
£. /-1. ~/~
B O L T BERANEK A N D NEWMAN IN C

CONSULTING DEVELOPMENT ~ESEA~CH

THE LUNAR SCIENCES

BBN Report No. 2378

Job No. 11501

NATURAL LANGUAGE INFORMATION SYSTEM:

FIUAL REPORT

W.A. Woods

R. M. Kaplan

B. Nash-Webber

Bolt Beranek and Newman Inc.
50 Moulton Street

Cambridge, Massachusetts

June 15, 1972

Prepared for:
The Language Research Foundation

131 Mt. Auburn Street
Cambridge, .Massachusetts

Supported by:
Contract No. NAS9-1115

NASA Manned Spacecraft Center
Houston, Texas

Distribution of this document is unlimited. It may be released
to the clearinghouse, Department of Commerce for sale to the
general public.

r A ~A R " I n r:. i=- rH1rAGO LOS ANGELES SAN FRANCISCO

THE LUNAR SCIENCES NATURAL LANGUAGE INFOfil'IATION SYSTEM:

FINAL REPORT

W.A. Woods

R. l-1. Kaplan

B. Nash-Webber

Bolt Beranek and Newman Inc.

Cambridge, Massachusetts

June 1972

CONTENTS

Preface ...
Chapter 1. Introduction
Chapter 2. The Analysis System
Chapter 3. The Grammar •
Chapter 4. Semantic Interpretation Strategies

Chapter 5. Conclusion
Refe:rences ..

Appendices

A.

B.

The LSNLIS User's Guide

c.

D.

E.

F.

G.

~~he Transition Network Grammar

Semantic Rules
Documentation of Functions
'J~he Organization of the Dictionary •••••••••••••••••

The Retrieval Component •••••••• , ••••••••••••••••••••

Examples

Page

iii

1.1

2.1

3.1

4.1

5.1

5.13

A. l

B.l

C.l

D.l

E.l

F.l

G.l

PREFACE

This report describes the current state of a two-year

research project aimed toward the development of a prototype

natural language question-answering system for lunar geologists.

During these two years, the project has made considerable progress

toward the ultimate goal of providing a general purpose natural

language interface between men and machines. The project has built

on the results of previous work in natural language understanding

and is itself merely a stepping stone on the path of discovery

that may someday make computers as generally available and con

veniently accessible as one's next-door neighbor.

The Lunar Sciences Natural Language Information System

(LSNLIS) is the result of these two years of joint effort by Bolt,

Beranek, and Newman, and the Language Research Foundation, Cambridge,

Mass. It is an experimental, research prototype of a question

answering system to enable a lunar geologist to conveniently access,

compare, and evaluate the chemical analysis data on lunar rock and

'--' soil composition that is accumulating as a result of the Apollo

moon missions. The objective of the research has been to develop a

natural language understanding facility sufficiently natural and

complete that the ta.sk of selecting the wording for a complex

request becomes a negligible effort for the geologist user. Such

a goal has not been achieved by any previous "natural-language"

question-answering system.

Chapter l of the report gives a brief introduction to the

system and an explanation of its goals and objectives. Chapter 5

contains a discussion of the capabilities of the current system

and an evaluation of the prospects for further development. In

between, Chapters 2, 3, and 4 give more detailed descriptions of

the analysis system, the English grammar it contains, and the

general techniques and strategies of semantic interpretation used

to interpret the meanings of the user's requests.

iii

Appendices to the report contain a brief users manual

and a collection of examples of the system's performance (which may

be useful to the casual reader in establishing a concrete under

standing of what the system does) as well as complete listings of

grammar and semantic rules and detailed system documentation.

In addition to the authors, the following staff have

participated in the project:

Joe Becker

Dan Bobrow

Ben Wegbreit

We are also especially grateful to Gail Hedtler and Elsie Leavitt

for assistance in preparing this report.

This report expands, updates, and supercedes BBN Report

#2265 (Woods & Kaplan, 1971) which described the state of the

project at the end of its first year.

iv

w. Woods

June, 1972

Chapter 1

INTRODUCTION

1.1 Background and Objectives

The Lunar Sciences Natural Language Information System (LSNLIS)

is a prototype computer system which allows English language access

to a large data base of lunar sample information. The system

was developed jointly by Bolt Beranek and Newman Inc. and

LangLiage Research Foundation, Cambridge, Massachusetts for the

NASA Manned Spacecraft Center, Houston, Texas.

The motivation for the LSNLIS project arises from the diffi

cult~ of obtaining the basic information required by the working

scientist to fonnulate and test his hypotheses. The data that bear

on a hypothesis may be scattered through the literature in many

different papers, and the task of finding the papers, collecting

the infonnation, standardizing the units, and rnaJ:ins t:i:1e necessary

computations for a given application, is a forrnidable task. More

over, when the results are in and the computation has been made,

other questions are suggested to the scientist by the results, and

the process begins again. Imagine instead that the published

findings had already been collected into a computer system, which

not only could give references to the literature, but ~1ich

actually "understood" the numbers and measurements reported in the

documents and was capable of performing calculations on these

numbers. The evidence for or against a given hypothesis could

then be obtained in a matter of minutes instead of days or weeks

or months. In such a system, the remaining obstacle to the

scientist would be the task of discovering whether the data base

contained the necessary infonnation for his need, finding out the

formats of the tables, the notations used, units of measurement,

etc., and learning how to use the system--specifically, learning

a prograr:uning language for expressing requests. Imagine, further,

then, that this computer system could understand the scientist's

natural language so that the scientist could merely state his

request in English and the system would be capable of understanding

what information was needed and either provide it (by retrieval or

computation) or tell the user that the request was beyond the scope

of its data base. The goals of the LSNLIS project are to develop

a system which is as close to this idealized goal as the present

state of the art allows, and do it in such a way that continual

extensions of the system's capabilitie~ can be made to converge on

this goal sometime in the future.

There are two important reasons why one might want to

use English as a mode of communication between a man and a machine.

First, the man already knows his natural language and if he is to

use a computer seldom or as a minor part of his work, then he may

not have the time or inclination to learn a formal machine language.

Second, the human thinks in his native language, and if the mode W
of communication involves the free and immediate communication of

ideas to the machine which the user is conceiving in the course of

the interaction, then the additional effort required for the human

to translate his ideas into another language more suitable to the

machine may slow down or otherwise interfere with the interaction.

English is therefore an attractive medium because the human can

express his ideas in the form in which they occur to him.

1.1.1 Can We Build Such a System?

Although the state of the art in "understanding" natural

language by machine is still very limited, significant advances

in this area have been made in recent years. Since Simmons'

first survey of question answering systems, (Simmons, 1965), our

unrierstanding of the mysterious "semantic interpretation" component

has been made more clear by work such as i.1oods (1967, 1968), and ..,.

1. 2

the techniques for mechanically parsing natural language sentences

have been advanced by the advent of transition network grammars

and their parsing algorithms (Woods, 1969,1970). The field is

now at the point where prototype applications to real problems

can make significant contributions to our understanding of the

problems of natural language communication with machines. It must

be realized, that such applications are still essentially research

vehicles, since the problems of mechanical understanding of natural

language remain far from solution. However, by using real problems

(rather than imaginary toy problems} as the vehicles for such

research, one can not only focus the effort on problens in need of

solution, but may also reap the additional benefit cf producing a

system which ,•,1ill perform (in its limited way} a task which someone

really wants done. 'I'lle LSNLIS prototype is such an application .

• 1.1.2 Method of Aonroach

The method of approach ,-7'.dcli we have adopted in this study

has been to look ahead to the potential capabilities for a future

LSNLIS system, and to adopt general solutions to nrobleL1s that

will remain valid for applications of consitlerably greater scope

than the current project. He have therefore chosen to implement

the :retrieval component w:i.. t}lin a general scI"'.antic frane\,;orJ-:

(see Woods, 1~68} and to orovi<le a comprehensive and rigorous

grammar of the subset of English involved. We hilve an existing

parsing system for transition n.:::twork graMmars (Woods, 1969,1970)

to provide a powerful general parsing capability within rcasonuble

aY.J.ounts of processing time, anc1 huve operated on the resulting

~arse trees with a general purpose, rule-driven semantic inter

pretation procedure (Woods, 1967,1968) for transforming them into

representations of their meanings. l\lthough the goal of accepting

an input reCTuest in any phrasing which a user might ask is one

which will require additional grammar develooment and semantic

work, the system has already achieved considerahle oroqress

towards this goal, and the components and orqanization which

we have used in building the system permit continual qradual

evolution towards its achievement.

1. 3

All of the components of the system have been implemented

in BBN-LISP on the PDP-10 computer at BBN in Cambridge, ~1ass.,

running under the TENEX time sharing system with hardware paging

and a virtual core memory for each user of up to 256K. Although

there is considerable overhead in running time for programs written

in LISP and executed in a paged environment, the flexibility of

this system has been a critical factor in the development of the

present level of capability within the time scale of the contract.

The design of the current system was carried out in a way

that attempted to :r:1.aximize the flexibility for such basic changes

as: changing notations in dictionaries, changing parsincr strategies,

and modifying semantic interpreto.tion rules and procedures; anc

indeed all of these have been c~1anged extensively in the course

of this project in order to achieve the current level of perfor

mance. Thus the current systen represents the result of consider

able evolution which would not have been possible vitLin b1is time

scale with a more rigid style of prograrrning or a less flexible

prograrmning language.

1.2 Capabilities of the Current Svstem

The current LSNLIS orototvpe allows a lunar scientist to

ask questions, compute averaqes and ratios, anrl make selective

listinqs based on the information in a chemical analysis data

table. He can also retrieve references from a keyphrase index

and make chanqes in the data base. The svstem nermits the user

to easily comnare the measurements of different researchers,

compare the concentrations of elements or isotopes in Cifferent

types of samples or in different phases of a sanole, cor.,rute

averages over various classes of samples, cowpute ratios of t\10

constituents of a sar.1ple, etc .--all in str2.ightfon,-1ard no.turo.l

English.

1. 4

The system removes from the user the burden of learning the

detailed formats and codes of the data base tables, or learning a

special programming language. For example, the system knows the

various ways that a user may refer to a particular class of

samples, it knows whether a given element is stored in the data

base in terms of its elemental concentration or the concE.:ntration

of its oxide, it knows what abbreviations of mineral nar.1es have

been used in the tables, etc., and it converts the user's request

into the appropriate form to agree with the data base tables,

regardless of the form in which he actually makes his request.

Thus, the present system has already made significant strides

toward making the communication with the machine so natural and

conveneint that it need not interfere with the researcher's

train of thought.

In the followinq sections we will present a suoerficial

description of the svstem and the kinds of operations it nerforms.

More detailed descriptions of the organization of the svstem

and the way it operates are given in chanters 2, 3, and 4, and

in the appendices.

1.2.1 System Components

The LSNLIS system consists of three major components--a

transition network parser with a large grammar of English and a

large dictionary, a general purpose semantic interpretation

component, and a retrieval component consisting of the data base

and a collection of general pur~ose and specific retrieval

functions. The parser performs a detailed syntactic analysis of

the user's question and passes the resulting parsing to the semantic

interpretation component for translation into the formal request

lan9uage of the retrieval component. The first two coDponents of

the system thus function to translate the user's request into a

pro<Jrarn in the fo.nnal request language which will conpute the

answer to the question. This program is then executed in the

ret:::-ieval component to produce the answer.

1.5

The system is operational on the TENEX time-sharing

system in two 256K tasks (called "forks")--one containing

the parser, interpreter, grammar and dictionary, and the

other containing the data base and retrieval functions.

Formal requests and answers to questions are passed between

the two forks by means of file buffers. This division of

the system between language processing component and

retrieval component would make it easy to operate in a mode

in which the language processing component resided on one

computer and the retrieval component on another computer

somewhere else.

The LSNLIS system presently contains a dictionary of

approximately 3500 words consisting of a selection of general

English vocabulary and a large technical vocabulary of

geological and chemical terms. It's grammar is a transition

network grammar of the type described in Woods (1969, 1970)

and produces output in the form of Chomsky-type deep structures.

This output is translated into formal requests for the retrieval

component by a general purpose, rule-driven semantic interpreter.

1.2.2 The Data Base

'l'he LSHLIS system is intended to eventually handle any number

of data base files with different structures anrl characteristics.

However, for tlle initial prototype, two data base files were

provided by !-ISC. One is a 13,000 line table of chemical and age

analyses of thu Apollo 11 saraplcs extracted froD the reports of

the First Annual Lunar Science Conference, and the second is a

keyphrase index to those reports. Samples of these two data bases

are shown in figures 2-9 and 2-10. The first contains entries

specifying the concentration of some constituent in some phase

of some sample, together with a reference to the article in which

the measurement was reported. (There are generally several entries

for each combination of sample, phase, and constituent--measured

by different investigators.) The second is a list of keyphrases

and documents which have been indexed by thLm.

1. 6

The major thrust of this project has been the development

of the parsing and semantic jnterpretation components to handle

the natural language querying aspect of the problem. The retrieval

component was implemented primarily to provide a complete on-line

environment for carrying out the research. Thus, the retrieval

component has been implemented in a relatively straightforward

manner using the TLNEX system's automatic paging facility to take

care of the problems of memory allocation so that we could devote

most of our effort to the natural language problems. Since the

retrieval component resides in an entirely separate for}: inter

faced via the general purpose request languugc discussed above,

there is no difficulty in sul1stituting a more sophisticated

retrieval component later.

When an input request has been processed in the English

processor fork, the resulting formal request is communicated to

the retrieval fork via a file buffer and control is passed to

the retrieval fork untiJ the request has been executed. '.1'he answer

is ;:hen returned to the user via a file buffer and the English

processor fork resumes control. This organization means that in

principal, there would be little difference whether the retrieval

component resided in another fork of the TENI'.X system or in another

computer (e.g. at Houston) connected by telephone lines to the

BBH cor:iputer.

1.2.3 Intended Types of Questions

Before beginning a discussion of the Ca!)aliilities of the

LSHLIS system, it is important to recognize a sharp distinction

between the types of questions 'l.·/e:ich the prototype. system v!ill

now handle, the types of questions toward which it aspires, anc.i

the types of questions \'iliich in principle could be asked, but

which we have no intentions of handling. The distinctirn between

the first two types obviously changes with time, since new con

structions are continually being added to the repertory of the

system, even as this report is being written. This distinction

1. 7

is primarily a measure of how far we have progressed toward our

goals. A more important distinction is that between questions

for which the system is intended and tho::-;e for which it is not.

In designing the system, we assume that the questions will

be asked by a scientist with an interest in obtaining information

and that ~1ey will be stated in a direct and straightforward

manner. Thus, we are especially concerned with handling con

structions which might be used by such a user, and we do not want

to devote extensive effort to handling "frivolous" questions.

Thus, when choices must be made (as they must) as to which

constructions are most important in the development of the

grammar and understanding capability of the system, priority

is given to constructions wl1ich we feel might be used by a

serious user in need of infonnation. We do not, for example,

assign much priority to handling constructions such as "tag

questions" (e.g. "Lunar rocks contain oxygen, don't they?",

"Sample S10046 is a breccia, isn't it?", etc.), and many other

constructions which occur in English but would not appreciably

increase the usefulness of the system. Likewise, i-,e are not

interested in questions which require evaluation, judgment, or

conclusions on the part of the system (e.g. "Docs the raoon have

a hot core?", "What is t~e most probable source of the lunar

dust?", etc.). It is the task of the scientist to interpret

the data, and we are trying to aid him in this tas}~--not replace

him.

The questions for which the system is intended, are straight

forward factual questions, which arise directly from measurements

and observations of the samples. 'l'he following list gives a

representative sample of the types of sentences for which the

system is intended:

1. List the rocks which contain chrooite and ulvospinel•

2. Give me all references on fayalitic olivine.

3. What minerale have teen identified in the lunar samples?

4. \vhat analyses of olivine are there?

1. 8

5. What is the average analysis of Ir in rock S10055?

6. List the modes for all low Rb rocks.

7. Give me the K / Rb ratios for all lunar samples.

8. Has the mineral analcite been identified in any
lunar sample?

9. What is the concentration of La in rock S10034?

10. Identify all samples in which glass was found.

11. Give me all modal analyses of lunar fines.

12. In what samples has apatite been identified?

1.2.4 Querying the Data Base

In this section we will give a sample of the types of

querying interactions which the system permits. nore examples

are given in Appendix G.

Perhaps the most typical example of a request which a

geologist might make to the LSNLIS system is illustrated by

the following protocol:

38••cw~AT IS THE AVERAGE CONCENTRATION 0~ ALUMINUM IN
HIGH ALKALI ROCKS)
•••
PARSING
1331 C::>NSES
4•987 SECONDS
INTERP'qET ING
2427 CONSES
11•025 SECONDS
INTERPl~ETAT IONS r
C~OR THE Xl3 / CSEQL (AVERAGE Xl4 / CSSUNION X15 / CSEQ TYPEAS> r
T J CDATALINE CWHQ~ILE XtS> XIS CNPR• Xl6 / (QUOTE OVERALL>> CNPR•
X17 / (QUOTE AL203>>>> : T>> : T J (PRINTOUT X13>>

BBN LI~5P•t0 03•09•72 •••
EXECUT[NG
C8e l 34'~96 • PCT>

(Here, the system has typed the two asterisks, the user typed the

question, beginning and ending with parentheses, and the system

typec. the rest. The comments 1331 CONSF.S ann 4.987 SECONDS

give a record of the memory resources and the time used during

1.9

the parsing phase. A similar record is generated for the interpre

tation phase. The expression following the comment INTERPRE'I'A'l'IOl~S:

is the formal retrieval program which is executed in the data base

to produce the answer.) This request illustrates a m.mu,er of

features of the system:

1. The user types the question exactly as he would say it

in English (terminal punctuation is optional and was omitted in

the example) •

2. The system has translated the phrase "high alkali rocks"

into the internal table form TYPEAS.

3. The system has filled in an assumed OVEP.ALL phase for

the concentration since the request does not mention any specific

phase of the sample in which the concentration is to Le measured.

4. '.L'he system is capable of computing ans\!ers from the data

base as well as si:r.tply retrieving ther:1 (the average was not stored

information).

Perhaps the simplest operation which the system will perform

for the user is to collect and list selected oortions (not

necessarily contiguous) of the data base. For example, in

response to a request "Give me all analyses of S10046," the

system would respond as follows:

*** 37•*<GIVE Mr- ALL ANALYSES Or S10046>

*** PARSING
l-456 CONSES
9.445 SECONDS
INTERPRETING
2112 CONSES
8.502 SECONDS
INTERPRETATIONSt
mo (rOR EVE:RY X9 / (SSUNION X12 / <SEQ MAJORELTS> r T J (DATALINE
CWHQrlLE CNPR• XI~/ (QUOTE Sl0046>>> CNPR* Xl0 / (QUOTE S10046))
CNPR* XII / CQUOTE OVERALL>> XI~>> t T J (PRINTOUT X9>>>

1313N LISP-10 03-09-72 •••
EXECUTING

1.10

I HAVE: 15 HITS
DO YOU WANT TO SEE THEM? YES
3956 S10046 OVERALL 5102 44.06752 PCT D70•235
3967 TI02 8e34<'J5
3968 6-50559 D70-254
3865 AL203 11-7149 D70-235
39~0 F"EO 16-9818
3901 15-438 D70-254
3928 MNO .20659 D70-235
3929 .22125 D70-254
3927 MGO 9.11845 D70-235
3875 CAO 13-71216
3917 K20 .20478
3918 .19515 D70-242
3919 • 14455 D70-254
3933 NA20 e4718 D70-235
3934 .50146 D70•254

This example illustrates some additional features of the system.

Again, since no ohase was mentioned, the system assumed the

OVEr~LL phase (i.e. the rock as a whole). If the user had

wanted to see all the phases, he could have said exnlicitlv

"for all phases''. Similarly, since no specific elements or

isotopes were mentioned, the system assumed a standard list

0

of major elements was intended (Our geologist informant assures

us that this is what a geologist would mean hv such a nuestion).

Again, if the user really wanted to see all chemical element

analyses, he could say so explicitly. '!'he comment I HAVF 15 HITS

DO YOU WANT TO SEE THF.n? illustrates another featur"" of the

svstem. If the result of a reauest is more than 5 lines of

output, the system types this comment and gives the user the

option of listing them offline.

In addition to averaqinq and listing, the system can also

compute ratios, count, and interpret some anaohoric references

and comparatives as indicated in the following examples:

1.11

:tcir•

3t••<HOW MANY BRECCIAS CONTAIN OLIVINE>
:tcir•_

PARSING

GCI 8
12263# 12774 rREE WORDS
815 CONSES
4e633 SECONDS
INTERPRETING
1514 CONSES
1.29 SECONDS
INTERPRETATIONS I
<rOR TH~ Xl2 / CSEQL <NUMBER Xl2 / <SEQ TYPECS> : <CONTAIN Xl2 CNPR*
Xt4 / (QUOTE OLIV>> (QUOTE NIL>>>> : T J <PRINTOUT X12>>

BBN LISP-10 03-09-72 •••
EXECUTING
(5)

"' 32**<WHAT ARE THEY>

"' PARSING
487 CONSES
2.755 SECONDS
INTERPRET ING
II 58 CONSES
4.053 SECONDS
INTERPRETATIONS: _
CF'OR EVERY X12 / <SEQ TYPECS> : <CONTAIN X12 CNPR* X14 / (QUOTE OLIV>>
<QUOTE NIL>> J <PRINTOUT Xt2>>

BBN LISP-10 03-09-72 •••
EXECUTING
S10019
S10059
$10065
St 0067
S1007 3

1.12

34••cno ANY SAMPLES HAVE GREATER THAN 13 PERCENT ALUMINUM) ~·· PARSING
981 COtNSES
4e6l4 SECONDS
INTERPRETING
902 CCtNSES
3•566.SECONDS
INTERPRETATIONS I.

CTEST (FOR SOME Xl6 I CSEQ SAMPLES> IT J (CONTAIN' Xl6 CNPR• Xl7
/ (QUOTE AL203>> CGREATERTHAN 13 PCT>>>>

BBN LISP-10 03-09-72 •••
EXECUTING
'tES •
NO HITS
T

*** ~••<WHAT ARE THOSE SAMPLES> , ..
PARSING
607 COINSES
3• 34 S:ECONDS
INTERP1RETING
625 CONSES
2• 38 s:ECONDS
INTERP'RETATIONSs
CFOR ~VERY Xl6 I CSEQ SAMPLES> : CAND T <CONTAIN' Xl6 CNPR* Xl7 /
CQUOTE AL203>> CGREATERTHAN 13 PCT>>> J CPRINTOUT Xl6>>

BBN LISP-10 03-09-72 •••
EXE CUT' I NG

GC: 8
6414, 12546 FREE WORDS
I HAVI!:: 10 HITS
DO YOU WANT TO SEE THEM? YES
St 0005,
51006~,
St 0066,
S10061'
St 001e1
St 007~:
St 0~7 i1

Sl0075,
S3008.ll
St 0085,

1.13

30••<LIST K / RB RATIOS FOR BRECCIAS>

*** PA.RS ING
662 CONSES
3•366 SECONDS
INTE~PRETING
1642 CONSES
6.537 SECONDS
INTERPRETATIONS I
COO <FOR GEN X9 I CSSUNION Xl0 / <SEQ TYPECS> : T J <RATIO <QUOTE
1<20> <QUOTE RB> X10 CNPR• X1l / (QUOTE OVERALL>>>> : T J <PRINTOUT
X9> »

88N LISP-10 03-09-72 •••
EXECUTING
I HAVE 1 7 H ITS
DO YOU WANT TO SEE THEM? YES
<472.2222 S10018 D70-205>
(473-5884 510018 070-242)
<518.2477 S10019 D70-218>
<345.4411 S10019 D70-256>
<463.3003 S10021 D70-242>
<568.8333 S30046 D70-235>
<462.4408 S10046 070-242>
<408.2933 510048 D70-220>
C566el499 510056 D70-235>
(480.1913 S10059 D70-253)
C481e85 S10060 D70-235)
<457.9177 S10060 D70-242>
(487.5714 S10060 D70-248>
<489.1304 510061 D70-205>
(458.9973 S10065 D70-236)
<473.1551 S10065 D70-258)
<500.173 S10073 D70-215>

The system also understands restrictive relative clauses

and certain adjective modifiers (some of which cause restrictions

on the range of quantification of the noun phrasP- and some of

which change the interpretation of the head they modify). Some

other modifiers (such as "lunar" modifyinq samoles) are known

to be redundant and are deliberately ignored. 'I'he following

example contains all three:

1.14

~••<LIST MODAL PLAG ANALYSES FOR LUNAR SAMPLES
11iAT 1:0NTA IN OL IV>
'It
PARSli~G
1099 ,CONSES
4.346.SECONDS
INTERPRETKNG
2774 CONSES
12.33 SECONDS
INTERPRETATIONS:
(DO croR GEN X20 / <SSUNION XI / (SEQ SAMPLES> : <CONTAIN Xl (NPR•
X3 / (QUOTE OLIV>> <QUOTE NIL>> J <DATALINE <WHQFILE Xl> Xl OVERALL
<NPR* X4 / (QUOTE PLAG>>>> : T J (PRINTOUT X20>>>

BBN LISP-10 03-09-72 •••
EXECUTING

oc: 30
s10., 1022 FREE WORDS
I HAVE 13 HITS
DO YOU WANT TO SEE THEM?
1679 St0020 OVE:RALL
1680
1.681
1682
2141 S10022
3109 S10044
3110
4440 S10047
5796 510058
8582 S10072
8583
9311 S10084
9312

YES
PLAG 30.7 *** D70-159

21 • 4 D70-173
2s.s
24•6 D70-305
tS.6 D70-179
33.1 D70-154
34.1
37e8 D70-159
37.1 070-155
20.4 D70-173
18· 5 070-179
22.0 070-186
1s.0 070-304

The structure of the formal auerv language for accessing

the data base and the techniaues for semantic interpretation

enable the user to make very explicit requests with a wide

range of diversity within a natural framework. As a natural

consequence of the arrangement, it is possihle for the user

to combine the basic predicates and functions of the retrieval

component in ways that were not soecifically anticipated, to

ask questions about the system itself. For example, one can

make requests such as "List the phases.", "What are the major

elements?", "How many minerals are there?", etc. ~.l thouqh

1.15

0
31
40
0

41
42
0

these questions are not likely to he suffici~ntlv useful to

merit special effort to handle them, thev fall out of the

mechanism for semantic interpretation in a natural wav with

no additional effort required. If the s~rstem knows how to

enumerate the possible phases for one purpose, it can do so

for other purposes as well. Furthermore, anvthing that the

system can enumerate, it can count. Thus, the fragmentation

of the retrieval operations into basic units of quantifications,

predicates, and functions provides a very flexible and powerful

facility for expressing requests.

In addition to the above operations, the system provides

facilities for requesting keyphrase document retrieval and for

updating and adding to the data base - both in natural English.

1.2.5 User Aids

In any natural language understanding system (even in people)

it will occasionally (or frequently) happen that the user will

be misunderstood. This is especially true for current computer

systems due to their limited linguistic capabilities. It is

therefore important that the system be able to give the user

some useful feedback when it fails to understand him so that

the user can adjust his requests to meet the limitations of

the system. LSNLIS has extremely limited capabilities in these

directions but we have implemented a small collection of user

aids to help the user when his request fails to be understood.

A sentence may fail to be understood by LSNLIS for any of

several reasons. First, it may fail to parse at all in the

syntactic component. This may be due to its being genuinely

ungrammatical, its use of a word in a sense not included in

the dictionary, its use of a totally unknown word, or due to

bugs in the system grammar or dictionary. The system notifies

the user when it encounters an unknown word and won't proceed

until the user either specifies a synonym (or a dictionary

1.16

entry for the nE~w word if he knows how, which is unlikely) or

quits. Bugs in the grammar and dictionary would gradually

be: detected and corrected in a working system and are thus not

a conceptual problem. However, we have no effective solution

ir:i the current system for sentences that fail to parse when

all the words are known. This is detected by the system when

it has tried all of the alternative choices at its disposal and

has failed to find a parse. At this point it has no idea which

of its analysis paths was "closest" to being right. The best

it can do is tell you how far into the sentence it got in a

left-to-right parse, but this is not really very satisfactory.

If a sentence parses successfully, it may still fail to be

understood due to a failure in the semantic interpretation

ccmponent. When a request fails to interpret, it may be for

one of two reasons: There may be no semantic rules available

in the system for interpreting some node of the syntactic

structure, or none of the semantic rules given for interpreting

some word in context actually match. This latter situation

may be the result of incorrect parsing, for example, incorrect

modifier placement. The user, who may see the syntactic structure

by setting PPRINT to T, has the recourse of seeking an alterna

tive parsing by saying to TALKER, GO(PARSE).

When RULES fails to find any semantic rules to use in

interpreting a sentence node, it calls the function

SYNONYMS?. SYNONYMS? asks the user whether the head of the

current node is a synonym of one of its known words, of which

it was previously unaware. If the user can specify a synonym,

the head is marked appropriately, and RULES returns the semantic

rules to use in matching the node. The user is given the al

ternative of quitting the interpretation if he is unable to

provide any usable synonyms. The nouns that the system under

stands (i.e. the nouns with which a set of NRULES is associated)

are recorded on the list SEM-NOUNS, while the verbs which it

1.17

can understand as the head of ans node are kept on the list

SEM-VERBS. These lists should be updated when new words become

interpretable in the system via new NRULES and SRULES.

