Eckstein-Keane-Wolpin models

An invitation for transdisciplinary collaboration

The OSE team

February 19, 2021

Motivation

- Facilitate academic rigor
- Study mechanisms
- Predict public policies

Motivation

- Facilitate academic rigor
- Study mechanisms
- Predict public policies

Transdisciplinary in nature

- Economic model
- Mathematical framework
- Computational implementation

- Human capital investment
- Consumption–savings decision

- Human capital investment
- Consumption–savings decision

- Welfare programs
- Tax schedules

- Human capital investment
- Consumption–savings decision

Mathematical framework and implementation

- Finite-horizon discrete Markov decision problem
- Backward induction algorithm

- Welfare programs
- Tax schedules

- Human capital investment
- Consumption–savings decision

Mathematical framework and implementation

- Finite-horizon discrete Markov decision problem
- Backward induction algorithm
- \Rightarrow Transdisciplinary research on their **economics**, data, and computation

- Welfare programs
- Tax schedules

- Human capital investment
- Consumption–savings decision

Mathematical framework and implementation

- Finite-horizon discrete Markov decision problem
- Backward induction algorithm
- \Rightarrow Transdisciplinary research on their economics, data, and computation

- Welfare programs
- Tax schedules

- Human capital investment
- Consumption–savings decision

Mathematical framework and implementation

- Finite-horizon discrete Markov decision problem
- Backward induction algorithm
- \Rightarrow Transdisciplinary research on their economics, data, and computation

- Welfare programs
- Tax schedules

Institute for Numerical Simulation

Unil

UNIL | Université de Lausanne

- Economic model
- Mathematical formulation
- Calibration

- Economic model
- Mathematical formulation
- Calibration

- Example
- Pipeline
- Projects

Economic model

$t = 1, \ldots, T$	decision period
$s_t \in S$	state
$a_t \in A$	action
$a_t(s_t)$	decision rule
$u_t(s_t, a_t)$	immediate utility

$$\max_{\pi \in \Pi} \mathsf{E}_{s_1}^{\pi} \left[\left. \sum_{t=1}^{T} \delta^{t-1} u_t(s_t, a_t^{\pi}(s_t)) \right| \frac{I_1}{I_1} \right]$$

Core economics

- Rational expectations
- Exponential discounting
- Time-separability

Mathematical formulation

Policy evaluation

$$\mathbf{v}_t^{\pi}(\mathbf{s}_t) = \mathsf{E}_{\mathbf{s}_t}^{\pi} \left[\sum_{j=0}^{T-t} \delta^j \, u_{t+j}(\mathbf{s}_{t+j}, \mathbf{a}_{t+j}^{\pi}(\mathbf{s}_{t+j})) \, \middle| \, \mathcal{I}_t \right]$$

Optimality equations

$$v_t^{\pi^*}(s_t) = \max_{a_t \in A} \left\{ u_t(s_t, a_t) + \delta \, \mathsf{E}_{s_t}^{\pi^*} \Big[v_{t+1}^{\pi^*}(s_{t+1}) \mid \mathcal{I}_t \, \Big] \right\}$$

```
for t = T_{1}, ..., 1 do
       if t = T then
             v_T^{\pi^*}(s_T) = \max_{a_T \in A} \Big\{ u_T(s_T, a_T) \Big\} \qquad \forall \, s_T \in S
       else
              Compute v_t^{\pi^*}(s_t) for each s_t \in S by
                        v_t^{\pi^*}(s_t) = \max_{a_t \in A} \left\{ u_t(s_t, a_t) + \delta \, \mathsf{E}_{s_t}^{\pi} \big[ v_{t+1}^{\pi^*}(s_{t+1}) \mid \mathcal{I}_t \, \big] \right\}
              and set
                        a_t^{\pi^*}(s_t) = \arg \max_{a_t} \left\{ u_t(s_t, a_t) + \delta \, \mathsf{E}_{s_t}^{\pi} \left[ v_{t+1}^{\pi^*}(s_{t+1}) \mid \mathcal{I}_t \right] \right\}
       end if
```

end for

Calibration procedure

Dataset

$$\mathcal{D} = \{a_{it}, \bar{s}_{it}, \bar{u}_{it} : i = 1, ..., N; t = 1, ..., T_i\}$$

