Skip to content
No description, website, or topics provided.
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Type Name Latest commit message Commit time
Failed to load latest commit information.

The Spectral Bias of the Deep Image Prior

Code to reproduce results in the paper:


Download images from Table 2 here: Save these images in a folder called data/

Generate noisy images:

python --downsample_factors 1,2,4

This will add different levels of noise to the images downsampled by the specified factors and save them in the data/ folder

Trajectory Experiment

Run the following to reproduce the trajectory experiment (figure 1 in the paper)

# Less high frequency components
python --noisy_img data/triangle/triangle-0.2.png --niter 1000 --traj_iter 10

# More high frequency components
python --noisy_img data/triangle/triangle-0.9.png --niter 1000 --traj_iter 10

Denoising Experiment

Run the following to reproduce the denoising results with different architectures (tables 1 and 2 in the paper):

  1. DIP model (a convolutional encoder-decoder):

     python --noisy_img data/denoise-4/House256/House256_s25.png --clean_img data/denoise-4/House256/House256.png
  2. ReLUNet:

     python --noisy_img data/denoise-4/House256/House256_s25.png --clean_img data/denoise-4/House256/House256.png
  3. DIP Linear-128:

     python --linear --n_ch_up 128 --n_ch_down 128 --noisy_img data/denoise-4/House256/House256_s25.png --clean_img data/denoise-4/House256/House256.png
  4. DIP Linear-2048:

     python --linear --n_ch_up 2048 --n_ch_down 2048 --noisy_img data/denoise-4/House256/House256_s25.png --clean_img data/denoise-4/House256/House256.png

This runs DIP twice to generate 2 trajectories. The denoising results, along with variation of distance between the 2 trajectories will be saved in the outputs/ folder.

You can’t perform that action at this time.