NE

Q{RE’SRAHHING TECHNOLOGY DIVISION DOCUMENT §YS.16.00

Identification
MIT-DMS Communication System Overview
Jack Haverty

May 15, 1975

Motivation

An overview of the current MIT-DMS communication system is contained in this
document. The system is intended to handle all of the common uses of a message
handling system, as well as to provide a powerful base for more sophisticated
uses. This memo describes the underlying design philosophy of the system. It
presents the cuncaﬁt of a message as a collection of named attributes, and the
data accessing and processing model used implement the current system. Included
is a description of the model of access primitives for a message data base, and a
description of the capabilities which can be implemented in a message system
based on the model. Details of the actual implementation are found in the

references.

References

Black, Edward H,, The DMS Message Composer, Project MAC, Programming
Technology Division Document SYS.16.02

Broos, Michael, IRS -- MUDDLE’s Information Retrieval System, Project MAC,
Programming Technology Division Document SYS.11.17.

DRAFT May 15, 1975

Haverty, Jack, Communications System Daemon Mﬁmal. Project MAC,
Programming Technology Division Document SYS.16.01.

Pfister, Greg, A MUDDLE Primer?, Project MAC, Programming Technology
Division Document 5YS5.11.01

PTDD 2 §Y5.16.00

Table of Contents

Chapter I: Introduction

l: Scope of Systemottt ittt 5
2: Data Base Model of aMessage vivvnrnenn. 7
3: Functions and the Scheduler coiiiiiinn.. 8
4: Control of Functions by Message Users 9
S: Timing of Functions i iiiiiiinnnnnnn 12

Chapter |l: Data Base Model of a Message

l: MessageasaSetof Fields e 14
2: Sharing of Dataameng Userscciiiiirnnnnnnns 15
3: Data Field Defaulting R, 18
4: Multi-valued Datafieldso iiiiinirnnnns 20

Chapter lll: Structure of Daemon Processor

1: General Organizationccoiiuiiiiiiinnnn.. 20
2: Daemon Organization i iiiiiiiinnnnn. 22
3: Data Base Access Protocol et reeetrtteesetaeeseaeanas 23

DRAFT May 15, 1975

PTDD 3 SYS.16.00

4; Function ApplicationConventionso iirivrnnnsns 24
5: Message Conditions and Signallingoiiiia., 26
B: Filelnput tothe Daemon i iiiiinnnnnn 27

Chapter IV: Interactive Systems

l:introduction it 29
2 COMPOBEr it i ittt s 30
HReader e 30
4; Information Retrieval Systemo i, 31

DRAFT May 15, 1975

PTDD 5 SYS.16.00
I. Introduction

I.1. Scope of System

This document is intended to summarize the organization and philosophy
involved in a communication facility suited for network use. This facility was
developed both to provide a powerful message handling system to a community of
users, and, more importantly, to formulate a model of the structure of a message
handling system to support construction of sophisticated message processing
environments.

The logical structure of the system, which is more useful in evaluating complex
systems, is described here instead of the details of the implementation. Details of
the current implementation and use are to be found in the references. The
system is designed to function in an environment such as the ARPANET provides, a
network of server computers linked by medium-bandwidth communication lines.
The users of such a network are assumed to have one or a few primary sites
where they may maintain message bins for receipt of messages. Users of the
system are not restricted to be people; processes can easily use the system to
communicate, especially since the messages are maintained in a structured,
machine-readable format at all times. The types of messages handled can range
from short notes to large formal documents. Such considerations affect the design

of the various processes involved, and the architecture of the processing facilities

DRAFT .1 Introduction

PTOD 6 $YS.16.00

themselves. The messages are, however, intended to be not to be necessarily
handled in a ’real-time’ manner, as would be needed for teleconferencing and
similar applications. Transmission times can range from seconds to minutes,
depending on the load of systems involved, etc.

The system as it is commonly used may be viewed as composed of two
logically distinct parts. One of these is the user interface, which is inherently
interactive. The other is a background processing facility, to which users may
assign some or all of the processing associated with a message, to be done by an
’absentee’ process. Generally, all non-interactive processing is delegated to the
background facility, permitting the user to resume other tasks. The foundation for
both parts is a data base and asscciated accessing primitives, which are used by
all functions to perform a task for a message, as well as by the daemon’s
background scheduler, which handles applying processes to messages in an
.absentae job.

This memo concentrates mainly on a description of the data base and daemon
processing facilities, with only a short description of the characteristics of the
interactive parts of the system. Further details on the user interface can be

found in the references.

DRAFT 11 Introduction

PTDD 7 §YS.16.00

I1.2. Data Base Model of a Message

In communications between humans as well as between processes, it is often
useful to think of a message as a structured object, composed of a collection of
attributes of some abstract entity which is the message. For example, some
attributes of a message are its text, addressees, author, time written, time
delivered, subject, etc. The facility developed during this project is based on the
concept of handling of a message as a collection of attributes, whose identity is
maintained during the entire handling process, instead of the simpler model of a
body of text which is delivered to a list of people. The attributes of a message
are identified by a mnaemonic name. In all documentation concerning the system,

the value of some attribute is referred to as a ’field’ of a message, e.g. the text

field.

The treatment of a message as such a structure facilitates the construction of
message-handling systems which are in some sense intelligent, since the data
defining the message is easily kept in a machine-processable format.

