
OSKAR 2.7.0 Applications Rev. 11

OSKAR Applications

1 Introduction

This document briefly summarises the current applications included in the OSKAR package. It assumes
that OSKAR has already been built and installed.

2 Application Binaries

Currently, there are 12 OSKAR application binaries available, listed below in alphabetical order.
Applications that can be used to perform simulations with OSKAR are marked with ∗.

1. oskar ∗

2. oskar_binary_file_query

3. oskar_cuda_system_info

4. oskar_fit_element_data

5. oskar_fits_image_to_sky_model

6. oskar_imager

7. oskar_sim_beam_pattern ∗

8. oskar_sim_interferometer ∗

9. oskar_vis_add

10. oskar_vis_add_noise

11. oskar_vis_summary

12. oskar_vis_to_ms

For a description of each of these applications, please refer to their respective numbered subsections.
When running applications, usage syntax as well as some usage examples can be obtained by
specifying the --help flag as a command line argument to the binary (e.g. $ oskar --help). The
OSKAR package version number from which the binary was built can be obtained for all applications by
specifying the --version flag.

Application binaries are built into the <build directory>/apps folder and installed into
/usr/local/bin by default.

2.1 oskar

This application provides a simple graphical user interface that can be used to configure and run
simulations. It can be started with the following syntax:

$ oskar [settings file path]

© The University of Oxford, 2012-2017 1

OSKAR 2.7.0 Applications Rev. 11

2.2 oskar_binary_file_query

This utility displays a summary of the contents of an OSKAR binary file, and can be run using the syntax:

$ oskar_binary_file_query <binary file path>

2.3 oskar_cuda_system_info

This utility displays a summary of the installed CUDA hardware. It takes no command line arguments.

2.4 oskar_fit_element_data

This application must be used if numerically-defined element pattern data should be used in a simulation.
It performs spline fitting to tabulated data, and stores the fitted coefficients to files inside the telescope
model. All options are configured using the element fit group of the specified settings file. The application
is run using the following syntax:

$ oskar_fit_element_data [--set] <settings file path> [key] [value]

Note that this application can be configured and run via the oskar GUI application, described above. If
required, settings files can be modified via the command line using the –set option, with the key and
new value given after the path to the settings file.

2.5 oskar_fits_image_to_sky_model

This utility can be used to convert a standard radio astronomy FITS image (made using the orthographic
projection) to an OSKAR sky model file. It takes the following command line syntax:

$ oskar_fits_image_to_sky_model [OPTIONS] <Input FITS file>
<Output sky model file>

[OPTIONS] consists of flags to specify how much of the input image is converted. The downsample
factor, noise floor, and minimum peak fraction can all be set here.

2.6 oskar_imager

An application that can be used to make raw (dirty) FITS images or image cubes from visibility data
stored in OSKAR binary visibility data files or CASA Measurement Sets. All options are configured in
the image group of a specified OSKAR settings file, and the imager is run with the following syntax:

$ oskar_imager [--set] <settings file path> [key] [value]

Note that this application can be configured and run via the oskar GUI application, described above. If
required, settings files can be modified via the command line using the –set option, with the key and
new value given after the path to the settings file.

2 © The University of Oxford, 2012-2017

OSKAR 2.7.0 Applications Rev. 11

2.7 oskar_sim_beam_pattern

This is a command line application for simulating station beam patterns, which is configured by providing
an OSKAR settings file as the first command line argument. Beam patterns produced by this application
are simulated using the same algorithms used in the interferometry simulation. The application is run
with the following syntax:

$ oskar_sim_beam_pattern [--set] <settings file path> [key] [value]

Note that this application can be configured and run via the oskar GUI application, described above. If
required, settings files can be modified via the command line using the –set option, with the key and
new value given after the path to the settings file.

2.8 oskar_sim_interferometer

This is a command line application for simulating interferometer data. Visibility data sets produced by the
simulator are written in CASA Measurement Set and/or OSKAR binary visibility format. The simulation
is configured using a variety of options, which are specified in an OSKAR settings file provided as the
first command line argument:

$ oskar_sim_interferometer [--set] <settings file path> [key] [value]

Note that this application can be configured and run via the oskar GUI application, described above. If
required, settings files can be modified via the command line using the –set option, with the key and
new value given after the path to the settings file.

