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In this work we consider the enhancement of the computational efficiency in exact exchange calculation using
the density matrix and local support functions. We introduce a numerical method which avoids the explicit
calculation the four–center electron repulsion integrals (ERIs) and reduces the prefactor scaling by a factor
M , whereM is the number atoms within the range of the exact exchange Hamiltonian. This approach, which
uses three–center reduction integrals, takes advantage of a discrete grid which enables a direct summation
over the support functions in a localized space. Using the sparsity property of the density matrix, the scaling
of the prefactor can be further reduced to reach asymptotically O(M). Influence of the fast Fourier transform
and real space Poisson solver upon the ERI accuracy is discussed. Finally, various factors influencing the
performance of the algorithm are investigated in terms of execution time and memory usage.

PACS numbers: 71.15.Ap 71.15.Mb 71.15.Dx 02.60.Jh

I. INTRODUCTION

The exchange interaction is a fundamental concept in
the description and the interpretation of electronic struc-
ture of molecules and solids. Its genuine representation
is found in the so–called “Fock–exchange” for Hartree–
Fock (HF) and correlated wave–function approaches and
“exact–exchange” for Kohn–Sham (KS) density func-
tional theory (DFT). Unfortunately, the expensive com-
putational resources needed for the evaluation of the ex-
change energy represent a serious bottleneck. This can
be partially circumvented thanks to the development of
elaborated integral evaluation methodologies.1 Using the
sparse density matrix techniques,2 our purpose is to de-
velop a scheme for computing exact exchange which fulfils
the linear–scaling requirement, i.e. the computer effort
scales linearly with the number of atoms, and as far as
possible, minimizes the prefactor.
The two particle density matrix is formally defined in

terms of the one–electron eigenstates as,

ρ(r, r′) =
∑
n

fnψn(r)ψ
∗
n(r

′) (1)

where fn is the occupation number and n run overs the
doubly occupied electronic states. Traditional quantum
chemistry methods approximate ψn by a truncated linear
combination of real atom–centered functions {φiα}—also
called basis or support functions. As a result, ρ(r, r′) is
finite and separable; this approach is also the basis for
many linear scaling methods2,3. The density kernel K is
then expressed in the representation of the basis states
with,

ρ(r, r′) =
∑
iαjβ

φiα(r)Kiαjβφjβ(r
′) (2)

a)Electronic mail: david.bowler@ucl.ac.uk

where the index α runs over of the number of support
functions for each atom i. For sake of simplicity, hereafter
we will omit the index α. The formal expressions of the
Hartree (also called Coulomb) and exchange energies are

J =

∫ ∫
drdr′

ρ(r)ρ(r′)

| r− r′ | , (3)

X =

∫ ∫
drdr′

ρ(r, r′)ρ(r′, r)

| r− r′ | , (4)

with ρ(r) = ρ(r, r′)|
r=r′

the usual electronic density. The
corresponding matrix elements are given by

Jij =
∑
kl

(ij|kl)Kkl (5)

Xij =
∑
kl

(ik|lj)Kkl, (6)

where the 4–center integral (ab|cd) related to the orbital–
product density

ρab(r) = φa(r)φb(r), (7)

is a short notation for the Coulomb–type integral,

(ab|cd) =
∫ ∫

drdr′ρab(r)ϑ(r, r
′)ρcd(r

′). (8)