This organization enables independent functions to be created to perform
various operations on a message without interference, since they can use a
private set of fields te contain needed data. Functions can be written to
communicate using mutually-known fields. In fact, the standard sequence of

operations to handle transmission and delivery of messages in the ’normal’ fashion

DRAFT 1.2 Introduction

PTDD 8 §YS.16.00

is implemented as a set of such cooperating functions. Handling and storage of
messages in this structured form, and adherence to the philosophy of organization
of message-handling facilities as a set of co-operating processes enables the
message facility to provide a number of powerful operations which the author and
receivers of a message can apply or which they can cause the daemon to apply
for them.

In summary, the system can be viewed as consisting mainly of a data base
manager, which handles objects consisting of sets of named fields, a set of
functions, which operate on those objects to accomplish some operation, and a
scheduler for such functions, which handles applying them to indicated messages in

a background job for an absentee user.

1.3. Functions and the Scheduler

Virtually all operations which are done to a message are performed by a
function. Functions are written to conform to a few simple rules for operation,
such as always accessing message fields using the supplied data-accessing
package. Functions may be applied to a message as part of some interactive
request, or they may be automatically applied by the daemon scheduler at the
request of some user, which is the mare common occurrence.

The scheduler includes the capability to apply functions to particular messages

after a specified point in the future. The protocol used by the scheduler to apply

DRAFT 1.2-1.3 Introduction

PTOD 9 §YS.16.00

functions to a message also includes the ability for a function to indicate that it
has ’failed’ in a temporary fashion, i.e, if tried later it may be successful. The
scheduler in such instances automatically retries the function at intervals until it
succeeds or a pr.adafinnd number of attempts fail.

The scheduler protocol includes an error-handling facility, which provides for
sending a message to the owner of a message when a function returns a fatal
failure indication. Such a message is composed by the scheduler, using a default
error analyzer, or optionally one written specifically to analyze errors in the
particular function. In addition, the analyzers for current functions are capable of
detecting and reporting probable bugs to the maintainer of the communication
system.

The particular functions which have been written in this environment handle

message communication, but such a restriction is not inherent in the structure.

1.4. Control of Functions by Message Users

Because the individual attributes of a message are separable, and remain
computer-processable throughout the message’s lifetime, essentially any
algorithmic, or even heuristic, operation can be implemented to process a
message, at any point in its travels. The model which has been developed, and
the resulting implementation, provide at least two places in the normal message

handling where such control can occur, one which handles operations for the

DRAFT 1.3-1.4 Introduction

PTDD 10 §YS.16.00

author, and another for the receiver. These places occur where a particular
function is applied which interprets a set of instructions obtained from a message
field. The instructions constitute a program which is executed by the interpreter
function te accomplish whatever the associated user has programmed. This facility
essentially provides a means for individual users of the message system to tailor
its operation according to their own personal desires.

Generally the user of a message will have his personal program simply select
and schedule some standard functions to be applied to his message. The facility is
extensible however, in that any user may write a function, conforming to the
defined protocol, place it in the program library, and direct the scheduler to apply
it to the message. In this manner, highly personalized functions may be added to
the system in a non-disruptive fashion, since no existing software needs to be
changed.

Often a recipient of a particular message desires some action to occur as a
result of that message’s arrival. In conventional message systems, the user must
actually read a message and manually initiate whatever operation is desired. This
can involve operations as simple as printing the message on a line-printer to any
number of more complex decisions such as forwarding the message to other
interested parties. In the model of the message facility, the other control point,
where the receiver of the message can specify processing to occur, is triggered

when a message arrives for the specified receiver. This is accomplished by

DRAFT L4 Introduction

PTDD 11 §YS.16.00

including in the set of normal functions which are applied during handling of an
incoming message a function which interprets instructions obtained from a standard
field This enables a receiver to cause action to occur as a result of an incoming
message immediately on its arrival, which may be long before he actually reads it.
Since the message is structured, the instructions can examine the message
components and make decisions based on the contents. This facility provides an
environment where a user with a message bin can effectively have a personalized
process running at all times, waiting for messages; such a daemon resides in the
instructions which are provided for action to be done on arrival of a message.

This structure also enables a similar function, to which the author supplies
instructions via a message field, to be applied whenever he creates a message.
For example, this would permit construction of a powerful office environment as a
collection of functions, where the various functions could perform such tasks as
spelling correction, formatting of the message, and coordination before the actual
transmission, helding up the message and informing the author only if an error
occurs. In addition, it enables the author to set up a personalized environment for
his messages, which can be ’intelligent’ in some sense. The function can be used to
tailor the contents and handling of individual messages according to any criteria
which are programmable. For example, a fairly complex function could examine
the text of the message, and add entries to the distribution list depending on the

contents. Arbitrarily complicated processes can be imagined, such as ones which

DRAFT 1.4 . Introduction

PTDD 12 §Y5.16.00

perform different functions depending on the day of the week, urgency of the

message, etc.

L.5. Timing of Functions

The daemon’s scheduler implements a facility for specifying that a function be
applied to the message at some specific point in thai future. The scheduler
attempts to apply the message at the stated time. This capability is used to
implement various actions which require such memory. Several example uses of
this capability follow.