2.8.1 Parallelisation and multi-GPU usage

Interferometer simulations operate on units of computation known as a visibility block. This is a unit
of the final output visibility data set containing all baselines and all channels, but a limited number of
times. Computation and writing of these visibility blocks is overlapped by using multiple CPU threads.
In addition, if multiple GPUs are available and assigned in the simulation settings, they will cooperate
on filling each visibility block. The division of work which results by using this scheme to simulate a
data set on a system with two GPUs is illustrated in the Figure below. In this illustration, after a short
period of loading the simulator settings and input model data (marked 'Setup & load'), three threads are
launched to perform overlapping compute and write of blocks of visibility data. Note that the number of
threads used by the simulator will be one larger than the number of GPUs used for the computation.
Computation within each visibility block is split between each of the available GPUs, and proceeds by
sharing out independent units of the visibility block which correspond to the visibilities for one chunk of
sources for one time. The size of the chunk of sources, which has an impact on the number of compute
units shared between the GPUs, is configurable in the simulation settings. In order to achieve good
performance, it is advisable to ensure that the number of source chunks multiplied by the number of
times in a visibility block is large enough to hide any variation in compute times between the different
compute units, while at the same time having enough sources in a chunk to fully occupy the GPU (i.e.

© The University of Oxford, 2012-2017 3

OSKAR 2.7.0 Applications Rev. 11

several thousand sources in each chunk).

Setup	
 &	
 load	

Compute	

To

ta
l w

al
l t

im
e

Write	

Write	

Write	

Compute	

Compute	
 Compute	

Compute	
 Compute	

Compute block 0

Compute block 1
Write block 0

Compute block N
Write block N-1

Thread 0 Thread 1 Thread 2

Write block N

Figure 1: The division of compute and write operations for a simulation running on a system with two
GPUs to evaluate a number of blocks of visibility data.

2.8.2 Interpreting timing information

Upon completion of an interferometer simulation, the log will contain the results of a number of timers.
These are the following:

• Total wall time is the total execution time for the simulation. This is a combination of the time
taken in loading input data, all computation, and writing the output files. Where possible, compute
and write operations are overlapped, so the total compute time will equal the largest of either write
or compute, and the balance between these will give an indication of whether the simulation is
limited by available computing power or filesystem performance.

• Load is the time taken in loading the simulation input data. This time is always a contribution to
the total wall time.

• Compute time (displayed per GPU) is the total time taken simulating visibility blocks. This is usually
the dominant part of the total simulation wall time, in which case the simulation performance is
limited by available computing power.

• Write time indicates the total time taken in writing visibility data files (CASA Measurement Set
and/or OSKAR binary format). If the compute time is larger than this value, write operations will
have very little impact on the overall simulation wall time. The only exception to this is writing the
last visibility block, which cannot overlap with any compute operations.

Notable components of the simulation compute time are also listed, with their average percentage
contribution to the total computation cost.

4 © The University of Oxford, 2012-2017

OSKAR 2.7.0 Applications Rev. 11

• Copy represents the cost of setting up and moving data to the GPU.

• Horizon clip is the process of removing sources below the horizon as a function of time.

• Jones E is the evaluation of the station beam pattern as a function of station and source direction.

• Jones K is the evaluation of the interferometric phase per station and per source.

• Jones join is the cost of combining individual Jones terms.

• Jones correlate forms the visibility amplitudes as a function of baseline (station pair), time and
frequency, by collapsing the source dimension of the Jones matrices after combining with the
source brightness matrix.

• Other is the cost of all other computing components and overheads that have not been individually
timed.

2.9 oskar_vis_add

This application combines two or more OSKAR binary visibility files. It is intended for combining
simulations made with different sky model components, so the visibility data files being combined must
have been generated using identical telescope configurations and observation parameters (i.e. share
common baseline coordinates, time and frequency axes). The application is run with the following
syntax:

$ oskar_vis_add [OPTIONS] <OSKAR visibility files...>

[OPTIONS] consists of flags for specifying the output (combined) visibility data file name, and a flag for
suppressing log messages.