To simplify the notation we wrote the two–particle

Coulomb operator ϑ(r, r′) = |r− r
′|−1

. At a first glance,
we notice that the evaluation of the 4–center electron
repulsion integrals (ERIs) in Eq. (5) and Eq. (6) scales
formally as N2, i.e. evaluation of the energy scales as N4,
where N is the product of the number of atoms with the
number of basis functions. This observation is especially
true if one use atom centered Gaussian– or Slater– type
orbitals (GTO and STO, respectively) and analytic or
semi–analytic integration techniques. Several elaborated
methods based on 3–center reductions4 have been intro-
duced to alleviate the N4 barrier of the Coulomb,5 and

http://arxiv.org/abs/1112.5989v1
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exchange matrix calculation.6–9 They generally derived
from the density–fitting approach of Baerends and Roos
for STOs,10 and Dunlap and coworkers11,12 for GTO ba-
sis sets: ρab(r) is approximated by a model density ρ̃(r)
defined as a linear combination of atom centered auxil-
iary fit functions. The coefficients of the expansion are
then optimized using a “Coulomb–weighted” constrained
least squares fit method.5 Finally, the 3–center integrals
of the kind,

(ab|A) =
∫ ∫

drdr′ ρab(r)ϑ(r, r
′)ρA(r

′) (9)

are numerically evaluated with a quadrature scheme,13–15

or further reduced to 2–center,9,16 and integrated
analytically.17,18 Different approaches which keep a sim-
ilar spirit as the pseudo–spectral19,20 or the resolu-
tion of identity methods21,22 have also demonstrated
to be efficient, and improvements are still explored by
many groups.4,23,24 All of the above methods exhibit
N3 scaling, which asymptotically reach O(N2) or even
O(N) for the most elaborated,4 including fast multipole
developments.25–27 Obviously, in this case the prefactor
and the data storage become the relevant parameters to
probe the real efficiency of the implementation.
Whereas GTO– and STO–based quantum chemistry

approaches involved ERIs for computing the Coulomb en-
ergy, periodic DFT methods based on plane wave (PW)
expansion of the KS orbitals integrate directly Eq 3 in
reciprocal space using 3D–FFT algorithm. In this case,
the associated computational effort of n×NG log(NG),

28

where NG is the number of PWs, becomes insignifi-
cant compared to the orthogonalisation or diagonalisa-
tion steps which asymptotically reach as O(N3). Using
efficient parallelization of the FFT routines, reasonable
scaling properties are obtained which are rapidly spoiled
when the system size exceeds few hundred atoms.2 This
is especially true when exact–exchange is incorporated
in the KS–DFT formalism.29 In that case, as previously
discussed for quantum chemistry methods, the evaluation
of Eq. (8) for each orbital–product ρab raises the compu-
tational cost to n2 × NG ln(NG) and asymptotically to
O(N3).30

Linear–scaling DFT especially developed for modern
high–performance computer (HPC) is promising if one
wants to perform electronic structure calculation on
thousands or hundred thousands of atoms.31 Among the
various linear scaling and support function schemes,2,32

real space methods based on numerical atom–centered
basis functions, i.e. numerical atomic orbital (NAO) or
pseudo atomic orbitals (PAO) when the pseudopotential
approximation is also involved, are widely used for O(N)
simulations,33 as well as in more standard approaches.34

The NAOs are expressed as a linear combination of prod-
ucts of radial functions (f l) and real spherical harmonic
(Y m

l ),

φi(r) =
∑
ζ

ciζϕiζ(r) (10)

with ϕiζ(r) ≡ ϕlm
iζ (r) = f l

iζ(r)Y
m
l (θ, γ) (11)

with {m, l} the usual quantum number. As in GTO–
or STO–based quantum chemistry programs, variational
flexibility can be improved by splitting the valence shell
basis into multiple–ζ radial functions, and further by
adding extra angular momentum components. The non–
orthogonal basis set of NAOs is generated in such way
that the functions are confined within a localization re-
gion of radius rc. The NAO basis sets present various
advantages: (i) The strictly localized character of these
functions removes extended tails and results in sparse
matrices. (ii) They are chemically intuitive since all
basis functions are centered on atoms. (iii) Fast semi–
numerical integral calculations are possible using spheri-
cal Bessel transform (SBT) for the radial part, and tra-
ditional analytic integration for the spherical harmonic
part. In this context, Talman35–37 Toyoda and Ozaki38,39

have proposed efficient semi–numerical methods for the
computation of the the 4–center ERIs. Using improved
fast–SBT transform,40 a remarkable accuracy is reached
compared to full analytical results with a reasonable com-
putational cost.38 Recently, Shang et al. have introduced
an fully numerical scheme.41 Each 4–center ERI is com-
puted by evaluating the pair–density potential,

vcd(r) =

∫
ϑ(r, r′)ρcd(r

′)dr′ (12)

followed by the integration in real space,

(ab|cd) =
∫
ρab(r)vcd(r)dr. (13)