For example, one of the concepts the semantic interpreter

understands is that of an analysis. Consider a request for

**(W DETERMINATIONS IN TYPE BROCKS)

The request will fail because RULES can find no NRULES to use

in matching the node headed by "determinations". "Determina

tion" neither has NRULES of its own, nor is it marked as being

synonymous with any other word in the system. With USERFLAG on,

the function SYNONYMS? will-solicit the user for usable synonyms

and should find out that "determination" is synonymous with

"analysis". From here, the interpretation will proceed without

further problem. (It is not necessary that the two words be

synonymous in all contexts, just so that when they are in the

same context, they are indeed synonymous.)

Even if RULES is able to provide a list of semantic rules to

use in interpreting a node, there is the possibility that none

of them will match. The templates in the rules specify one or

several possible structural descriptions for the node and also

semantic or lexical requirements that its components must meet

for the rule to apply. A rule may fail to match because some

structural component is missing, or because the semantic or

lexical requirements on some subnode fail. When MATCHER fails

to match any of the rules given it by RULES, it calls the

function NO-MATCHES. NO-MATCHES informs the user that the

system cannot understand his use of the word which heads the

node, within the context given by the node. The user is given

the option of quitting (at which point he may call for his re

quest to be reparsed) or breaking and investigating the problem

for himself. (The latter would only be useful for a programmer

familiar with the operation of the semantic interpreter.)

1.18

It may also happen that the semantic interpreter does not

understand a use!r' s request completely. This happens because

a semantic rule can match a node without using all of its con

stituents. In this case, the semantic interpreter can produce

an interpretation, but it will be missing some of the information

specified in the request. Sometimes, this information is

stylistic: For example, the relative clause in the request "Are

there any analyses of Whitlockite in the samples that you have?"

Since the system takes "analyses of Whitlockite in the samples"

to refer only to the ones it knows about, the relative clause

"that you have" does not state any new information. If the

system were to tell the user that it could not understand ''that

you have" as a modifier of the rest of the noun phrase, which it

does understand, the user should be able to tell the system to

ignore it.

However,

has ignored

pretation.

sometimes the constitutents the Semantic Interpreter

are really necessary for the node's complete inter

When this happens, the user should be informed of

the constituents being ignored and given the opportunity to

scrap the request and try again. For example, the system does

not have any referent for "microcrystalline inclusion" beyond that

of papers which have been written on the subject. In a request for

"Analyses of microcrystaline inclusions in olivines". the

Semantic Interpreter would otherwise ignore this unrecognizable

phrase and go on to interpret "Analysis in olivine", which would

certainly be incorrect. In the current system, the user is in

formed whenever the Semantic Interpreter is about to ignore any

of three types of noun phrase modifier - adjective, prepositional

phrase, or relative clause, and he is asked whether it is safe

to ignore it. If he says no, then the request is aborted.

1 •. 2. 6 Sample Sentences Handled

The following is a list of types of sentences handled

as of March 1972:

1.19

1. (Samples with silicon)
(Which rocks do not contain chromite and ulvospinel)
(Give me all lunar samples with magnetite)
(In which samples has apatite been identified)
(Which elements has someone found in breccias and in basalts)

2. (What is the specific activity of Al26 in soil)

3. (Analyses of strontium in plagioclase)
(What are the plag analyses for breccias)
(Rare earth analyses for S10005)
(I need all chemical analyses of lunar soil)
(Chemical compositions of glassy materials)
(what is the composition of ilmenite in rock 10017)
(Has anyone analysed rock 10046 for major elements)
(What are the analyses of aluminum in vugs)
(Nickel content of opaques)

4. (Which samples arc breccias)
(What are the igneous rocks)
(Are any of the samples volcanics)
(What type of rock is S10003)
(What types of sample are there)

5. (What is the average concentration of olivine in breccias)
(What is the average analysis of olivine in breccias)
(What is the average olivine concentration)
(What is the average age of the basalts)
(What is the average potassium/ rubidium ratio in basalts)
(In which breccias is the average concentration of titanium

greater than 6 percent)
(What is the average concentration of titanium in each breccia)
(What is the average concentration of tin in breccias)
(What is the mean analysis of iridium in type b rocks)
(I want the average composition for glasses in dust)
(What is the average plagioclase content in crystalline rocks)

6. (Modal plag analyses for S10058)
(Modal olivine analyses)
(Give me the modal olivine analyses for S10022)
(Give me all modal analyses of plag in lunar fines)

1.20

7. (Which samples have greater than 20% modal plagioclase)
(Which samples are more than 20 percent plag)
(How many rocks have greater than 50 ppm nickel)
(Which sampl ◄es contain more than 15 ppm barium in plag)

8. (How much titanium does S10017 contain)
(How much nickel is in rock 10046)

9. (What is the number of phases in each sample)
(How many samples contain titanium)
(How many papers have been published on lunar material)
(How many different moon rocks do we have)

10. (Bulk chemistry of soil samples)
(Give me all references on fayalitic olivine)

11. (Of the type A rocks which is the oldest)
(Which rock is the oldest)
(Which is the oldest rock)
(The highest titanium concentration)

1.21

Chapter 2

THE ANALYSIS SYSTEM

2.1 Overview

In order to "understand" and respond correctly to

an English query, it is necessary not only to determine the

syntactic structure of the input sentence but also to determine

the "meaning" of the sentence to the system. This is determined

by both the syntactic structure of the sentence and semantic

information about the particular words which occur in it as

they are related to the data base. In the MSC application,

the meaning of a request is a procedure for computing its answer.

The LSNLIS system represents this meaning in a powerful formal

request language (Woods, 1968) which is then executed in the

retrieval component to produce the answer to the request. The

system processes English queries in three successive phases:

(i) syntactic analysis usinq heuristic information

to select the most "likely" parsings,

(ii) semantic interpretation to produce a formal

representation of the "meaninq" of the ouer" to

the system,

(iii) execution of this formal expression in

the retrieval component to produce the answer to

the request.

The Fnqlish Lanquage preprocessor Makes use of a

general parsing algori thrn for transition nebmrk grammars and

a general rule-driven semantic interpretation procedure which

2.1

were developed at Harvard University and BBN over a period

of years from 1967 to 1970, and which have been renorted on

in the literature (Woods, 1967, 1968, 1969, 1970). For this

contract, we have adapted these programs to the MSC ap

plication, developed a grammar for a larqe subset of English,

developed a set of semantic interpretation rules for inter

pretinq reouests for references, chemical analvses, ratios, etc.

and constructed a larae dictionary of approxiMatelv 3500

words. In addition, we have provided functions for settinq

up and interronatinq a data hase of chemical analvsis data,

computing averaaes and ratios, and retrieving references

from inverted fil0s in response to Boolean combinations of

kev words. The overall orqanization of the Fnqlish Lannuane

Preprocessor is shown in Fiqure 2-1. In this chapter ,-re Fill

be qiven a basic description of the operation of the major

components of the system~ a complete and detailed descriotion

of the individual functions which make up the svstem is

given in Apnendix D.

2.2

USER'S
QUERY

PARSER
SEMANTIC

INTERPRETER

GRAMMAR
SEMANTIC

RULES

Figure 2-1. Organization of the
LSNLIS system

2.3

RETRIEVAL
COMPONENT

DATA
BASE

ANSWER

2.2 The Parsing system

The MSC English preprocessor makes use of a general

parsing procedure for transition network grammars developed at

Harvard University and extended at Bolt, Beranek, and Newman

(Woods, 1969,'70,'72). This section gives a basic description of

the transition network grammar model and the operation of the

parsing system. (For more detail see Appendix D.) For more

detail on the philosophy and motivation of the transition network

grammar model, see the above cited references.

The transition network grammar model is an extension of

the notion of state transition diagram well-known to automata

theory. A transition network grammar consists of a network of

nodes with arcs connecting them. The nodes represent states of a

hypothetical parsing machine and the arcs connecting them represent

possible transitions and are labelled with the types of events in

the environment of the machine which permit the transitions. In

the case of a transition network grammar, the types of events are

the occurrences of words and phrases in the input string upon which

the grammar is operating.

The type of transition network grammar which we are using

for the MSC grammar is an augmented recursive transition network

grammar in which the arcs of the network include arbitrary conditions

for determining when their transitions are permitted, and arbitrary

structure-building actions which build up the syntactic representa-
~

tion of the sentences recognized. This model has only recently

been applied in the field of natural language processing, and it

provides a practically feasible means of obtaining the types of

analyses formerly obtainable only from laborious inversions of

transformations specified by a transformational grammar of the

2.4

Chon:.sky variety (Chomsky, 1965). The transition network model

permits analyses effectively equivalent to those of the transfor

mational grammar, and it is the first parsing procedure to enable

such sophisticated linguistic principles to be embodied in a

practically feasible manner.

We say a state accepts a given string if that string

permits a sequence of transitions which lead from that state to

some state which is distinguished as a "final" state {in our

system, this is indicated by the presence of a POP arc which not

only marks the state as being a final state, but orders the alter

native of accepting the string at that point with respect to the

other arcs which leave that state).

A recursive transition network grammar contains two types

of arcs--lexical arcs which correspond to transitions permitted by

single words, and recursion arcs (or PUSH arcs) which invok re

cursive applications of the network to recognize a phrase or word

gouping of some kind. The most common type of the former is the

CAT arc which recognizes members of a specified syntactic category.

For example a CAT Narc permits a transition if the current word

in the input string is a word in the syntactic category N {for

noun). A PUSH NP/ arc permits a transition if the state NP/ can

recognize a noun phrase at the current spot in the input string.

In addition, there: are JUMP arcs which perform actions without

advancing the input string {normally the input string is advanced

past the word or words which permit a transition) and a variety of

other special arc types. These are covered more fully in the
appendices.

2.5

Figure 2-2 gives a simple example of a transition net

work grammar. It recognizes simple declarative and interrogative

sentences with noun phrases containing adjective modifiers and

prepositional phrases. Lexical arcs are indicated with lower case

labels, and PUSH arcs are indicated with upper case labels that

name the state to which control is to "push". It is easy to visu

alize the range of acceptable sentences from inspection of the

transition network. To recognize the sentence, "Did the red barn

collapse," the network is started in states. The first transition

is the aux transition to state q 2 permitted by the auxiliary "did".

From state q 2 we see that we can get to state q 3 if the next "thing"

in the input string is a NP. To ascertain if this is the case, we

call the state NP. From state NP we can follow the arc labeled

DET to state q 6 because of the determiner "the". From here, the

adjective "red" causes a loop which returns to state q 6 , and the

subsequent noun "barn" causes a transition to state qr Since state

q 7 is a final state, it is possible to "pop up" from the NP computa

tion and continue the computation of the top levels beginning in

state q 3 which is at the end of the NP arc. From q 3 the verb

"collapse" permits a transition to the state q 4 , and since this

state is final and "collapse" is the last word the string is accept

ed as a sentence.

2.6

@ det

~
~0

~pp

~

(0--'-p_r_e_p __ 7@_N_P ___ 1g

S is the start state

are the final states

Figure: 2-2. A Sample Transition Network

2.7

2.2.1 Structure building on the arcs

A parsing system must do more than just say whether or

not a given string is a sentence; it must also build up a repre

sentation of the syntactic structure of the sentence. Such a

representation must exhibit the syntactic relationships :among the

words and phrases of the sentence. In the augmented transition

network model, this is accomplished by the use of structure

building actions on the arcs of the grammar, and by the association

of a form with each final state of the grammar which specifies how

to build the structural representation to be returned by that state.

This form is given by the label on the POP arc associated with that

state.

The structure-building actions as well as the arbitrary

conditions on the arcs operate on the contents of a set of registers

which are maintained at each level of recursive application of the

network and are set and reset by the actions on the arcs. A special

"current constituent pointer"* is also available for reference in

the conditions and actions. The structure-building form associated

with the POP arcs uses the contents of these registers to assemble

its structural representation. Each register may contain an arbi

trary piece of tree structure, and may also be used to hold flags

for testing by the conditions on the arcs.

The basic structure building actions is that which

attaches the contents of specified existing registers at specially

marked points in a prototype tree fragment and puts the result into

2.8

.,,,,

a register. For example, the sentence structure:

~
NP VP

I~
NPR V NP

I I I
Chomsky wrote NPR

I
Syntactic Structures

can be built by attaching the contents of registers NPREG, VPREG

and OBREG:

NPREG: NP VPREG: V OBREG: NP
I I I

NPR wrote NPR

I I
Chomsky Syntactic Structures

as leaves of the fragment:

s
~

+ VP
~

+ +

where the+ signs indicate leaves that are to be replaced by

register contents.

The use of registers to hold pieces of sentence structure

allows considerable flexibility in the way that structures are built

up. The final structure of a construction does not need to be fixed

until the parser is ready to pop up with the total structure of the

construction. That is, the decision as to the final structure can

be postponed until all of the pieces of the structure have been found

in whatever order they occur. The relative order among the

2.9

pieces of structure contained in different registers is not decided

until the pieces are put together at the end, and this order need

not have anything to do with the order in which the pieces were

found. Moreover, even when one has made a tentative decision as

to the funciton of a particular part of the structure and assigned

it to a register accordingly, it is always possible to change one's

mind in the light of subsequent input and move that piece of struc

ture to a different register. Nothing about the structure is

frozen until the moment that it is popped up to the higher level

computation which wanted it.

2.2.2 Parsing with a transition network grammar

A transition network grammar is essentially a non-deter

ministic machine. That is, the transitions which are permissable

from a given state are not uniquely determined by the input stri~g.

It is this characteristic of the model which mirrors the notion of

ambiguity in English sentences. A sentence is ambiguous if there

is more than one possible accepting path for that sentence. Th2re

are a number of complexities forced on a natural language parser

by the fundamental ambiguity of English, and one of them is the need

to provide an algorithm which is capable of pursuing various possible

alternatives in the course of parsing. '.Che enumeration of these

alternatives is the major source of effort in most natural language

parsing systems. While it is not possible to avoid completely

this fundamental fact of life for natural language processing, the

techniques of the transition network grammar go a long way toward

minimizing the problem. The factoring and merging of paths in the

network and the postponing of decisions until there is information

to make ~hem tend to reduce the total number of alternatives which

in principle must be considered. Furthermore, the ordering of the

arcs leaving the states permits a selection of the "more likely"

2.10

alternatives first. so that in many cases, the most likely parsing

is found while many of the other alternatives have not yet been

pursued. This permits a parsing system in which the parser uses

the ordering of the arcs and the complex conditions on the arcs

to try to determine the most likely parsing first and thereby avoid

a large part of the enumeration required by other parsing algorithms.

The basic necessity for dealing with a non-deterministic or enumer

ative algorithm, however, remains.

2.2.3 Configurations

In simulating the operation of a nondeterministic machine

by a deterministic machine such as a real computer, it is necessary

to keep track of alternative configurations of the nondeterministic

machine. In the case of a transition network grammar a configuration

is determined by the current state, the current register contents,

and a stack of the states and register contents at all higher levels

in the analysis (since in general, the current state may be several

levels down in recursive calls to the network). Each recursive

call to the network adds another entry to the stack to contain the

state and registers associated with that level and then clears the

registers for the new level and sets the state to the state which

was named on the PUSH arc. In addition, the stack entries remember

the actions which remain to be performed on the PUSH arc after a

successful return from the PUSH.

In the parsing system which we have implemented, the

configuration is represented by a list consisting of the state, the

stack, a list of register contents, the contents of a special HOLD

list, and a PATH entry which records the history of how the current

stat,e was reached from the initial state at the current level. The

stack is represented by a list whose elements (STACKELT's) record

2.11

the state, the register contents, the actions on the PUSH arc, and

the partial path entry for the computations at higher levels.

Register contents are kept on a list of alternating register names

and register values.

2.2.4 Organization of the parser

Parsing of a sentence begins by calling the function

PARSER with a string to be parsed. PARSER constructs an initial

configuration consisting of the start state (with empty registers

and stack) and then calls a function STEP to simulate the transitions

in the network. It calls a function LEXIC to perform the lexical

analysis of the input string--determining the next word, accessing

its dictionary entry, expanding contractions, compressing compound

expressions, making substitutions, etc. Thus PARSER provides the

basic overall control, wl1ile LEXIC interfaces the input string and

STEP performs the basic sinulation of the transition network. Flow

charts of these basic functions are given in figures 2-3, 2-4, and

2-5.

2.2.5 Simulation of Nondeterminism

Although the parsing system we are using provides for

following alternative paths either in series or in parallel or in

combinations of the two, the MSC system as we have implemented it

makes use only of the sequential mechanism. In this mode, the arcs

leaving a state are considered in the order in which they occur, and
,J

the first arc which can be followed is chosen. At this point, any

arcs remaining in tl1e list, together with the current configuration

and the place in the input string, arc combined into a list called

an ALTARC alternative and saved on an ~LTS list of the parser to be

persued later if the current choice turns out not to be successful.

2.12

PARSER:

GET NEXT
ELEMENT
FROM TRAIL

APPLY STEP
T:> ALL ACTIVE
CONFIGURATIONS
(~CFS)

<
YES

ACIVANCE
STRING OR TRAIL
DE:PENDING ON
LEXMODE

NO

YES

YES

SIETUP INITIAL
CONFIGURATION
(STATE Sil

CALL LEXIC
TO GET
NEXT WORD

PRINT
ERROR
COMMENT

l~ETURN NIL

YES

YES

Fi,gure 2-3.

NO

APPLY STEP
TO EACH ACF

YES

RETURN
PARSINGS
AND ALTS

The Function PARSER

2.13

CALL DETOUR
TO SELECT
ALTERNATIVE

CALL STEP
TO RESUME
ALTERNATIVE

NO

ALTCONJ
ALTLEX

SETUP CONFIG
TO BE
RESUMED

LEXIC:

CALL REQUESTDEF YES
TO GET DICTIONARY
ENTRY FROM USER

LEX - FIRST
ELEMENT OF
STRING

CALL MORPH

UNPACK WORD
AND LOOK FOR
PUNCTUATION

PRINT ERROR
COMMENT

RETURN
NIL

YES

SETUP NEW LEX
AND ANY NEW
ALTERNATIVES

GENERATE

ALTCOMP

ALTERNATIVE

TRY TO MATCH
COMPOUNDS
-CHOOSE LONGEST
MATCH 8 GENERATE
ALTS FOR ANY OTHERS

RETURN
ALTS

Figure 2-4. The Function LEXIC

2.14

RETURN
ALTS

RETURN
ALTS

MA~E SUBSTITUTION
IN STRING
-GENERATE
ALTS FOR
ALTERNATIVES

RETURN
ALTS

STEP:

ALTCAT

RE!>TORE
SAVED CONFIG,
ARC, ROOT,
AND FEATURES

RESTORE
SAVED CONFIG,
ARCS, AND LEX

YES

SETUP ACONFIG
AND SPREAD
COMPONENTS

GET ARCS FOR
CURRENT STATE

COMPUTE
SYSCONJ ARC
IF NEEDED

PICI< UP
NEXT ARC

SET LEX
AND FEATURES

DECODE ARC-

TYPE AND CHECK
CONDIT IONS

STORE
ALTERNATIVES FOR
ANY UNTRIED ARCS

PERFORM ACTIONS
FOR ARG
ACCORDING TO
THE ARC TYPE

RETURN VCFS
(NEW ACFS)

YES

YES

NO

NO

TYPE
ERROR
COMMENT

COMPUTE ARCS
FROM LEXARCS
ENTRY

ADD CONFIG TO

LIST OF BLOCKS

PRINT ERROR
COMMENT

RETURN NIL

Figure 2-5. The Function STEP
2.15

NO

RETURN
NIL

RETURN
NIL

RETURN
VCFS

We feel that this means of dealing with nondeterminism preserves

the potential for ba~ktracking and trying other alternatives which

is essential for dealing with natural language ambiguity while

retaining most of the advantages of a deterministic algorithm. It

depends for its success, however, on the ability for selecting the

right parsing first or soon thereafter, (since otherwise all alter

natives have to be enumerated and the advantages are lost). The

present grammar does a very good job of selecting a reasonable

parsing (if not the best one) in most cases, but there remains one

major area in which syntactic information alone (without semantic

information).has so far proven insufficient for making good choices

for the "most likely" parsing. This area is that of choosing the
scope for conjunctions.

2.2.6 Morphological analysis

One of the features of the current English processor

is a facility for morphological analysis of regularly inflected nouns

and verbs. This facility permits a single dictionary entry for

the root form of the word with a code which indicates the type of

regular inflection which the word undergoes. The system will then

automatically recognize all of the regularly inflected forms of

that root. This facility is performed by a function MORPH called by

LEXIC. In addition to inflectional analysis, MORPH is able to

recognize some items which appear to be contraC:t numbers, hyphenated

adjective modifiers, integers, and times of day without their having

to be entered in the dictionary. Other types of morphological anal

ysis are possible for "guessing" the parts of speech for words that

are unknown to the system, but this type of analysis has not been

incorporated into the current system.

2.16

2.3 The Semantic Interpreter

The semantic interpretation component of the .LSNLIS

sysb:!m is an adaptation of the semantic interpretation proce-

dure presented in Woods (1967, 1968}. It operates on a syntactic

structure or fragment of syntactic structure which has been constructed

by the parser and it assigns semantic interpretations to the nodes

of this structure to indicate the "meanings" of those constructions

to the system. The procedure is such that the interpretation of

nodes can be initiated in any order, but li the interpretation of

a node requires the interpretation of a constituent node, then the

int~rpretation of that constituent node is performed before the

interpretation of the higher node is completed. Thus, it is possible

to perform the entire semantic interpretation by calling for the

interpretation of the top node (the sentence as a whole), and this

is the normal mode in which the interpreter is operated in the LSNI,IS

system.

2.3.1 Semantic Rules

In determining the meaning of a construction, two types of

information are used--syntactic info:r;mation about sentence construc

tion and semantic information about const1·tuents. For example, in
interpreting the meaning of the sentence, "Chomsky wrote Syntactic

Structures," it is both the syntactic structure of the sentence

(subject= Chomsky: verb= "write": object= Syntnctic Structures)

plus the semantic facts that Chomsky is a person and Syntactic

2.17

Structures is a book that determine the interpretation (AUTHOR:

SYNTACTIC STRUCTURES CHOMSKY). In the Noods interpretation pro

cedure, this information is embodied in semantic rules consisting

of patterns that determine whether a rule can apply, and actions

that specify how the semantic interpretation is to be constructed.

Syntactic information about a construction heing inter

preted is tested by tree fraqments such as those indicated below:

S:NP-V

s
~ Nf lp

(1) 1
(2)

SUBJECT-VERB

S :V-OBJ

s
I

VP
~

V NP
I I

(1) (2)

VERB-OBJECT

S:PP

s
I

VP

/ p ~""
PREP NP

I I
(1) (2)

PREPOSITION-OBJECT
MODIFYING A VP

Fra~ent S:NP-V matches a sentence if it has a subject and a verb

and also associates the numbers 1 and 2 with the subject noun phrase

and the verb respectively. The numbered nodes can be referred to

for checking semantic conditions and for specifying the interpre

tation of the construction. Fragments in the system are named

mnemonically for readability.

The basic element of the pattern p~rt of a semantic rule

is a template consisting of a tree fraqment plus additional seman

tic conditions on the numbered nodes of t~e fragment. For example,

the temnlate (S:NP-V (AND (MI::M 1 PERSotT) (EQU 2 WPITF.))) matches a

sentence if its subject is semantically marked as a person and its

verb is "write". The pattern part of a rule consists of a limited

2.18

~ Boolean combination of such templates and the action of the rule

specifies how the interpretation of the sentence is to be constructed

from the interpretations of the numbered nodes of the templates.

The left-hand side of a semantic rule consists of a list

of components, each of which may be either a single template, a

negated template (embedded in a NOT), or a disjunction (OR) of

templates. A component consisting of a simple template matches a

node of the syntax tree it its template does, and a NOT component

matche:S a node if its embedded template fails. An OR component

matches if any of its constituent templates match (including a

possible DEFAULT template at the end which matches if nothing else

does). A semantic rule matches a node if all of its components

match. In addition, in the process of matching a rule, a record

is maintained of the nodes of the syntax tree which match the num

bered fragments in eiach of the components.

2.3.2 Right-hand Sides

The right hand sides (or actions) of semantic rules are

forms (or schemata) into which the interpretations of embedded

constituents are inserted before the form is evaluated to give the

semantic interpretation (or a part of it) which is to be attached

to a node. The expressions in the right-hand sides which indicate

the places where interpretations of embedded constituents arc to

be inserted are indicated by lists (called a REF's) which begin

with the atom # and contain one or b-JO, numbers and an optional

"TYPEFLAG". The numbers indicate the node in the tree whose inter

pretation is to be inserted by naming first the number of a compo

nent of the rule and then the number of a node in a tree fragment

of that component. Thus the reference (#2 1) represents the inter

pretation of the node that matches node 1 of 2nd component of the

2.19

rule. In addition, the single number~ can also be used to

reference the current node.

The TYPEFLAG element, if present, indicates how the node

is to be interpreted. (For example, in the MSC system there is a

distinction between interpreting a node as a topic description and

interpreting it for what it says.) Thus (#~TOPIC) represents

the interpretation of the current node as a topic description.

There are a vari~ty of types of interpretation used for various

purposes in the semantic interpretation rules of the system. The

absence of a specific TYPEFLAG in a REF indicates that the inter

pretation is to be done in the normal mode for the type of node

which it matches. In this case, there is an alternative form

of the REF consisting of a dotted pair of the two numbers. Thus

(2 . 1) is equivalent to (# 2 1).

As an example, consider the semantic rule:

(S:WRITE

(S: NP (MEM 1 PERSON))

(S:V-OBJ (l\ND (MEM 2 DOCliMENT)

--)(PRED (AUTHOR: (# 2 2)

(EQU 1 WRITE)))

(# 1 1))))

This rule says that if the sentence has a subject which

is a person, a verb "write", and an object which is a document,

then the meaning of the sentence is computed by substituting the

interpretations of the node numbered l in the first component

(# 1 1) and the node numbered 2 in th~ second component (# 2 2)

into the indicated places in the schema (AUTHOR (# 2 2) (# 1 1))

and treating it as a predicate (PRED).

of the rule.)

2.20

(S:'i·?HI'.i'E is the name

2.J.3 Organization of Rules

The semantic rules for interpreting sentences are

usually governed by the verb of the sentence. That is to say

that out of the entire set of semantic rules, only a relatively

small number of them can possibly apply to a given sentence

because of the verb mentioned in the rule. For this reason, the

semantic rules can be indexed according to the verb (or verbs)

of sentences to.which they could apply and recorded in the diction

ary entry for the verb. Each rule then characterizes a syntactic/

semantic environment in which the verb can occur and specifies its

interpretation in that environment. The templates of the rule

thus describe the necessary and sufficient constituents and

semantic restrictions in order for the verb to be meaningful.

There are also situations, however, in which the type of construc

tion and the mode in.which it is being interpreted determine a set

of rules which does not depend on the head of the construction.

2.3.4 Multiple Matches

Since the templates of a rule may match a node in

several ways, and since several rules may simultaneously match a

single node, it is necessary to indicate how the interpretation

of a node is to be constructed in such a case. To provide this

in:Eorrnation, the lists of rules which the interpreter uses-

whether taken from global lists or from the property lists of

heads of constructions--are not necessarily simple lists of rules,

bu~ may be organized into rule groups with each gFoup indicating

how (or whether) simultaneous matches by different rules are to
be combined. In addition, at

NIL may be used as a "barrier"
the top level of such lists, the atom

to indicate that by the time the

matching process has reached that point in the list it will proceed

further only if there have been no successful matches so far.

2.21

The mode for combining simultaneous matches at the top level of

this list is a default mode determined by TYPEFLAG and the type

of node. Possible modes are SPLIT (which keeps multiple matches

separate as semantic ambiguities), FAIL (which prohibits multiple

matches), AND (which combines multiple matches with an AND), and

OR (which combines multiple matches with an OR). For example,

a rule list of the form (AB NIL C (ORD E)) with default mode

AND indicates that if either of the rules A or Bis successful,

then no further matches are tried (NIL is a barrier); otherwise,

rules C, D, and E are tried, and if both D and E match then the

results are OR'ed together, and if C matches together with Dor

E or both, it is AND'ed to the results of the OR group.

The modes (SPLIT, FAIL, AND, and OR) also apply to

multiple matches of a single rule. A rule may either specify the

mode for multiple matches as its first element prior to the list

of components, or else it will be governed by the rule group mode

setting at the time it is matched.