2.10 oskar_vis_add_noise

This application adds noise to the specified OSKAR binary visibility file(s). The noise to be added is
configured according to the noise settings found in the interferometer group of the provided OSKAR
simulation settings file (for details of these settings please refer to the OSKAR Settings documentation).
The application is run with the following syntax:

$ oskar_vis_add_noise [OPTIONS] <OSKAR visibility files...>

[OPTIONS] consists of flags for specifying the settings file in which the noise parameters are defined,
whether noise should be added in-place or to a copy of the input visibility file(s), and a flag to enable
verbose output.

2.11 oskar_vis_summary

This application prints a summary of the data contained within an OSKAR visibility binary file. The
application is run with the following syntax:

$ oskar_vis_summary [OPTIONS] <OSKAR visibility files...>

[OPTIONS] consists of flags to display the settings used to generate the visibility file and the run log
generated during the simulation.

© The University of Oxford, 2012-2017 5

OSKAR 2.7.0 Applications Rev. 11

2.12 oskar_vis_to_ms

This application can be used to convert one or more OSKAR visibility binary file(s) to Measurement Set
format. If more than one input OSKAR visibility file is provided, they are concatenated. The application
is run with the following syntax:

$ oskar_vis_to_ms [OPTIONS] <OSKAR visibility files...>

6 © The University of Oxford, 2012-2017

OSKAR 2.7.0 Applications Rev. 11

3 Example BASH Shell Script

This section shows an example shell script (written for the BASH shell) that was used to run the
simulations for the examples described in the Theory of Operation document. It procedurally generates
a sky model (containing a single source) at different locations and in different polarisation states, runs
the simulation, and generates images in Stokes Q and U. The simulation results are discussed in that
document: this section only exists to show an example of the scripting capability of OSKAR.

#!/bin/bash

Name of temporary INI file and sky file.
INI=temp.ini
SKY=temp.sky

Command used to set parameters.
OSKAR_SET=oskar_sim_interferometer --set

General settings.
touch $INI
$OSKAR_SET $INI sky/oskar_sky_model/file $SKY
$OSKAR_SET $INI observation/start_frequency_hz 100000000
$OSKAR_SET $INI observation/start_time_utc "21-09-2000 00:00:00.000"
$OSKAR_SET $INI observation/length 12:00:00.000
$OSKAR_SET $INI observation/num_time_steps 24
$OSKAR_SET $INI telescope/input_directory \

../../data/telescope/hexagonal_regular_small_25x2587
$OSKAR_SET $INI telescope/aperture_array/array_pattern/enable false
$OSKAR_SET $INI telescope/aperture_array/element_pattern/enable_numerical false
$OSKAR_SET $INI telescope/aperture_array/element_pattern/functional_type \

"Geometric dipole"
$OSKAR_SET $INI interferometer/image_output true
$OSKAR_SET $INI image/fits_image true

Define source Stokes Q and U values to use.
STOKES_VAL=("1 0" "-1 0" "0 1" "0 -1")

Define signs of source Stokes parameters.
STOKES_SIGN=("+" "-" "+" "-")

Define Stokes image types to make for each source.
STOKES_TYPE=("Q" "Q" "U" "U")

Define source coordinates (0, 87) and (90, 87).
COORD_RA=("0" "90")
COORD_DEC=("87" "87")

Set telescope at the North Pole.
$OSKAR_SET $INI telescope/latitude_deg 89.9

Loop over source positions.
for ((COORD_INDEX=0; COORD_INDEX<${#COORD_RA[@]}; COORD_INDEX++)); do

Get RA and Dec values.
RA=${COORD_RA[$COORD_INDEX]}
DEC=${COORD_DEC[$COORD_INDEX]}

Set RA and Dec of phase centre.
$OSKAR_SET $INI observation/phase_centre_ra_deg $RA
$OSKAR_SET $INI observation/phase_centre_dec_deg $DEC

© The University of Oxford, 2012-2017 7

OSKAR 2.7.0 Applications Rev. 11

Loop over source Stokes parameters.
for ((POL_INDEX=0; POL_INDEX<${#STOKES_VAL[@]}; POL_INDEX++)); do