The potential vcd is accurately evaluated thank’s to
the real space Poisson solver developed by Genovese et
al.42,43 In the same way, but using maximally localized
Wannier basis functions, Wu et al. have proposed to
compute vcd by directly solving Poisson’s equation,

∇2vcd(r) = −4πρcd(r). (14)

Discretization of the Laplace operator allows to trans-
form Eq. (14) into a linear set of finite–difference
equations which are solved using a conjugate gradient
algorithm.44,45

In this work, we will introduced a numerical method
which enables the computation of the exchange matrix el-
ements with a 3–center reduction integral (3CRI) scheme
similar to Eq. (9); we stress that the method can be used
with any basis set for the support functions, though we
will use NAOs. The method combined the full evaluation
of the basis functions on a grid with Poisson’s equation
solver, as proposed by Shang et al.41 Nevertheless, here
we will circumvent explicit calculations of the ERIs with-
out any approximation. The resulting scaling is driven by
a prefactor proportional to M3, where M is the number
atoms within the range of the exact–exchange Hamilto-
nian, and reach asymptoticaly O(M). The accuracy of
method with respect to various FFT–based methodolo-
gies used for evaluate the pair–density potential will be
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discussed. The implementation of the 3CRI approach
within the architecture of DFT linear–scaling code Con-

quest will be presented in a forthcoming article.

II. 3–CENTER REDUCTION INTEGRALS

The principle of the method is straightforward: If the
configuration space spanned by the support functions is
described by an evenly spaced discrete basis, from the
double sum of Eq. (6) recasts as

Xij =
∑
k

(ik|ϑ
∑
l

|lj)Kkl, (15)

we can decompose the double sum above into a first the
sum over the states l, and evaluate the exchange matrix
elements through a second sum over k,

Xij =
∑
k

(ik|v̄kj) . (16)

The operator v̄kj is no more that the “local” pair po-
tential associated to the reduced density weighted by the
density matrix coefficient,

ρ̄kj =
∑
l

Kklρlj . (17)

As a result, the exchange matrix elements are deduced
from 3–center 3–dimensional Coulomb integrals. To de-
scribe the practical implementation we have to start from
the explicit definition of the exchange matrix elements
with respect to the ERIs and the basis set {φa}. Within
the discretized space, combining Eq. (6), (7) and (8), we
obtain:

Xij =
∑
kl

Kkl

∑
hg

φi(rh −Ri)φk(rh −Rk)ϑ(rh, rg)

×φl(rg −Rl)φj(rg −Rj)w(rh)w(rg) (18)

where we made explicit the fact that the support func-
tion are centered on the nuclei positions {Ra}. The sets
{w(rh)} and {w(rg)} account for the weight factors of
the quadrature points {rh} and {rg}. We choose to work
with an evenly spaced cubic grid where both w(rh) and
w(rg) simplify to wint = h3int, with hint the grid spacing.46

Under the translation r → r+Ri, which leaves invariant
the ERIs, we obtain

Xij =
∑
kl

Kkl

∑
hg

φi(rh)φk(rh −Rki)ϑ(rh, rg)

×φl(rg −Rli)φj(rg −Rji)w
2
int, (19)

using Rab = Ra −Rb. By virtue of the linearity of dis-
cretized space, we are allow to introduce the temporary
matrix:

Φk(rg; {Rli}) =
∑
l

Kklφl(rg −Rli). (20)