2.3.S Organization of the_Sernantic Interpreter

The overall operation of the semantic interpreter is

as follows: A top level routine calls the recursive function

INTERP with TYPEFLAG NIL looking at the top level of the parse

tree. Thereafter, INTERP attempts to match semantic rules against

the specified node of the tree, and the right-hand sides of matching

rules specify the interpretation to be given to the nodes. The

possibility of semantic ambiguity is recognized, and therefore the

routine INTERP produces a list of possible interpretations (usually

a singleton, however). Each interpretation consists of two parts-

a node interpretation (called the SEM of the node) and a quantifier

"collar" (called the QUANT of the node) which is to be returned to

2.22

the routine which called for the semantic interpretation of the

current node. Thus the result of a call to INTERP for a given

node Pis a list of ·Sfill-QUANT (or S-Q) pairs--one for each possible

interpretation of the node.

INTERP then calls a function HEAD to determine the

head of the construction which it is interpreting and a function

RULES to determine the list of semantic rules (depending on the

type of node and the value of TYPEFLAG) which it is to use to

interpret the construction. It then dispatches control to_a

routine MATCHER. If no interpretations are found, then, depending

on the TYPEFLAG and various mode settings,INTERP either returns a

default interpretation T, goes into a break with a comment that

the node is uninterpretable (permitting a systems prograrnmar to

debug rules), or returns NIL indicating that the node has no in

terpretations for the indicated TYPEFLAG.

The function MATCHER calls a function MATCHGROUP to match

groups of semantic rules, and MATCHGROUP, in turn, calls the

function RHATCH to match single rules. RMA'rCH calls the function

TE~W~mTCH to match templates in the left-hand side of the rule

and SE.MSUB to insert the interpretations of constituents into the

right-hand side of the rule and compute the resulting interpretation.

ThEi relationships ar:iong these functions is indicated by the diagram

in Figure 2-6, and flowcharts for the routines IHTEEP and RMATCH
are given in figures 2-7 and 2-8.

INTERP HEAD

RULES

MATCHER !-ll1TCIIGROUP WIATCH 'l'Er1PMATCH

SEMSUB

Figure 2-6. Su 1-rout · t 1 u ine con ro map for the routine
IN'rERP

2. 23

IN TERP:

>-'Yc...::E:..::S_.., RETURN

RULELIST+
RULES (P,

TYPE FLAG)

VALUE

----.
ADD MATCHGROU P
OF NEXT GROUP OF
RULES TO SEMLIST

I
I
I
I
I
I
I
I
I -~=----=---_J

TAG SEMLIST
ONTO TAGLIST

RETURN
VALUE

Figure 2-7. The Function INTERP

2.24

BREAK
FOR USER
INTERACTION

RMATCH:

MLIST-
(ORMATCH--)

RETURN
NIL

RESET MODE
IF RULE SO
SPECIFIES

GET NEXT
TEMPLATE

MLIST-
(TMATCH--)

ADD MLIST
TO KLI ST

NO

SEMLIST -
MAPCONC OF
SEMSUB OVER
KLIST

COMBINE
MATCHES
WITH MODE

RETURN
VALUE

BREAK

Figure 2-8. The Function RMATCH

2.25

YES

RETURN
VALUE

PRINT
ERROR
COMMENT

RETURN

2.3.6 An Example

As an example of the operation of the semantic interpreter

consider the sentence:

(HOW MANY SAMPLES ARE THERE?)

which has the following syntactic structure assigned to it

by the grammar:

s Q

NP DET HOWMANY

N SAMPLE

NU PL

AUX TNS PRESENT

VP V EXIST

Semantic interpretation begins with a call to INTERP looking at

the topmost Snode with typeflag NIL. The head of the construction

is the verb EXIST, and the function RULES looking at an Snode

with typeflag NIL returns the global list of rules PRERULES.

These rules look for such things as yes/no question markers,

sentential negations, etc. In this case, a rule PR6 matches

and the right-hand side (PRED (# 0 SRULES)) specifies a call

to INTERP for the same node with typeflag SRULES.

RULES looking at an Snode with typeflag SRULES returns

a list of semantic rules which it gets from the dictionary

entry for the head of the sentence (in this case EXIST), and

in this case a rule SS41 matches. Its right-hand side

(PRED (EXIST (1. 1))) specifies a pattern into which the

interpretation of the node (1 • 1) is to be inserted (where

the matching node in question is the subject noun phrase).

The semantic interpreter now begins to look at the

subject noun phrase with typeflag NIL. In this case, RULES

is smart enough to detect the HOWMANY determiner and return

the single rule D:HOWMANY, which matches successfully. The

right-hand side of D:HOWMANY is:

(QUANT (FOR THE X / (# 0 NUMBER) T: (PRINTOUT X)))

2.26

which specifies that a quantifier is to be constructed by

substituting in the indicated place the interpretation of

this same node with typeflag NUMBER. (In the case of howmany

questions, the rule assumes that the syntactic structure above

containes only the dummy verb EXIST and therefore leaves no

opening in the quantifier for the later insertion of the higher

proposition.

RULES with typeflag NUMBER returns only the single rule

D:NUMBER whose right-hand side is:

(SSUNIONF (SEQL (NUMBER X / (# 0 NRULES) : (# 0 RRULES)))) •

Here, the function SSUNIONF is a function which can grab

quantifiers like PRED but which would insert them inside the

NUMBER function instead of around the outside. SEQL is an

enumeration function which will show up in the final interpretation.

This rule calls for the interpretation of the NP node with

typeflags NRULES amd RRULES which end up returning (SEQ SAMPLES)

and the default restriction T, respectively, with no quantifiers

arising from either source. After the insertion of these values

and the evaluation of SSUNIONF the result of this call to INTERP

is (SEQL (NUMBER Xl5 / (SEQ SAMPLES) : T)) with no additional

quantifier.

The right-hand side of the rule D:HOWMANY now gets resumed

and after substitution and evaluation of the QUANT, the resulting

SEM is Xl5 with an associated QUANT of:

(FOR THE Xl5 / (SEQL (NUMBER Xl5 / (SEQ SAMPLES) : T)): T

(PRINTOUT Xl5))

(No:rmally such a QUANT would contain a marker DLT indicating

the place where the interpretation of the higher sentence

was to be inserted, but because of the special nature of

the howmany determiner this quantifier is completely self

contained.) This quantifier is returned to the higher level S

interpreter whose PRED grabs it, and from there it ripples its

'!_lay to the top whE:!re it becomes the final interpretation.

2.27

2.4 The Retrieval Component

2.4.1 The Function Execute

In the NASA LSNLIS, the retrieval component resides in

a separate fork of the TENFX time-sharinq svstcm which we will

call the lower fork or retrieval f orJ,:. This fork is under

the control of the language processinq fork.

When the semantic interpretation component has finished

constructinq the interpretation of a request, it calls the

function f'XECUTE with this interpretation as its arqument.

The function EXECUTE passes the interpretation to the retrie

val fork by means of a buffer file ODUF (for auerv buffer) ana

wakes up the retrieval fork. When the retrieval fork has

completed processing the query, it will have written the

answer(s) onto a file HI'J'FILE, and it Hill then urite the

number of hits into a buffer file l'DUF and return control to

the upper fork. The function FXFCUTE t½en prints out th0

answer if there are fewer than 5 hits, or notifies the user

of the number of hits otherwise and asks hiri vhether hP wishes

to see the answers. The function FXFCUTF, thus serves as

the access port to the lower fork.

2.4.2 The Data Base Tableo.

The Data Base of the system consists of two types of

information--chemical analvsis data on the lunar samples, and

keyphrase indexing of the publications concerninn the samples.

Examples of these two types of data are given in figures 2-9

and 2-10.

2.28

; '1 I ~, T A B L E • ; 6 THU 7-JAN-71 10:21A~

SAMPLt PHASE CONSlIT.
S1~0~2 OVER~LL AL26

t1E7
C

c;o~,6
C13
H
H3
K20
MN!54
N

NA:22
s
sc1.5
s31.
TH
'rI1~4
u

S10003 OVERALL AL203

AL:26

liA

li E
HE7
CAO

CE

co

CO56
CO57
CO60
CP:X

CONTENT
120.0
80.0
190.0
230.0
4 V,. ~

8.7999999
,839~9999
3 1 U. 0
• 13 25 [~9 9 9
28.0
125.0
s1.~
.106999'99
8.0
3.5
1. 9200000
2.s
.ui,999999
1:::l.1.29999
9,6364499
17! • 203300
1 1 • ?I
7 4. !-'.'.

7C.,.rJ,

7 4 • 7!
16 0. "'1
1v'i6,vl
22~.~
1 • 5
11?10,lil
11.12()999
11,61'3360
1 1 • 0
45.5
3 7 • OI
U1,301il000
15. ti'!

4 3. !?l
4]. ;,1

1.0
50. 199999
51.699999
.27181999
.?0312999
.25999999

UNIT
DPM/KG

PPl'i

DPM/KG
DEL
CC/G
DPM/KG
PCT
DPM/KG
PPM
DPM/KG
PCT
DPM/KG
DEL
PPM
DPM/KG
PPM
PCT

DPM/KG

PPM

DPM/KG
PCT

PPM

DPM/KG

•••
PCT

CITATION
n70-237

D7?1-228
Tl70-234
070-237
D7li'l-228
D70-21.9

D70-237

D70-234
D70-237
D70-228
D70-237
D7i2l-228
D70-?37

D70-205
D70!-208
D70-?16
D70-244
D70-237
D7lil-2U1
D70-26el
D70-203
D7i21-215
D70-216
D70-203
D70-237
070-205
D7'1!-216
D70-244
D7lil-215
D70-216
D7v1-22~
D70 .. 203
D70-21f>
070-237
D7('1-241

D70-154
D70-173
070-203
070-216
D70-244

Fiqure 2-9. 'A Sample of the Chemical i'\nalysis Data

2.29

0

0
0
Iii
Iii
0

; PHRTABLE.;1

((ABRASION) (07~-~8b U7~-09o))
((AHSURBF.0 GAMMA ~ADIATIO~) (07~-097))
((ABSORBF.D ~AS) (~7~-129))
((ABSUFPTION) (J7~-02, 07~-068 070-071 070-072 07~-097 07~-099 D70-107
070-1~8 07~-117 ~70-1,2 ~70-1,6 070-131))
((ABSURPTION BAN~) (D10-~68 07~-108 070-11~ 070-122 D70-126 D70-135))
((ABSURPTION COEF~ICI~NT) (D7~-071 D70-117))
((ABSORPTION COEFfICI~NT M!ASUREMENT) (07~-011 D70-117))
((ABSORPTION· PEAK) (D/0-1~7)) .
((ABSURPTION SPE:IROM~TRY) (070-136))
((ABSORPTION SPECTRUM) (07~-12~ 070-131 D70-135))
((ABUNDANCE ANOMALY) (D70-020))
((ABYSSAL BASALT) (070•020 070-027))
((ABYSSAL SUBAL~ALINE BASALT) (070•027))
((ACCELERATING POTENT!AL) (070~057))
((ACC~ssoRY CHRO~!TE) (070-0~6))
((ACC~SSORY IL~EN!TE) (D70-0Ab D70•096))
((ACC~SSORY OLIVI~E) (D70-083))
((ACCtssnRY PHASF) (0/0-Z62 07~-~71))
((ACC~FTION) (D70-010 07~-012 D7~-055 D70-087 070-127))
((ACC~ET!ON STAGE) (D10-012 07~-017 D70-06b 070-087))
((ACCHETIONARY LAjILL!) (D70-~28 070-085))
((ACCRETIONARY RIM) (U70-~85))
((ACC~ETIONARi SIHATI~RAPHl) (07~~087))
((ACCUMULATION SFUUENCE) (D70-085))
((ACHUNDRlTE) (D7~-~0~ 070-006 070-008 070-012 070-015 070-018 070•022
D70-0i3 Dt0-024 D70-0,7 D70-0i9 D70-032 D70-049 070-063 070-066 070-122))
((ACHUNDFITE METEURITt) (070-012 070-014))
((ACICULAR CRYSTA1 MOUE) (D70-071))
((ACICULAR ILMENI!E) (D7~-060))
((ACICULAR PLAGIO~LASt) (070-060))
((ACICULAR SILICO~) (U70-060))
((ACID BASALT) (D7~-0b9))
((ACID GLASS) (07~-~51))
((ACID HYOFoLtZA!t) (~7~-135))
((ACID Lr.ACHING) (070-054))
((ACIO SOLUTION) (D70-132 D7~-139 D7?-140))
((ACIDIC GLASS) (D70-~69))
((ACTlNIUM) (D70-~21 U7~-~88))
((ACTIVATION CROSS SE~TlON) (D70-127))

Figure 2-10. A Sample of the Keyphrase Indexinq Data

2.30

In the system, these two files are stored in different ways.

The keyphrase information is stored symbolically on a disk file

in essentially thei form that appears in figure 2-10. Keyphrases

are looked up with a binary search of this file in order to

obtain the associated list of references. The chemical analysis

data on the other hand is stored in a compressed, bit-coded

form on a binary file which is windowed into an array in the

virtual core memory by the hardware page-mapping facilities of

TENEX. The use of this type of coding provides an extremely

compact and rapidly accessible representation. Detailed

descriptions of the data structures and retrieval functions

oft.he data base are included in Appendix F.

2.4.3 The Formal Query Language

The data base of the LSNLIS system is accessed by means of

a formal query language into which the input English requests

are translated by the language analysis component. Examples of

thii:: language hav1:~ already been seen in previous sections. The

lan9uage is essentially a generalization of the predicate

calculus which could either be manipulated as a symbolic

expression by a formal theorem prover to derive intensional

inferences or be ,executed directly on the data base to derive

extensional inferences. Only the latter, extensional inference

facility is used in the current LSNLIS.

2.31

The query language contains essentially three kinds of

constructions:

designators, which name objects or classes of objects

in the data base {including functionally

determined objects),

propositions, which are formed from predicates

with designators for arguments, and

commands, which take arguments and initiate actions.

For example, Sl0046 is a designator for a particular sample,

OLIV is a designator for a certain mineral {Olivine), and

{CONTAIN Sl0046 OLIV) is a proposition formed by substituting

designators as arguments to the predicate CONTAIN. TEST is a

command function for testing the truth value of a proposition.

Thus, {TEST {CONTAIN Sl0046 OLIV)) will answer yes or no depending

on whether sample Sl0046 contains Olivine. Similarly, PRINTOUT

is a command function which prints out a representation for a

designator given as its argument.

The major power and usefulness of the formal query language

comes from the use of a quantifier function FOR and special

enumeration functions for classes of data base objects to carry

out extensional quantification over the data base. The format

for a quantified proposition is:

{FOR QUANT X /CLASS: PX; QX)

where QUANT is a type of quantifier {EACH, EVERY, SOME, THE,

numerical quantifiers, comparative quantifiers, etc.), Xis

a variable of quantification, CLASS determines the class of

2.32

objects over which quantification is to range, PX specifies a

restriction on thei range, and QX is the proposition or command

being quantified. (Both PX and QX may themselves be quantified

expressions.)

The specification of the CLASS over which quantification

is to range is performed in the system by special enumeration

functions which (in addition to whatever other parameters they

might have) take a running index argument which is used as a

rest.art pointer to keep track of the state of the enumeration.

Whenever FOR calls an enumeration function for a member of the

class, it gives it a restart pointer (initially NIL) and each

time: the enumeration function returns a value it also returns

a new restart pointer to be used to get the next member.

Enumeration can terminate either by returning NIL indicating

that there are no more members or by returning a value and a

NIL restart pointer indicating that the current value is the

last one. (This latter can save one extra call to the enumeration

function if the information is available at the time the last

value is returned--e.g. for single valued functions.)

The enumeration function formulation of the quantifier

problem frees the FOR function from explicit dependence on the

structure of the data base--the values returned by the enumeration

function may be searched for in tables, computed dynamically,

or nerely successively accessed from·a precomputed list. A

general purpose enumeration function SEQ can be used to enumerate

any precomputed list, and a similar function SEQL can be used

2.33

to enumerate singletons. For example:

(FOR EVERY Xl / (SEQ TYPECS) : T; (PRINTOUT Xl))

is an expression which will printout the sample numbers for

all of the samples which are type Crocks (i.e. breccias).

The bread and butter enumeration function for the chemical

analysis data base is the function DATALINE which takes as

arguments designators for a data file, a sample, a phase name,

and a constituent and enumerates the lines of the data file

which deal with the indicated sample/phase/constituent triple.

Other complex enumeration functions are NUMBER and AVERAGE

which take an argument format similar to the FOR function

and perform counting and averaging functions. Detailed

descriptions of these and other retrieval functions are given

in Appendix F and examples of the interpretations of various

requests are given in Appendix G.

2.34

Chapter 3

THE GRAMMAR

The translation of an English request into an

appropriate retrieval expression proceeds in three main

stages: first, the English sentence is converted into a

"canonical form" in which the syntactic relationships

holding between constituents are made explicit; next, the

canonical form, or parse, is mapped into a semantic

interpretation which highlights the logical connections

b€'tween terms; and finally, the semantic interpretation is

executed in the data base to produce the answer to the

query. In this section we discuss in some detail the first

stage of the translation process, the parsing of the input

string of English words.

3.1 MOTIVATION AND OVERVIEW

It is a well-known fact about natural languages that

sentences which have different words in different orders can

have essentially the same meanings, while superficially

s:1.milar sentences can have very different meaning; this

insight is the cornerstone of the transformational theory of

grammar (Chomsky, 1957, 1965). For example, active

sentences (1) have corresponding passive sentences (2) which

are virtually synonymous, and sentences with existential

3.1

"there" subjects (3) are synonymous to sentences with

ordinary subjects (4):

(1) We need some information.

(2) Some information is needed by us.

(3) There are many documents in the file.

(4) Many documents are in the file.

On the other hand, sentences (5) and (6) have similar

sequences of "parts-of-speech", but the syntactic and

logical relationships between the words are different:

(5) John is eager to please.

(6) John is easy to please.

In (5), John is to do the pleasing, whereas in (6) John is

tote pleased by someone. Linguists account for these facts

by positing a form of iyntactic description more abstract

than just a specification of the linear arrangements of

words in sentences. In brief, transformational grammarians

characterize the syntactic relationships in a sentence in

terms of a "deep structure" a structural description,

usually in the form of a tree with labeled nodes, from which

the string of words can be derived by applying a sequence of

formal rules called transformations (Chomsky, 1965). Thus

the mmilarity in meaning of actives and their corresponding

passives is due to the fact that the sentences have the same

deep structure; the different strings re&ult from the

application of

transformations.

slightly

Sentences

3.2

different sequences of

with similar superficial

characteristics but different syntactic relationships, such

as (5) and (6), result from the application to different

deep structures of transformation sequences with similar

outputs. Finally, ambiguous sentences can be derived from

more than one deep structure, while ungrammatical

word-strings have no corresponding deep structure. In this

context, the major task in the syntactic analysis of an

input request may be seen as the problem of determining the

appropriate deep structure (s) for a given string of English

words.

Unfortunately, linguistic theory is not of much help

here. Transformational grammars are designed to enumerate

the class of possible deep structures (by using a

context-free phase-structure grammar) and then to generate

all and only the sentences of a language from the set of

deep structures. Very little has been said about how to

find the deep structure for a given string, arid, in fact,

the few attempts at "reversing" the sequence of

tI'ansformational operations that have been made have not

been very successful (cf. Petrick, 1965; Zwicky, et al.

1965). Thus, for the syntactic analysis component of the

LSNLIS English processor we have used an augmented recursive

tI'ansition network parser, described elsewhere in this

re-port 3.nd

difficulties

in Woods (1970),

encountered in

transformationa1 recognition.

3.3

which surmounts many of the

earlier efforts at

Our goal is still to map the

input request into a deep-structure-like representation.

A transition network grammar consists of a set of

states connected by a set of labelled directed arcs. The

label on an arc determines whether the transition can be

made, based on the current input word and the previous

analysis history of the input string, and also specifies a

set of actions to be executed if the transition is permitted

(section 2.2 of this report gives a detailed description of

the grammatical notation and the operation of the parser).

The sequence of transitions taken in the course of an

analysis reflects the superficial arrangement of words in

the string; the actions on the arcs are used to build up

sections of the deep-structure tree and hold them in

"registers" until they are combined into larger sections

and, eventually, into the complete representation of the

input string. Analysis of the input string thus proceeds

from left to right on two related levels: words in the

string are identified by arc transitions, and at the same

time, the deep-structure is being fashioned in the

registers.

3.4

(

w .
l1'I

..,
II:
0
:I
0
II:
;ii:

Figure 3-1.

5

PUSH S/NP T

PUSH COMPL/ &
PUSH COMPL/ a
PUSH COM PL/ i
PUSH FORLNP a

PUSH NP/ !AND (RFEAT INIIOIJ V
(GETR OSJ))

-
6

PUSH CXlM'L/ (ANO (WRO
7 (FOR THAT)) (RFEAT INOOBJ Vil

._\/MP T

(

~
NPU NP

CAT V (GETF UNTENSEOI

JJ,JMP T

The transition network grammar

CAT NEG
(NULLR NEG)

JUMP II,

~
..,ll 0 o-
C(u> ...
C(
u

(

s

0~ S· ..

s
~

OCL NP AUX Y"'P

w .
O'\

(

CAT OH T

,~ ·~
·~ ·~

't,
~

PUSH $/ __ !

JUMP (ANO(NOT(WRD OF))(GETR ANAPHORFLG))

JUMP(OR (WRO OF)(NULLR ANAPHORFLG))

PUSH PP/(WRD (OF AMONG))

PUSH PP/ PREP 8,

CAT PRO T

CAT PRO (WRD ONE)

VIR PP (GETF PARTITIVE)

PUSH PP/8,

PUSH PP/PREP 8,

JUMP T

P~H COMPL

CAT LIST

CAT ADV IRFEAT TRANSAOV)

Figure 3-1. The transition network grammar

(continued)

((

((

<;_AT NPR T
NPR

TITLE NAME

w
•
-J

PUSH NP/ T
NP

~

WRO:T

CAT PREP T
PP

PREP NP

CAT COMP
(NULLR ADS)

MEM (WHICH WHO THAT) T

WRQ WHOM T

PUSH NP/ (WRD WHOSE I

/-- ,\
I I CAT ADJ T --1 \IP/NP / ,-- ' /
\ ,, , __

(

Figure 3-1. The t~ansition network grammar

(continued)

The configuration of arcs and states in the grammar is

shown in Figure 3-1. Unless the order of the arcs is

explicitly indicated by numbers on the arcs, they are

ordered clockwise from the top of the state. The symbol &

on an arc indicates that there is a condition associated

with the arc which is not included in the figure. See the

grammar listing in Appendix B for the details of these

conditions.

The parses developed by the grammar resemble the

deep-structures described by Chomsky (1965), with some

elements borrowed from Stockwell et al. (1968) and some

included because of special characteristics of the lunar

sample requests. Briefly, a sentence consists of a subject

noun-phrase, an auxilliary-verb constituent specifying the

tense, modality, and aspect of the sentence, and a

verb-phrase containing the main verb, the direct and

indirect objects and predicate complements (if any), and

optional adverbial and prepositional-phrase modifiers. A

noun-phrase consists of an optional determiner and

adjectival modifiers, a head noun, and optional restrictive

and non-restrictive post-nominal modifiers. A precise

specification of the form of deep-structures is contained in

the listings of the grammar actions SBUILD, NPBUILD, and

DETBUILD in Appendix D and in the annotated listing of the

grammar itself (Appendix B). Below we will focus on the

grammatical strategies used to identify the various

3.8

constituents and not on the structures in which they are

placed.

3.2 GENERAL DESCRIPTION OF THE GRAMMATICAL STRATEGIES

In this section we discuss and illustrate the overall

organization of' the grammar and indicate in some detail the

strategies used to deal with particular syntactic

constructions. A bird's eye view of the grammar was given

in Figure 3-1, in which states are represented by circles

enclosing the state name (for example, S/DCL) and arcs are

represented by arrows connecting the states. The arcs are

labelled in the diagram with their types (CAT, WRD, MEM,

VIR, JUMP etc.) and frequently, with their conditions also.

The actions on the arcs and the detailed specification of

complicated conditions may be found in the annotated listing

in Appendix B.

The parser allows state names to be arbitrary LISP

atoms, but we have adopted the convention that state-names

indicate the unit of the sentence being analyzed and

constituents of the unit already identified, separated by a

slash("/"). Thus S/AUX signifies that the S-level of the

parse is being developed and that we have succeeded either

in finding an auxilliary verb or in establishing the fact

that the sentence has no auxilliary. The diagram also

expresses another convention: unless the arcs leaving a

3.9

state are explicitly numbered in the diagram, the clock

wise order of arcs from the top of a state-circle

corresponds to the order of arcs in the grammar listing and

the order in which transitions are attempted. By

convention, the initial state of the whole grammar is state

S/.

3.2.1 THE SENTENCE LEVEL NETWORK

1. The basic strategy

With these conventions established, we can examine the

way in which the parser uses this grammar to analyze

sentences: Consider the simple sentence (7):

(7) I need information.

The underlying structure of (7) is intuitively obvious,

given only a slight familiarity with high-school grammar.

The word I is the subject, NEED is the verb, and INFORMATION

is 'the object. The parser begins by comparing the string to

the g>ammar at state S/. The first word of the string (I)

cannot start an English question, so the predicate QSTART

fails, ruling out the first arc but permitting the third.

Since I is not PLEASE, the second arc is also excluded, and

sofue third arc is the first transition. We jump to state

S/DCL, having established that the sentence is declarative.

Since a JUMP transition does not advance the input string,

we are still looking at I. At S/DCL we try to find the

subject noun-phrase, the word THERE in subject position, or

3.10

.,,,,

a subject complement. In this case, the push to the

noun-phrase network (arc 2) is successful, returning the

structure (8):

(8) NP
I
PRO
I
I

We enter state S/NP with NEED as the current word and (8) in

the register SUBJ. Since NEED is the tensed verb, the CATV

transition is permitted, and the actions save the tense

(present), the person-number code (X3SG = "anything except

third-person singular") , and the root form of the verb

(need) in the apropriate registers. We enter S/AUX looking

at the last word of the sentence. Since we have already

identified the aubject and since its person and number agree

with those of the verb, we jump to VP/V, and from there we

jump to VP/HEAD. VP/HEAD is a landmark: whenever we reach

it, we have identified the main verb (the head of the verb

phrase) and the subject, and we can begin to look for

post-verbal constituents. In this case, since need is

transitive, we push for the object noun-phrase at arc 3, and

successfully return with the object, INFORMATION. This is

the end of the string, so we continue jumping through the

grammar from VP/NP to VP/VP and then to S/VP, from which we

pop the recovered deep structure:

3.11

NP~
I
PRO
I

s
r

AUX
I

TNS
I

I present

VP
~

V NP
I ~

need DET N
I I

NIL information

This is the basic strategy for simple, active,

declarative, transitive sentences: at S/DCL, we have decided

that the sentence is declarative; at S/NP, we have the

subject; at S/AUX, we have the first (and only) verb, which

carries us through to VP/HEAD; at VP/NP we have the direct

object, and we then jump all the way to S/VP, where we pop

the completed parse. For intransitive sentences such as

(9) '

(9) I went.

the jump arc (arc 1) is taken from VP/HEAD instead of the

PUSH NP/arc, and the resulting structure does not have the

NP node in the VP.

From this basic strategy, more complicated sentences

are analyzed by varying and elaborating one or more segments

of the analysis path.

2. Auxiliary verbs

If the sentence has one or more auxiliary verbs beside

the main verb, as in (10):

3.12

(10) I could have been going.

the analysis path is embellished at state VP/V: the CAT V

arc at state S/VP picks up the modal verb COULD and stores

it :1n. the register MODAL instead of V. Then at state VP/V,

HAVE satisfies the CATV arc, so the loop is taken, making

HAVE the main verb. Since BEEN also satisfies the CAT V

arc, the loop is taken again, and with HAVE in V and BEEN

marked as a past participle, PERFECT is added to the aspect

register and BE is placed in the V register, and we re-enter

state VP/V with GOING as the current word. Again, the CATV

arc is permitted, GO is the main verb and PROGRESSIVE is

added to ASPECT. Finally we make the jump to VP/HEAD,

having identified, as before, the main verb and the subject.

The rest of the analysis resembles that of the simple

intransitive (9), and the deep structure is similar except

that the node AUX has been expanded to (11):

(11)

AUX

----------- -----TNS MODAL -----r-------I PAST PERFECT PROGRESSIVE can

3. Passives

It was pointed out earlier that passive sentences (12)

have the same meanings as their corresponding actives (7).

We now show how the grammar maps them into the same deep

structure.

3.13

(12) Information is needed by me.

The same sequence of transitions is taken for the passive as

for the active, up to state VP/V, although the constituents

identified and saved in registers differ. Upon entering

state VP/V, the register SUBJ contained I and V contained

NEED for the active, while for the passive, SUBJ holds

INFORMATION and BE is the main verb as in (13):

(13) Information is available

At VP/V the analyses diverge. For the active the current

word is INFORMATION, ruling out the CATV loop, so the jump

arc is taken to VP/HEAD, where the object is picked up. For

the passive, the current word is NEEDED, the past participle

of NEED. In this case, the CAT V arc is allowed, the

subject INFORMATION is placed on the hold list by the

conditional action, the indefinite noun-phrase SOMETHING is

placed in SUBJ, and BE is replaced by NEED in V. At this

point, we have identified the main verb, we have partially

undone our previous assignment of INFORMATION as the

subject, and the current input word is BY. AGFLAG has been

set to indicate the possibility that the real subject is in

a by-phrase later on. We now make the jump to VP/HEAD, but

the push for the object noun-phrase fails with BY. Instead,

the VIR NP arc removes INFORMATION from the hold list and

places it in the object register. None of the arcs at VP/NP

can deal with BY, so we jump to VP/VP, where we take the WRD

BY transition to VP/AGT, since AGFLAG is set. Here we push

3.14

fcir a noun-phrase, find ME, and override the indefinite

subject SOMET?ING that we set up at VP/V. We continue along

t~e basic analysis path and pop a structure at S/VP

identical to that for the active. If the by-phrase had not

been found in the sentence, the subject at this point would

still be the indefinite SOMETHING, which agrees with our

intuitions about the meaning of passivized sentences with

mi.s sing agents.

