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Computational modeling in economics

Motivation

• Facilitate academic rigor

• Study mechanisms

• Predict public policies

Transdisciplinary in nature

• Economic model

• Mathematical framework

• Computational implementation
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Eckstein–Keane–Wolpin models

Understanding individual decisions

• Human capital investment

• Consumption–savings decision

Predicting effects of policies

• Welfare programs

• Tax schedules

Mathematical framework and implementation

• Finite-horizon discrete Markov decision problem

• Backward induction algorithm

⇒ Transdisciplinary research on their economics, data, and computation
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Partners

Institute for
Numerical Simulation
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Roadmap

• Economic model

• Mathematical formulation

• Calibration

• Example

• Pipeline

• Projects
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Economic model



Decision Problem

t = 1, . . . , T decision period

st ∈ S state

at ∈ A action

at(st) decision rule

ut(st, at) immediate utility
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Timing of events

t

t + 1

{u(st, at)}at∈A

at

u(st, at)

{u(st+1, at+1)}at+1∈A

at+1

u(st+1, at+1)

Learn
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Learn
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π = (aπ

1(s1), . . . , a
π

T
(sT)) policy

δ discount factor

pt(st, at) conditional distribution
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Individual’s objective

max
π∈Π

Eπ

s1

[
T∑︁

t=1

δ
t−1

ut(st, aπ

t
(st))

����� I1
] Core economics

• Rational expectations

• Exponential discounting

• Time-separability
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Mathematical formulation



Dynamic programming

Policy evaluation

v
π

t
(st) = Eπ

st

[
T−t∑︁
j=0

δ
j
ut+j(st+j, aπ

t+j(st+j))
��� It]

Optimality equations

v
π
∗

t
(st) = max

at∈A

{
ut(st, at) + δ Eπ

∗
st

[
v
π
∗

t+1(st+1) | It
]}
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Backward induction algorithm

for t = T, . . . , 1 do
if t = T then

v
π
∗

T
(sT) = max

aT ∈A

{
uT(sT , aT)

}
∀ sT ∈ S

else
Compute v

π
∗

t
(st) for each st ∈ S by

v
π
∗

t
(st) = max

at∈A

{
ut(st, at) + δ Eπ

st

[
v
π
∗

t+1(st+1) | It
] }

and set
a
π
∗

t
(st) = argmax

at∈A

{
ut(st, at) + δ Eπ

st

[
v
π
∗

t+1(st+1) | It
] }

end if
end for
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Calibration procedure



Data

Dataset

D = {ait, s̄it, ūit : i = 1, . . . ,N; t = 1, . . . , Ti}

State variables

• st = (s̄t, εt)

– s̄t observed

– εt unobserved
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Procedures

Likelihood-based

θ̂ = argmax
θ∈Θ

N∏
i=1

Ti∏
t=1

pit(ait, ūit | s̄it, θ)

Simulation-based

θ̂ = argmin
θ∈Θ

(
MD − MS(θ)

)
0

W
(
MD − MS(θ)

)
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Example



Seminal paper

Michael P Keane and Kenneth I Wolpin. 1997. “The career decisions of young men.”
Journal of Political Economy 105 (3): 473–522 .

• The study follows individuals over their working life from young adulthood at age 16 to
retirement at age 65 where the decision period t = 16, . . . , 65 is a school year.

• Individuals decide a ∈ A whether to work in a blue-collar or white-collar occupation
(a = 1, 2), to serve in the military (a = 3), to attend school (a = 4), or to stay at home
(a = 5).
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Decision tree
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Immediate utility

ut(st) =


ζa(st) + wa(st) if a ∈ {1, 2, 3}

ζa(st) if a ∈ {4, 5}

Informed by reduced-form evidence

• Mincer equation

• Sheepskin effects

• Skill depreciation

• Mobility and search costs

• Monetary and psychic cost of schooling
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Transitions

• Work experience kt and years of completed schooling ht evolve deterministically.

ka,t+1 = ka,t + 1[at = a] if a ∈ {1, 2, 3}

ht+1 = ht + 1[at = 4]

• Productivity shocks εt are uncorrelated across time and follow a multivariate normal
distribution with mean 0 and covariance matrix Σ.

• Given the structure of the utility functions and the distribution of the shocks, the state
at time t is st = {kt, ht, t, at−1, e, εt}.
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Utility of blue-collar occupation

• Non-pecuniary

ζ1(·) = α1 + c1,1 · 1[at−1 ≠ 1] + c1,2 · 1[k1,t = 0]

+ ë1 · 1[ht ≥ 12] + ë2 · 1[ht ≥ 16] + ë3 · 1[k3,t = 1]

• Wage component

w1(·) = r1 x1(·),

where x1(·) is the occupation-specific skill level.
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Skill production for blue-collar occupation

x1(·) = exp
(
Γ1(kt, ht, t, at−1, ej,1) · ε1,t

)
• Parameterization of the deterministic component of the skill production function:

Γ1(·) = ej,1 + β1,1 · ht + β1,2 · 1[ht ≥ 12] + β1,3 · 1[ht ≥ 16]

+ γ1,1 · k1,t + γ1,2 · (k1,t)2 + γ1,3 · 1[k1,t > 0]

+ γ1,4 · t + γ1,5 · 1[t < 18]

+ γ1,6 · 1[at−1 = 1] + γ1,7 · k2,t + γ1,8 · k3,t
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National Longitudinal Survey of Youth 1979

• 1,373 individuals starting at age 16

• Life cycle histories

– School attendance

– Occupation-specific work status

– Wages
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Sample size
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Data descriptives
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Calibration results
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Economic insights
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Pipeline



Tooling

respy

GitHub OpenSourceEconomics/respy
Docs respy.readthedocs.io

estimagic

GitHub OpenSourceEconomics/estimagic
Docs estimagic.readthedocs.io
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Workflow

import respy as rp
from estimagic import maximize

# obtain model input
params, options, df = rp.get_example_model("kw_97_extended_respy")

# process model specification
log_like = rp.get_log_like_func(params, options, df)
simulate = rp.get_simulate_func(params, options)

# perform calibration
results, params_rslt = maximize(log_like, params, "nlopt_bobyqa")

# conduct analysis
df_rslt = simulate(params_rslt)
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Model parameterization
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Model options
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Projects



Research projects

Economics and data

• Biased expectations Incorporate subjective expectations
Collaboration with DIW for SOEP-IS data collection

• Robust decisions

• Option value
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Research projects

Economics and data

• Biased expectations

• Robust decisions Account for ubiquitous uncertainties
Robust decision in light of model misspecification

• Option value
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Research projects

Economics and data

• Biased expectations

• Robust decisions

• Option value Schooling reform for identification and validation
Collaboration with Statistics Norway
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Research projects

Computation

• Uncertainty quantification Capture parametric uncertainty
Assess competing policy implications

• Global optimization

• HPC implementation
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Research projects

Computation

• Uncertainty quantification

• Global optimization Explore estimation uncertainty
Acknowledge multiplicity of local minima

• HPC implementation
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Research projects

Computation

• Uncertainty quantification

• Global optimization

• HPC implementation Enable increased realism and auditing of economic models
Exploit large-scale parallelism on supercomputers
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Conclusion



Join us!

http://bit.ly/ose-github

http://bit.ly/ose-zulip

https://twitter.com/open_econ

https://open-econ.org

respy
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