We emphasize that φl is evaluated on a cubic grid cen-
tered on the nucleus i. The explicit expression for the
reduced density of Eq. (17) is given by

ρ̄kj(rg ;Rji, {Rli}) = Φk(rg)φj(rg −Rji). (21)

The corresponding reduced pair potential v̄lj is obtained
by solving the Poisson equation. Finally, we introduce
the temporary matrix:

Ωj(rh;Rji, {Rli}, {Rki})
=

∑
k

φk(rh −Rki)v̄kj(rh), (22)

to perform the last numerical integration yielding to the
exchange matrix elements

Xij(rh;Rji, {Rli}, {Rki})
=

∑
h

φi(rh)Ωj(rh)wint. (23)

We voluntary made explicit the dependence of the various
matrix with respect to the translation vectors {Rab}.

FIG. 1. Algorithm describing exchange kernel scaling as M3.

1: loop over atom i

2: ⊲ evaluate and ⊲ store φi

3: loop over atom j

4: if Rji < Dji then

5: ⊲ evaluate and ⊲ store φj

6: loop over atom k

7: if Rki < Dki then

8: ⊲ evaluate φk and ⊲ store ?
9: loop over atom l

10: ⊲ fetch Kkl

11: if Rli < Dli then

12: ⊲ evaluate φl and ⊲ store ?
13: ⋄ accumulate Φk

14: end if : Dli

15: end loop: l
16: ⊲ calculate ρ̄kj
17: ⊲ evaluate v̄kj
18: ⋄ accumulate Ωj

19: end if : Dki

20: end loop: k
21: end if : Dji

22: end loop: j
23: ⊲ integrate Xij

24: end loop: i

This approach involves three main operations: (i) The
projection of φi onto the discretized space, where both
radial functions and spherical harmonics are evaluated
on a cubic grid. (ii) The summations of Eqs. (20) and
(22). (iii) The evaluation of the pair potential v̄lj .
The combination of local FFT grids47 with the local-

ity property of the NAOs easily fulfils the efficiency re-
quirement. On each primary atom i a box is centered at
the position Ri. This box contains an ensemble of grid
points called Bi. For the NAO set {j, k, l} in Eq. (19)
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other boxes Ba are defined and translated along the vec-
tor Rai. Here, we choose to work with identical cubic
boxes of length L ≥ 2 × rmax

c , where rmax
c is the largest

confinement radius over the whole set of contracted func-
tions {ϕlm

iζ }. Considering that the quadrature of Eq. (19)
is different from zero if significant overlap is deemed to
exist between the four NAOs, we can first reduced the
computational resources involved in (i) by defining re-
duced spaces as,

Oai = Ba ∩ Bi (24)

where Oai is the overlap box of φa with φi. Then the dis-
cretized functions {φj , φk, φl} are only evaluated for grid
points common to the space span by φi. Secondly, by us-
ing the fact that the coordinate system is centered on the
primary atom, we can introduced an efficient screening
during the course of the calculation and reduced the com-
putational time related to (ii) and (iii). Accumulation in
the temporary matrices Φk and Ωj , which are centered on
atom i, is perform if and only if the distance Rai between
the two distribution centers is below the cutoff Dai. If
one consider this cutoff to be equal to rmax

c (a) + rmax
c (i)

where the two parameters defined the confinement radius
of the centers a and i, then the calculation is exact in the
representation space of {φa} and the conditional screen-
ing along with the overlap reduction only disable useless
computations.

As shown in the algorithm of Fig. 1 the calculation
time can be reduced further with a screening condition
on exchange matrix elements Xij . This is related to the
sparsity property of ρ(r, r′),48 and the truncation of all
the operators involved in the Hamiltonian.3 Naturally,
other screening techniques,1 as the Schwarz inequality,
might be incorporated in this algorithm. However, they
generally rely on the computation of two–center integrals
which is not computationally justify in our case. Indeed,
our implementation is performed in the framework of
density matrix linear–scaling techniques, where the main
assumption is based on “fast decay” of the matrix ele-
ments Kij at long range which implies a pre–screening
process.