4. Questions

In English:, questions introduce a number of variations

in the usual subject-verb-object sentence forms handled by

the basic strategy. The states emanating from S/Q, and also

some from S/, are designed to cover these possibilities. We

recognize three major types of questions, yes-no (14a),

question-pronouns and question-adverbs (14b and c), and

question-determ:Lners (14d and e).

(14)
a. Does each type/A rock contain krypton?

b. What is the average krypton concentration
in type/A rock:s?

c. How old is sample 10003?

d. Which rocks contain olivine?

e. How much olivine does each rock contain?

A yes-no question is characterised by the fact that a modal

orruxiliary verb occurs before the subject. This may be at

3.15

the beginning of the sentence or after any number of fronted

prepositional phrases. The predicate QSTART at state S/

precludes any other pre-subject verb, so the jump arc at S/Q

brings us to S/NP with only the register TYPE set and with

"be", "have" or a modal as the current word. We pick up the

verb in the ordinary way, and arrive at S/AUX with a verb

but no subject. Hence, we transfer to S/NO-SUBJ where, for

(14a), the PUSH NP/ arc is successful, returning "each

type/A rock". This agrees with the person-number code of

the verb, and so becomes the subject. From state VP/V, the

analysis is identical to the corresponding declarative, and

the structures are identical except that the question

structure has a type node "Q" instead of "DCL".

A question-pronoun or adverb is a WH-word that can

stand by itself as the object of interrogation, for example,

WHO, WHAT, WHEN, WHERE, WHY, and HOW. The root forms in the

dictionary for these items are complete NP or ADV

structures, and the CAT QWORD arc makes a copy of this

structure (so that other parts of the grammar do not do

permanent damage to the dictionary). Most of the pronouns

can serve as either the subject or an object of the

sentence; these are saved in the register WHO until further

information determines whether they are to be moved into

SUBJ or held for the post-verb modifier arcs. The

question-adverbs, WHEN, WHERE, and HOW, and the pronoun WHOM

cannot serve as the subject, so they are held immediately,

3.16

to be picked up later by VIR arcs. If the question-adverb \

is 'how", a detour is made to check if the following word is \
an adjective or an adverb, as in (14c) above. If so, the

adjective or adverb is also held, to be picked up later by a

VIR arc. In any case, we enter state S/NP looking at the

first verb. If there is a potential subject in WHQ, and the

first verb is not an auxiliary or modal, then the WHQ word

must be the subject, as in (15), so we rearrange the

registers.

(15) Who wants the information?

If the verb is a modal or auxiliary, then the WHQ word is

still a possible object, as in (14b), so we postpone a

decision and enter S/AUX without a subject. Here, we

transfer to S/NO-SUBJ, where for sentences such as (14b), we

push and recover the full noun-phrase subject. This means

that WHQ contains an object, so we add it to the hold-list.

For sentences such as (16),

(16) What is available?

where there is no noun-phrase in this position, we know at

last that the WHQ must be the subject, and the registers are

rearranged on the jump arc. From VP/V, the analysis for

QWORD questions follows the basic strategy, except that VIR

NP or VIR ADV arcs are taken if the QWORD structure was

held.

If an adjective was held from a "how<adjective>"

construction, and the main verb is "be", in state VP /V, the

3.17

adjective replaces "be" as the main verb. Thus, the

structure built from "How old is Sample 10003?" is:

s Q
NP NPR SAMPLE

10003
AUX TNS PRESENT
VP V ADJ OLD

ADV HOW

\ --
Finally, questions with question-determiners fall into

two groups, those associated with count nouns (with QDETs

"which", "what" and "how many") and those asociated with

mass nouns (with QDET "how much 11
) • The first group are

analysed as questioned noun phrases, with the noun phrase

containing the question-determiner becoming the deep

structure subject, independent of its surface structure

function. This is very similar to a predicate calculus

representation and makes it clear that the questioned noun

phrase, in general, has the widest scope. For example,(14d)

is analysed as:

s NPQ
NP DET

N
NU
s

WHQ
ROCK

PL
QREL
NP

AUX
VP

DET WHR
N ROCK
Nll PL

TNS PRESENT
V CONTAIN
NP NPR OLIVINE

i.e. "Which rocks such that they contain olivine (exist)?",

and (17):

3.18

(17) In which phases does Sl0005 contain krypton?

ii:: analysed as:

s NPQ
NP DET

N
NU
s

WHQ
PHASE

PL
QREL
NP
AUX
VP

NPH Sl0005
TNS PRESENT

CONTAIN V
NP
pp

NPR KRYPTON
PREP IN
NP DET

N
NU

WHR
PHASE

PL

i.e. "Which phases such that Sl0005 contains krypton in

those phases (exist)?"

When a question-determiner like "what", "which" or "how

many" starts a sentence, it involves a push from state

S/QDET for a full

question-determiner.

noun

Since

phrase structure with a

the NP/ network does not

recognize WH-words at the beginning of a noun phrase, the

determiner must be picked up at the S-level and sent down

into the DET register. Also sent down is a flag indicating

that the remainder of the sentence, after the noun phrase

containing the question-determiner should be made a relative

clause of type QREL on that noun phrase. When the complete

noun phrase is returned, it is placed in WHQ for S/NP to

pop. This completes the analysis.

The noun phrase containing a question-determiner can

also be in a prepositional phrase at the beginning of the

3.19

sentence. In this case, we push for a prepositional phrase

in f:tate S/, but note at state PP/PREP whether the following

noun phrase begins with a question-determiner. If so, the

determiner is again sent down into the NP/ network and put

into the DET register. When the noun phrase is returned, it

is lifted up to the S/ network and put into the NP register

there. The prepositional phrase is also held, with the

feature FRONTED. States S/QPl and S/QP2 relativize the held

prepositional phrase (i.e. replace the determiner of the

embedded noun phrase with WHR), then push for a relative

clause of type QREL. The relativized prepositional phrase

is sent down into the relative clause as a verb pirase

modifier (VMOD). When the relative clause is returned, it

is attached to the original noun phrase containing the

question-determiner, and the whole phrase is placed in the

WHQ register for S/NP to pop. This completes the analysis.

The second group of questions containing

question-determiners comprises those questions asking "how

much". They are analyzed along the lines of QWORD

questions, though, again, the question-determiner must be

picked up at the S-level and sent down into the NP network.

For example, (14e) is analyzed as:

3.20

s Q
NP DET EACH

N ROCK
NU SG

AUX TNS PRESENT
VP V CONTAIN

NP DET POSTART COMP ADV HOW
MUCH

N OLIVINE
NU SG

The reason for using this analysis, rather than the

more elaborate one discussed previously for the other

question-determlners, is that the determiner "how much" does

not interact with cither determiners to cause scope problems.

T~is was one of the reasons for adopting the previous, more

elaborate analysis.

5 ■ Existential THERE.

Sentences in which a form of the verb BE (or EXIST)

occurs often have counterparts in which the subject is

replaced by the word THERE and the real subject occurs after

the BE as in (18):

(18) There is a document.

If BE is in fact the main verb, the sentence is interpreted

as asserting the existence of its real subject. For

sentences of this type, the WRD THERE arc is taken at state

S/DCL, setting the register THERE but leaving SUBJ empty.

We are still allowed to jump from S/AUX to VP/V, but we

cannot go on to VP/HEAD without the subject. Thus, we push

3.21

for a noun-phrase on the second arc from VP/V, having seen a

THERE-BE combination. The noun-phrase A DOCUMENT is

returned, and since it agrees with the verb's person-number

code, it becomes the subject. The rest of the analysis is

ordinary, except that when we finally do jump to VP/HEAD, if

the main verb is still BE, we convert it to EXIST. Thus the

structure for (18) is:

s DCL
NP DET A

N DOCUMENT
NU SG

AUX TNS PRESENT
VP V EXIST

Notice that this strategy allows the real subject to occur

at any position in the string of auxiliary verbs following

THERE, as long as the immediately preceding verb is BE or

EXIST. Thus the sentences in (19) can be parsed properly:

(19)

a. There could be a document.

b. There could have been a document.

c. There could have been a document telling

about •.•

An existential THERE can also occur in the subject position

of a question; hence the WRD THERE arc at state S/NO-SUBJ.

If there is a WHQ in this situation, it becomes the subject.

Otherwise, the subject is found with the push arc from VP/V,

as ffiove. If the WHQ resulted from a QDET question, the DO

arc at state S/THERE allows for the resumption of an

3.22

extraposed noun modifier, as in (20):

(20) How many men were there who wanted the

document?

a c• •>

6. Do-support.

In English the verb DO can occur as a main verb (2 la),

a modal verb with the connotation of emphasis (2 lb), or

an an auxiliary verb in questions and negations with no

apparent meaning (2lc-d).

(21)

a. They did it.

b. The sample does contain Plagioclase.

c. Did they want it?

d. The document does not contain the

information.

The cases exemplified in (2lc-d) correspond to the general

rules that subjects and verbs can be inverted only if the

f:Lrs t verb is an auxiliary; if it is a regular main verb, DO

iB inserted. Similarly a modal or auxiliary must precede

the sentential negation operator, and DO is inserted if

there is no other possibility. In transformational theory,

the process of inserting DO is called DO-support.

The strategy for interpreting DO in the LSNLIS grammar

is as follows: At state S/NP, where the first verb is picked

up, DO is placed in the MODAL register, since it satisfies

3.23

the predicate MODAL. If another verb is not found (as in

2la)), then an action on the jump arc to VP/HEAD moves DO

from MODAL to V, making it the main verb.

In sentences where the subject and verb have

inverted, the subject is sought at state S/NO-SUBJ.

PUSH NP/ arc is successful and if DO is in MODAL,

been

If the

it is

deleted and does not appear in the final parse. Likewise,

if the CAT NEG arc is taken at state S/AUX, a DO in MODAL is

again removed. Thus semantically empty occurrences of DO

are correctly eliminated, while emphatic and main-verb DO's

are preserved.

7. Imperatives

The strategy for imperatives is basically simple. An

untensed (infinitive) verb beginning a sentence, optionally

preceded by PLEASE, marks the sentence as a command.

Imperatives usually have no overt subject and no modal or

auxiliary verbs, so the arc from S/IMP sets up the

understood subject YOU and the tense-indicator PRESENT, and

terminates at VP/HEAD where post-verbal constituents are

analyzed in the normal way.

8. Objects and complements.

We have already seen in the basic strategy, how simple

transitive and intransitive sentences are analyzed.

3.24

Syntactic features on verbs can require other types of

predicate complement structures; the set of paths leading

fi:-om VP/HEAD to VP/VP allow for the various possibilities,

and the annotated listing of the grammar should be consulted

to determine precisely how a given sentence will be

analyzed. Here we discuss a few common predicate complement

forms.

The CAT AD,J arc (arc 2) from VP /V allows a predicate

adjective to follow a copula verb such as BE, BECOME,

APPEAR:

(22)

a. The concentration of krypton in Sl0007 is

large.

b. The basalts are older than the breccias.

c. S10003 appears glassy under UV light.

The adjective is placed in the verb register, preceded by

ADJ and followed by its features. The features come from

both the adjective itself and the copula verb. For example,

the verbs constructed from the sentences in (22) would be:

(2 2')

a. (ADJ LARGE)

b. (ADJ OLD COMPARATIVE)

c. (ADJ GLASSY SEEMING)

Predicate adjectives which form their inflections by

joining "more" and "most" to the uninfle cted form wi 11 also

3.25

I' I \

be recognized in state VP /V on the MEM (MORE MOS'I') arc (arc

3). The uninflected adjective will be recognized in the

following state VP/COMP-ADJ, where the adjective will be

placed in the verb register, again preceded by ADJ and

followed by its features.

The paths for one- and two-word adjectives reconverge

at state VP/ADJ, where a variety of complements can be

recognized. For simple comparatives like (22b) above, the

word "than" causes one to move to state VP/ADJ-COMP, where a

simple noun phrase is sought. If found, it is made the

sentential object. (22b) is analysed as:

s DCL
NP DET THE

N BASALT
NU PL

AUX TNS PRESEN'l'
VP V ADJ OLD COMPARATIVE

NP DET THE
N BRECCIA
NU PL

This path would not be successful if a sentence followed the

word "than", rather than just a noun phrase. In that case,

the sentence would be analysed as a sentential complement in

the 'Erb phrase. Other allowable complements recor,nized via

pushes from VP/ADJ are seen in such familiar sentences as

"John is easy to please" and "John is eager to please."

The arcs which push to the COMP/ network permit a

variety of complement sentence structures. Some verbs can

have as their direct object a complete sentence, often

3.26

preceded by the complementi.zer THAT:

(2 3) I believe that the document is important.

Other verbs can have complements beginning with the

complementizers FOR or TO, (24) and arc 7 is taken for these

constructions.

(24)

a. The document seems to be important.

b. We arranged for the document to be

sent.

Indirect-direct object combinations are handled by a

sequence of arcs from VP/HEAD to VP/VP. In the simplest

case, the verb is followed by two noun phrases:

(25) Give me the information.

The fl.rst noun phrase is picked up by the PUSH NP/ arc at

VP/HEAD, and our initial guess is that it is the direct

object, along the lines of (26).

(26) Give the information to me.

When we find the second noun-phrase on arc 4 from VP/NP, we

rearrange the registers, maki.ng the previous object the

object of a dative prepositional phrase, as

making the second noun-phrase the direct

superficial difference between (25) and

in (26),

object.

(26) are

and

The

thus

removed. The grammar allows for various combinations of

noun-phrases and sentential complements in the direct and

indirect object positions, but we shall not discuss the

3.27

details here.

9. Verb Modifiers

The grammar allows for two types of optional verb

modifiers--adverbs and prepositional phrases. These usually

occur after the predicate complement structures have been

analyzed, and the loops at state VP/VP pick them up. They

are a:ided to the list of modifiers in VMODS. Adverbs and

prepositional phrases can also occur at the beginning of the

sentence, before the normal subject-verb constituents, and

the loops at state S/ permit this possibilty. Finally,

adverbs can occur at other places in the sentence, most

often within the sequence of auxiliary and modal verbs;

thus, the CAT ADV loop at state VP/V. Adverbs can sometimes

occur in other positions, but the grammar currently will not

recognize them.

There is a special arc leaving S/ to deal with negative

adverbs such as HARDLY and BARELY. When these adverbs occur

at the beginning of a sentence such as (27),

(27) Barely was there enough information.

the subject and verb are inverted as in a question. Instead

of looking for the subject in the normal declarative

position, the negative adverb arc leads directly to S/NP

where the first verb is picked up. The rest of the analysis

resembles that of a yes-no question, except that the type is·

3.28

DCL mstead of Q.

Finally,' in WH-questions where the question word is an

adverb (WHEN, HOW), the adverb is held and picked up on the

VIR ADV arc at state S/VP, where it is added to VMODS.

3.2.2 THE NOUN-PHRASE LEVEL

The second major component of the grammar is the

noun-phrase level (with state names beginning with NP/). It

l
.••

,:> entered by pushes from the S-level and

p~epositional-phrase (PP) states, and it also has recursive

calls to itself. We now describe some of the strategies

used in the analysis of noun-phrases.

1. The basic strategy

Consider the simple noun-phrase:

(28) the information

At state NP/ the determiner-article THE permits the CAT DET

transition to state NP/ART. From there a number of arcs

permitting optional constituents are by-passed by a series

of jumps to state NP/DET. The CAT Narc picks up the noun

INFORMATION, carrying us to NP/N. We then jump to NP/HEAD

and finally to NP/NP, from which we pop the completed

noun-phrase structure (29):

3.29

(29) NP DE'r THE

N INFORMATIOlJ

NU SG

The ~gnificant milestones in the analysis of a noun-phrase

are thus as follows: at NP/DET, the series of determiner

constituents (a simple article in (28)) has been analyzed

and the appropriate structure has been built (by the

function DE'l'BUILD) and saved in the register DET. At lJP/N a

potential head of the noun phrase has been found, while at

NP/HEAD the ultimate head has been determined, Finally, at

NP/HP, the complete noun-phrase has been recoP:nized, As at

the S-level, more complicated noun-phrases are recovered by

variations and elaborations of this basic analysis path.

2. Determiner structures

In English it is possible to omit all constituents

before the head of the noun-phrase. For example, atstract,

mass and proner nouns, and plural form~ of common nouns, do

not even require precedin~ articles, and the jump arc from

;~?/ to ;;p/f\P.'2 1 1s provided for suc:1 instances. On the other

hand, noun- phrases permit more than just an artcile in the

determiner structure. Followinr the analysis of Stockwell

et al. (1968), we recognize ordinals and quantifiers (with

accompanying partitives) as part of the "post-article"

structure of determiners. We also recornize macnitudes

5 ppm, 7 ')
• c:.. percent) as part of this structure.

3.30

Ordinals indicate the position of the object denoted by the

noun-phrase in a sequence of objects (e.g. FIRST, LAST,

NEXT). The constraint is that ordinals precede quantifiers

and other prenominal modifiers, so that (30a) is acceptable

but (30b) is not:

(30)

a. the next five samples

b. *the five next samples

The CAT ORD arc from NP/ART picks up ordinals and saves them

in the register POSTAR'r.

Following an ordinal, a quantifier is allowed as in

(30a). The grammar of quantifiers is fairly complicated,

and a separate level (QUANT/) is provided for their

analysis.

NP/ORD.

This level is called by the first arc leaving

The QUANT/ states recognize simple cardinals,

magnitudes, and some comparative constructions (MORE 'l'HAl/,

LESS THAN); this is an area of the grammar that needs

further expansion. If found, the quantifier is added to the

ordinal structure in POSTART. If a post-article has been

identified, a partitive can follow which can indicate the

set from which the particular object was drawn (3la-b) or

(in the case of mass nouns) the mass term which it

quantifies (31c).

(31)

a. five of the samples

3,. 31

b. the last of the measurements

c. five pounds of lead

The partitive is usually introduced by OF, and the first arc

leaving NP/QUANT looks for an OF prepositional phrase. If

one is found, the head of the noun-phrase becomes the dummy

element ONES, and the partitive phrase becomes the first

post-nominal modifier. With the head firmly decided, we

transfer to NP/HEAD to look for other modifiers. For

certain quantifiers (e.e;. ALL, BO'l'H) the OF can be missing;

the second arc at NP/QUANT takes care of this case.

Finally, the partitive structure can sometimes be fronted to

the beginning of a sentence such as (32):

(32) Of the documents, how many are about ••.

where a loop at S/ puts it on the hold list for a VIR PP arc

to find. If there is no POSTART or if no partitive is

found, the jump to NP/DE~ is taken, and DETBUILD puts the

contents of the DET and POSTART re~isters into the final

determiner structure.

3. Pre-nominal modifiers

After the determiner, a sequence of modifiers can occur

before a potential head is found. These may include

adjectives, participial forms of verbs, and adverb-adjective

phrases. Arcs 1, 4, 6, and 7 at state NP/DET, together with

the arcs at I;P/ADV, pick up these constituents, saving them

in the register ADJS. Examples of noun-phrases witt1 these

3.32

modifiers are given in (33):

(33) a. the lunar samples

b. a folded schist

c. an intriguing fact

d. a very large vesicle

4. Other potential heads

In the basic strategy, the head of the noun-phrase is a

noun, picked up on the CAT N arc from NP/DE'r to NP/N. Three

other arcs parallel the CAT Narc, permitting the head of

the noun phra:se to be a title (arc 3) a proper noun (34a)

(arc 10) or a gerund (34b) (arc 8).

(34) a. sample 10026

b. John

c. the processing of information
"t0"'.,,.

In any case, the -th!ee arcs place the potential head

(embedded in a structure indicating its type) in the

register N.

A pronoun may also be picked up as the head of the noun

phrase, as in (35).

(35) a. The one which contains kryptonite

b. Either one of the phases

c. What is it for sl0003

The pronoun may or may not be preceded by a determiner (such

3.33

as "the", "either", "some", "any"), and the CAT PRO arcs

from NP/ and NP/ART to NP/HEAD are there to recognize both

possibilities.

We have departed from Stockwell with regard to our

analysis of superlative adjectives. rrhis is an area in

which we are still working, so the following, while it

represents the current state of the grammar, is not

necessarily final.

Superlatives may function both as identifiers, (36a),

which point to a single specific thing, and as predicates,

(36b), like ordinary adjectives.

(36) a. The oldest type/A rock

b. Hocks which are most representative of the

Apennine HeGion.

When they function as identifiers, they point to the

one member of some set which satisfies some requirements.

In (36a), the criteria require the one type/A rock to be

older than all the other type/A rocks in the set. We

recognize a superlative identifier b" ,J the definite

deterr:1iner "the" precedinf3 it, and analyze it as the head of

its ~n noun phrase. The remainder of the orivinal surface

structure noun-phrase is annlyzed as a partitive

construction on the superlative. This indicates the set

over which the superlative ranges. For example, (36a) is

parsed as:

3.34

NP DET THE
NOLD SUPERLATIVE
NU SG
PP PREP OF

NP DET THE
ADJ TYPE/A
N ROCK
NU PL

The JUMP NP/SUPERLATIVE and WRD (MORE MOST) arcs from NP/ART

catch one- and two-word inflected adjectives, respectively,

p:rovided the adjective has been preceded by "the". (We also

t:reat determined comparatives as identifiers and analyze

them in the same way as superlative identifiers. For

example, "the older sample" is analyzed as "the older of the

s9.mples". Here we still have implicit in the structure the

information that the set over which the comparative ranges

has exactly two members.

The above analysis of' inflected adjectives as

specifiers is incomplete in the following sense: it does not

allow ~r such plural constructions as:

(37) a. The oldest samples

b. The largest TiO2 concentrations

where the criteria for "oldest" and "largest" have been

changed so that more than one member of the set can meet

those criteria. It is as if we had scales for the different

properties and a threshold for each property beyond which

that property was considered "most" itself. For example,

"the oidest samples'' might include all those samples older

than 3 billion years, while "the oldest buildings" might

3.35

include all those buildings over 1000 years. As can be seen

above, the threshold can be influenced by the set. We do

not understand this use of inflected adjectives well enough

yet to have incorporated it into the current LSMLIS system.

When an inflected adjective does not function as an

identifier, we treat is as an ordinary adjective with the

feature "comparative" or "superlative" as appropriate. This

also differs from Stockwell's analysis of superlatives,

which he considers part of the post-determiner structure.

The WRD (MORE MOST) arc and the CAT ADJ arc on NP/DET pick

up undetermined one- and two-word inflected adjectives.

When an inflected adjective occurs as a predicate

adjective, we make it the main verb of the sentence,

replacing the copula. In this case, the verb would get the

feature "comparative" or "superlative", plus any features

from the copula which it replaces. For example, (36b) is

parsed as:

NP DET NIL
N ROCK
NU
s

PL
REL
NP

VP

D",,.,.,
.w J.

N
NU
V

pp

WH
ROCK

PL
ADJ REPRESENTA~IVE

SCPERLATIVS
PREP OF
NP DE'!' THE

ADJ APEWENE
i~ REGIO:~
NU SG

3.36

Inflected predicate adjectives are caught in state VP/V on

the CAT ADJ and MEM (MORE MOS'l') arcs. From this point on,

they follow the course of normal adjectives, looking for

verb phrase complements and modifiers.

There is a further set of words which may be picked up

as the head of a noun phrase. This set now includes the

words "average", "most", "least", "maximum" and "minimum",

but it seems reasonable that the ordinals should be included

in this set too. A member of this set is analyzed in a

similar fashion to the determined inflected adjectives. It

is mde the head of a deep structure noun phrase, while the

remainder of the original surface structure noun phrase is

put into a partitive construction following it. The

partitive indicates the set over which one of these function

words ranges. :For example, "the average concentration of

iron in breccias" is analyzed as "the average of the

concentrations of iron in breccias".

The first CAT Narc from NP/HEAD catches words in the

aforementioned set and jumps to NP/AVG, where the partitive

is constructed. From NP/AVG, we continue with the regular

NP processing at NP/HEAD.

5. Noun-noun modification

It is very often the case that the first potential head

in a noun-phrase is not the real head. For example, nouns

3.37

and proper nouns can be modifiers on other heads (38):

(38) a. Olivine analysis

b. data processing

c. Apollo 11 sample

When a potential head is first encountered at state NP/DET,

we make the tentative assumption that it is, in fact, the

head of the noun-phrase. At NP/N, another potential head

implies that the previous head is actually a modifier on the

new read; the loops at state NP/N (arcs 1, 5, 6, 7, 8 and

10) pick up the new head and add the old one to the list of

modifiers in ADJS. This process can be repeateu several

times, as in (39). The CAT ADJ arc leading back to NP/DET

means that the series of potential-head-modifiers can have

regular adjectives interspersed.

(39) a. HAS/\ mission control operations staff

b. Apollo 11 lunar samples

A possessive marker ('s) is also allowed after a

potential head has been found, and the CA'l' POSS arc at iJP/N

picks it up, converts the previous head to a modifier, and

returns to NP/DET. A gerund at this point might confirm

thG.t the noun-phrase is really a POSS-IUG complement as in

(40) ,

(40) John's winninc of the race

and arc 9 at NP/DEt pushes into the S/ level to look for

this structure.

3.38

6. Relative clauses

The jump to NP/HEAD is taken only when the head of the

noun phrase has been definitely determined. At this point a

variety of post•-nomial modifiers is permitted. If we are

looking at a relative pronoun (41a) or a preposition

followed by a relative pronoun (41b), we know that there is

a relative clause, and we push to R/ to parse it.

(41) a. the samples which contain Olivine

b. the samples in which Olivine was found

Essentially, a relative clause is a sentence with a missing

noun phrase, with the head and number of the noun-phrase

that intuitively should fill the empty slot being the same

as those of the noun-phrase in which the relative clause

occurs. Thus we send down a copy of the noun-phrase to be

used in the analysis of the relative clause.

The states R/ and R/WH pick up the relative pronoun and

decide whether the copy of the noun-phrase sent down (in WH)

can be the subject of the relative clause. If so, the

noun-phrase is placed in SUBJ. Otherwise, it is held for

later use. We then enter the S/ network at S/NP to complete

the analysis. The pat 7h through R/PREP handles the

p~eposition-relative pronoun clause.

The relative pronoun can also be left out of relative

clauses, and arcs 7 and 9, which push to R/NIL, handle such

":reduced" relative clauses. The reduced relative can begin

3.39

with a noun-phrase (42a), a participial verb (42b), or an

adjective (42c).

(42) a. the elements the sample contained

b. the elements contained in the sample

c. the information available

A noun-phrase is still sent down to WH, and its ultimate

destination is decided at R/NIL. Notice that there are two

arcs fuat push to R/NIL -- the arc usually taken is arc 9,

which follows the jump to NP/NP. This means that we will

not look for reduced relatives unelss we have failed on

other paths; this strategy improves the efficiency of the

grammar, since R/NIL can lead to long blind alleys.

However, this also implies that a reduced relative on a

noun-phrase in a prepositional-phrase within another

noun-phrase would be attached to the first noun-phrase in

the first parse. Thus in (43) the reduced relative would be

tried first as a modifier of MA!J instead of PARK:

(43) the man in the park the girl frequented

The TST R/NIL arc (arc 7), which calls the SUSPEND

mechanism, is included to provide the correct analysis in

these cases. It can only be taken if a prepositional-phrase

(Il1 THE PARK) has been found in the current noun-phrase.

Whenever we find a relative clause, we move to state

iJP/R, where additional full relatives are allowed until we

3.40

finally jump te> NP/NP.

7. Other post-nominal modifiers

The grammar handles other types of post-nominal

modifiers, including prepositional phrases, sentential

complements, and parenthetic eomments. The PUSH PP/ loop

recognizes a sequence of prepositional-phrases and places

them, along with the relative clauses, in the register

NMODS. The register PPFLAG is set, which enables the TST

R/NIL arc and prohibits the normal PUSH R/NIL.

The PUSH FOR/NP loop handles TO-completments, such as

(44),

(44) the way to do it

which can appear on a wide variety of nouns. The arcs which

push to the COMPL/ network can only be taken for certain

head nouns, those which take a THAT-complement (e.g.

STATEMENT, CLAIM) as in (45):

FACT,

(45) the fact that the documents are not available

Notice that THAT can also introduce a relative clause; the

difference between a relative clause and a THAT-complement

is that in the relative clause there
Cl.V'\

is f\ empty noun-phrase

slot to be filled. The THAT-complements are complete

sentences.