The author of a message often would like to be informed of the su-'.;cass or
failure of delivery of his message. He may, for example, want to be informed if
one or more addressees have not received the message by a certain time, or
have not actually read it by some time. This facility is implemented by a function
which schedules itself to run at the next critical time, to check if the author
should be informed that some event has, or has not, occurred. The function is
general in scope. It operates with attributes of the message called "conditions’
and can maintain a table for each addressee of action to take when a condition
occurs, or if it has not occurred by some specified time. Several conditions are
currently used, among them ’'delivery’ and ’reading’. Implementation of such
capabilities depends on the ability to schedule processes to be run at specific

timeas in the future or on occurrence of event associated with a condition. The

DRAFT 1.4-1.5 Introduction

PTDD 13 SYS.16.00

former is handled by the time specifications of the scheduler, and the latter is
obtained by an interrupt-like facility which is part of the function application
protocol.

Especially in operation in a network environment, a message system should
handle as much of the tedium of getting the message through to the receiver as
possible. For example, this includes handling messages intended for a site which is
currently unavailable. The author of a message should not be required to wait
while a message is transmitted, or be forced to retry manually if the receiver’s
site is unavailable, but rather should be capable of specifying how a message
should be handled, and have the daemon keep trying to get the message through
to the receiver. This capability is also handled by the delivery function’s ability
to reschedule itself to run later, and to keep data in private message fields to use
as a history of its attempts, so that it has the ability to *give up’ if matters appear
hopeless, generating an error which the standard mechanisms will report to the
owner of the message. This capability is also a result of the architecture of the

data base accessing primitives and background process scheduler, described in

detail later.

DRAFT 1.5 Message Model

PTDD 14 SYS.16.00
Il. Data Base Model of a Message

I1.1. Message as a Set of Fields

The message data base contains a set of objects called messages, which have
attributes identified by names, e.g. text, to, blind, carbon-copy, from, etc. The
value of any attribute is referred to as the contents of the relevant field of the
message in some user's area. [he data base's operational characteristics are
defined by the set of accessing primitives supplied to users of the data base.
The most common users are the communication daemon itself, processes which the
daemon applies to a message on some user’s behalf, and various interactive
processes such as the Reader, Composer, elc.

All users of a message have an assigned area of the message in which they
can read and write data in fields. Each area is accessed by specifying the name
of the related user. Each receiver of a message is a user, who accesses his area
by specifying his name, and the author of the message is a user, who accesses his
area by the special "empty’ name. A user can be both the author and receiver of a
message, with different associated areas, using this convention. In general,
different user areas are completely independent; the -aama field may contain
different values, depending on whose area it is obtained from. This enables use
of fields such as ‘when-delivered’, which can be different for the various

receivers. The number of fields which a message can contain is not limited.

DRAFT II.1 Message Model

PTDD 15 §YS.16.00

Functions can be designed to use fields in their operation which did not previously
exist, and which will exist only for messages which utilize the particular function.
There is, however, no protection from naming conflicts between functions, but this
has not proven to be a problem, since most functions must be approved for public
use within the daemon, at which point conflicts can be resolved. Personal

functions can easily be written to use names based on the person using them in a

unique manner.
I11.2. Sharing of Data among Users

In general, any specific user of a message can only access the fields in his
personal area. A provision for controlled data sharing is included, to permit
receivers to access selected fields from the author’s area, to obtain the delivery
time, for axample, and vice-versa, to obtain the text, for example. Such access is
controlled for purposes of privacy. In each user’s area is a field which controls
access to his area from external users.

The effect of the sharing mechanism is to create for each user of a message a
pseudo-area which is composed of the user’s own area plus selected parts of one
or more other areas. The author sees the message as containing his own area,
plus one area for each receiver, containing fields to which the receiver has
permitted access. Each receiver of the message sees a message data base which

contains two areas, his own and parts of the author’s area. The area, however,

DRAFT Il.1-1.2 Message Model

PTDD 16 SYS.16.00

contains only those fields from the author’s area which have been specified in the
author’s access control field as being available to the particular receiver.

The author has complete control over everything in his area. He is, for
example, the only one who can change any item in his area, such as the text. In
addition, he can selectively enable addressees to read specified fields of his area,
such as the text. Such fields appear to the addressee as if they were really
contained in the addressee’s area. The only way an addressee can read the value
of an attribute of a message stored in the author area is if the author gives him
access to it. An attribute called 'notes’, for example, where an author stores
personal reminders related to the message, could be made inaccessible to any
particular addressee.

Conversely, the individual receiver’s areas could contain items such as the time
delivered, personal notes about their comments on the message, etc. Access to
these fields is totally controlled by the receivers, who can specify which fields the
author is permitted to examine. The author cannot change any receiver’s fields
with the data accessing primitives. The author sees the message data base as
containing several areas. However, the various receiver's areas will appear to
contain only fields to which the author is permitted access. The capability of an
author modifying a receiver’s area is embedded only in an internal daemon process

which actually handles the creation of the receiver areas when the message is

sent.

DRAFT I.2 Message Model

PTDD 17 SYS.16.00

From each receiver’s viewpoint, the message initially consists of a set of
attributes such as the time delivered, which the message transmission function
automatically generates, and also all attributes which the author has permitted him
to access. These fields are virtually in the receiver's area, i.e. he accesses them
by requesting the given field from his own area, instead of the author’s. These
fields will appear to have the value which the author specified for the particular
addressee, but they are inherently read-only fields. If the receiver writes data
into the field, it will be written into his own area, overriding the value from the
author’s area. This capability is useful to override such fields as ones containing
specifications of output formats to be used, when the individual receiver does not
want the author’s recommended specification to be used. For example,
transmission of graphics -information may include a field from the author area
specifying a format of output which is unavailable or undesirable for a particular
receiver, who can override the author’s specifications by writing his own value
into the field.