From the algorithm of Fig. 1 we note that the most
time consuming operation, i.e. the evaluation of the re-
duced potential v̄kj (see below for timings), is performed
within a 3–index loop, which contrasts with the M4 scal-
ing used for the accumulation of temporary matrix Φk.
An other possibility would be to compute and store the
set {φl} or(and) {φk} once reducing formally —after the
first cycle— the execution time for the calculation of Φk

to M3(M2) but increasing the data storage by M(M2),
respectively. These options will be studied later in the
article. We will now address the computation of the re-
duced potential which is the remaining bottleneck.

III. POISSON EQUATION AND ACCURACY

There exist two main numerical approaches to evalu-
ate the Coulomb potential related to a localized charge
density distribution. We can choose to solve the Poisson
equation in reciprocal space where the Laplace operator
becomes diagonal and

ṽkj(G) = 4π
ρ̃kj(G)

G2
. (25)

G is the reciprocal space analogue of the real space vec-
tor r defined in the atom centered cubic box of volume
V = L3. Fourier transform of the density from real to
reciprocal space

ρ̃kj(G) =

∫
V

drρ̄kj(r)e
−iG·r, (26)

and the inverse transform applied to the potential

v̄kj(r) =
∑
G 6=0

ṽkj(G)eiG·r, (27)

can be performed using the FFT technologies. This sec-
ond approach is the most appropriate for periodic neutral
systems —when the positively charged nuclei compen-
sate exactly the electronic charge density— it becomes
less relevant for isolated and/or charged systems. When
dealing with localized charge densities, the Fourier ex-
pansion of Eq. (26) leads to issues which affect dramat-
ically the accuracy of the potential.49 The enforced pe-
riodicity arising from the wave factor induces spurious
electrostatic interactions between periodic images which
are naturally magnified for charged systems. Moreover,
in this case ṽkj(G → 0) diverges instead of converging to
zero and violates the classical law v̄kj(r → ∞) ≈ 0 which
must be valid for any Coulomb potentials associated with
isolated charges.
Several schemes have been developed to tackle this

problem,50–52 and we refer the reader to Refs. 49 and 53
for recent studies —and references therein. Alternatively,
Poisson’s equation can be solved in real space. Wu et al.
proposed to seek for v̄kj as solution of Eq. (14) by dis-
cretizing the Laplace operator in real space and solving
the corresponding set of finite difference equations us-
ing a conjugate gradient algorithm.44 An other class of
method, which avoids the direct resolution of the Poisson
equation is based on the discrete variable representation
(DVR) of Eq. (12).54 The density is generally expanded
in a direct product of one–dimensional localized real–
space basis functions as Chebyshev polynomials,55 sinc,54

Lagrange56 functions, or interpolating scaling functions
(ISF).57 As a result, the potential is free of boundary
conditions. The remaining issue related to the Coulomb
singularity is circumvented by an integral transformation
and a Gauss quadrature,58 or by the separable formula-
tion of the 1/r operator over Gaussian functions as pro-
posed by Beylkin et al.59,60
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TABLE I. Deviations of numerical ERIs computed for H2 with respect to the semi–numerical method of Toyoda et al. imple-
mented in LIBERI.39 A fixed grid spacing of 0.20 au was used for both the FFT– and DVR–based methods.