3.41

Other arcs leaving state NP/NP allow for such

constructions as a colon following a noun-phrase and a comma

either indicatin~ the beginning of a conjoined sequence of

noun-phrases, or introducinf, a transitive adverb

(ESPECIALLY, PARTICULARLY) and its following noun-phrase.

The mnotated listing describes these arcs in detail.

3.42

Chapter 4

SEMAN'I'IC INTERPRETATION STRATEGIES

4.1 Motivation

In Section 2.3, we presented an outline of the operation

of the semantic interpretation component. In this Chapter, we

will discuss the particular semantic strategies embodied in the

semantic rules and the way in which they produce semantic

interpretations from the syntactic structures being interpreted.

The semantic rules used in the system fall into two

classes. One class deals with grammatical constructions which

have real meaning to the system (determiners, verbal constructions

such as "give me", "I need", etc., and noun constructions such as

"analyses", "average ••• ", "ratios", "references", etc.). The

other class deals with constructions whose me~ning is not apparent

to the system, but which are instead to be interpreted as subject

indicators or other restrictions on the references to be retrieved.

The system generally attempts to interpret a sentence or request

in terms of its semantic rules for specific constructions, but if

it fails to find an interpretation of the sentence in terms of the

constructions which it knows, it types a comment to that effect

and attempts to interpret the reGuest as a Boolean combination of

terms for retrieval from the keyphrase table. The set of semantic

rules which perform this Boolean interpretation are called

topicrules and may either be invoked explicitly by constructions

such as "references on", "bibliography of", etc. or it may be

invoked by default when a request fails to interpret normally.

4.1

4.2 The General Semantic Framework

The general semantic format cf the LSNLIS system is

essentially that described in Woods (1967, 1968). That is, the

retrieval component of the system consists of a set of primitive

commands, functions, and predicates which may be combined and

quantified to produce semantic interpretations which are essent

ially retrieval programs for computing the truth values of pro

positions or for carrying out commands. The task of the semantic

interpreter is to translate the parse tree of the sentence into

an expression in this formal query language which can then be

executed to retrieve or compute the answer.

4.3 Semantic Representation

The fundamental components of the retrieval component are

the primitive functions, commands, and predicates which the machine

understands. These include specific retrieval functions for con

cepts such as "average", "ratio", "analysis", "mineral'', "isotope",

etc. and general functions such as the quantifi~r function FOR

and the list enumeration function SEQ. 'jhe typical retrieval

operation is based on the quantification of propositions and

commands Ly quantifiers of the form:

(FOR QUANT X / CLASS : P(X) ; Q{X)) where QUANT is a quantifier

(EACH, EVERY, SOME, etc.), Xis the variable of quantification,

CLASS is the class of objects over which the variable is to range,

P(X) is a restriction on this range (i.e. the only objects in

CLASS which are of interest are those for which P(X) is true), and

Q(X) is the proposition or command being quantified. The class of

objects is specified by a special enumeration function (such as

DATALINE) for enumerating the objects in the class (e.g. by search

ing the table) or by the function SEQ which takes a list as an

argument and enW11erates the elements of that list. Typically,

Q{X) will be the command (PRINTOUT X) which prints out a represen

tation of the object X on the teletype. For example, the expression

4.2

(FOR EVERY Xl / (SEQ PHASES) : T (PRINTOUT Xl)) is a retrieval

program which will print out the names of all of the members of

the list PHASES (the list of all the names of phases of samples

which are recorded in the system's data base). This framework

for .semantic representation provides a powerful formal language

for the expression of requests for the retrieval component.

4.4 Interpreting Sentence Nodes

The interpretation of a sentence node occurs in two phases

distinguished by the use of different values for TYPEFLAG. The

first phase, with TYPEFLAG NIL determines whether there are any

governing operators or commands such as NOT, TEST, etc., which

govern the sentence. It is essentially a preprocessing phase

prior to the actual examination of the sentence itself and

consists in matching rules from the global list PRERULES (which

is independent of the particular verb which governs the sentence).

Of these rules, S:AND and S:OR interpret conjoined sentences;

S:DCL deals with the interpretation of declarative sentences;

S: n~P interprets imperative sentences; and s: WHQ and s: YES/NO

deal with questions (the former with questions containing

question words such as "which" or "what" and the latter with

simple yes/no questions). S:NPU deals with noun-phrase utterances

(i.e. sentences which consist only of a single_ noun-phrase with

no verb). Other prerules interpret negative sentences and different

syntactic formats ..

All of the PRERULES (with the exception of S:NPU and a few

others) specify the subsequent interpretation of the same node

with the TYPEFLAG SRULES (the exceptions call for the interpretation

of specific lower nodes). This second call for the interpretation

of the node begins the second phase of processing. In this case,

4.3

the rules to be tried are taken from the property list (i.e.

dictionary entry) of the head of the sentence (i.e. the verb) under

the property SRULES. Alternatively, if the verb does not itself

have any SRULES, but has as one of its semantic markers a word

which has SRULES on its property list, then the rules to be matched

will be taken from the list associated with the marker. For

example, the rule S:GIVE which interprets sentences of the form

ngive me information on ••• " is used for the interpretation of many

words which are synonyms of "give" in this context. This is indi

cated by putting the semantic marker GIVE in their dictionary

entries, and therefore enabling them to use the SRULES from the

dictionary entry for the word "give".

4.5 Interpreting noun-phrases

The semantic rules which interpret sentences generally

require the interpretation of one or more noun phrases as

subconstituents of their interpretation. The rule S:NPU for

example, requires only the interpetation of its single constituent

noun phrase. Like the interpretation of sentences, the interpre

tation of noun-phrases occurs in several phases. The first of

these, with NIL TYPEFLAG interprets the determiner structure of

the noun phrase to determine what type of quantifier is to govern

it. This phas~ consists of matching rules from the global list

DRULES. These rules examine the determiner and number of the noun

phrase and assign a basic quantifier structure. They also call

for the interpretations of the same node in two different modes-

NRULES and RRULES--for the other two phases. NRULES and RRULES

both are taken from the property list of the head of the noun

phrase (i.e. the noun) or from the property lists of words which

occur in the list of markers for the head noun. NRULES interpret

the noun of the phrase and any arguments which it may require

(i.e. if it is a function): RRULES interpret any further restrictive

modifiers which may occur in the noun phrase. Modifiers which do

4.4

not match any RRULES are ignored, and relative clauses are handled

by a special mechanism which ta9s the relative pronoun of the

relative clause with the variable of quantification and calls for

its interpretation as a sentence.

4.6 Iriterpreting Topics

The above description qf the interpretation of noun phrases

applies only to noun phrases which have direct and understandable

meaning to the system (e.g. "documents on .•• " "analyses of ••• ",

etc,) Other noun phrases consist of topic descriptions and are

treated in an entirely different manner by the system. In the

latter case, a list TOPICRULES specifies a global list of rules

for translating syntax trees into Boolean combinations of key

phrases. These rules are grouped on TOPICRULES into AND and OR

groups in the way in which any resulting mc1tchcs are to be combined.

Each topic rule corresponds to a porticular type of key phrase which

may be present in a syntactic construction, and specifies in its

left-hand side the proper context and structure for the extraction

of that key phrase.

The list of TOPICRULES is used to interpret a noun phrase

instead of the usual sequence of DRULES, NRULES, and RRULES when

ever the call to interpret the noun phrase is made with TYPEFLAG

TOPIC instead of 'l'YPEFLAG NIL. Semantic rules of the ordinary

type are used to invoke this special type of interpretation when

ever they locate a context which is definitely a topic. For

example, the rule R:DOC-ON interprets restrictions on a nrun which

is semantically marked DOCUMENT that begin with the preposition

"on". It interprets such constructions as "data on X" by calling

for the interpretation of X with TYPEFLAG TOPIC and constructing

an instance of the ABOUT predicate indicating that the documents

in questions are about the topic x.

4.5

Since the data base of the system is quite limited in

scope, it is quite likely that the user may ask the system for

something which it does not understand. In this case, the

system will attempt to interpret the unknown thing as a topic

for which references are required. For this purpose, noun

phrases in the environment of a "give me ••• " sentence or a noun

phrase utterance are interpreted with a TYPEFLAG REFS? which

first trys to interpret the noun phrase in the normal way, and

failing that, produces a call to the rule REFERENCES which prints

a comment to the user and interprets the noun phrase as a topic.

4.7 An Example

As an example of the semantic interpretation procedure,

consiuer the "sentence" (actually a noun-phrase utterance):

(l\NALYSES OF Sl\l1PLE S10046 FOR IIYDROGEH)

Thi:s sentence produces the following tree structure when processed

by the parser:

s NPU
NP DET NIL

H A1JALYSIS
NU PL
pp PREP OF

NP DET NIL
NPR SAilPLr

S10046
uu NIL

pp PREP FGR
NP DET NIL

N HYDROGEN
HU SG

4.6

The function INTERP does the interpretation. It first

att~npts an interpretation of the whole sentence, s. Using the

list of rules, PRERULES, it finds that the sentence is a noun

phrase utterance (NPU) and should receive the interpretation

atta,:hed to its ma.in noun phrase (NP). At this point, the right

hand side of the rule (PRED (PRINTOUT (# l 1 REFS?))) indicates

that the interpretation is a predicate (which may later be

quantified) governing the command PRINTOUT. It indicates that

the things to be printed out are to be determined by interpreting

the noun-phrase (# 1 1) with the typeflag REFS? (i.e. the noun

phrase may be either a topic description or a noun phrase whose

head is semantically interpretable. The function PRED will be exe

cuted after the substitution of the interpretation on the noun-phrase

has ;;,4-en made in the right-hand Aide, and it will grab any quanti

fiers which have been produced by the constituent interp~etations.

The interpreter now begins the interpretation of the noun

phrase using the two rules REFRULE? and REFRULE (determined by

the TYPEFLAG REFS:'). The first attempts the interpretation in the

normal mode beginning with the global list DRULES. Since the noun

phrase does have an interpretable head ("analysis") this inter

pretation will succeed, and the rule REFRULE will never be tried.

As we mentioned, the DRULES are used to interpret the

determiner and number of the noun phrase and determine the type

of quantifier to be produced. This includes the case of no deter

miner (determiner NIL). In this case, the special generic quantifier

GEN is produced, and placed in a buffer string for the function

PRED to grab. A variable of quantification (X13) is assigned to the

noun phrase, and the interpreter is called with the TYPEFLAG NRULES

to interpret the noun.

4.7

4.7.1 Interpreting the Noun Phrase_

In the dictionary, the word ''analysis" contains the semantic

marker ANALYSIS, and under the property NRULES it contains the list

(N:ANALYSIS N:MODAL-ANALYSIS). The two NRULES specify the inter

pretations of the two types of analyses which the system recog

nizes--the chemical analysis of some element in some phase of a

sample, and the modal analysis of some mineral in a sample. The

first rule applies when there is no adjective "modal" present in

the noun phrase, and the second applies when there is such an

adjective. The rule which will be applicable in this case is thus

N:ANALYSIS. This rule is shown in figure 4-1.

'l'he rule N :ANALYSIS specifies constituents which must be

present (or absent) in a noun phrase in order for ci1e rule to

match, and specifies the enumeration function which is to be used

for the quantification if the rule match is successful. First, it

specifies that the noun of the noun phrase be a merrber (MLM.) of

the semantic class 1\.1-JALYSIS (i.e. that its dictionary entry contain

the semantic marker ANALYSIS). This is true not only of the word

"analysis" itself, but also of other imrds which can behave as

synonyms for "analysis" in this context (such as "concentration",

"composition", etc) Secondly, the rule specifies that there must

be no modifier "modal" (in this case, the rule N:MODAL-ANALYSIS

would apply). The next three components of the pattern part of

the rule specify the "arguments" of the head noun -- the sample,

phase, and constituent of interest. These may be specified

syntactically several ways -- either as an adjectival modifier,

a prepositional modifier, or by default. Thus, the constituent

of an analysis (the fifth component of the pattern) can be

specified by a prepositional phrase whose object is either an

element, an oxide, or an isotope; by an adjectival modifier

4.8

[N:ANALXSIS
(NP,N (MEM 1 ANALYSIS))
(NOT (NP,ADJ (EQU 1 MODAL)))
(OR (NP.PP (MEM 2 (SAMPLE ROCK)))

(NP.PP.PP (MEM 2 (SAMPLE ROCK)))
(NP.PP.PP.PP (MEM 2 (SAMPLE ROCK)))
(DEFAULT (2 NP (DET ALL)

(N SAMPLE)
(NU PL))))

(OR (NP.PP (l"l1::M 2 (PHASE MINERAL)))
(NP.PP.PP (MEM 2 (PHASE MINERAL)))
(NP.PP.PP.PP (MEM 2 (PHASE MINERAL)))
(NP,ADJ#2 (MEM 2 (PHASE MINERAL)))
(NP,PP.ADJ-N (AND (OR (EQU 2 FINE)

(EUU 2 COARSE))
(l'lEM 1 DUS'r)))

(DEFAULT (2 NP (KPR OVERALL))))
(OR (NP.PP (MEM 2 (ELEMENT OXIDE ISOTOPE)))

(NP.PP.PP (MCM 2 (ELEMENT OXIDE ISOTOPE)))
(NP.PP.PP.PP (MEM 2 (ELEMENT OXIDE ISOTOPE)))
(NP,A0J#2 (MEM 2 (ELEMENT OXIDE ISOTOPE)))
(DEFA~LT (2 NP (DET EVERY)

(l\DJ MAJOR)
(N ELEMENf)
(! 1!U ;:G))))

!OP (NP.ADJ (!OU 1 CH~MICAL))
(DFFAULT (1 NPR NIL)))
-> (SSVNIONF /OATALINE (WHQFILE (# 3 2 SSET)) (# 3 2 SSET)

(# 4 2) (# 5 2 SSET))) 1

r'igure LJ-1 'The I~FiULE rJ: ANALYSIS

4.9

which is one of the above three types; or by default in which

case quantification over the major elements is assumed. These

alternatives are represented in the semantic rule by a group

of templates OR'ed together with the default option at the end

of the OR. The default option applies if and only if none of

the other components of the OR are satisfied.

The last component of the pattern specifies the optional

presence of the adjective "chemical". This is done so that when

the user requests "chemical analyses", the Semantic Interpreter

does not apologise for being unable to interpret "chemical" as

a modifier of "analysis". (See the section on User Aids, Chapter 1,

for a discussion of the interpreter's reaction to things it cannot

"understand".) In the current data base, all analyses are basically

chemical ones, so "chemical" does not add anything to the inter

pretation of "analysis". However, the Semantic Interpreter should

know the difference between harmless optional modifiers and ones

which are important.

4.7.1.1 Prepositional Arguments

It would be nice if the parser provided a syntax tree in which

the various prepositional arguments of a noun phrase were attached

directly to the noun phrase where tiiey make sense semantically,

and we have experimented elscwht~re with a rudimentary facility for

using the information in the semantic rules to guide the parser

in the placement of prepositional modifiers. In the present

system, however, ve have taken the opposite tack and provided

semantic rules which can locate tl1e necessary prepositional argu

ments even when the parser has placed them in the wrong place.

'l'hus, the templates which r.1atch prepositional modifiers in the

rule N:ANALYSIS rnakf use of the tree fragments UP.PP,NP.PP.PP, and

NP.PP.~~.f~. whic11 can locate a prepositional phrase one, two, or
three levels deep in a noun phrase.

4.10

Note that the templates which check prepositional phrases

make no checks on the preposition itself. The rule was originally

written this way as an expedient since there are many· possible

combinations of prepositions which may occur in this context and.

their enumeration was tedious. However, the rule in this form

has been very successful--we have encountered no cases in which a

sentence was falsely interpreted because of this failure to check

the prepositions, and if no such cases arise, we will probably

leave the rule in its present form (since it is faster without the

additional checks).

4.7.1.2 The Right-Hand Side of the Rule --- ------
The right-hand side of the rule specifies the enumeration

function which is to be used to enumerate the analyses to which

the request refers. This will be a call to the data base function

DA'l'ALINE which takes: arguments specifying the sample, phase, and

constituent of interest and enumerates the lines of the table

which correspond to the values of these arguments. The first

argument to DATALINE is a call to the function WHQFILE with the

sample as its argume!nt. WHQFILE returns the name of the file

on which the analyse!s of the sample are located. This is so that

DATALINE will know which file to search for them. The rule

specifies the interpretation of node (# 3 2), with typeflag SSET,

as being the sample required. The final three arguments are

the sample, phase and constituent, respectively, and these

positions are to be filled respectively with the interpretations

of the nodes (# 3 2), (# 4 2) and (# 5 2). The typeflag SSET

with which the sample and constituent are to be interpreted

specifies the nodes to be interpreted as sets, if possible, and

not as quantified variables. Nodes can be interpreted as sets

if they are plural ("the samples", "all the halogens") or

determined by "every" ("every type A rock"). Otherw.itse, if any

of these argument positions receive direct proper noun interpre

tations, then these interpretations are inserted directly in

place of the expressions (# 3 2) etc., while if any of them are

quantified by "each" ("each rare earth element"), their inter

pretation will be the variable of quantification and the governing

quantifier will be passed up the tree to the sentence which

dominates the noun phrase.
4.11

4.7.1.3 Completing the NRULE Interpretation

In the particular case at hand, the third template will

match "of sample S10046", the second will default to "overall",

and third will match "for Hydrogen". Thus, in order to complete

the interpretation of the node, the interpretations of the nodes

(# 3 2) (sample S10046), (# 4 2) (overall), and (# 5 2) (Hydrogen)

will be called for, producing the interpretations (NPR* Xl /

(QUOTE S10046)), (QUOTE OVERALL), and (NPR* X2 / (QUOTE H)),

respectively. No quantifiers are produced by any of these sub

interpretations. The result of the rule N:ANALYSIS is thus the

enumeration function:

(DATALINE (WHQFILE (NPR* Xl /(QUOTE Sl0046))) (NPR* Xl /

(QUOTE S10046)) (QUOTE OVERALL) (NPR* X2 / (QUOTE H)))

At this point, we return to the DRULE which called for the

NRULE interpretation of this node and INTERP begins another

interpretation of the same noue with typeflag RRULES to pick up

any possible modifiers. It again consults the property list of

the head noun ("analysis") and finds the RRULES, R:ANALYSIS-REF

and R:ANALYSIS-TAG. These rules allow for the optional restric

tion of "analysis" by some tag or reference, e.g. "Analvses of

hydrogen in D70-246 with tag 2". In addition to these RRULES,

RULES sends the function MATCHER the four universal RRULES, R:REL,

R:QREL, R:ADJ and R:PP to match against the node. These rules

see if there are any relative clauses, special relative clauses of

type QREL (see section 3.2.1.4, where these clauses are discussed),

unused adjectives or uninterpretted prepositional phrases. The

latter two rules are used to check that all adjectives and PP's

on the node have been interpreted or have contributed to the inter

pretation of the node. If not, they inform the user of what the

Semantic Interpreter has ignored and ask him what to do about it.

The former two rules call for the interpretation of any relative

clauses on the node, but follow the latter two rules if any of

them are uninterpretable.

4.12

In this case, none of the RRULES apply and the result of

the interpretation is the vacuous restriction T. Control again

returns to the DRULE looking at "analyses ••• " and the quantifier:

{FOR GEN Xl3 / {DATALINE {WHQFILE {NPR* Xl / {QUOTE S10046)))

(NPR* Xl / {QUOTE S10046)) {QUOTE OVERALL) {NPR* X2 / {QUOTE H)))

: T: DLT)

is constructed. This quantifier is returned to the higher

sentence {the HP utterance) which called for the interpretation

of this node, and the semantic interpretation Xl3 is attached

to th-e node.

4.7.2 Completing the Inte.~etation of the Noun-Phrase Utterance

Recall that the semantic rule which interpreted the top

level noun-phrase utterance was left pending with the right-hand

side {PRED (PRIN'l'OUT (# 1 1 REFS?))). The interpretation that

is returned by the call for the interpretation of (# 1 1 REFS?)

is now Xl3, and the quantifier governing this variable has been

placed in the quantifier string QUANTS which is being passed up

alonq the tree. After the substitution, the resulting expression

(PRED {PRINTOUT X13)) is executed and results in the 'grabbing"

of the cruantifier(s) in the string QUANTS to produce the resulting

interrretation:

(FOR GEN Xl3 / (DATALINE (WHQFILE (NPR* Xl / {QUOTE S10046)))

(NPR* Xl / (UUOTE S10046))

(QUOTE OVLRALL)

(NPR* X2 / (QUOTE H))) : T : (PRINTOUT Xl3))

This expression is a retrieval program wtich will range over the

set of table lines specified by the call to DATALINE, binding Xl3

to each in turn, and executing the expression (PRINTOUT Xl3) for

each such line. The result of the execution will .be a printout

of the lines reporting overall hydrogen analyses of samole Slu046.

4.13

4.8 Variations on th~ Example

The interpretation of sentences such as "give me all

analyses of sample S10046 for Hydrogen" are interpreted in exactly

the same manner as the preceding example except that instead of

the rule for noun phrase utterances, a rule S:GIVE (for various

paraphrases of "give me ••• ") will apply to produce ~1e right-hand

side (PRED (PRINTOUT (# 2 1 REFS?))). The interpretation

or pLrases such as "overall Hydrogen analyses of S10046", "Hydrogen

analyses of S10046, "analyses of Hydrogen in S10046", etc. will

differ only in which components of the OR'ed templates of N:ANALYSIS

are chosen. The interpretations of phrases such as "analyses of

major elements in S10046" will differ only in that additional

quantifiers will be passed up by the interpretation of the embedded

quantified noun phrases.

4.9 Anaphoric Reference

LSNLIS has been designed as a conversational system. Thus,

it must be prepared to deal with such a common conversational

device as anaphoric reference. Several examples of anaphoric

reference are shown in the following sets of requests.

(1) a. Give me all analyses of Sample 10046 for hydrogen.

b. Give me them for oxygen.

(2) a. Do any breccias contain aluminum?

b. Which are those breccias?

(3) a. Which coarse-grained rocks have been analysed for
cobalt?

b. Which ones have been analysed for strontium?

c. Which ones have been analysed for strontium too?

(4) a. How much Ti0
2

is in type B rocks?

b. How much silicon is in them?

The problem is in finding the referent of each anaphoric element:

e.g. "them" in (1) and (4), "those breccias" in (2) and "ones"

in (3) •

The resolution of anaphoric reference is done in LSNLIS

4.14

by the Semantic Interpreter, and not by the Parser. Thus, we

will find pronouns like "one" and "they" and determiners like

"those" and "that" in the parse tree given the semantic inter

preter. Whether it would be more efficient to let the Parser

resolve anaphoric reference itself, or let the two phases share

the burden is not yet clear, but we do not claim that the

strategies we use n.ow should be in any way final. Much remains

to be done in this area.

Dur main device for dealing with anaphoric reference makes

use of the "variables of quantification" mentioned earlier in the

chapter. During interpretation, every noun phrase that the

Semantic Interpreter attempts to interpret becomes associated

with a variable of quantification. These variables are very

much like Chomsky's referential indices. After the interpreta

tion of the request is completed, each variable also becomes

associated with the interpretation of its noun phrase, as well as

its syntactic structure. This latter association is done by the

function SCOPEFINDER, called by INTERP. The above information

is stored on the property list of each variable, under the pro

perties NODE and INTENSION, respectively. For example, the

following shows the property list of variable Xl3, at the comple

tion of our example request:

X13

NCDE (NF

Il~TENSION

(DET NIL)
(N ANALYSI!3)
(NU PL)
(PP (PREP CF)

(NP (DET NIL)
(NPR SAMPLE

10046)
(NU SG)))

(PP (PREP FOR)
{NP (DET NIL)

(N HYDROGEN)
(NU SG))))

(GEN (DATALINE (WHQFILE (hPR* Xi /
(QU C TE S 1 U04b)))

(NPR* XI / (QUOTE 610046))
(QUOTE OVERALL)
(NPR* X2 / (QUOTE H))) 1')

4.15

Also at the completion of a request, the function SPROC adds

the variables used in its interpretation to the top of the list

ANTECEDANTS, for use in resolving future anaphoric reference.

We distinguish two types of anaphoric reference in LSNLIS,

partial anaphoric reference and complete anaphoric reference.

(lb.) is an example of partial anaphoric reference in that "them"

refers to only part of the previous noun phrase "analyses of

Sample 10046 for hydrogen", that is, to "analyses of Sample 10046".

The prepositional phrase "for oxygen" replaces "for hydrogen" in

the original request.

The remaining examples illustrate complete anaphoric refer

ence of two types: anaphoric reference to the question set (i.e.

the phrase used in the request) and to the answer set (i.e. the

set of answers to the request). Example (3) illustrates these two

types best. "Ones" in (3b.) refers to the question set in (3a.)

"coarse-grained rocks", while "ones" in (3c.) refers to the answer

set in (3a.), "coarse-grained rocks which have been analysed for

cobalt". We take the word "too" in (3c.) as signalling this dif

ference.

We shall give in what follows, a brief sketch of how the

Semantic Interpreter treats each type of anaphoric reference,

then go on to discuss its limitations in this area.

There are two semantic rules for interpreting anaphoric pro

nouns and determiners, D:ANAPHORA and D:SEMI-ANAPHOR. The former

matches anaphoric pronouns and determiners which do not have any

prepositional phrase or relative clause modifiers, while the latter

matches those that do. The former represents complete anaphoric

reference, while the latter, partial anaphoric reference. There are

also two semantic rules for interpreting the pronoun "one", which

can be influenced by the words "too", "also", and "in addition"

in selecting the referent.

4.16

Consider example {lb) first. The right-hand side of the rule

S:GIVE applies to this request and calls for the interpretation of

the direct object of "give~ in this case, "them in oxygen". We

proceed to interpr,et its determiner structure, and since anaphoric

pronouns are match,ed in the same cycle as determiners, we find that

the irnle D: SEMI-ANltPHOR matches the node. This rule calls for the

application of the function SEMIANAPHOR to the entire node, as is.

What SEMIANAPHOR does is to search through the list of antecedant

noun phrases for one which has a syntactic and semantic structure

parallel to the given node. In this case, it looks for one with

a dependent prepositional phrase whose preposition is "of" and whose

head noun has the same markers as "oxygen", that is, {ELEMENT).

The noun phrase "analyses of sample 10046 for hydrogen" meets this

description. SEML!\NAPHOR then replaces the prepositional phrase

"for hydrogen" with that "for oxygen", and returns, as the inter

pretation of "them for oxygen", the interpretation of "analyses of

sample 10046 for oxygen".

SEMIANAPHOR, as it now stands, is only a first approximation

to the problem of resolving partial anaphoric reference. To begin

with1 it is only applicable to anaphora with a single prepositional

phrase parallel to one belonging to its antecedant, as in the example

above. 'l'his also requires having correct modifier placement, a

stage which we have not yet reached. Follow-up requests to (la)

which would be beyond the system's current capacity are ones like:

(5) a. Give me the oxygen ones.

b. How about them for oxygen.

c. Give me those that have been done for oxygen.

The following example shows the parsing and interpretation of

the two requests in example (1).

4.17

SENTENCE:
(GIVE ME ALL ANALYSES FOR HYDROGEN IN SAMPLE 10046)
PTIMING:
,262 CONSES
4.796 SECONDS
PAP.SINGS:
S IMP

NP PRO YOU
AUX TNS PRESENT
VP V GIVE

NP DET ALL
PRO ONES
NU SG/PL
PP PREP OF

NP DET NIL
N ANALYSIS
NU PL
PP PREP FOR

NP DET NIL
N HYDROGEN
NU SG

PP P!!EP IN
NP DET NIL

NPR SAMPLE
Hi046

NU SG
PP PREP TO

NP PRO I
NU NIL

ITIMING:
2280 CONSES
··0.805 SECONDS
INTERPRETJ\TIONS:
(DO (FOR EVERY X14 / (DATALINE (WHOFILE (NPR• X15 / (QUOTE S10046)))
(NPR• X15 / (QUOTE S1~046)) (NPR• X16 / (QUOTE OVERALL)) (NPR• X17
/ (QUOTE H))) : T ; (PRINTOUT X14)))

, L

4.18

S ENTE NCI::
(GIVE ME THEM FOR OXYGEN)
PTIMING:
6 64 CON ~iES
3.61 S!:C:ONDS
PARS I NG~;:
S IMP

NP PRO YOU
AUX TNS PRESENT
VP V GIVE

NP PRO THEY
NU PL
PP PREP FOR

NP DET NIL
N OXYGEN
NU SG

PP PREP TO
NP PRO I

NU NIL

ITIMING:
2244 CO~SES
9.341:j SECC'NDS

INTERPRETATIONS:
(DO (FOB GEN X19 / (CATALINE (WHQFILE (NPR• X20 / (QUOTE 510046)))
(NPR• x;e I (QUOTF S1~1 046)) (NPR• X1 / (QUOTE OVERALL)) (NPR• X2 /
(QUOTE C))) : T ; (PRINTOUT X19)))

Examples (2) and (4) illustrate basic complete anaphoric

reference. The semantic rule which handles this type of anaphoric

reference is D:ANAPHOR. We consider the analysis of (2b) first.

(Both requests in example (2) can be found as examples in Appendix G.)