State variables

- $s_t = (\bar{s}_t, \varepsilon_t)$
 - \bar{s}_t observed
 - ε_t unobserved

Likelihood-based

$$\hat{\vartheta} = \arg \max_{\vartheta \in \varTheta} \prod_{i=1}^{N} \prod_{t=1}^{T_i} p_{it}(a_{it}, \bar{u}_{it} \mid \bar{s}_{it}, \vartheta)$$

Simulation-based

$$\hat{\vartheta} = \arg\min_{\vartheta\in\Theta} \left(M_D - M_S(\vartheta) \right)' W \left(M_D - M_S(\vartheta) \right)$$

Example

Michael P Keane and Kenneth I Wolpin. 1997. "The career decisions of young men." *Journal of Political Economy* 105 (3): 473–522.

- The study follows individuals over their working life from young adulthood at age 16 to retirement at age 65 where the decision period t = 16, ..., 65 is a school year.
- Individuals decide $a \in \mathcal{A}$ whether to work in a blue-collar or white-collar occupation (a = 1, 2), to serve in the military (a = 3), to attend school (a = 4), or to stay at home (a = 5).

Decision tree

Informed by reduced-form evidence

• Mincer equation

$$u_t(\mathbf{s}_t) = \begin{cases} \zeta_a(\mathbf{s}_t) + w_a(\mathbf{s}_t) & \text{if } a \in \{1, 2, 3\} \\ \zeta_a(\mathbf{s}_t) & \text{if } a \in \{4, 5\} \end{cases}$$

- Sheepskin effects
- Skill depreciation
- Mobility and search costs
- Monetary and psychic cost of schooling

Transitions

• Work experience *k*_t and years of completed schooling *h*_t evolve deterministically.

$$k_{a,t+1} = k_{a,t} + 1[a_t = a]$$
 if $a \in \{1, 2, 3\}$
 $h_{t+1} = h_t + 1[a_t = 4]$

- Productivity shocks ε_t are uncorrelated across time and follow a multivariate normal distribution with mean **0** and covariance matrix Σ .
- Given the structure of the utility functions and the distribution of the shocks, the state at time t is s_t = {k_t, h_t, t, a_{t-1}, e, ε_t}.

Non-pecuniary

$$\begin{aligned} \zeta_1(\cdot) &= \alpha_1 + c_{1,1} \cdot \mathbf{1}[a_{t-1} \neq \mathbf{1}] + c_{1,2} \cdot \mathbf{1}[k_{1,t} = \mathbf{0}] \\ &+ \vartheta_1 \cdot \mathbf{1}[h_t \geq \mathbf{12}] + \vartheta_2 \cdot \mathbf{1}[h_t \geq \mathbf{16}] + \vartheta_3 \cdot \mathbf{1}[k_{3,t} = \mathbf{1}] \end{aligned}$$

Wage component

 $w_1(\cdot)=r_1\,x_1(\cdot),$

where $x_1(\cdot)$ is the occupation-specific skill level.

$$x_1(\cdot) = \exp\left(\Gamma_1(\boldsymbol{k}_t, h_t, t, a_{t-1}, e_{j,1}) \cdot \varepsilon_{1,t}\right)$$

• Parameterization of the deterministic component of the skill production function:

$$\begin{split} \Gamma_{1}(\cdot) &= e_{j,1} + \beta_{1,1} \cdot h_{t} + \beta_{1,2} \cdot \mathbf{1}[h_{t} \geq \mathbf{12}] + \beta_{1,3} \cdot \mathbf{1}[h_{t} \geq \mathbf{16}] \\ &+ \gamma_{1,1} \cdot k_{1,t} + \gamma_{1,2} \cdot (k_{1,t})^{2} + \gamma_{1,3} \cdot \mathbf{1}[k_{1,t} > \mathbf{0}] \\ &+ \gamma_{1,4} \cdot t + \gamma_{1,5} \cdot \mathbf{1}[t < \mathbf{18}] \\ &+ \gamma_{1,6} \cdot \mathbf{1}[a_{t-1} = \mathbf{1}] + \gamma_{1,7} \cdot k_{2,t} + \gamma_{1,8} \cdot k_{3,t} \end{split}$$