Integrals (au)

Method κa rint (au) Ng
b (11|11) (12|11) (12|12) (11|22)

LIBERIc n/a n/a 2048 0.6141895 0.4273042 0.3291038 0.5012347

Deviations (au)

(11|11) (12|11) (12|12) (11|22)

FFT/no correctiond 2.7 12.86 129 0.1177822 0.0883207 0.0668717 0.1156119

FFT–SCC 1.2 5.65 57 0.0140899 0.0076902 0.0064139 0.0038279

2.7 12.86 129 0.0094874 0.0065076 0.0049596 0.0076849

8.0 37.67 377 0.0032908 0.0021934 0.0016352 0.0026264

FFT–CCC 1.2 5.65 57 -0.0005123 -0.0026848 -0.0003908 -0.0071520

1.5 7.06 71 -0.0002621 -0.0003906 -0.0000992 -0.0047685

2.0 9.42 95 -0.0001081 -0.0002508 -0.0000903 -0.0030707

DVR–ISFe 1.0 4.71 48 0.0000018 -0.0000968 -0.0001299 0.0001028

a The relation beyween κ and rint is given by rint = κ× rmax
c , where rmax

c is the the confinement radius of the PAO.
b Ng is the number of grid points along one direction. For the SBT approach, Ng corresponds to the number of points used to
discretized the radial component.

c The convergence parameters are: (i) maximum value of angular momentum lmax = 10, (ii) l̄max = 8 and N̄g = 180 for the
Gauss–Laguerre quadrature.38

d No correction is applied and the G = 0 component is neglected as in Eq. (27).
e A number of 16 interpolating scaling functions were used for the density mapping.

FIG. 2. Convergence of the numerical Coulomb–type ERI for
H2 with respect to the grid step and the Poisson solver. Left
panel: with the DVR–ISF and FFT–CCC method. Right
panel: with the FFt–SCC method. Influence of the scaling–
order m for ISF and the integration radius for the FFT–based
approaches are also demonstrated.
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Later in this article we will investigate the accuracy of
two FFT–based Poisson solvers: (i) The spherical cut-
off of the Coulomb potential (SCC).52,61 The Coulomb
potential is truncated at distance C where the localized

electronic density vanishes preventing undesired interac-
tions between periodic images. It is easily demonstrated
that the Fourier transform of v̄kj(r) is then given by

ṽkj(G) ≈ 4πρ̃kj(G)
1− cos(C|G|)

G2
(28)

In this respect the G = 0 component of potential is fi-
nite with ṽkj(0) = 2πC2. The spherical cutoff approach
and its generalization to 1D and 2D periodic system
have been investigated in details elsewhere.49,51,62 Gen-
erally, the density cutoff is defined as C = 2

√
3 × rmax

c

and the box side length is given by L = 2κ × rmax
c

with κ ≥ 1 +
√
3.49,52 (ii) The counter charge correc-

tions (CCC).49,53,63,64 At first thought, if one want to
eliminate periodic–image interactions of the net charge
qkj =

∫
V
drρ̄kj(r) which in reciprocal space are con-

centrated at G = 0 and recover the useful relation
ṽkj(0) = 0, we can add to ρ̄kj a jellium compensating
charge and correct the potential accordingly. This ap-
proach implies that the density must be very localized,
or conversely that the cell is large enough to allow the
approximation of ρ̄kj by a Dirac delta function. If now
the qkj is close to zero, as for a p–like or d–like charge dis-
tribution, we observe that no particular corrections are
applied, and that higher order in the model have to be
included if one want to correct the spurious electrostatic
interactions of the nonspherical components. Then, the
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second thought bring us to introduce a more general ap-
proach where the compensating model density ρM is ex-
panded in a set of auxiliary densities presenting the same
multipolar moments than ρ̄kj . If Gaussian functions are
used for the auxiliary basis, the derivation of the cor-
recting potential vM can be analytical.49 Hereafter, for
sake of demonstration, we have considered a unique nor-
malized Gaussian function centered on the origin of the
cell and weighted by qkj . We make sure that the tail
of the Gaussian do not spill over the boundaries of the
box. Then ρM is added to ρ̄kj in real space. After the
first FFT of Eq. (26), the potential in reciprocal space
obtained through

To probe the accuracy of the two FFT–based ap-
proaches and the DVR–ISF Poisson solver developed by
Genovese et al.42,43 we have computed the four inequiv-
alent ERIs of H2 —with an interatomic distance of 1.4
au. A single–ζ PAO with rmax

c = 4.71 au has been used
for the support functions. For the ISF Poisson solver,
89 Gaussian functions were used for the linear expan-
sion of the Coulomb operator, as implemented in the ISF
module.65 Deviations of the numerical ERIs with respect
to the results obtained with the semi–numerical SBT–
method38–40 of Toyoda et al. are reported in Table I.