Request (2b) is a "What(Which) is X?" question, which is

interpreted by rule SS30. This rule calls for the interpretation

of X, in this case "those breccias". The rule D:ANAPHOR recognizes

that "those" is anaphoric, and notes that the noun phrase is not

modified by either a prepositional phrase or relative clause modi

fier, in which case, the rule D:SEMI-ANAPIIOR would apply. The

right hand side of D:ANAPHOR is a sequence of instructions to re

solve the anaphorism. The first function called, ANTECEDANT, finds

the variable associated with the antecedant of "those breccias",

while the calls to ANTEQUANT construct the quantifier to be re

turned as its interpretation. (Since the anteccdant of "those

breccias" may be within the scope of some other ciuantifiers

(SCOPEVARS), they must also be included in the interpretation of

4.19

"those breccias".) The primary strategy used here in finding the

antecedant of "those breccias" is to look for one whose head noun

is also "breccia".

The antecedant of "those breccias" in example (2b) is "breccias

which contain aluminum". It is a general observation captured by

the Semantic Interpreter that a questioned existentially quanti

fied sentence like (2a) implies an intensional noun phrase con

taining among its restrictions those of the main verb of the re

quest. Thus the interpretation of (2a) produces an intensional

noun phrase equivalent to "breccias which contain aluminum?" and

it is this intensional object which is the antecedant of "those"

breccias.

D:ANAPHOR is also used to resolve the anaphoric reference in

example (4b), but the strategy used by ANTECEDANT to find the ante

cedant of "them" is slightly different. At the sentence level, the

rule S:BE-IN2 would match if the antecedant of "them" had the seman

tic markers (SAMPLE). (The constitutents of S:BE-IN2 are a subject

noun phrase which is marked either ELEMENT, OXIDE, ISOTOPE, PHASE

or MINERAL, a verb which is either Br:, OCCUR or EXIST, a preposi

tional phrase whose head is marked SAMPLr::, and another optional

prepositional phrase whose head is marked either PF.ASE or MINERAL.)

When the template (S.PP (AND (EQU 1 IN) (MEM 2 (SAMPLE))) is matched

against the top Snode, MEM calls the function ANTECEDANT to find

out if there is a possible antecedant for "them" which fits this

description, i.e. (MEM 2 (SAMPLE)). ANTECEDANT finds "type b

rocks" as a possible antecedant noun phrase for "them", which also

satisfies the requirement that its head have markers SAMPLE. ANTE

CEDANT also records on TAGLIST that the antecedant of "them" is

X3, the variable associated witl1 the noun phrase "type b rocks".

(Where this strategy differs from the one used for finding the

antecedant of "those breccias" is in using semantic markers, rather

than a specific word like "breccias" as a requirement on the head

of the antecedant.) When S:BE-IN2 later calls for the interpretation

of the phrase "in them", D:ANAPHOR calls AN'l'ECEDANT which picks off

the TAGLIST the antecedant for "them" it found previously.

ANTEQUANT then constructs the proper quantifier for it. The following

4.20

example illustrates the parsing and interpretation of the two

requeBts in example (4).

SENTENCH:
(HOW MUCH TITANIUM IS IN TYPE BROCKS)
PTIMING:
1315 CONSES
7 • 6 5 5 S f: C C' N D S
PA RS ING~;:
s Q

NP DET POSTART COMP ADV HOW
MUCH

N TITANIUM
NU SG

AUX TNS PRESENT
VP V l:E

PP PREP IN
NP DET NIL

ADJ TYPE/8
N ROCK
NU PL

ITIMING:
1 089 CONSES
'J. 595 sEc 1:::Nns
INTERPREThTIONS:
(FOR GEN X3 / (SEQ TYFEBS)
(QUOTE NIL) (HOW)))

~; E N T E N C E: :
(HOW MUCH ~ILICON IS :CN THEM)
PTIMING:
· 07!.l C01"SE.'3
6 • 2 8 2 S E: C -~ N D S
PARSING:::
c- ()

NP DET PCSTART COMP ADV HOW
MUCH

N ::ILICON
NU SG

AUX TNS PRESENT
VP V Bl::

PP l':!EP IN

ITIMI~G:

NP PRO THEY
N!l PL

:z:gg CJNSES
', • 2 2 7 S £ C' N D S
INTERPHETATIONS:
(FOR GEN X3 I (SEQ TYPEBS)
(QUO~E NIL) (HO~)))

T ; (CONTAIN I X3 (NPR• X4 / (QUOTE TI02))

T; (CONTAIN' X3 (NPR• X6 / (QUOTE SI02))

4.21

Example (3) illustrates anaphoric reference with the word

"ones". "One" and "ones" are peculiar anaphoric pronouns in that

they are influenced by the words "too", "also", and "in-addition"

in establishing their antecedants. "Them" in examples (1) and (4) ,

on the other hand, is not so influenced. The antecedant of "them"

does not change, whether one says "Give me them for oxygen." or

"Give me them for oxygen too.". As mentioned previously, when

"too" and similar words occur with "ones" or "one", the pronoun's

antecedant is the answer set, while without "too", its antecedant

is the question set. "One" and "ones" are also peculiar pronouns

in that they can occur with determiners, which must also be con

sidered in forming their interpretations: "which ones" has a dif

ferent interpretation from "the ones".

A noun phrase whose head is the anaphoric pronoun "one" or

"ones" is interpreted by the normal DRULES to find its determiner

structure. The rules N:ONE and R:ONE are then used to interpret

the class of the noun phrase and its restrictions. (It should be

pointed out here that "one" and "ones" can also be used in a non

anaphoric, partitive sense, e.g. "Which one of the boys", and in

this case, the rules N:ONEOF and R:OIJEOF are used to get the class

and restrictions of the noun phrase from the head of the partitive

construction.)

In the interpretation of example (3b), S:NPQ identifies the

parse tree as a questioned noun phrase, and calls for its interpre

tation with typeflag REFS? We try to interpret it normally, and

not as a topic, and in doing so, match the DRULE D:WHQ-PL to the

node. D:WHQ-PL calls for the class and restrictions in making up

its interpretation, and the rules N:ONE and R:ONE are invoked.

The right-hand side of N:ONE calls ANTECEDANT to find the ante

cedant of "one" and return its associated variable. ANTEQUANT

again brings into the interpretation all the quantifiers in whose

scope the antecedant of "ones" was located. The function NEWCLASS

then adds into the interpretation the class from the antecedant of

4.22

"ones" picked off its INTENSION. The rule R:ONE returns all the

restrictions on the antecedant of "ones" which did not come from

the verb phrase - in this case none. If the word "too" or one

like it were present, all the restrictions on the antecedant,

including those from the verb phrase, would be returned by NEWPX.

The p.arsing and interpretation of examples (3a) and (3b) is as

follows:

SENTENCE:
(WHICH :oARSE GRAINED IGNEOUS ROCKS HAVE BEEN ANALYZED FOR COBALT)
PTIMING:
884 CONSF,S
➔ .647 sEc;.Nos
PARSINGS:
S NPQ

NP DET WHICHQ
AD.J COARSE
A D ,J G R A I N E D
AD,T IGNEOUS
N :{OCY
NU PL
s •:!Rra

~p PRO SOMETHING
r..ux 'rNS PRESENT

PEFFECT
VP V ANALYZE

NP DET WHR
N ROCK
NU PL

PP PREP FOR
NP DET NIL

:-1 COBALT
NU SG

ITIMIN~:
9 6 '-I C O i~ S E S

7.83w SE:CCNDS
INTEfiPRE:'l'ATIONS:
(FOR EVEnY X13 / (SEQ TYPEBS)
(NPR• X15 / (QUOTE CO)}} (AND

t L

(AND (DATALINE (WHQFILE X13) X13 OVERALL
TT)) ; (PRINTOUT X13))

4.23

SENTENCE:
(WHICH ONES HAVE BEEN ANALYZED FOR STRONTIUM)
PTIMING:
734 CONSES
2.899 SECC;NDS
PARSINGS:
S NPO

NP DET WHICHQ
PRO ONE
NU PL
SOREL

NP PRO SOMETHING
AUX TNS PR!SEN'l'

PERFECT
VP V ANALYZE

ITIMING:

NP DET WHR
PRO ONE
NU PL

PP PREP FOR
NP DET NIL

N STRONTIUM
NU SG

· 581 CONS ES
7.'131 SECCNDS
INTERPRETATIONS:
(FOR EVERY X16 / (SEQ TYPEBS) : (AND (AND TT) (DATALINE (WHQFILE
X16) X-J6 '.'VERALL {NPR• X18 / (QUOTE SR)))) ; (PRINTOUT X16))

Our present anaphorisrn facility is still very rudimentary

and contains a number of deficiencies which will have to be recti

fied before it can be extended. First, because the intension of a

variable and its associated noun phrase is not computed until after

the interpretation of the entire request, intra-sentence anaphorism

like:

(6) Is the average titanium concentration in S10046
larger than that in Sl0047?

cannot be interpreted correctly, if at all.

Secondly, we do not save enough of the things in the ev

vironment which can serve as antecedants. Consider for example the

interchange:

(7) User: \vhich samples contain magnesium in glass?

LSNLIS: --S10047

USER: Does it contain zirconium too?

To resolve the anaphorisrn in the above exchange, we should save the

information that Sl0047 is available as an antecedant for the second

question. The current system does not do this. It resolves the

4.24

anaphorism in a make-shift manner by not insisting on number agree

ment between anapho:rism and antecedant. It takes "samples which

contain magnesium in glass as the antecedant for "it", and pro

duces an interpretation which tests whether each sample which

contains the above also contains zirconium. That the retrieval

component has already found that S10047 is the only sample meeting

the above description is ignored by the Semantic Interpreter.

Both of th1e above problems require the provision of an

appropriately varying dynamic environment of possible candidates

for antecedants which extends not only between sentences, but

within the processing of a single sentence, and includes entities

mentioned by both participants in the dialog.

In addition to the above limitations of the current system's

"possible antecedant environment", there are many other aspects

of the anaphoric reference problem which we have not even begun to

investigate. For example, our attempts at partial anaphoric ref

erence have just begun to scratch the surface; much more work is

requi:red in this ar,ea. Other aspects of anaphorism that have not

been .incorporated in the system, even on a limited scale, include

treabnent of words like "other" as anaphoric expressions. For

example, the system should be able to find the referent of

phrases such as "other rocks" in the following exchanges:

(8) Does S10017 contain magnesium in glass?
Do other rocks contain it?

(9) Which basalts contain aluminum?
Which other rocks contain it?

"Other rocks" in (8) refers to ones other than S10017. "Other

rocks" in (9) refers to ones other than the basalts (type A

rocks).

Anaphorism is a very interesting and subtle problem,

but a crucial one to conveient man-machine communication. l-1ore

research in this area is required.

4.25

Chapter 5

CONCLUSION

5.1 Goals

The long range goals of the LSNLIS project are to develop a

system for man-machine communication in natural English which is

so natural and convenient that the task of formulating requests

for the machine neied not distract the scientist from his tasks of

hypothesis formation and testing.. We would like to be able to

understand the scientist's requests in whatever form they occur

to him, without reiquiring him to rephrase them into a constrained

and artificial language. Although English is not necessarily the

only means of achieving this degree of naturalness, we feel that

any artificial language which meE?ts the above criteria will have

to share many features of natural language such as vagueness,

ambiguity, etc. and that it is more fruitful to try to deal with

these problems in English than to try to devise an artificial

language which is both as easy for people to think in as English,

and at the same ti.me more easy to process by machine.

In addition to the long range goal of making such a system

possible in the distant future, we have the additional goal of

making some more limited version of the goal available in the next

few years. That i.s, as our knowledge of the linguistic processes

involved in the understanding of natural language increases, it

should be possible to harness this knowledge into a system which,

although more limited than the ultimate goal, will nevertheless

perform useful work. We believe that the state of the art in

natural language processing is at the point where such applications

are possible, and the current LSNLIS prototype is an attempt to

carry out such an application.

5.1

5.2 Demonstration of the Prototyee

At the Second Annual Lunar Science Conference, held in

Houston, Texas, January 11-13, 1971, the LSNLIS system was

run as a demonstration twice a day for three days. During

this time the lunar geologists attending the conference were

invited to ask questions of the system. Approximately 110

requests were processed, many of which were questions whose

answers would contribute to the work of the requestor and not

merely "toy" questions to see what the system would do. These

requests were limited to those questions asked which in fact

dealt with the data base of the system (many people asked their

questions before they could be told what the data base contained)

and were restricted to not contain comparatives (which we did not

handle at the time, the contract being only 6 months old) by

filtering out those requests which contained comparatives. The

requests were freely expressed, however, without any prior

instructions as to phrasing and were typed into the system

exactly as they were asked.

Of 111 requests entered into the system during the three

days, 10% of them failed to perform satisfactorily because of
I
r

parsing or semantic interpretation problems. Another 12% failed

due to trivial clerical errors such as dictionary coding errors

which were easily corrected during or immediately after the

demonstration. The remaining 78% of the requests were handled

to our complete satisfaction, and with the correction of the

dictionary coding errors and other trivial errors, 90% of the

5.2

questions expressed fell within the range of English handled by

the system. This performance indicates that our grammar and

semantic interpretation rules, which were based on the information

of a single geologist informant, did indeed capture the essential

deta:Lls of the way that geologists would refer to the objects

and <=oncepts contained in our data base. Examples of the

requE~sts which wen~ received are:

(GIVE ME THE AVERAGE SM ANALYSIS OF TYPE A ROCKS)

(WHAT IS THE AVERAGE MODAL CONCENTRATION OF ILMENITE

IN TYPE A ROCKS?)

(GIVE ME EU DETERMINATIONS IN SAMPLES WHICH CONTAIN ILM.)

(GIVE ME ALL K / RB RATIOS FOR BRECCIAS.)

(WHAT BE ANALYSES ARE THERE?)

(GIVE ME OXYGEN ANALYSES IN Sl0084)

(WHAT SAMPLES CONTAIN CHROMITE?)

(WHAT SAMPLES CONTAIN P2O5?)

(GIVE ME THE MODAL ANALYSES OF P2O5 IN THOSE SAMPLES)

(GIVE ME THE MODAL ANALYSES OF THOSE SAMPLES FOR ALL PHASES)

(DOES Sl0046 CONTAIN SPINEL?)

(WHAT PHASES DOES Sl0046 HAVE?)

(WHAT IS THE AVERAGE CONCEN'I'RATION OF IRON IN ILMENITE)

(GIVE ME REFERENCES ON SECTOR ZONING)

(GIVE ME REFERENCES ON ABYSSAL BASALTS)

(GIVE ME ALL IRON/ MAGNESIUM RATIOS IN BRECCIAS)

(GIVE ME ALL SC46 ANALYSES)

(WHAT SOILS CONTAIN OLIV)

(GIVE ME ALL OLIV ANALYSES OF Sl0085)

(WHAT ARE ALL TUNGSTEN ANALYSES?)

(GIVE ME IRON ANALYSES FOR PLAGIOCLASE IN Sl0022)

(GIVE ME ALL ZIRCONIUM CONC:ENTRATIONS IN ILMENITES)

5.3

5.2 What We Have Accomplished

The current LSNLIS prototype represents a significant step

in the direction of the goals discussed above. Within the range

of its data base, the system permits a scientist to ask questions

and request computations in his own natural English in much the

same form as they arise to him (or at least in much the same form

that he would use to communicate them to another human being).

This is borne out by the performance of the system during the

demonstration at the Second Annual Lunar Science Conference. The

system answered most of the questions dealing with its data base

which were asked by the investigators during the demonstration.

The effort required to recast the request into a form suitable

for execution in the data base is assumed by the natural English

preprocessor, which translates the English requests into compact

"disposable" programs which are then executed in the data base.

The Englist preprocessor therefore functions as an automatic

programmer which will convert the user's request into a tailor-

made program for computing or retrieving the answer. The English

processor knows the ways in which geologists habitually refer to

the elements, minerals, and measurements contained in its data

base; it knows the specific details of the data base table layouts;

and it knows the correspondence between the two. Thus, for example,

the user need not know that the mineral Olivine is abbreviated

OLIV in the data base, that the concentrations of Titanium are

recorded in terms of the percentage of Tio 2 , that the class of

rocks referred to variously as "type A", "high alkali", or "fine

grained crystalline" are encoded as "TYPEAS" in the data base.

These facts are "known" by the natural English processor, and the

user's request is automatically translated from the form in which

he may ask it into the proper form for the data base. Thus an

appreciable portion of the goals of the system are met by the

prototype (at least for the current limited data base).

5.4

5.3 Where We Stand

Although our c:::urrent system does indeed exhibit many of the

qualities that we have outlined as our goals, we are still far

from achieving the goal as stated. The knowledge that the current

system contains about the use of English and the corresponding

meanings of words and phrases is limited to those English construct

ions which pertain to the system's data base of chemical analysis

data;: (which has a very lirni ted and simple structure) • Indeed

this data base was chosen as an initial data base because its

structure was simple and straightforward. In order to incorporate

additional data bases into the system, it will be necessary to

provide the system with information about the ways that the users

will refer to thos,a data bases in English, the vocabulary they will

use, the ways they will use that vocabulary, and the "meanings" of

the words and constructions in terms of the data base tables. For

some tables, (thos•a whose structure is as simple and direct as the

chemical analysis table) this process may be a direct extension

of the current facility and may require only the addition of new

semantic rules for interpreting the new words and constructions.

For other applications, however, this will require much greater

sophistication in both the linguistic processing and the unrierlying

semantic representations and inference mechanisms. One type of

data which will require considerable advancement in the state of

the art is the representation and use of data which describes

surfctce and structural features of the samples. This data does not

fit conveniently into a table or a paradigm, and the techniques for

storing it, indexing it, and providing access to it for retrieval

and inference remain to be developed. Indeed, it is in the handling

of such information that natural language querying may hold its

greatest promise, but such potential is as yet undeveloped.

s.s

5.3.1 Linguistic Fluency and Completeness

There are two scales which can be used to measure the per

formance of a system such as LSNLIS. We can call ti1em completeness

and fluency. A system is logically complete if there is a way to

express any request which it is logically possible to answer from

the data base. The scale, of fluency measures the degree to which

virtually any way of expressing a given request is acceptable.

The two scales of completeness and fluency are somewhat independent

in that it is possible to have a fluent system which will accept

virtually any variations on the requests which it accepts, but which

is nevertheless incomplete. Likewise, a system may be logically

complete but very restricted in its syntax. A natural language

system which is incomplete cannot answer certain questions, while

such a system that is not fluent is difficult to use.

5.3.1.l Fluency of LSNLIS

The LSNLIS prototype is quite fluent in a few specific con

structions. It will recognize a large number of variations on

requests of the form "give me all analyses of constituent x in

phase y of sample z." It knows many variations of "give me" and

many different variations on "analysis". However, there are other

requests which (due to limitations in the current grammar) must

be stated in a specific way in order for the grammar to parse them

and there are others which are only understood by the semantic

interpreter when they are stated in certain ways. Most of the

limitations of fluency in the current system are simply due to the

fact that the necessary grammar rules and semantic interpretation

rules have not been put into the system. Continued development

of the grammar and semantic rules will result in continued improve

ments in fluency, and there is no visible ceiling other than an

economic one to the fluency \<•hich can be achieved.

5.6

5.3.1.2 Completeness of LSNLIS

The criteria for logical completeness is a level of achieve

ment that is not generally met by currently available data management

systems using artificial request languages, much less by a system

that recognizes natural language. The request language used for

the retrieval component of LSNLIS fares better than most data

management systems in this respect since it is fundamentally an

extension of the predicate calculus of quantificational logic, but

there are still some extensions which the language requires in order

to fully achieve logical completeness. In addition to this incom

pleteness of the formal request language, there are limitations in

the logical completeness of the subset of English handled by the

system. This arises largely from the difficulties of parsing

conjunction constructions in English, but there are also problems

in the ambiguity of the scopes of quantifiers. However, the subset

of English which is currently handled is adequate for expressing

most auestions which have arisen in practice, and with some further

work on conjunctions should become a very convenient l,·nguage to use.

5.4 Problems for Further Research

5.4.1 Modifier Placement

The semantic rules for the interpretation of the queries in

the current system are written in a fairly powerful format which

allows a great deal of flexibility. However, there are a number

of aspects of the problem which have been surmounted in the proto

type by brute force, or by ad hoc procedures. One of these is the

syntactic ambiguity of modifiers, as in "Give me the average

analysis of breccias for all major elements." In this sentence,

there are three syntactic possibilities for the modifier "for all

major elements" (it can modify "breccias", "analysis", or "give"}. In

this case, our understanding of the semantics of the situation

tells U!i that it modifies "analysis", since one can analyze a sample

for an element, and "breccias for all major elements" doesn't

"make sense." Without a similar semantic understanding of the

situation, the computer has no criteria to select which of these

three cases to use. We have in our present system, embodied in

the semantic rule for interpreting analyses, the equivalent of the

knowledge that "one can analyze a sample for an element." Unfortu

nately, this information is not in a format which makes it conven

iently available to the parser for use in deciding where to put the

prepositional phrase. The parser in our present system, therefore,

uses a crude consistency check between verbs and the prepositional

modifiers they may take to make an initial placement of modifiers.

Since this approximation may sometimes be in error or may not

entirely determine modifier placement, the semantic rules have been

made smarter in order to find the modifier "for all major elements"

when interpreting the phrase "average analysis of breccias for all

major elements" even though it appears as a modifier of "breccias"

and not where it should be. This mechanism, while adequate for

the present level of the system, carries inherent difficulties,

since it is now possible for several semantic rules to use the same

modifier for different purposes.

5.4.2 Retrieval Component

Another area of research has to do with the retrieval component

to which the natural language processor interfaces. To take full

advantage of the natural language communication, it is clear at this

point that there are requirements on the facilities which the

retrieval component must possess. For example, the natural language

processor contains a facility for dealing with a number of anaphoric

expressions (sue~ as pronouns) and filling in their antecedents.

That is, when the semantic interpreter produces an interpretation

of a noun phrase (a potential antecedant), it remembers that inter

pretation together with the syntactic structure of the English

phrase. Subsequently, when an anaphoric expression is encountered

5.8

which could take this phrase as an antecedant, this semantic inter

pretation is filled in for the anaphoric expression. However, the

semantic interpretation is merely a form which enables the retrieval

component to compute the actual members of the set denoted. Unless

the retrieval component has remembered the result of its previous

computation, it will have to perform the computation again. '£here

are thus two problems in dealing with anaphoric expressions--one

is recognizing them and identifying the antecedant, and the second

is remembering the actual set of data base objects denoted by the

antecedant. If the computation which determines the extension of

a phrase is sufficiently simple and cheap, then it is advantageous

to compute it over again, rather than to save the result. Only if

the computation is complex or expensive is it worth the cost in

memory space to store the result. Thus the retrieval component

needs some appropriate mechanism for determining whether to save

such results. (It would Le nice if the system were smart enough

to know which types of computations might be used as antecedants.

It is not clear, however, that there is any recognizable feature

which distinguishes such computations.)

5.4.3 Optimizing the Retrieval Expression

At the present, the retrieval programs which are written by

the English langua9e processor contain a number of inefficiencies

that are due to the way they were generated from natural English,

and which would be avoided by a human programmer. Although the
cost savings of having the progrmn produced automatically (compared

to paying a human programmer to write it) will more than offset the

additional cost of computer time in all but extremely long compu

tations, there are undoubtedly improvements that could be made

by imposing an optimization phase between the query generated

by the semantic interpreter and the actual retrieval operation.

The situation is very analogous to the early Fortran compilers

5.9

(and many that are still being written} where the quality of code

generated by the compiler was inferior to that produced by a

human programmer, but the savings in programmer time more than

offset the costs associated with the inefficiency for most programs

especially if the program was not to be run many times. In our

case, the programs which are constructed will be executed only once,

and so the cost of a human programmer could not be amortized over

many runnings.

5.4.4 Semantic Representation

The previously mentioned problem areas have all dealt with

essentially efficiency questions that would make a system with

the current capabilities more economical to run. There are,

however, more serious problems having to do with the limitations

of the system's current capabilities. Although the procedural

approach to semantics and meaning that has been taken here

appears to be generalizable to any concept admisable to

empiricist philosophy, the fact remains that there are many

English constructions for which no effective procedural

characterizations have yet been formulated. For example, the

linguistic and semantic understanding of processes as fundamental

as adverbial modification and mass nouns remain very much

obscure and no effective mechanical semantics exists for such

concepts.

As discussed previously, the current LSNLIS deals only

with extensional inferences that can be computed from well

formatted data bases. The ability to deal with more complex

types of data entities--especially descriptions of shape and

textural features of the lunar samples will require the use

of intensional inference procedures and will raise as a more

pressing issue the question of appropriate notational

representations and structures for these intensional entities.

In short, much basic research in the semantics of natural

language remains to be done before a fully general LSNLIS

5.10

can become a reality.

5.5 Prospects for the Near Future

As we have just pointed out, there are still many

technical and theoretical problems yet to be overcome before

the long term goals envisioned by this project can be achieved.

However, we feel that the language processing technology that

is embodied in the current prototype is such that certain types

of limited applications could be feasible in the near future.

In those areas where the semantically relevant concepts can

all be formally specified in terms of well-formatted data bases

such as the chemical analysis data base, and where only English

querying and not English updating and data input are required,

then the language processing techniques embodied in LSNLIS are

capable of providing a fluent language understanding system

which removes almost all of the burden of learning artificial

conventions from the user. Moreover, the time required for

processing requests in the current LISP implementation (approx.

30 seconds of cpu time per request on a hardware paged PDP-10)

could easily be cut by an order of magnitude by careful

implementation in a language such as FORTRAN or in machine

language. At such a level, the cost of such processing would

not be exorbitant.

5.11

5.6 Summary

The LSNLIS project has made significant progress in its

two years of development. We now have a working prototype which

demonstrates many of the features which were the objectives of

the project and which demonstrates the technical feasibility of

natural English querying in the NASA MSC and other similar

environments. The system enables a working scientist to ask

questions and request computations in a natural and convenient

mediurn--his own natural language--in much the same form in

which they arise to him, with the effort required to recast

his request into a form suitable for execution in the data

base being assumed by the system.

5.12

Appendix A

THE LSNLIS USER'S GUIDE

Negotiating with TENEX

An experimental LSNLIS system is currently operational on the

BBN-T~NEX Time-Sharing System in Cambridge, Mass. In order to

use t~e system, it is necessary to log into the T~NEX system.

This ls done as follows: After establishing a telephone connection

with the computer by dialing the computer's number from a data set

or acoustically coupled teletype, the TENEX system will type some

thing like:

BBN TENEX 1.21.00 5-APR-71 EXEC 1.28
~

The"~'' sign is the TENEX executive's symbol which indicates that

it is waitin~ for the user to type something. The user should now

type:

LOGIN WARNER

followed by a space, followed by a secret password (which will not

print on the teletype), followed by another space, followed by an

account number, followed by a carriage return. (The password ana

account number will be given to authorized users.) For a hypotheti

cal account number 777777, the line on the teletype would look like:

@LOG WARNER 777777

If you have log~ed in successfully, the system will type some

infornation relating to your teletype and job number, and will type

another"@" waiting for your input. If not, it will give an error

comment and wait for you to try again. If you do not succeed in

logging in within a reasonable period of time, the system will

automatically log you out and break the telephone connection.

A.l

Once logged in, the user can call the execution of the

English preprocessor as described in the following section. He

can return to the TENEX executive at any time by typing control C

(i.e. by depressing the control key on the teletype and typing C).

To log out of TENEX at the end of the session, return to the TENEX

executive and type:

LOGOUT

followed by a carriage return. The system will type some accounting

information and automatically break the telephone connection.

Note: If for some ~eason the telephone connection should be

broken accidentally by some difficulty with the telephone line or

for any reason other than a normal logout, the job will be held by

the TENEX system in a "detached" status and can be resumed. This

can be done by dialing up the machine again and instead of typing

LOGIN, type ATTACH (space) (password) (space) (the job number that

the system assigned you when you logged in)(carriage return). If

you are successful, '11ENEX will type "@" with no further comment and

you will be reattached to your old job. If you had lost the con

nection while in the English preprocessor subsystem, you can resume

it by typing CONTINUE followed by a carriage return. If you have

any trouble reattaching, call BBN by telephone. A detached job

continues to be charged for computer hookup time until you reattach

to it and log it out normally.

A. 2

Using the English Preprocessor

After logging into the TENEX system, the user enters the

English preprocessor by typing:

RUN DEMSYS.SAV

followed by a carriage return. The system will then type a

comment something like:

BBN LISP-10 11-31-70

and will then type a left arrow indicating that LISP is waitin~

for input. The user should then type:

SETUP(LOWFORK.SAV)

This sets up the lower (retrieval) fork which contains the data

base.. When the sy::;tem again types tne left arrow, the user shoulu

type::

rrALKER()

to invoke the English preprocessor executive. Notice that LISP

will echo a carriage return as soon as the parentheses in its input

string ballance. TALKER will identify itself, and will then pro

ceed to accept queries for processing or LISP commands for execution.

The former consist of English sentences enclosed in parentheses,

while the latter consist of LISP commands followed by arguments

enclosed in parentheses.

