port6 onto returns
filter(floor(yyyymm/100)>=1963) %>%
select(permno,yyyymm,ret,me) %>%
left_join(port6, by=c('permno','yyyymm')) %>%
# fill and lag
group_by(permno) %>%
arrange(permno,yyyymm) %>%
fill(port6) %>%
mutate(
port6lag = lag(port6)
, melag = lag(me)
) %>%
filter(!is.na(melag)) %>%
# find value-weighted returns by port6lag month
group_by(port6lag, yyyymm) %>%
summarize(
ret_vw = weighted.mean(ret,melag,na.rm=T)
)
# equal weight extreme portfolios to make FF1993-style factor
ff93style = port6ret %>%
pivot_wider(
names_from = port6lag, values_from = ret_vw
) %>%
mutate(
factor_ret = 0.5*(SH+BH) - 0.5*(SL+BL)
) %>%
select(yyyymm, factor_ret)
# ==== COMPARE TO KEN FRENCH ====
ffweb2 = 'http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Research_Data_Factors_CSV.zip'
download.file(ffweb2,'temp/deleteme.zip')
unzip('temp/deleteme.zip', exdir = 'temp')
# HML
french = read.csv('temp/F-F_Research_Data_Factors.csv', skip=3, nrows = 1141 - 3 - 1) %>%
as_tibble() %>%
mutate_all(funs(as.numeric)) %>%
transmute(
yyyymm = X, HML_french = HML
)
plotme = ff93style %>%
left_join(french, by = c('yyyymm')) %>%
pivot_longer(
cols = c('factor_ret','HML_french')
, names_to = 'dataset'
, values_to = 'ret'
) %>%
mutate(
date = as.Date(as.character(yyyymm*100+28), '%Y%m%d')
, dataset = if_else(dataset=='factor_ret','HML_openap',dataset)
)
# plot close up returns
datebegin = as.Date('2010-01-01')
ggplot(
plotme %>%
filter(date >= datebegin, date <= '2020-12-31') %>%
group_by(dataset) %>% arrange(date) %>%
mutate(
ret = if_else(abs(date - datebegin) <= 31 , 0, ret)
, cret = cumprod(1+ret/100) - 1
)
, aes(x=date, y=ret, group=dataset)) +
geom_line(aes(linetype = dataset, color = dataset), size = 0.75) +
ylab('Return (%)')+
theme_minimal(base_size = 18) +
theme(
legend.title = element_blank()
, legend.position = c(0.25, 0.25)
, legend.background = element_rect(fill='white')
)
temp = 1
ggsave(filename = paste0("temp/openap_vs_french_hml.png")
, width = 10*temp, height = 6*temp)