The receiver’s area is automatically created when a message arrives. Note
that the attributes passed through by the author are not necessarily copied into
the receiver’s data base, but are obtained from the author’s area by the data
accessing primitives. This can be of significant practical importance when large
messages are handled involving many addressees. The data base accessing is

handled in a way that permits receivers to read such attributes as if they were in

DRAFT 2 Message Model

PTDD 18 SYS.16.00

the receiver’s data area, when they are actually being retrieved for all receivers
from the author area.

The receiver can create attributes at any time for an existing message.
Generally this would be done by some function which the receiver has caused to
be applied to the message, or by issuing a command while using the reader
subsystem. This enables him, for example, to examine the message, compose a
reply, and store the identity of the reply message in the received message area,
for use in later information retrieval. He could also, for example, compose notes

and ideas as he reads-the message, and store them as an attribute of the message

for later retrieval.
I1.3. Data Field Defaulting

Many of the fields of a message are used to supply instructions to the various
functions to control their operation. For example, the delivery function accesses a
field to obtain a specification of where to output a message, what fields to output,
and the format of output to use for each fiaici‘: The addressee expansion function,
which maps names of groups of addressees into the equivalent lists of individuals,
uses a field to obtain a list of data bases to use in its processing, and so on.

Inclusion of such fields in every message would be prohibitively expensive, since

some of the fields contain large amounts of data, and often they are identical for

many messages.

DRAFT Il.2-1.3 ‘ Message Model

PTDD 19 S¥S.16.00

The data accessing primitives implement a search scheme for fields, which
permits maintenance of sets of values to be used for each field as defaults, if no
such field exists in the individual message being processed. Such a collection of
defaults is termed a “tailor data base’, since it is used to tailor the various
processes of the system to individual user’s preferences. The data accessing
primitives use the library system to obtain the data base for the user currently
being processed. Whenever a field is requested which is not in the message area
itself for that user, the user’s tailor data base is scanned to see if a default value
is provided.

In the case of a receiver’s area, the data accessing process continues, if the
field does not exist in the user’s area or tailor data base, and examines the
author’s area of the message. |f the specified field is not found there, the
author’s tailor data base is scanned.

The last resort, in all cases, is to examine the ’system’ tailor data base. The
common specifications for the various handling processes is contained in this data
base. The normal characteristics of the various processes are controlled by the
values of the relevant fields in the system tailor data base, instead of being hard-

wired into the code. In this manner, the default characteristics are easily modified.

DRAFT I3 Message Model

PTDD 20 SYS.16.00

Il.4. Multi-valued Data fields

The data base accessing primitives allow for multiple-valued attributes in the
author’s area. One or more fields of the message may be set up by the author to
appear to have different contents depending on which receiver is reading it. This
is useful for such data as carbon-copy lists, comments, etc. In the case of a
comments field, for example, the author could store notes personalized to the
individual addressees. The individual receivers see only the value specified for
them.

This facility is totally contained in the data accessing primitives, which handle
selection of the appropriate value for such a field when a request to read is

being performed for some receiver of the message in the author’s area.

IIl. Structure of Daemon Processor
II1.1. General Organization

The architecture of the communication facility was determined by several basic
design goals. First, the system was meant to be easily usable by both human
users and processes. Second, the user should not be required to wait needlessly

while the message transmission was accomplished; only processing to support

DRAFT I.4-lil.1 Daemon Structure

PTDD 21 SYS.16.00

interactive facilities, such as editting the text of a message, needs to be done
while the user waits. Third, the system should be capable of being "programmed"
to a large extent. Users can set up their particular entries in the data base to
control how the message system behaves for them, both as authors and recipients
of messages. This is especially valuable for experimentation purposes.

The communication facility can be logically divided into two distinct cooperating
parts, the background processing facility with its various functions, and the user
interface.

The first part is composed of the daemon background scheduler, which applies
various functions to a message at specified times. The customary operation of
sending of a message is accomplished by the sequential application of these
functions to the message; this is generally handled by the daemon, but can be
done while the user waits, if he desires.

The user interface is comprised of a composer, reader, and information
retrieval system, in a single uniform environment. This part is generally used only
by human users; functions presumably do not need the facilities provided, or, if
they do, the function can implement the required operation itself, or, more
commonly, call the same subroutines which the interactive processes call from the
system library.

The interactive systems communicate with the daemon facility via the message

data base accessing primitives, as well as several mutually-recognized files.

DRAFT i1 Daemon Structure

PTDD 22 SY5.16.00

II1.2. Daemon Organization

The communication daemon (referred to as "the daemon™ from now on)
generally handles virtually all of the non-interactive processing involved in
processing a message. It accesses the message data base through the standard
data accessing primitives. In addition, it maintains a data base of messages
needing processing, to facilitate scheduling of functions at requested times. It also
walches for the existence of various ‘request’ files, generally created by other
jobs, which contain ﬁpncificatiuns of new messages to be created, new processing
to schedule, etc.

The daemon operates as a system background job. It has the ability to specify
to the operating system when it should be run next. Normally, the daemon
schedules itself to be run at the next time it has a message needing some action,
or every few hours, to scan for possible input files which have been created in
the interim. In addition, processes which create such input files may signal the
operating system to run the daemon immediately, to handle high-priority requests.

The foundation of the daemon is the scheduler, which is responsible for running
of the requested functions for various messages as soon as possible after the
time specified. To accomplish this it maintains a data base of messages needing
action, and the earliest time specified for any of the future actions. The message
itself is used as repository for the detailed information about the processes to be

run, in a standard set of fields reserved for that purpose.