National Longitudinal Survey of Youth 1979

- 1,373 individuals starting at age 16
- Life cycle histories
 - School attendance
 - Occupation-specific work status
 - Wages

Sample size

Data descriptives

Calibration results

Economic insights

Pipeline

respy

- GitHub OpenSourceEconomics/respy
- Docs respy.readthedocs.io

estimagic

- GitHub OpenSourceEconomics/estimagic
- Docs estimagic.readthedocs.io

```
import respy as rp
from estimagic import maximize
```

```
# obtain model input
params, options, df = rp.get_example_model("kw_97_extended_respy")
```

```
# process model specification
log_like = rp.get_log_like_func(params, options, df)
simulate = rp.get_simulate_func(params, options)
```

```
# perform calibration
results, params_rslt = maximize(log_like, params, "nlopt_bobyqa")
```

```
# conduct analysis
df_rslt = simulate(params_rslt)
```

Model parameterization

name	value		
		name	category
delta_delta	9.370735e-01	delta	delta
wage_white_collar_constant	8.741888e+00	constant	wage_white_collar
wage_white_collar_exp_school	6.548940e-02	exp_school	
wage_white_collar_exp_white_collar	1.763655e-02	exp_white_collar	
wage_white_collar_exp_white_collar_square	-4.215936e-02	exp_white_collar_square	
wage_white_collar_exp_blue_collar	3.431936e-02	exp_blue_collar	
wage_white_collar_exp_military	1.406945e-02	exp_military	
wage_white_collar_hs_graduate	-3.599855e-03	hs_graduate	
wage_white_collar_co_graduate	2.301313e-03	co_graduate	
wage_white_collar_period	9.577717e-03	period	
wage_white_collar_is_minor	-1.509984e-01	is_minor	

Model options

	value
estimation_draws	200
estimation_seed	500
estimation_tau	500
interpolation_points	-1
n_periods	50
simulation_agents	5000
simulation_seed	132
solution_draws	500
solution_seed	456
monte_carlo_sequence	random
covariates	{'hs_graduate': 'exp_school >= 12', 'co_gradua

Projects

Economics and data

- Biased expectations
- Robust decisions
- Option value

Incorporate subjective expectations Collaboration with DIW for SOEP-IS data collection

Economics and data

- Biased expectations
- Robust decisions
- Option value

Account for ubiquitous uncertainties Robust decision in light of model misspecification

Economics and data

- Biased expectations
- Robust decisions
- Option value Schooling reform for identification and validation
 Collaboration with Statistics Norway

Computation

- Uncertainty quantification Capture parametric uncertainty
 Assess competing policy implications
- Global optimization
- HPC implementation

Computation

- Uncertainty quantification
- Global optimization
- HPC implementation

Explore estimation uncertainty Acknowledge multiplicity of local minima

Computation

- Uncertainty quantification
- Global optimization
- HPC implementation

Enable increased realism and auditing of economic models Exploit large-scale parallelism on supercomputers

Conclusion

Join us!

https://open-econ.org

References

Aguirregabiria, Victor, and Pedro Mira. 2010. "Dynamic Discrete Choice Structural Models: A survey." Journal of Econometrics 156 (1): 38–67.

Becker, Gary S. 1964. Human Capital. New York City, NY: Columbia University Press.

- Bellman, Richard E. 1954. "The theory of dynamic programming." Bulletin of the American Mathematical Society 60 (6): 503–15.
- Keane, Michael P, and Kenneth I Wolpin. 1997. "The career decisions of young men." *Journal of Political Economy* 105 (3): 473–522.
- Keane, Micheal P, and Kenneth I Wolpin. 1994. "The Solution and Estimation of Discrete Choice Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evidence." *Review of Economics and Statistics* 76 (4): 648–72.
- Puterman, Martin L. 1994. Markov decision processes: Discrete stochastic dynamic programming. New York City, NY: John Wiley & Sons.

White, D. J. 1993. Markov decision processes. New York City, NY: John Wiley & Sons.

Wolpin, Kenneth I. 2013. The Limits to Inference without Theory. Cambridge, MA: MIT University Press.