TALKER indicates that it is waiting for input by typing its

"system symbol", which consists of two asterisks.

To leave TALKER and return to the TENEX executive at the end

of the session, one can either tyoe control C as described before,

or one can type the LISP command.

LOGOUT()

a. 3

Control Characters in LISP

There are a number of special control characters which make

life easy in the interactive LISP system in which the English

processor runs. These characters are typed by depressing the

control key on the teletype and typing the corresponding character.

If printed on the teletype, a control character is preceeded by

an upward arrow, however, most of the control characters do not

print when they are typed, but cause a side effect. The following

characters are useful.

Control A deletes the preceeding typed character.

It indicates the deleted character by echoing a

backwards slash followed by the deleted character.

Control Q deletes the current contents of the input buffer.

(Generally the input buffer is the same as the current

typed line--the exception being automatic carriage

returns generated by the system when the user types

beyond the end of the line. These exceptions are

indicated by two asterisks beginning the new "line".)

Control R retypes the current contents of the input buffer

(useful when echos from control A have made the current

line unreadable).

Control D aborts whatever you are doin~, and returns to the

top level LISP executive. (useful whenever you get into

trouble or want to discontinue a sentence and type

another sentence. It throws you out of TALKER, however,

and it is necessary to retype TALKER()).

Control Eis less drastic than Control D and will usually

abort a sentence and return to TALKER to await another

sentence. It should usually be used before trying

Control D. Control E will not break out of an embedded

help loop, however.

Control C interrupts whatever you are doing and returns to

the TENEX executive under which the LISP system runs.

This is used in order to return to TENEX to logout, but

can also be used to return to TENEX for any other reason.

(The interrupted LISP system can be continued by typing

A.4

CAUTION:

CONTINUE to the TENEX executive as long as it has

not been supplanted by a call to some other sub

system.)

Typing control characters Dor E while the lower fork is

operating will yank control away from the lower fork and return

it to the language processor fork at the top level, leaving the

file buffers open and exiting from the TALKER routine. If this

happens, the user should type EXECUTE(NIL) to close the file

buffers in the lower fork (and type out whatever had been written

into the HITFILE buffer before the interrupt) and then type

TALKER() to reenter the language processing executive.

A. 5

Entering Queries for Processing

Queries are entered into the LSNLIS system as normal English

sentences enclosed in parentheses. For example:

**(GIVE ME ALL ANALYSES OF SAMPLE Sl0046)

(TALKER types the double asterisks to indicate that it is ready

for input.) Terminal punctuation is optional.

The system understands such concepts as "give me II . . . ,
"analyses of a sample for an element in a phase", "modal analyses",

"Potassium/ Rubidium ratios", "average analyses", etc. It knows

both the full chemical element names md their abbreviations, it

knows which of the elements are measured in their oxide form dS

opposed to the elemental form, and it knows a number of variant

names for many minerals and rock types. Thus, the user need not

concern himself with knowing the particular standard form of the

mineral or element names used in the data base, since this standard

ization takes place during the semantic interpretation of his

request. Also, the system makes an effort to allow for all of the

reasonable paraphrases of a given request so that the user need

not concern himself unduly with the problem of formulating his

request in a way which will be acceptable to the system. All of

the expressions "Olivine analyses of Sample Sl0046 for Hydrogen",

Hydrogen analyses of Sample Sl0046 in Olivine", "analyses of

Sl0046 for Hydrogen in Olivine'', etc. are equivalent.

In addition, the system knows reasonable default assumptions

when the requestor fails to mention the phase or element of concern

in his request. If he fails to mention the phase, the overall

phase (i.e. the entire sample) is assumed. Likewise, if he fails

to mention a specific element, then a quantification of the request

over the major elements is assumed.

A. 6

Depending on the setting of a number of mode variables, the

system can display various intermediate results in the course of

the processing. It can show the time spent in parsing and in

interpreting, the parse tree that results, the intermediate semantic

interpretation, and finally the answers that are generated by the

sentence. In the normal mode, only the interpretation and the

answers will be displayed. However, any of the other displays can

be obtained by setting the corresponding mode variable to "'l'" (the

LISP system's symbol for "true") and they can be turned off again

by setting the mode variable to nNIL" (the LISP system's equivalent

of "false"). For example, the commands:

SETQ(PPRINT T)

SETQ(ITIMEFLAG NIL)

will set the mode variable PPRIN'r to "T" indicating that parsings

should be printed and will set I'rIMEJ:t'LAG to "NIL" indicating that the

interpretation time is not be be printed. The mode variables

which govern these functions are PPRINT (print parsing), IPRINT

(print intermediate semantic interpretation), PTIMEFLAG (time

the parsing), and ITIMEFLAG (time the semantic interpretation).

There are other mode variables which govern other aspects of the

system, but they are not necessary to the typical user.

A. 7

Encountering Unknown Words

The previous sections cover all of the basic information

needed by a user as long as he uses only words that are in the

vocabulary of the system, -- currently three or four thousand

words. However, it is inevitable that a user, asking unconstrained

questions about technical subjects will use words which the system

has not previously encountered and are not in its vocabulary. We

will therefore give here a brief description of the system's

operation in that case.

When the system encounters a word which is not in its
dictionary and is not an inflected form of a word in its dictionary

(it performs inflectional morphology on the most common types of

regularly inflected words), it announces this fact to the user

with a comment:

I DON'T KNOW THE WORD XXXXXX

PLEASE TYPE ITS DICTIONARY ENTRY

D*

(where XXXXXX will be the word in question).

at this point, the system is in a special subsystem executive

(which identifies itself with the system symbol "D*")waiting for

the user to give it a dictionary entry for the indicated word.

The user may at this point do any of several things. If he wants

to give up on the sentence and try again from scratch, he can type

QUIT followed by carriage return, and the system will return to

ask for another sentence. If he knows the correct form for the

needed dictionary entry, he can type DDEF followed by the proper

dictionary entry to add the word to the dictionary, and then type

OK followed by a carriage return to tell the system to continue

its parsing. If the user does not know the proper format for

A. 8

the dictionary entry, he can look at the dictionary entry for a

similar word and copy it. The command DICT? followed by a word

in p~rentheses will type the dictionary entry for a word. For

exam:ile:

DICT? (REPOR'I')

would result in a typeout of the dictionary entry for the word

"report", which would look like:

(REPORT

N -S)

The dictionary entry will print out with indenting for easier

reading, but the indenting is not necessary for a dictionary entry

which the user types in. To type in this same dictionary entry,

the user would type:

DDEF(REPORT N -S)

If the word which the system requests is the root form of the

word or if it is an inflected form of a word which undergoes regu

lar inflection, then the user need only give a dictionary entry

for the root of the word. If, however, the word is an inflectea

form of a word which does not undergo regular inflection, then he

should give entries for both the root word and the inflected form.

'rhe following interchange is an example:

I DON'T KNOW THE WORD MICE

PLEASE TYPE ITS DICTIONARY ENTRY

D*DDEF(MOUSE N IRR)

MOUSE

D*DDEF(MICE N (MOUSE (NUMBER PL)))

MICE

D*OK

A. 9

Here, the computer typed everything except the lines that begin

_ with "D*", and the computer typed the "D*"' s which begin those lines.

For more complete information on the format for dictionary entries,

see the writeup on dictionary formats.

One frequent source of words which are not in the dictionary

are misspelled words. If a misspelling is not caught by the user

at the time he types it, the system will generate an "I DON'T KNOW

THE WORD" comment and wait for a dictionary entry. If this is the

case, the user can change the word to the correct word by typing

CHANGEWORD followed by the new word or words enclosed in parentheses.

For example:

I DON'T KNOW THE WORD MODOL

PLEASE TYPE ITS DICTIONARY ENTRY

D*CHANGEWORD(MODAL)

The system will respond by typing the remainder of the sentence to be

parsed with the new substitution. Note that CHANGEWORD can be

used to delete a word (by including no words in the parentheses)

or to replace a single word by several (by including several words

in the parentheses). Its use is in no way restricted to correct

ing spelling errors, however, and it can conveniently be used to

substitute an equivalent word to see if the system knows it. (If

not, the system will again respond with an "I DON'T KNOW 'l1 HE WORD"

message.) When the user is satisfied with the change, typing OK

will cause the system to resume parsing on the changed string.

Logging Out

Although this information has already been covered in

previous sections, I will cover it again here for easy reference.

When the user has completed a session with the system and is ready

to log out, he must first return to the TENEX executive. He can

do this either by typing LOGOUT() or by typing control C. When

the system responds with an"@'', he need only type LOGOUT followed

by a carriage return, and the system will automatically logout and

break the telephone connection.

A.11

Appendix B.

The Transition Network Grammar

B.l

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM

(PROGN (LISPXPRIN1 (QUOTE "FILE CREATED")
T)

(LISPXPRIN1 (QUOTE "12-JUN-72 21:54:28")
T)

(LISPXTERPRI T))
(LISPXPRINT (QUOTE ANNGRAMCOMS)

T)
(RPAQQ ANNGRAMCOMS ((G: NASAGRAMMAR)))

(LISPXPRINT (QUOTE (G: NASAGRAMMAR)) T)

PAGE 1

(RPAQQ NASAGRAMMAR (COMPL/ COMPL/NTYPE COMPL/S FOR/FOR FOR/NP FOR/TO
ING/BY NP/ NP/, NP/,ESP NP/,NP NP// NP/ADV NP/ART NP/AVG NP/DET NP/HEAD
NP/HELDPART NP/MORE NP/N NP/NP NP/NF: NP/ORD NP/QUANT NP/R
NP/SUPERLATIVE NP/SUPERSET NPR/ NPR/NPR NPR/TITLE NPU/; NPU/;NP PAREN/
PAREN/PAREN PP/ PP/NP PP/PREP PP/QDET QUANT/ QUANT/QUANT QUANT/UNIT
R/ R/NIL R/PREP R/WH S/ S/; S/;S S/AUX S/DCL S/HOW S/IMP S/NO-SUBJ
S/NP S/Q S/QDET S/QP1 S/QP2 S/5 S/SAOV S/THERE 5/VP VP/ADJ VP/ADJ-COMP
VP/AGT VP/COMP-ADJ VP/HEAD VP/MORE VP/NP VP/V VP/VP))
(DEFINEG

(COMPL/

))

(WRD FORT
(TO FOR/FOR

(* START OF COMPLEMENT NETWORK;
TRANSFERS TO THE PROPER STATE FOR THE IDENTIFIED
COMPLEMENTIZER.)

(WRD THAT T
(SETRQ NTYPE THAT)
(TO COMPL/NTYPE))

(WRD THANT
(SETRQ NTYPE THAN)
(TC COMPL/NTYPE))

(JUMP FOR/NP T
(c::ND

((NULLR SUBJ)
(SETR SUBJ (BUILDQ (NP (PRO SOMETHING))))))))

(COMPL/NTYPE
(PUSH S/ T

(SETR S *)

(* LOOK FOR A COMPLETES WHEN THE COMPLEMENTIZER
(IN NTYPE) SO SPECIFIES)

(T:.: COMPL/S)))

; <WEBBER>ANNGRAM.;23

(COMPL/S
(POP (BUILDQ (NP++)

NTYPE S

T))

(FOR/FOR
(PUSH NP/ T

(SETR SUBJ•)

MON 12-JUN-72 9:54PM PAGE 1:1

(• LAST STATE OF
COMPLEMENT NETWORK;
FOPS A COMPLEMENT NP
STRUCTURE.))

(* IF rHE COMPLEMENTIZER IS 'FOR', LOOK FOR THE
SUBJECT NP OF A FOR-TO COMPLEMENT)

(TC FOR/NP)))

(FOR/N~
(WRD T:-- T

(TC: FOR/TO

(CAr NEG (NULLR NEG)
(SETR NEG•)
(T::, FOR/Nl?)))

(FOR/TO
(PUSH VP/V (CHECKF V UNTENSED

(• LOOK FCR 'TO' OR 'NOl'
TO'.)))

(* IF 'TO', 1 NOT TO', OR 1 F0R' + NP WAS FOUND, LOOK
FOB TH~ REMAINDER OF THE FOR-TO COMPLEMENT.)

(SENOR SUBJ (GETR SUBJ))
(SENDR OBJ (GETR OBJ))
(SENOR NEG (GETR NEG))
(SENOR TNS (GP.TR TNS 1))
(SENDRQ TYPE FOR-TO)
(SETRO NTYPE ~OM)
ISETR S •)
(T'": COMPL/S)))

B.3

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:2

{ING/BY

)))

(PUSH NP/ T
(SETR SUBJ•)
(TO VP/VP

{• IF THE SUBJECT WAS NOT PROPERLY DETERMINED IN A
POSS-ING COMPLEMENT, LOOK FOR IT HERE.)

(NP/

))

))

{CAT DET T

((GETF POSSPRO (• START UF THE NP
NETWORK.))

(ADDL ADJS (BUILOQ (:FOSS (NP {PRO •)))))
{SETRQ DET THE

{• IF THE DETERMINER IS A POSSESSIVE PRONOUN
{MY, YOUR), CONSTRUCT THE POSSESIVE MODIFIER AND USE
'THE' FOR THE DETERMINER)

(T {SETR DET •)))
{TC NP/ART))

{CAT PRO T
(SETR N (BUILDQ (PRO•))

)

(SETR NU {GETF NUMBER))
(TC'• NP/~P))

{MEM (WHETHER IF)
T
(SETR NTYPE •)
(TC COMPL/NTYPE

{• A PRONOUN MAY PICK UP
PP MODIFIERS IN NP/HEAD)

C• CONSTRUCT THE COftPLEMENT STRUCTURE FOR SENTENCES
SUCH AS 'I DON'T KNOW WHETHER HE LEFT.')

(CAT NEG {NULLR NEG)
(SETR NEG•)
(r·, NP/))

(JUMP NP/ART {OR {WRD MOST)
(NOR (CAT (DET PRO NEG)

{• SINCE A PRONOUN OR DETERMINER IS NOT REQUIRED TO
BIGIN AN NP, CONTINUE PROCESSING.)

(WRD {W'HOSE WHO WHAT WHETHER IF))))))

B.4

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM

(NP/,
(MEM (ETC. ETC)

T

(ADDR BODY•

(SETRQ CONJ AND)
(TC NP/,NP))

(CAT ADV (RFEAT TRANSADV)

(SETR ADV•)
(TC\ NP/,ESP))

(CAT CGNJ (NOR (WRD ,)
(GE:TR CONJ))

(SETR CONJ*)
(TO NP/,))

(PUSH NP/ T

(SENDR NPLIST T)
(ADDR BODY•)
(TC' NP/,NP)))

(NP/,ESP
(PUSH NP/ T

(ADDL NMODS (BUILDQ (ADVP (ADV+)
*)

ADV)

(COND
((NULLR PPFLAG)

(SETRO PPl~LAG T)))
(T,:· NP/HEAD)))

B.5

PAGE 1:3

(* AFTER A COMMA AT THE
END O!i' A NP.)
(* 1 ETC' FILLS OUT A
CONJOINED SERIES.))

(* A TRANSITIVE ADVERB
('PARTICULARLY',
'ESPECIALLY') MAY
INTRODUCE A POST-NOMINAL
MODIFIER,)

(* A CONJUNCTION CAN
LEAD INTO THE FINAL ITEM
IN A SERIES,)

(* LOOK FGR THE NEXT
ITEM IN THE SERIES,)

(* ANALYZE THE
iOST-NOMINAL MODIFIER
INTRODUCED BY THE
TRANSITIVE ADVERB)

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:4

(NP/,NP
(WRD, T

))

(TO NP/,

(• AN ITEM IN A COMMA-SPLICED NP SERIES HAS BEEN
FOUND. IF THE NEXT WORD IS ',', LOOK FOR SUBSEQUENT
ITEMS. OTHERWISE, POP THE CONJOINED STRUCTURE.)

(POP (COND
((AND (NULLR CONJ)

(WRD (AND OR)
(CADAR (LAST (GETR BODY)))))

(PROG (BODY CONJ LAST TEMP)

(• IF NO CONJ WAS FOUND AT THIS LEVEL BUT THE LAST
NP IN THE SERIES WAS ITSELF A CONJOINED NP WITH A
CONJ, PROMOTE THE CONJ UP TO THIS LEVEL:
(NP1 NP2 (NP AND NP3 NP4)) -->
(NP AND NP1 NP2 NP3 NP4))

(SETQ BODY (APPEND (GETR BODY)))
(SETQ LAST (LAST BODY))
(SETQ CONJ (CADR (SETQ TEMP (CAR LAST))))
(RPLACD LAST (CDDDR TEMP))
(RPLACA LAST (CADDR TEMP))
(RETURN (CONS (QUOTE NP)

(CONS CONJ ~ODY)))))
(T (BUILDQ (@ (NP#)

+)
(COND

((GETR CONJ))
(T (QUOTE OR))

(• IF THE LAST ITEM WAS NOT A CONJOINED Np AND THERE
WAS NO CONJ AT THIS LEVEL, INSERT 'OR')

)

JODY)))
(OR (GETR CONJ)

('1/RD (AND OR)
(CADAR (LAST (GETR BODY))))

(NULL STRING))))

B.6

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM

(NP//
(CAT NT

(SETR N (BUILDQ (N + / (N •))
N)

)

(TC NP/DET))
(PUSH NPR/ T

(SETR N (BUILDQ (N + / *}
N))

(TC NP/DET)))

(NP/ADV
(CAT ADJ T

(ADDL ADJS (BUILDQ (~ (ADJP)

((ADJ•)))

(REVERSE (GETR ADVS)))

PAGE 1:5

(* FIND THE SECOND TERM
IN A RATIU)

(* AN ADVERB HAS BEEN FOUND AFTER THE DETERMINER
STRUCTURE HAS BEEN BUILT, OR AFTER 1 OR MORE
PRENOMINAL MODIFIERS HAS BEEN PROCESSED.
A SEQUENCE OF ADDITIONAL ADVERBS IS ALLOWED, UNTIL
THF ADJECTIVE THEY MODIFY IS FOUND, COMPL~TING THIS
PARTICULAR PRENOMINAL MODIFIER.)

)

(TJ NP/DEl'))
(CAT ADVT

(ADDL ADVS (BUILDQ (ADVS •)))
(T2 NP/ADV)))

B.7

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:6

(NP/ART
(CAT ORD T

(SETR POSTART (BUILDQ ((ORO•)))

(• AN ARTICLE (POSSIBLY NULL) HAS BEEN FOUND;
LOOK FOR AN OPTIONAL ORDINAL MODIFIER)

)

(TC NP/ORD)

(• THE NEXT TWO ARCS CATCH DEFINITELY DETERMINED
INFLECTED ADJECTIVES LIKE: "THE MOST ANCIBNT ROCK",
"THE OLDEST ROCK", "THE MORE ANCIENT ROCK")

(JUMP NP/SUPERLATIVE (AND (CAT ADJ)
(WRD THE DET)))

(WRD (MORE MOST) (AND (GETP P1EXTWRD)
(QUOTE ADJ))

(WRD THE DET))
(SETR MORE-MOST•)
(TO NP/SUPERLATIVE))

(CAT PRO (WRD ONE)
(SETR N (BUILDQ (PRO•))

)

(SETR NU (GETF NUMBER))
(SETR DET (DET~UILD))
(SETR HEAD (CADR (GETR N)))
(TC· NP/HEAD))

(JUMP NP/ORD I))

B.8

(• THE PR~NOUN "ONE" CAN
FOLLOW A DETER~INER,
E,G. "THE ONES WHICH ••• "
AND "WHICH ONDS")

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:7

(NP/AVG
(PUSH PP/ (CAT PREP)

(SENOR V (GETR V))
(ADDL Nf"iODS •)
(SETR HEAD (CADR (GETR N)))
(TC NP/HEil.D)

(• THE FUNCTION WORDS "AVERAGE", "MAXIMUM", "MINIMUM",
"MOST", AND "LEAST" ARE PARSED AS NP'S, WHEN THEY
APPEAR IN ADJECTIVE POSITION.
THE REST OF THE SS NP IS MADE THE OBJECT OF A
DEPENDENT PP. IT INDICATES THE SET OVER WHICH THE
FUNCTION IS TO BE APPLIED. E.G. "THE OLUEST ROCK" IS
ANALY~ED AS "!HE ULUE~T OF rHE ~O~K~"I - - ..

(PUSJ PP/PREP (NOT (CAT PREP))
(SENDRQ PREP OF)

(NP/DET

(SENORQ NU' PL)
(SENOR V (GETR V))
(ADDL NMODS •)
(SETR HEAD (CADR (GETR N)))

(TJ NP/HEAD)))

(WRD (MORE :-'.IOST) (AND (GETP (NEXTWRD

(*HEREAFTER THE COMPLETE DETERMINER STRUCTURE
(INCLUDING ART, ORD, AND QUANT) HAS BEEN PROCESSED.
LOOK FOR POSSIBLE PRENOMINAL MODIFIERS
(ADJECTIVES OR PARTICIPLES
(WITH ADVERBS)) AND THEN LOOK FOR A POTENTIAL
HEAD--AN N, NPR, OR GERUND, OR EVEN A 20SS-ING
NOMINALIZATION.)

(QUOTE ADJ)

(• WE RECOGNIZE UNDETERMINED TWO-WORD INFLECTED
ADJECTIVES. THE THIRD ARC BUILDS AN ADDITIONAL NP
NODE FOR "AVERAGE", "MAXIMUM", ETC.
(SEE NF/AVG FOR FURTHER DETAIL.))

:sETR MORE-MOST*)
:Tc, NP/MORE))

)
(NOT (WRD THE DET)))

B.9

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:8

(CAT N (WRD (AVERAGE MAXIMUM MINIMUM MOST LEAST))
(SETR N (8UILDQ (N •)))
(SETR NU (GETF NUMBER))
(TC· NP/AVG))

(PUSH NPR/ (WRD (SAMPLE ROCK LINE LINE# APOLLO))
(SETR N •)
(SETRQ NU SG)
(TO NP/N)

(CAT ADJ T
(ADDL ADJS (BUILDQ (@ (ADJ)

)

FEATURES))
(re, NP/DET))

(CAT NT
{SETR N {BUILDQ (N •)))
(SETR NU (GETF NUMBER))
(TC. NP/N))

(CAT ADVT
(SETR ADVS (BUILDO ((ADVS •))))
(TC NP/ADV))

(CATV (OR (GETF PASTPART)
(GETF PRESPART))

(ADDL ADJS (BUILDO (ADJ (PARTICIPLE#))
LEX))

(TC NP/DET))
(CATV (GETF PRESPART)

(SETR N (BUILDQ (N #)
LEX))

(SETRO NU SG)
<T':1 NP/N))

(PUSH S/r..ux (OR (CAT (NEG ADV))
(CHECKF V PRESPART))

(• PUSH FOR A POSS-ING NOMINALIZATION.

C• PICKS UP TITLES LIKE
"APOLLO 11", "LINE 5"))

(.)

(• PRENOMINAL
PARTICIPLES)

(• GERUND HEAD, AS IN
I I:'RBEZE DRYING I)

('JOHN'S FALLING •••') IF A POSSESSIVE MODIFIER HAS
BEEN FOUND, IT BECOMES THE SUBJECT OF THE COMPLEMENT
SSNTENCE, OTHERWISE THE SUBJECT IS 'SOMETHING')

B.10

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM

(SENOR SUBJ (COND
((WRI) POSS (CAAR (G:ETR ADJS)))

(SETO TEMP (CADAR (GETR ADJS)))
(SETR ADJS (CDR (GETR ADJS)))
TEMP)

(T (SENOR SUBfLAG T)
(BUILDQ (NP (PRO SOMETHING))))))

(SENDRQ TYPE POSS-ING)
(SETRQ NTYPE NOM)
(SETR S •)
(TO COMPL/5))

(PUSH NPR/ T
(SETR N *)
(SETRQ NU SG)
(T:· NP/N)))

(NP/HEAD
(VIR PP (NPREP)

PAGE 1:9

(* HERE WHEN THE HEAD OF THE NP HAS BEEN POSITIVELY
DETERMINED. LOOK FOR POST-NOMINAL MODIFIERS:
PREPOSITIONAL PHRASES, RELATIVE CLAUSES, TO- AND
THAT- COMPLEMENTS. PPfLAG IS 1 AFTER A PP HAS BEEN
FOUND; IT INSURES THAT SUBSEQUENT REDUCED RELATIVES
WILL MODIFY THE NEAREST NP,)

(ADDL NMODS •

(COND
((NULLR PPFLAG)

(SETRO PPFLhG T)))
(TJ NP/HEAD))

(• RECOGNIZES FRONTED
PP'S WHICH BELONG TO THE
Np))

(PUSH R/ (AND (OF (WRD (WHO
(A.ND (WRD

WHOM WHOSE WHICH THAT))
(WHICH WHOM WHOSE)
(NEX~'.WRD))

(OR
(CAT PREP)))

(CADR (GETR DET)

)

(WRD PL NU)))
(SENDRQ TYPE REL)
CSE~DR WH (BUILDQ (NP (DET WHR)

+
(NU+))

N NU))
(SENOR ANAPHORFLG (CADR (GETR N)))
(ADDL NMODS •)
(TC! NP/R))

B.11

(• THIS RESTRICTION
DISALLOWS
NON-RESTRICTIVE RELATIVE
CLAU;;;ES)

; <WEBBE?>ANNGRAM.;23 MON 12-JUN-72 9:54PM

(PUSH R/WH (AND (CAR V)
(GETR RELVPFLG))

(! (COND
((WRD (WHICHO HOWMANY)

(CADR (GETR DET)))
(SENOR ANAPHORFLG (COND

((WRD ONES (CADR (GETR N)))
(GETR ANAPHORFLG))

(T (CADR (GETB N))))))))
(SENDRO TYPE QR8L)
(SENDRQ RELVPFLG T

PAGE 1:10

(• THE QUESTIONED NP IS MADE THE DS SUBJECT AND THE
REMAINDER OF THE SENTENCE IS MADE A RELATIVE CLAUSE
OF TYPE QREL ON THE SUBJECT)

(SENOR WH (BUILDQ (NP (DET WHR)

(NU+))

(COND
((WRD ONES (CADR (GETR N)))

(GETR ANAPHORFLG))
(T (GETR N)))

NU))
(P.DDL NMODS •)
(TO NP/NP))

(JUMP NP/NP (OR (NOT •)
(AND (WRD IO)

(RFEAT INDOBJ V

(* THE JUMP NP/NP ARC CAN BE TAKEN IN TWO PLACES,
DEPENDING ON THE REGISTERS AND THE CURRENT WORD)

(VPREP *)
{NOR (NPREP •)

(WBD (OF FOR))
(WRD IT (CADR (GETH N)))))

(LIFTB NPFEATURES (RESUM~TAG NP/HEAD))
(COND

((GFTR PARTFLAG)
(LIFTR ANAPHORFLG (GETR N)

2

(• IF NP OCCURS IN A PARTITIVE CONSTRUCTION, ITS
H~AD IS LIFTED UP TO THE HIGHER NP FOR FURTHER USE.)

