Personalized and Reliable Predictive Models for Healthcare (의료 데이터 기반 신뢰 가능한 개인화된 예측(진단) 모델)
Switch branches/tags
Nothing to show
Clone or download
OpenXai Update README.md
Korean univ -> Korea univ
Latest commit c986686 Mar 20, 2018
Permalink
Failed to load latest commit information.
GPflow add XAI headers Mar 16, 2018
sample_data/Alcoholic_Fatty_Liver/data first commit Mar 16, 2018
AUTHOR.txt add AUTHOR license Mar 16, 2018
LICENSE Initial commit Mar 16, 2018
README.md Update README.md Mar 20, 2018
__init__.py first commit Mar 16, 2018
data_loader.py add XAI headers Mar 16, 2018
requirements.txt first commit Mar 16, 2018
run_mecgp.py modify subtle typo Mar 16, 2018
utils.py add XAI headers Mar 16, 2018

README.md

Mixed Effect Composite RNN-Gaussian Process

Mixed Effect Composite RNN-Gaussian Process: Personalized and Reliable Predictive Models for Healthcare

Requirements

python 2.7, tensorflow 1.4.1, scikit-learn, GPflow

How to use

With your own medical data,

python run_mecgp.py 'disease_name'

XAI Project

Project Name

A machine learning and statistical inference framework for explainable artificial intelligence(의사결정 이유를 설명할 수 있는 인간 수준의 학습·추론 프레임워크 개발)

Managed by

Ministry of Science and ICT/XAIC

Participated Affiliation

UNIST, Korea Univ., Yonsei Univ., KAIST., AItrics

Web Site

http://openXai.org