DRAFT .2 Daemon Structure

PTDD 23 - $Y5.16.00

IIl.3. Data Base Access Protocol

The daemon, like all jobs in the message handling system, accesses messages
via the standard data base primitives. The basic unit record of information used
in the communication system is the message. The data accessing primitives are
designed to operate on only one message at a time. Associated with each
message, throughout the system processes, is a lock, which the data accessing
primitives attempt to lock before accessing any message. The lock can be soft-
locked, in which case the data accessing functions are inherently read-only. More
commonly, a message’s lock may be hard-locked, in which case the data accessing
primitives can both read and write fields of the message. The operating system
assures that only one job may have a message hard-locked at any time, while any
number of jobs may soft-lock a message.

Generally, a job wishing to process a message, such as the daemon's scheduler,
tries to hard-lock the associated lock, and if successful, does its work and unlocks
the lock. The data accessing primitives are set up so that changes to a message
do not actually get permanently recorded until the unlocking operation is
accomplished. This manner of operation insures that a message will not be left in
an inconsistent state, since application of functions to a message is effectively an
atomic operation, i.e, either it finishes completely, or nothing is done.

The scheduler attempts to lock a message when the time arrives at which it

DRAFT .3 Daemon Structure

PTDD 24 SYS.16.00

remembers a function is scheduled to be run. |If the locking is unsuccessful,
possibly because another job is accessing the message, the daemon reschedules
another attempt for some time in the future. If the locking succeeds, the daemon
examines the various message fields which contain specifications of which
functions to apply, applies the functions, and then checks to see when the next
function is scheduled. The scheduler’s data base is then updated to indicate when
this message should be handled again, the message is unlocked, and the daemon
goes on to its next task.

This method of operation virtually assures against inconsistency in the data
bases, or loss of messages due to crashes. Since the message or the daemon’s
scheduler data base is not updated until the processing is complete, a crash at
any point will at worst cause some function(s) to be repeated partially. This
should be taken into account when functions are written to run under the

daemon’s scheduler.
I11.4. Function Application Conventions

Functions which are written to be run by the daemon scheduler must conform
to a simple protocol.

To access a message, they must use the standard data accessing primitives.
When they are applied, a message will already have been hard-locked by the

daemon. The function must work only with that message, and return with it still

DRAFT li.3-l.4 Daemon Structure

PTOD 25 §YS5.16.00

locked, so that the daemon may update the various function control fields of the
message. The same conventions are followed by programs, such as the composer,
which run as user jobs.

The function must be written in such a fashion that it is resumable. If the
daemon or system crashes during the processing, and the function is reapplied
later, it should be able to recover gracefully. Generally this means that the
function must not do things like deleting files, etc. which may be needed for a
successful later application of the function.

If the function decides that it should run later, it can either return an error
code indicating that a non-fatal error has occurred, or, optionally, explicitly
schedule itself for some future time, and perform a successful return. In the
latter case, the function must be carefully written to avoid infinite repetition if
the error is never corrected. In the case where an error code is returned, the
function will be prevented from running by the scheduler, after a number of
unsuccessful tries.

In most cases, an error analyzer should be written to be used by the daemon
in deciding whether error codes are fatal or non-fatal, and in composing a message
to send to the owner of a message when a function fails completely.

The function, since it runs within a daemon performing tasks for many users,
should be reasonably friendly about limiting its run-time, avoiding creation of fatal

conditions within the job, etc. Most functions will probably have to be *approved’

DRAFT .4 Daemon Structure

PTDD 26 §YS.16.00

by the system maintainer before they are permitted to be run by the daemon
scheduler.

These restrictions have proved in practice to be relatively painless in
programming the various functions available now within the communicaion system.
In fact, by limiting the possible external interactions between the function and the

outside world, a more reliable and modular system has been obtained.
II1.5. Message Conditions and Signalling

The previous sections describe how a function may explicitly schedule another
function, or itself, to run at a specific time. In the case of several capabilities
which are desired in a sophisticated message handling system, it is necessary to
provide a mechanism for running a function when some condition occurs. For
example, a function which is intended to report that a message has been delivered
to some addressee should be run when the delivery process succeeds for that
addressee. In general, there may be several processes which should be run when
something happens.

The mechanism which is used to handle these cases strongly resembles a
standard interrupt facility such as exists in many programming languages.
Processes which cause some state of events to occur can inform whoever is
interested by using a system primitive called signalling. Conditions are identified

by mnaemonic names. For example, when the delivery process is successful, it

DRAFT L.4-.5 Daemon Structure

PTDD 27 SY5.16.00

signals that the condition 'delivery’ exists for the message. Any function which
desired to run again on occurrence of a condition specifies the condition to the
daemon scheduler system, using a supplied primitive. Whenever any condition
occurs, the functions which have requested to be signalled are added to the
related message’s queue of functions to be applied.

This facility completes the symmetry of scheduling capabilities in the daemon.
The author of a message can cause processing to begin for an addressee by
running the transmission function, which is the only function runnable by an author
and capable of scheduling actions for a receiver. Any user can, of course,
schedule functions for his own area. The signalling facility enables a receiver of a

message to cause functions to be scheduled for the author.

I11.6. File Input to the Daemon

The majority of programs interfacing to the communication system use the
standard data accessing primitives to modify message fields. An alternative input
path is provided for additional flexibility, and to enable programs not resident in
the MUDDLE environment to use the communication system facilities.