Convergence of the (11|11) ERI with respect to the
grid spacing hint and the integration radius rint for FFT–
based approaches are represented in Fig. 2. We em-
phasize that whereas accuracy of the DVR methods are
formally independent of the range of the integration ra-
dius, i.e. the size of the box, periodic–image interactions
remain for counter–charge or spherical–cutoff corrected
FFT approaches.49 As a result, whatever the scheme for
the correction, larger simulation cells are always required
when one applies FFT technique to solve the Poisson
equation for isolated systems. This is apparent if one
examine the deviations of the H2 ERIs as a function of
the integration radius —with a fixed hint— for the SCC–
and CCC–FFT methods (see Table I). We observe a de-
crease of the deviation with respect to the reference val-
ues for larger cell but the convergence of the ERIs is very
slow compared to the computational effort which scales
globally as N3

g , where Ng is the number of grid points

along one direction, with N3
g log(N3

g ) for the FFT part
(see Fig. 2). This conclusion is reinforced by the plots
of Fig. 2 where a logarithmic scale is used for the er-
rors. From Table I, we notice that CCC outperforms
SCC by an order of magnitude using more reasonable
computational resources, with an error below the mHa
for rint = 1.2 × rmax

c . We also emphasize that if no cor-
rection is applied to the FFT–based Poisson solver, the
ERIs are underestimated by 20 %.

Finally, we find that the most suitable Poisson solver
to reach a fine accuracy with reasonable computational
resources is the DVR–ISF, with a deviation around 10−4

Ha and an exponential convergence with respect to the
grid spacing. Notice that, as previously demonstrated
by Genovese et al.42 the convergence rate can be acceler-
ated by increasing the number of interpolating functions

(see Fig. 4) without impacting the numerical effort which,
like for standard FFT technique, scales as N3

g log(N3
g ).

Eq. (27) is FFT back and the correcting potential vM is
subtracted to v̄kj in real space.

FIG. 3. Comparison of CPU times necessary to compute exact
exchange as a function of number atoms using explicit ERI
calculation and the 3CRI method. The FFT–CCC approach
was used to solve the Poisson equation. Polynomial fits along
with ideal M3 and M4 scaling are also reported (see text for
details).
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IV. TIMING PROPERTIES AND SCALING

Practical tests on the efficiency of the 3CRI algorithm
were performed on linear chains of hydrogen atoms. This
system allows us to realize fast computations and simplify
the interpretation of the results, without compromising
the generality of the result. Calculations were performed
on 1 processor with a fixed grid spacing of 0.20 au for the
PAO discretization and integration radii of 5.65 and 4.71
au for FFT–CCC and DVR–ISF, respectively. Notice
that all the conclusions drawn from this 1D system is
fully transferable to 3D lattices.
In Fig. 3 are reported the central processing unit

