Simulation of Choice Probabilities

Tobias Raabe

November 4, 2019

The probability for choosing an alternative is computed with the softmax function.

$$
\begin{align*}
p_{i} & =\operatorname{softmax}(x) \tag{0.1}\\
& =\frac{e^{x_{i}}}{\sum_{j} e^{x_{j}}} \tag{0.2}
\end{align*}
$$

A numerically robust solutions is to subtract the maximum, x^{*}, and use logsumexp.

$$
\begin{align*}
p_{i} & =\frac{e^{x_{i}-x^{*}}}{\sum_{j} e^{x_{j}-x^{*}}} \tag{0.3}\\
& =\exp \left\{x_{i}-x^{*}-\log \left(\sum_{j} e^{x_{j}-x^{*}}\right)\right\} \tag{0.4}\\
& =\exp \left\{x_{i}-x^{*}-\log \text { sumexp }(x)\right\} \tag{0.5}
\end{align*}
$$

As choices are affected by uncertainty, this probability is simulated.

$$
\begin{equation*}
\hat{p}_{i}=\frac{1}{n} \sum^{D} p_{i} \tag{0.6}
\end{equation*}
$$

Furthermore, we want the \log probability and replace p_{i} with the aforementioned calculation.

$$
\begin{aligned}
\log \hat{p}_{i} & =\log \left(\sum_{d}^{D} p_{i d}\right)-\log (n) \\
& =\log \left(\sum_{d}^{D} \exp \left\{x_{i d}-x_{d}^{*}-\log \operatorname{sumexp}\left(x_{d}\right)\right\}\right)-\log (n) \\
& =\operatorname{logsumexp}\left(x_{i d}-x_{d}^{*}-\operatorname{logsumexp}\left(x_{d}\right)\right)-\log (n)
\end{aligned}
$$