The daemon supports a file=input path, which treats files of publicized names
as command files for the daemon. The most common use of such files is to create
a new message, and schedule some functions to be applied to it, usually to

accomplish the normal sending of the message. The file input syntax supports

DRAFT lL.5-ll.6 Daemon Structure

PTDD 28 SYS.16.00

creation of new messages, writing of data into fields, and scheduling of functions
to be applied to the message. The functions available are operationally identical
to those provided in the data accessing and scheduling primitives available in the
normal programming environment, and in fact are implemented by an interface
between the file parser and those primitives. Qbviously only write-type
operations can be supported in this fashion, but these are the most common
functions needed to cause the system to perform some action.

Commands are not restricted to new messages. The input file can specify an
existing message and user to be accessed, and the daemon will automatically keep
trying to lock the specified message and, when successful, carry out the
commands.

In addition, the file input path provides an escape hatch for interactive
processes which desire to modify some message which is currently locked by
another job. In this case, the process can simply write out an appropriate
command file, to be handled by the daemon later.

The file input syntax and repertoire represent a rudimentary beginning of the
definition of a standard protocol for communication between multiple instances of
daemons, probably at different network sites, to handle messages in a structured

fashion, and support process scheduling, on a multi-site basis.

DRAFT .6 Interactive

PTDD 29 SY5.16.00

IV. Interactive Systems
IV.1. Introduction

This chapter is intended to give the flavor of facilities provided by the user
interface parts of the communication system. The references contain more
complete descriptions of the exact structure of the interface, and repertoire of
capabilities installed within it.

The interactive parts of the system are intended for use by humans to handle
messages to other humans or processes. It serves to provide an environment for
reading, writing and editting messages, specifying how a message is to be handled,
and sending messages. Additionally, commands are provided to read incoming
messages, reply to them, and examine the data base of all past messages which
the user has sent or received. The commands are available simultaneously, which
provides an environment in which a user can read a message, look up some old
message in his data base, send a reply to the message, forward it, compose a new
message, elc, in any order.

The system also provides commands to enable the user to set up his own
personalizing specifications in the daemon’s data bases, to cause it to handle his
messages as he wishes. Additionally, it contains commands to query the status of
messages previcusly sent, to determine if they were delivered, for example, or to
retrieve information about them for use in composing a new message (e.g. a reply
to a reply concerning the message).

DRAFT v.1 Interactive

PTDD 30 SYS.16.00

IV.2, Composer

The composer commands implement facilities useful when creating a message.
Individual fields of a message, such as the text, addressee list, subject, etc. may
be input, examined, or editted at any time, in any order. Various editting facilities
are provided, including a capability for editting field contents, such as the text,
using one of several standard system text editors. The message is finalized and
sent when the "send’ command is issued. If the user specifies that the message
be saved in his data base, he can later retrieve the message, edit its fields, and
resend or refile it, for example. This permits a facility for a recipient to add his
own keywords or to cause the message to be filed under a portfolic name of his
own choosing, for example, to be accessed in the future using the information
system commands.

The composer can also, through an interface to the user’s data base, retrieve
messages which he has received, so that he may edit and resend them, to provide

a forwarding facility.

IV.3. Reader

The reader commands are intended for interactive use by humans to examine
and act on the messages they have received. It provides indexing facilities for

categorizing messages according to their urgency, author, etc., and commands to

DRAFT vV.2-Iv.3 Interactive

PTDD 31 $Y5.16.00

specify how to dispose of the messages. The daemon provides several basic
processing capabilities which the reader can trigger, such as printer output, file
output, etc, which are provided as reader commands. Additionally the reader
system keeps track of the status of each message, so that the user can inquire at
any time to find out what messages are still pending, need replies, etc.

The reader and composer commands are logically distinct, but they are
generally used concurrently, possibly in conjunction with the information retrieval
system facilities also. The interface between the three is sufficiently powerful

that a user can treat the entire system as a single communication handling system,

instead of separate programs.
IV.4. Information Retrieval System

The information retrieval commands form a generalized data base interrogation
system, which is not strictly a part of the communication facility, but which was
developed separately for use in subroutine library systems. It has been
interfaced to the communication system however, so that messages can now be
entered into one or more data bases, and the retrieval system commands used to
examine the messages contained. For example, a user may have all of his
received mail placed in such a data base automatically, so that he can, at any time,
examine old messages, sort them according to author, etc. A smart personal

function specification could easily control which of many data bases a given

DRAFT IvV.3-IvV.4 Interactive

PTDD 32 $YS5.16.00

message was inserted into based on the subject, keywords, or anything else it can
examine when applied to a new incoming message.

A user would typically use the information system commands to search his data
base for a specific message, and then use the composer commands to retrieve
that message for editting and resending.

The three interactive cumbnnents are usable simultaneously, so that the user
can easily use functions of any system without inconvenience. This would permit,
for example, a user to read his mail, retrieve a message to which he has just

received a reply, and refer to it as he composes a new message to reply to the

ane just received.

.......

MODEL OF MESSAGE * A SET OF

FIELDS WITH NAMES § VALVES

E=-NDO

(_'¢¢) SUBIEST
o

TEXT o
Cossand G, onmen)

WHEN-SENT

plams

T ZEOTV mAD LhormeT

b) SAME MESSPGE, AS SEENW ©Y ONE ACDRESSEE
¥ B FIELD WHICH HAS DIFFERENT VALUE S |

‘Moon OF MESSAGE : DATA sunam&/u»mE’ I

| PURPOSE 2 1o REDUCE. DUPLICATION OF STORAGE.

| AND PROVIDE FEEDBACK NOTE THAT LINK
IF:A" :F FIELD Couip SE

AREA
pt./')..