(CPU) times used for the computation of exact exchange
as a function of the length of the atomic chain using
explicit evaluation of the ERIs and the 3CRI approach.
First, we observe that above 8 atoms, i.e. for a mini-
mum interatomic distance of 9.8 au, we reach a linear
scaling regime for both approaches, which is also appar-
ent in Fig. 4). This highlights the role of the overlap
screening introduce previously (see Fig. 1). This obser-
vation is reinforced by comparing the numerical results
to the ideal αM3 and βM4 scaling of Fig. 3 obtain from
a curve fitting in the range [0; 8] where only α and β were
optimized. We found that the M4 scaling prefactor β is
around 3 times larger than α. Within the same range,
if the polynomial fitting is fully relaxed, a scaling ratio
of about M0.5 is obtain compared to the ideal value of
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FIG. 4. Comparison of CPU times necessary to compute exact
exchange as a function of number atoms using FFT and DVR
approaches for solving Poisson’s equation. Influence of the
data storage is presented in terms of CPU time (left y–axis)
and memory (right y–axis).
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main routines involved in exact exchange calculations: the
resolution of the Poisson equation, the PAO discretization
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Influence of the data storage is also presented. Left panel:
with explicit evaluation of the ERIs. Right panel: using the
3CRI approach.
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M . In that case the two prefactors are almost identi-
cal with a value around 0.06 s. Comparison of the FFT
and DVR approach upon the CPU time is presented in
Fig. 4 along with the influence of the data storage. For
the ERI algorithm, we observe that FFT–CCC is faster
than the real–space approach for which the size of the
grid is reduced by a factor 1.73 (i.e. 1.23 ; see Table I).
Conversely, the opposite trend is found when the 3CRI

algorithm is employed. After inspection, we found that
these variations are due to the different prefactor in the
FFT techniques which is also embedded in the ISF Pois-
son solver.43

Partial storage of the PAOs (the set {φl}, see line 12
of Fig. 1) leads to a net reduction of the execution time
by a factor 1.8 and 1.5 for the FFT–CCC and DVR–
ISF) Poisson solver, respectively. A better appreciation
of the underlying factor that influence the scaling be-
havior is given in Fig 5. The improvement arising from
the 3–center reduction algorithm is mainly located in the
Poisson solver routine, which is formally calledM4 times
by the ERI algorithm, compared to M3 for 3CRI. For
the sake of verification, notice that the same amount of
time is spent in the PAO evaluation and the accumula-
tion parts (see Fig. 1) of the two algorithms. As expected,
the CPU time reduction observed when the partial sav-
ing of the PAOs is turn on (right panel of Fig 5) is due
to the decrease by a factor of the time spend in the PAO
evaluation routine. Nevertheless, there is a price to pay
through a slower memory access and the noticeable in-
crease of the accumulation time. As a rule, we are fac-
ing the eternal dilemma of data storage vs. execution
time,66–68 and a good balance between both procedures
must be found in order to optimize to computational re-
sources used. Finally, we note that the data storage fulfils
the linear scaling requirements as demonstrated in Fig. 4.
For an evenly spaced chain of atoms as considered in this
work, the saturation regime, which reaches 48.5 MB —
using the computational settings describe previously—,
is reasonable compared to the memory peak of 21.9 MB
obtain when the data storage is bypassed.

V. CONCLUSION AND PERSPECTIVES

Using a linear combination of discrete basis set and
the 3–center reduction method, we have shown that we
are able to circumvent the M4 scaling inferred by the
calculation of exact exchange with the full set of ERIs.
It is important to notice that the exact–exchange Hamil-
tonian and energy obtained with the 3CRI approach are
rigorously identical to the traditional ERI results. More-
over, if the atomic–like orbitals are localized and finite
range, it is further possible to achieve linear scaling in
both CPU time and memory usage. We emphasize that
the O(M) regime obtained in this study —where M is
the number atoms within the range of the exact–exchange
Hamiltonian— defines the scaling behavior of the O(N)
density matrix techniques —where N is the total number
of atoms. Within a forthcoming article we will describe
the parallel implementation of exact exchange within the
matrix multiplication kernel of Conquest,69 and demon-
strate that the parallelization of the 3CRI algorithm only
involved exchange of the density matrix elements across
processors.
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63P. E. Blöchl, J. Chem. Phys., 103, 7422 (1995).
64P. A. Schultz, Phys. Rev. B, 60, 1551 (1999).
65http://pages.unibas.ch/comphys/comphys/software.htm.
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