Create the sky model.
echo "$RA $DEC 1 ${STOKES_VAL[$POL_INDEX]}" > $SKY

Set the image type.
$OSKAR_SET $INI image/image_type ${STOKES_TYPE[$POL_INDEX]}

Set the image root filename.
$OSKAR_SET $INI image/root_path \

"RA_${RA}_Stokes${STOKES_SIGN[$POL_INDEX]}"

Run the interferometer simulation.
oskar_sim_interferometer $INI

done
done

Define source coordinates (1, 0)
COORD_RA=("1")
COORD_DEC=("0")

Set telescope at the Equator.
$OSKAR_SET $INI telescope/latitude_deg 0

Loop over source positions.
for ((COORD_INDEX=0; COORD_INDEX<${#COORD_RA[@]}; COORD_INDEX++)); do

Get RA and Dec values.
RA=${COORD_RA[$COORD_INDEX]}
DEC=${COORD_DEC[$COORD_INDEX]}

Set RA and Dec of phase centre.
$OSKAR_SET $INI observation/phase_centre_ra_deg $RA
$OSKAR_SET $INI observation/phase_centre_dec_deg $DEC

Loop over source Stokes parameters.
for ((POL_INDEX=0; POL_INDEX<${#STOKES_VAL[@]}; POL_INDEX++)); do

Create the sky model.
echo "$RA $DEC 1 ${STOKES_VAL[$POL_INDEX]}" > $SKY

Set the image type.
$OSKAR_SET $INI image/image_type ${STOKES_TYPE[$POL_INDEX]}

Set the image root filename.
$OSKAR_SET $INI image/root_path \

"Equator_RA_${RA}_Stokes${STOKES_SIGN[$POL_INDEX]}"

Run the interferometer simulation.
oskar_sim_interferometer $INI

done
done

Clear temporary files and view results.
rm -f $INI $SKY
ds9 RA_0*.fits &
ds9 RA_90*.fits &
ds9 Equator_RA_1*.fits &

8 © The University of Oxford, 2012-2017

OSKAR 2.7.0 Applications Rev. 11

Revision History

Revision Date Modification
1 2012-04-20 Creation.

2 2012-05-15 [2.0.1] Added description of binaries to set and display OSKAR settings
parameters, and an example shell script.

3 2012-06-19 [2.0.2] Updated description of binaries to include those that can be used to
query an OSKAR binary file, and export visibilities to a Measurement Set.

4 2012-07-27 [2.0.4] Updated description of binaries to include display of CUDA system
information.

5 2013-02-26 [2.2.0] New applications: oskar_fits_image_to_sky_model,
oskar_image_stats, oskar_visibilties_add. Moved description of MATLAB
interface into its own document.

6 2013-11-16 [2.3.0] Renamed applications handling OSKAR visibility binary files from
using the word visibilities to vis. New applications: oskar_vis_add_noise,
oskar_vis_summary.

7 2014-02-26 [2.4.0] Fixed a settings key in the example BASH script.

8 2014-07-16 [2.5.0] New application: oskar_fit_element_data.

9 2014-09-09 [2.5.1] Updated description for oskar_vis_to_ms application, which now
supports concatenation of visibility files.

10 2015-04-27 [2.6.0] Updated description of the oskar_sim_interferometer application.
Removed deprecated oskar_image_∗ applications.

11 2017-01-05 [2.7.0] Removed oskar_settings_set and replaced with –set option on
applications that use settings files.

© The University of Oxford, 2012-2017 9

	1 Applications
	1 Introduction
	2 Application Binaries
	2.1 oskar
	2.2 oskar_binary_file_query
	2.3 oskar_cuda_system_info
	2.4 oskar_fit_element_data
	2.5 oskar_fits_image_to_sky_model
	2.6 oskar_imager
	2.7 oskar_sim_beam_pattern
	2.8 oskar_sim_interferometer
	2.8.1 Parallelisation and multi-GPU usage
	2.8.2 Interpreting timing information

	2.9 oskar_vis_add
	2.10 oskar_vis_add_noise
	2.11 oskar_vis_summary
	2.12 oskar_vis_to_ms

	3 Example BASH Shell Script