........

Q_PARTS OF 2 DIFFERENT _A
ADDRESSEE AREAS

EFFECT: VALVE OF A FIELD IN THE AUTHOR |
AREA IS DEPENDENT ON WRO S
READING T,

PART oF AUTHWOR
(—mm o A

MESSAGE

LINKS EXIST
BECADSE OF
5 ENTRY IN

CoPY FIELD

PART OF AREA FoR C
REQPIENT M$B(E70 PART oF AREA FOR
REQPIENT AV@ 70
—NOTE THAT RECIPIENT ENB@70 Stts NO NoTES
W |

MoODEL OF MESSAGE : DEFAULTING FIELD VALUES

PURPOSE - REDUCES STORAGE § PROCESS W&

PARY oF A
MESSALE FROM TFH READ- MOSTLY DATA

SEARCH RULLES:

@ TRY unBER Mse/ave/FIELD

@) GET READ-MOSTLY DATA BASE

3) TRY UPDER FIELD NAME U

(D Trs UNDER SystEM DEFAULT

FOR FIEIDS WAVH UsvAlLY RAVE A CONSTANT
VALLE FOR MANY MESSACES

= — T

BASE STORED FoR
TIFH

FROM

@ROUP-LIST
ACKNOWLEDGLE

READ-mMmosTLY DATA
RuE 4 @ASE STORED AS
4 [SYSTEM DEFAUTT

= MoTE THAT MDKS TO
OTHER ADR/AUTHOR OcOR HERE

NAKE
-FRom "“ranor" FIELD
OF Mse/ADR
— VALUE OF "FROM" |F AUTIOR,
ELSE NAWE OF RECIPIENT

DATR BASE IDENTIFIED 10 @

DATA BASE

.....

.......

.......

......

PROCESS NG OF MESSAGES

A) OPERATIONS ON MESSAGES QRE MODULAR\ZED |NTO

NUMEROUS PROCESSES pHICH USE SYSTEM PRIMITWVES i

To ACCESS THE MESSAGE DATA BASE , FoLlowinG A
SET OF COWNVENTIONS [N THEIR ALEORITHMS.

- EASY TO ADD NEW PROCESSES |

-EASY TO ALTER TRE SEQUENMCE & TIMIve OF |

THE PROCESSES [MESSAGE UNDERGOES |

B) PROCESSES MAY BE APRIED TO A MESSAGE By ANY USER,
INTERACTIVELY, OR MAY BE RELEGATED Te A DEWMOW
FOR. BACKEROUND PROLESS\NG,

=~ MODEL EXTENDS TRWIALLY TO MULT)- PROCESSOR
ENVIRONMENT

Process Envigowment £ Rules

(1) PROCESSES ARE GWEN p MESSAGE 3 AwD USER MAME, To
USE 1V ACLESS |RE A PARTICULAR AREA OoF TAE
DATA BASE ., IV MosST CASES, TREY SHoVlD QBTAIN ALL
DATA TO ACCOMPUSH TREWR TASK VIA THE DATA BASE
PRIMITIVES

@ PROCESSES MAY SCHEDULE OTRER PROCESIES By
MoD¥FY/ 1w THE OATA AREAR'S 'PROCESMIG-NEEDED' FIELD

Processes BE SUCCESSFULLY ResTARTED (0 cAsE
WITRoUT capTASTROPHMIC FRILVEE..

PROCESSES USE AUD/oR. MaOIFY FIELDS WITH PUBLICIZED
NAMES = PERMITS COOERPINATOM .

@) Processes RETURM A ‘GorT cODE'

ﬂ% SUCCES S |

b) FATAL ERROR
o) TEMPoRARY ¥RILURE |

-IN ¢, Such FRILURES awDE 'FOREIGN SITE DOl
'DATA RASE LOCKED BY AMOTHER. PRocEss', ETC.

.....

......

—

R;rzesemm'we ROCESSES

EK”‘"S“B) PROCESSES ‘To MNST , udvé nnm BASE
PoInTED T B ‘E'nPan -USING' FIELD |
7O CONVERT NICKNAMES, GROUFS, E.'rt: /TS
VSER MAMES

TP-RMSHISSIOM ~ CREATES DATA AREA FOR EALH

ADDRESSEE OF ThRD MtSﬁﬂGE AND
SCHEDULES 'DELVERY' ProcELS
FOR EACH.

DEL\\’ER y = QuIFUTS MESSASE | vsive FoRMAT OBTAINED
FrRon vﬁewus- MEE‘E%E FIELDS . TvP\CAL

OFTWUUS ARE OM -uue '’ ll': T0 A LSEE. AT
A CONSOoLE . 'LoGiu- FlLE I.LE.T6 A FILE

PRINTED WREN A USER L06S In, ETC.

FILE W — L\x€ OELVERY, BUT sUTPVTs To ANY ,HMI-IE-EF-
OF FILES

DELETION - DELETES THE USER'S AREA KR ThE.

MESSACE, whEN MO PEVONG PROCESSES
EMST, OR 2IDKS INTO (T EXIST.

}

IS'PE.I.I.IH& - EXAMIVES FIELDS SUCH AS TEXT , LOOKING

FoR ERRORS.

AUTHOR- PROCESSING — quv ESWwPE yaTen FoR

ECEIVER- PROCESS) DON-STANDARD PROCESSES.

R e APPLIES PROCESS [NICH (S
COLTAINED AS A PROGRAM i)
A FIELD oF 7#HE
MESSAGE . VIRTORLLY AuY
PROECRAMAIABLE BEHAVIOR CAL .BE
EFFECTED wS/ué THIS FACILITY |

RCKMOIULEDGHELIT' — SENDS MESSALE BACK TD AUTHIR. |
JNOICATING WHETHER HMESSAG E .ms[

BEEN) SUCCESSFULLY DELIVEERED,

READ, ETC. \

[

,,,,,,,

 BACKGROUND ProcESSOR (8D

| 4{ |

Puerose : To Rup ELIGIBLE PROCESSES WhREW A
USER. IS ABSENT, OR UMNTERESTED IV
WAITING FOR THE PROCESS(ES) To COMPLETE.

(D) S/STEn DRTA ACCESSMNG PRIMITVES MOLITOR CHANGES
To ALL ‘PROCESSING-NEEDED' FIELDS, ANS MAINTAIN
VEVE OF ALL DATA AREAS Wrthd ELIG&BLE
ROCESSES.
—PROCESSING-VEEDED PROVIDES FOR SCHEDOLING
AT A SPECIFIC TIME
@ PROCESSOR. MAY SELECT AN ELEMENT OF THE
GQUEDE , AND TRY TO LOCK. (TS ASSOCIATED
SEMAPHOR, USINGe PR IMITIVES PROVIDED.

~FRILWWRE = ANOTHREER PROCESSOR 1S
HANDLING THE ELEMENT, TRY AMNITHER

-SUCCESS & RUML EL6\BLE PROCESSES

:@ PROCESSSR HANDLES ‘GULIT CoDES OF PROCESSES
- SUCCESS = REMOVE FROM PROCESY & MEEDED
~ FATAL ERROR = REMOVE FROW GUEVE OF ELIGIBLE

MESSAGES SEVD REPORT To PERSON RESPonsIBLE

FOR. THE ' MESSAGE

~TEMPORRRY ERROR 2 RESCHEDULE PROCESY FOR
FUTORE TRY: |F IT HAS TBEEL TRIED MANY
TIMES ALREADY, TREAT AS FATAL ERFOR
IOSTEAD.

- |
|

e e e

T/ 'PROCESS G- NEEDED FEIELD oF
| ODATA AREA FPoR A MESSASE

(D mAME OF PEOCESS To BE RLY

(@ EARLIEST TIME AT wHICH I MAY RUN

E | ® FLA& To DETERMINE WHETHER oTHER
-~ PROCESSES SUKCEEDIMG THIS OLVE AMUST
g ' WRIT FOR (TS COMPLETION

........

......

Z/ PROCESSORS' GUEVE

. () MESSALE # AUD USER 1D OF A DATA
AREA JHOSE PROCESSING-NEEDED
FIELD |5 pon- EMPTY

@ EARVVEST -TIME o% ANY PROCESS |
THE PROCESSING- NEEOED FIELD

@ [VARME OF A lLdck To BE USED WHEN
HANDLIWG TH\S GQUEVE ELEMEAT.

(D CoMPOSER PROBRAM WRYES 7D, TEXT, ETC /M0
A FRESH MESSAGE AEEA, AvO ADDPs "SEWDIVe" To
THE anc.:ss.rm-.rsmm EIBLD .

'@ A BACKGROUND PROCESSOR. SUCCESSFULLY LOCKS THE-
| QUEVE ELEMENT FOR THIS MESSAGE AREA, AUD BEGINS
RVUNING 1WUDICATED PROCESSES.
“ ' |(3) THE SENONG' PROCESS }S RUN. IT ADDS ‘EAPANSION |
“TRANS MISSION', FOR [MHEDIATE. RUNNING, AVO SCHEDULES
'DELETION' FOR 2 DAYS IN TWE FUTURE.

kz'“ @THE 'ExPANSION’ PROCESS 1S RUMN. IT PRoceSSES THE ‘To
: LIST 70 TRANSFORM WNICKNAMES, GRoUPS, ETC.

& THE “TRANS NISSION " PROSESS is RUN. IT CREATES A DATA
AREA FOR EACH ADDRESSEE. . ADDILL ‘DEUVERY' To
S EACH AREAS PROGESS/DG- NEEDED FIELD.

@) BECAUSE THE Omy oTHER PRocess (DELETION) |3
NOT YET RUNMABLE., THE PROCESSOR UNLOCKS THE
QUEVE ELEMENT, AND)00%sS FOR SOMETWING ELSE To O

— The FoLLowILG SEQUENLE 0ctvRs FOR EpcH ADORESSEE,
. AND WAY oceVR AT ANY TIME AFTER ARBOVE.., THEY

MAY RUV IL PARALLEL |F SEVERAL PROLESSORS ARE
AVAILARLE .

A PROCESSOR SUCLESSFULLY LotkS TRE GQUEVE
ELEMENT FOR AN ADORESSEE OF THE MESSAGE.

THE 'DELIVERY' PROGESS RUVS, PLACIVGE TAE
MESSAGE IV A REPDABLE FORMAT, AS DEFINED BY
THE I1USTRULT (0NS COoUTRINED .w THE

'DELIVERY-FORMAT ' F/ELO OF TRE NESSAGE

@ SICE No MORE PROGESSES ARE RUNWABLE, ThE
DATA AREA LOCK |S RELEASED,