)))))

B.12

; <WEBBER>ANNGRAM.;23

(PUSH PP/ (CAT PREP)
(SE~DR V (GETR V))
(ADC>L NMODS *)
(CO~D

MON 12-JUN-72 9:54PM

((NULLR FPFLAG)
(SETRO PPFLAG T)))

(T:J NP/HEAD))
(PUSH FOR/NP (WRD TO)

(ADDL NMODS (B UILDQ (COMPL •)))
(CG!-D

((NULLR PPFLAG)
(SETRQ PPFLAG T)))

(TC NP/HEAD))
(TST R/NIL (AND (GETR PPFLAG)

PAGE 1:11

(* LOOK FOR
TO.COMPLEl'lENTS: 'THE WAY
TO DO IT ••• ')

(NOR (WRD (WHAT WHO WHOM WHICH THAT WHOSE))
(GETR QDET)
{AND (WRD BE (GETROOT • V))

(NOT (EQ * (QUOTE BEING))))))
(S U ~. P E N D 1)

t• LOOK FOR REDUCED RELATIVES AFTER SEEING A PP.
THE SUSPEND MEANS THAT THE ACTIONS
!INCLUDING THE PUSH) WILL GET DONE AFTER THE
FOLLOWING JUMP ARC HAS BEEN TAKEN AND LEADS TO A
BLOCK; THE SUBSEQUENT BACKUP WILL CAUSE THE RELATIVE
IN 'THZ MAN NEAR THE GIRL I SEE' TO MODIFY 'GIRL'
INSTEAD OF 1 MAN' IN THE FIBST PARSE,)

(SENDRQ TYPE REL)
(SECOR WH (BUILDQ (NP (DET WHB)

+
(NU+))

N NU))
(PUSH R/NIL)
(J,DDL NMODS *)
(TO NP/R))

(JUMP NP/NP (NOR (NOT*)
(AND (WRD TO)

(RFEAT INDOBJ V))

(VPR:EP *)
(NOR (NPREP •)

(WRD OF)))

(• THIS SETS UP THE REGISTER NPFEATURES AT THE LEVEL
ABOVE THIS SO THAT THE RESUME MACHINERY WILL RETURN
AN EXTRAPOSED RELATIVE CLAUSE TO THIS iOSITION)

B.13

; <WEBBFR>ANNGRAM.;23 MON 12-JUN-72 9:54PM

(LIFTR NPFEATURES (RESUMETAG NP/HEAD))
(CC'iND

((GETR PARTFLAG)
(LIFTR ANAPHORFLG (GETR N)

2))))
(PUSH B/NIL (NOR (GETR PPFLAG)

PAGE 1:12

(WRD (WHAT WHO WHOM WHICH THAT WHOSE))
(GETR QDEl')
(AND (WRD BE (GETROOT • V))

(NOT (EQ • (QUOTE BEING)))))
(SENDRQ TYPE REL)
(SENOR WH (BUILDQ (NP (DET WHR)

+

(ADDL NMODS •)
(T::' NP/R))

(NU+))
N NU))

(PUSH COMPL/ (AND (WRD THAT)
(WRD (A THE)

(CADR (GETB DET))

(* FOR NOUNS MARKED FACTN (E.G. 'STATEMENT', 'FACT'),
THIS ARC LOOKS FOR A THAT-COMPLEMENT
('THE FACT THAT I ARRIVED ••• '))

(RFEAT FACTN HEAD))
(ADDL NMODS (BUILDQ (COMPL •)))
(Tr, NP/NP))

(PUSH COMPL/NTYPE (RFEAT FACTN HEAD)

(SENDRQ NTYPE THAT)
(itDDL NM ODS (BUILDQ (COM PL •)))
(T'.:' NP/NP)))

(NP/HELDPART
(JUMP NP/DET T

(JUMP NP/HEAD T

(* LOOK FCR A
THAT-COMPLEMENT WITH
DELETED 'THAT 1)

(• A PARTITIVE HAS BEEN
TAKEN OFF THE HOLD LIST
AT STATE NP/QUANT.)
(• LOOK FOR A REGULAR
HEAD: 1 OF THESE HOW MANY
MEN WENl' ••• I))

(* THE HEAD WAS DELETED; INSERT AN APPROPRIATE
DUMMY: IOF THESE HOW MANY WENT •••')

(SETRO N (PRO ONES))
(SETRQ NU SG/PL)))

B.14

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:13

(NP/MORE
(CAT ADJ (GETR MORE-MOST)

(ADDL ADJS (BUILDQ (@ (ADJ) (*)
#)

(COND
((WRD MORE MORE-MOST)

(QUOTE (COMPARATIVE)))
(T (QUOTE (SUPERLATlVE))))l)

(TJ NP/DET)

(• NP/MORE RECOGNIZES TWO-WORD INFLECTED ADJECTIVES
AND PAST PARTICIPLES. E.G. "MORE BRECCIATED",
"MORE ~ETALLIC", "MOST REPRESENTATIVE")

(CAT V (AND (GETR MORE)
(GETF PASTPART))

(NP/N

(ADDL ADJS (EUILDO (ADJ (PARTICIPLE#)
COMPARATIVE)

LEX))
(TC· NP/DET))l

(CAT LIST (AND (WRD SG NU (* ADJUST NU FOR AN
ALTERNATIVE PLURAL
SPECIFICATION 'BOY
(s) I)

(* A TENTATIVE HEAD HAS BEEN FOUND, BUT IT MAY BE
ONLY THE FIRST PART OF A NOUN-NOUN OR
NOUN-ADJECTIVE-NOUN SEQUENCE.)

)
(WRD (S ES)

(CAR•)))
(SETRO NU SG/PL)
(T: NP/N))

(WRD / T

(• '/' FOLLOWS THE TENTATIVE HEAD, INDICATING THAT
I7 WAS THE FIRST TERM OF A RATIO)

(TJ NP//))
(CAT PCSS T

(* POSS ('S) MARKS THE PRECEDING HEAD AS A GENITIVE
MODIFIER ON A HEAD WHICH IS TO FOLLOW.
SET UP THE PROPER STRUCTURE AND LOOP TO NP/DET,)

B.15

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM

(SETR ADJS (BUILDO ((POSS#))
(NPBUILD)))

(SETRO DET THE)
(TC' NP/DET))

(JUMP NP/HEAD (CAT PREP)
(COND

((GETR ~U')
(SETR NU (GETR NU')

PAGE 1:14

(• AS SOON AS WE HAVE SEEN A PREPOSITION, WE KNCW WE
HAVE SEEN THE HEAD. THE HEAD OF THE PP INDICATING
THE SET OVER WHICH "AVERAGE", "MAXIMUM", ETC. RANGE
(SEE NP/DET) IS ALWAYS PLURAL.
THIS INDICATION IS PASSED DOWN IN THE REGISTER NU',)

)))
(SETR HEAD (CADR (GETR N))))

(CAT N (NOR (WRD PL NU)
(EQ LEX (OUOTE BEING)))

(•ANEW HSAD rs FOUND, IMPLYING THAT THE PRECEDING
HEAD IS A NOUN-MODIFIER,)

(ADDL ADJS (BUILDQ (ADJ+)
N))

(SETR N (BUILDQ (~ *)))
(SETR NU (GETF NUMBER))
(T- NP/N))

(PUSH NPR/ (NOE (CATV)
(CAT PREP)
(NULL STRING))

(ADDL ADJS (BUILDO (ADJ+)
N))

(SETR N *)
(SETRQ NU SG)
(T•: NP /N))

(CAT ADJ (NOT (WPD PL NU))

(ADDL ADJS (BUILDQ (ADJ+)
N))

(ADDL ADJS (BUILDQ (C.i (ADJ)

(T •: N P / D E T))

)

FEATURES))

B.16

(* THE NEW HEAD IS A
PROPER NOUN MODIFIED BY
THE OLD HEAD.)

(* AN ADJECTIVE AFTER A
TENTATIVE HEAD IMPLIES
AN N-ADJ-N STRUCTURE.)

; <WE3BER>ANNGRAM.;23 MON 12-JUN-72 9:54~M

(CAr V (AND (GETF PRESPART)
(NOT (WRD PL NIJ))
(NOT (VPARTICLE • (NEXTWRD)))
(NOT (AND (GETR N)

PAGE 1:15

(EQ LEX (QUOTE BEING)))))

(• A GERUND HERE IS TAKEN AS THE HEAD--A SUBSEQUENT
N WILL MOVE IT TO A PARTICIPIAL MODIFIER POSITION.)

(ADDL ADJS (BUILDQ (ADJ+)
N))

(SETR N (BUILDQ (N #)
LEX))

(SETRO NU SG)
(r,, NP /N))

(JU~P NP/HEAD (NOT (CAT PREP))
(SETR HEAD (CADR (GETR N))

(C,ND

((GETR NU')
(SETR NU (GETR NU')))))

(CAr N (OR (WRD PL NU)
(EQ LEX (QUOTE BEING)))

(• SEE EARLIER JUMP
NP/HEAD ARC FOR
EXPLANATION OF NU'.)

(• A SPECIAL ARC TO HANDLE N-N MOUIFIERS WHERE THE
FIRST NOUN IS PLURAL: 'OPEHATIONS RESEARCH',
'SYSTEMS ANALYSIS'. THIS MIGHT NOT BE A PRODUCTIVE
PROCESS, IN WHICH CASE THIS ARC IS UNNECESSARY AND
SHOULD BE REPLACED BY APPROPRIATE COMPOUND
DICTIONARY ENTRIES.)

(ADDL ADJS (BUILDQ (ADJ+)
N))

(SETR N (9UILDQ (~ •)))
(SETR NU (GETF NUMBER))
CT- NP/N)))

B.17

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:16

(NP/NP
(WRD, (NULLR NPLIST)

(• THIS ARC STARTS OFF A SERIES Of COMMA-CONJOINED
NP'S, WHICH ARE ANALYZED BY PUSHING FOR NP1 S FROM
WITHIN THE FIRST NP OF THE SERIES.
NPLIST IS ONLY EMPTY FOR THE TOP-LEVEL NP
(THE FIEST ONE) OF THE SERIES, SO THAT ALL NP PUSHES
ARE DONE FROM THE TOP LEVEL, THAT IS, THE SECOND NP
CAN'T PUSH FOR THE THIRD, THE THIRD FOR THE FOURTH,
FTC. AT THE TOP-LEVEL, THE SUBSEQUENT ITEMS IN THE
SSRIES ARE COLLECTED IN THE REGISTER BODY.)

(SETR BODY (LIST (NPBUILD)))
(T,. NP/,))

(CAT LIST T

(* THIS IS A TRICKY ARC--IT RECURSIVELY CALLS THE
PARSER TO ANALYZE THE LIST OF NON-RESTRICTIVE
MODIFIEPS, BEGINNING AT STAIE FAREN/ IN THE GRAMMAR.
THE PARSE IS ADDED TO NR, AND IF lT IS NIL, WE
ABORT.)

(ADDL NR •

(• THE ANALYSIS OF THE CURRENT NP HAS BEEN
ESSENTIALLY COMPLETED. A COMMA AT THIS POINT CAN
SIGNIFY THAT THIS IS THE BEGINNING OF A SERIES JF
CONJOINED NP1 S (ARC 1), WHILE A PARENTHETIC
EXPRESSION (A LIST) IS INTERPRETED AS A
VON-RESTRICTIVE MODIFIER ON THIS NP
(E.G. 'FIBROUS MATERIALS (ASBESTOS, FIBERGLASS) ').
A COLON CAN ALSO INDICATE THE BEGINNING OF A SERIES
OF NON-BESTRICTIVE ITEMS (ARC 3). THE NORMAL CASE,
E0WEVER, IS TO POP THE NP SO FAR ANALYZED.)

(cr_'ND
((NULL (CAR (GETR NR)))

(ABORT)))
(T:, NP/HEAD))

(WRD : T

(T,1 NP/NP:))

B.18

(* THIS ARC HANDLES
'INFORMATION ON THE
FOLLOWING: RADAR,
LASERS ••• ')

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM

(POP (GETR POPVAL

(NP/NP:

(AND (SETR POPVAL (NPBUILD))
(OR (NOT SIFLAG)

(INTERP (GETR POPVAL))
1'))))

PAGE 1:17

(* SIMULTANt:OUS
INTERPRETATION OF THE NP
WILL GO ON IF SIFLAG IS
T •))

(* CURRENTLY, THE ONLY POSSIBILITt AFTER A COLON AT
THE END OF A NP IS ANOTHER NP
(PERHAPS A CONJUNCTION OF NP'S))

(PUSH NP/ T
(ADDL NR •)
{T:' NP/NP)))

(NP/ORD
(PUSH QUANT/ (CAT (QUANT INTEGER ADV COMP)

(• AN ORDINAL INDICATOR, IF PRESE~T, HAS BEEN
ANALYZED. AN OPTIONAL QUANTIFIER CAN FOLLOW: 'FIVE
MEN', 'MANY PLANES', THE QUANTIFIER IS ADDED TO THE
POSTARTICLE STRUCTURE.)

)

(SETR POSTART (BUILDQ (@ + *)
POSTART))

(T: 1 NP/QUANT))
(JUNP NP/QUANT T))

B.19

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:18

(NP/QUANT
(PUSH PP/ (AND (WRD OF)

(OR (GETR POSTART

(• THE QUANTIFIER OR ORDINAL
(AND CERTAIN DETERMINERS) CAN BE FOLLOWED BY A
PARTITIVE CONSTRUCTION, AS IN 'THE LAST OF THE
MOHICANS', 'FIVE OF THE BOYS', OR 'HOW MANY OF THE
DOCUMENTS ••• ,. THE PARTITIVE IS USUALLY INTRODUCED
BY THE PREPOSITION 'OF' (ARC 2), ~UT FOR SOME
DETERMINERS (E.G. 'ALL 1 , 1 BOTH') THE PREPOSITION MAY
BE MISSING (ARC 2); ARC 3 RETRIEVES A PARTITIVE THAT
WAS ANhLYZED AND PUT ON THE HOLD LIST AT STATE
S/--'OF THE BOYS HOW MANY •••'•
WHEN THERE IS A PARTITIVE, IT IS ADDED TO THE LIST
OF NOUN MODIFIERS, AND THE HEAD OF THE NP BECOMES
THE DUMMY ELEMENT '0NESt.)

(WRD (WHICHQ HOWMANY HOWMUCH ALL SEVERAL MOST)
DET)))

(SENOR PARTFLAG T)
(ADDL NMODS •)
(SETR DET '(DETBUILD))
(SETRO N (PRO ONES))
(SETRQ NU SG/PL)
(T._:; NP/HEAD))

(PUSH PP/PREP (WRD (ALL BOTH)
OET)

(SENDRQ PREP OF)
(ADDL NMODS •)
(SETR oEr (DETBUILD))
(SETRQ N (PRO ONES))
(SET~Q NU SG/PL)
(TC; NP/HEAD))

(VIR PP (AND (GETF PARTITIVE)
(CR (GETR POSTART)

(WRD (WHICHQ HOWMANY HOWMUCH ALL SEVERAL)
DE'r)))

(SETR DET (DETBUILD))
(ADDL NMODS •)
(TC NP/HELDPART))

(JUMP NP/DET T
(SETR DET (DETBUILD))))

B.20

<WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM

(NP/R
(PUSH R/ (WRD (WHO WHOM WHICH THAT))

(SENDRQ TYPE REL)

(* A RELATIVE CLAUSE HAS BEEN ANALYZED.

PAGE 1:19

THIS MAY BE FOLLOWED (OPTIONALLY) BY ANOTHER FULL
RELATIVF (NOT REDUCED).)

(SENOR WH (SUILDQ (NP (DET WHR)
+
(NU+))

N NU))
(ADDL NMODS •)
(T: NP/R))

(JUMP NP/NP T))

(NP/SUPERL.l\.TIVE
(CAT ADJ (OR (GETR MOFE-MOST)

{GBTF SUPERLATIVE

(* DEFINITELY DETERMINED INFLECTED ADJECTIVES PARSE
INTO A HIGHER AND A LOWER NP NODE.
THE HIGHER NODE CONTAINS THE INfL~CTED ADJECTIVE AS
ITS Ht~D; THE LOWER NODE, THE SET OVER WHICH THE
INFLECTED ADJECTIVE RANGES)

(GSTF COMPARATIVE))
(SETR N (BUILDQ (~ (N) (*)

#)
(COND

((WRD MORE-MORE-MOST)
(QUOTE (COMPARATIVE)))

(T (QUOTE (SUPER~ATIVE))))))
(SETRQ NU SG)
(SETR DET (DBTBUILD))
(Ti NP/SUPERSET))

(JUMI? NP/ORD T))

B.21

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM

{NP/SUPERSET
(PUSH PP/ (WRD (OF AMONG))

(SENDR V (GETR V)

(• SEE NP/SUPERLATIVE; VIR PP ARC ALLOWS
SUPERLATIVES TO PICK UP FRONTED PP'S)

(ADDL NMODS •)
{SETR HEAD (CADR {GETR N)))
{C-~.ND

{(OR {NULLR ANAPHORFLG)
(EO (GETR ANAPH0RfLG)

T)

(SEMNET (GETR ANAPHORFLG)
(HEAD (CADDR •)))))

(T (ADDL NMODS (BUILDQ (PP (PREP OF)
(NP (DET THE)

{ N #)

(t-iU PL)))
(GETR ANAPHOR~'LG)))))

(TC NP/HEAD))
{PUSH PP/PREP (AND STRING (NOT (CAT PREP)))

(! (COND
{(GETR ANAPHORFLG)

(SENPRQ OET THE))
{T (SENDRQ DET NIL))))

{SENDRO Nll 1 PL)
(SENDRQ PREP OF)
(SE1' 1DR V (GETR V))
(ADDL NMODS •)
(SETR HEAD {CADR {GETR N)))
(T'.:.· NP/HEAD))

(VIR PP {r,ETF PARTITIVE)
(ADDL NMODS •)
{SETR HEAD {CADR {GETR N)))
(Tr.: NP/HEAD))

(JUMP NP/HEAD (AND {NOT (WHO OF))
(GETR ANAPHORFLG))

(SETA HEAD {CADR (GETR N)))
(ADDL NMODS (BUILDQ (PP {PREP OF)

(NP (DET THE)
(N #)

(NU PL)))
(GETR ANAPHORFLG))))

{JUMP NP/HEAD (OR {WRD OF)
(NULLR ANAPHORFLG))))

B.22

PAGE 1:20

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:21

(NPR/
(M!M (SAMPLE ROCK LINE LINE# APOLLO)

T
(SETR TITLE ~•)

(* START OF THE PROPER NOUN NETWORK,
EVENTUALLY, THIS WOULD INCLUDE A FULL GRAMMAR FOR
THE SYNTAX OF PROPER NAMES--TITLES, ABBREVIATIONS,
INITIALS, ETC. CURRENTLY, WE RECOGNIZE CERTAIN WORDS
AS TITLES IF THEY ARE FOLLOWED BY A WORD IN THE NPR
CATEGORYi OTHERWISE, THIS NETWORK WILL ONLY
RECOGNIZE ISOLATED NPR WORDS AS PROPER NOUNS.)

(TC NPR/TITLE:))
(CAT NPR T

(SETR NPR (LIST*))
(T'J NPR/NPR)))

(NPR/NPR
(POP (BUILDQ (~ (NPR)

+)

T)

NPR

(* END OF THE PROPER NOUN NETWORK,
ARC 1 ?OPS THE APPROPRIATE STRUCTURE;
ARC 2 INSURES THAT THE SYSCONJ FA~ILITY WILL NOT dE
INVOKED AT THIS LEVEL, THAT rs, THAT A CONJUNCTION
OF NPR•S WILL EE ANALYZED AS A CONJUNCTION OF NP'S
WITH NPR HEADS, NOT AS A SINGLE NP WITH A CONJOINED
NPR HEAD.)

(CA'r CONJ NIL))

(NPR/TITLE
(CA'.~ N PR T

(SETR NPR (BUILDQ (+ •)
TITLE)

(* HERE IF A TITLE WORD WAS FOUND.
PICK UP THZ FOLLOWING NPR AND BUILD THE CORRECT
STRUCTURE.)

('l'r-' NPR/N PR)))

B.23

; <WEBBER>ANNGRAM.;23 PAGE 1:22

(NPU/;
(CAT CONJ (OR (NULLR CONJ

(* HERE IF A ';' WAS FOUND IMMEDIATELY AFTER THE
SUBJECT NP. THIS MARKS THE SENTENCE AS A NOUN-PHRASE
UTTERA~CE CONSISTING OF A SEQUENCE OF CONJOINED
~P'S. (SEMI-COLON CONJOINING IS NOT ALLOWED WITHIN
THE NP 1 S OF A REGULAR SENTENCE.) THE STRATEGY HERE
IS SIMILAR TO THAT USED FOR SEMI-COLON CONJUNCTION
A~ THE END OF FULL SENTENCES
(STATES S/; AND S/;S) AND SOMEWHAT RESEMBLES THE
OPERATION OF COMMA-CONJOINING WITHIN NPIS
(STATES NP/. AND NP/,NP))

(EQ * (GETR CONJ)))
(COND

((NULLR CONJ)
(SETR CONJ•)))

(TJ NPU/;))
(PUSH NP/ T

(ADDL NPU *)
(TO NPU/;NP)))

(NPU/;NP
(WRD; T

))

(TO NPU/;

(• A SEQUENCE OF SEMICOLON-CONJOINED NP 1 S IN AN NPU
CAN BE FOLLOWED BY A ';', INDICATING THAT ANOTHER
ITEM IS TO FOLLOW, OR ELSE THE END OF THE STRING
MUST HAVE BEEN REACHED, IN WHICH CASE THE FINAL NPU
STRUCTURE IS BUILT.)

(POP (BUILDQ (S NPU ((al (NP #)
#))

(COND
((GETR CONJ))
(T (QUOTE OR)))

(REVERSE (GETR NPU)))
(NULL STRING)))

B. 24

<WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:23

(PAREN/
(PUSH NP/ T

(SETR PAREN"'

(* THIS IS THE INITIAL STATE FOR THE GRAMMAR WHICH
ANALYZES POST NOMINAL PARENTHETIC EXPRESSIONS.
CURRENTLY, ONLY A NOUN-PHRASE CAN OCCUR AS SUCH A
NON-RESTRICTIVE MODIFIER, BUT THE GRAMMAR SHOULD 8E
FXPANDED HERE TO INCLUDE SEQUENCES OF ADJECTIVAL
PHRASES.)

(TO PAHEN/PAREN)))

(PAREN/PAREN

))

(POP (GETR FAREN)
T

(* THE FINAL STATE OF THE PARENTHETIC-EXPRESSION
GRAMMAR; JUST POP WHATEVER WAS IDENTIFIED.
OF COURSE, WE MUST HAVE EXHAUSTED THE STRING WITHIN
THE PARENTHESES.)

(PP/
(CA'.r PREP T

(PP/NP

(SETR PREP*

(* FIRST STATE OF THE PREPOSITIONAL PHRASE NETWJRK.
ALL PUSHES TO THIS STATE MAKE SURE THAT THE CURRENT
WORD IS A PREPOSITION, SO WE CAN OMIT THE TEST
HERE.)

(T':) PP/PREP)))

(SPOP (BUILDQ (PP (PREP+)
+)

T))

PREl? NP

(*HEREAFTER THE PREP AND NP HAVE BEEN FOUND.
THE PP STRUCTURE IS BUILT AND SPOPPED, 'l'HAT rs,
POPPED TO THE LEVEL DETERMINED HY THE SEL~CTIVE
MODIFIEF PLACEMENT FACILITY.
SINCE THE DICTIONARY DOES NOT YET CONTAIN SMP
FEATURES, THE DEFAULT PLACES THE PP IN THE LOWEST
CONSTITUENT IT CAN BELONG TO.)

; <WEBBER>ANNGRAM.;23

(PP/PREP
(WRD : T

(TC: PP/PREP

MON 12-JUN-72 9:54PM PAGE 1:24

(• AFTER PICKING UP THE
PREP, FIND THE NP
PREPOSITIONAL OBJECT.))

(• IF THE PREP IS FOLLOWED BY 1 :
1

, SKIP PAST IT AND
LOOK F0F. THE OBJECT IN THE REGULAR WAY.
E.G. 'INFORMATION ON: P.ADAB, LASERS ••• ' IS PROPERLY
ANALYZED IF THE COLON IS IGNORED.)

(CAT QDET (NULLR TYPE

(* THE CAT QDET AND CAT QWORD ARC~ CATCH QUESTIONS
IN FRONTED PP'S. E.G. "IN WHICH ••• ")

(SETR DET •)
(TC PP/ODET))

(CAT OWORD (NULLR TYPE)
(SETR NP•)
(LIFTR NP (GFTR NP))
(TO PP/NP))

(PUSH NP/ T
(! (COND

((GETR PARTFLAG

(* WE MUST PASS INFOR~ATION FROM A HIGHER NP INTO
THE NP WITHIN THE PP INDIRECTLY)

(SENOR PARTFLAG T))))
{SENOR RELVPFLG (GETR RELVPFLG))
(SENOR V (GETR V))
(SENOR DET (GETR DET))
(SENOR NU1 (GETR NU'))

(* NORMAL~Y, TH~ OB~t~T 0~ Ttt~ PR~P W~1~ Bt FOUND AS
AN ORDINARY NP STARTING AT THIS STRING POSITION.)

B.26

; <WEBBER>ANNGRAM.;23

(SETR NP•)
{TC PP/NP))

(VIF NP T

MON 12-JUN-72 9:54PM PAGE 1:25

(* THE OBJECT MIGHT HAVE BEEN FRONTED, roR EXAMPLE.
BY RELATIVIZATION OR PASSIVIZATION, LEAVING A
DANGLING PREPOSITION ('THE STORE I BOUGHT IT IN
••• '); IF SO, THE OBJECT HAS BEEN PLACED ON THE HOLD
LIST BY PREVIOUS STATES, AND THIS ARC RETRIEVES IT.
THE RESUME ACTION IS NECESSARY TO DEAL WITH A
RELATIVE CLAUSE EXTRAPOSED FROM THE FRONT~D OBJECT
AND LEFT IN THIS POSITION ('THE STORE I BOUGHT IT IN
WHICH USUALLY HAS GOOD PRICES ••• '))

{RESUME)
(SETR NP*)
(T- PP/NP))

(VIR l\.DV (AND (WRD WHERE (CADR •'))
(WBD (FROM TO AT)

PREP))

{* IF THE DANGLING PREP IS A LOCATIVE ONE AND THE
hORD 'WHERE' WAS FOUND AND HELD BY PREVIOU~ STATES
(E.G. SI) WE RETRIEVE IT HERE AND BUILD THE
APPROPRIATE PP STRUCTURE,)

(SETR NP (BUILDQ (NP (DET WHQ)
(N PLACE)
(NU SG))))

(T ,,:: P P / N P))
(VIR ADV (AND (WRD WHEN (CADR *))

(WRD AT PREP))

(* IF ~E HAVE A DANGLING TEMPORAL PREP AND WE
PREVIOUSLY ENCOUNTERED AND HELD 'WHEN', W1 BUILD A
TIME PP.)

ISETR NP (BUILDQ (NP (DET WHQ)
(N TIME)
(NU SG))))

(T~ PP/NP)))

B.27

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:26

(PP/QDET
(PUSH NP/ART 'l'

(SENOR DET (GETR DET)

(• PUSH FOR THE REST OF THE NP FOLLOWING THE QDET IN
THE FRONTED PP. E.G.

(QUANT/

"IN WHICH SAMPLES DOES STRONTIUM OCCUR?")

(SETR NP•)
(LIFTR NP (GETR NP))
(1'0 PP/NP)))

(CAT COMP (NULLR ADV

(• START OF QUANTIFIER NETWORK roR NP DETBRMINER
STRUCTURE. QUANTIFIER CAN INCLUDE A COMPARATIVE
('MORE THAN') OR ELSE JUST BEGIN WITH AN INTEGER OR
A WORD IN CATEGORY QUANT. CURRENTLY, MOST WORDS IN
THIS CATEGORY ARE ALSO IN CATEGORX OET, So THEY
APPEAR AS DETERMINERS IN THE FIRST PARSES.)

(SETR ADV•)
(TO QUAN'l'/))

(CAT ()UANT T
(SETR NUMi-, •)
(TO QUANT/QUANT))

(CAT INT:GER T'
(SETR NUM8 •)
(TC QUANT/QUANT)))

(QUANT/QUAN':'
(TST UNI7-TST (MARKER UNIT •)

(SETR UNIT•

(• AFTER THE QUANTifIER HAS BEEN PICKED Up, A U~IT
OF MEASURE CAN BE SPECIFIED
('FIVE GALLONS', 'MORE THAN 3 MM'). POTENTIAL UNITS
HAVE A UNIT MARKER, WHICH IS TESTED ON THE ARCS FROM
THIS STATE.)

(SETRO FLAG MUCH)
(TC Q1JANT/UNIT))

(JUMP QU~NT/UNIT (NOT (MARKER UNIT •))
(SETRO FLAG MANY)))

B.28

; <WE3BEB>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:27

(QUANT/UNIT

(RI

))

(POi? (COND

T))

((GETR ADV)
(8UILDQ ((COMP (ADV+)

+)

((o) (NP (INTEGER+))
))

ADV NUMB (COND
((GETR UNIT)

(BUILDQ ((UNIT +))
UNIT))

(1' NIL))
FLAG)

(• END OF QUANTIFIER NETWORK;
BUILD THE CORRECT STRUCTURE,
IF A UNIT IS PRESENT, THE STRUCTURE IS FLAGGED WITH
THE WORD 'HUCH', OTHERWISE 'MANY'.
ALSO, IF THERE WAS A COMPARATIVE, THE ROOT OF THE
QUANTIFIER STRUCTURE IS THE NODE 'COMP'.)

(T (BUILDQ ((Co1 (NP (INTEGER +))
#)

+)

NUMB
(COND

((GETR UNIT)
(BUILDQ ((UNIT+))

UNIT)))
FLAG)))

(MEM (WHICH THAT WHO)
T
(TO R/WH

(• START OF HELATIVE CLAUSE NETwORK, GIVEN THAT WE
ARE LOOKING AT A RELATIVE PRONOUN
('WHO', 'WHAT', 'ilHICH 1) OR A PREP FOLLOW!::D BY A
RELATIVE PRONOUN.)

(wRD WHOM T

(• FOR 'WHOM', WE KNOW THAT THE WH-NP IS NOT THE
SUBJECT OF THE RELATIVE CLAUSE--WE HOLD IT TO BE
PICKED UP LATER.)

B.29

<WEBBER>ANNGRAM.;23

(HCLD (GETR WH))
(SETR WH NIL)
(Ti"":· R/WH))

(PUSH NP/ (WRO WHOSE)

MON 12-JUN-72 9:54PM PA\iE 1:28

(• 'WHOSE' MEANS THAT THE WH-NP IS A POSS~SSIVE FOR
AN NP AFTER THE 1 WH0SE1)

(SENOR ADJS (BUILDQ ((POSS+))
W H))

(SETR WH •)
(TC R/WH))

(CAT PREP T
(SETR PREP•)
(TOR/PREP)))

(R/NIL
(CATV T

(CCND
((AND (GFTF PASTPART

(• HE~E TO LOOK FOR A REDUCED RtLATIVE--WITHOUT A
RELATIVE PRONOUN. DETERMINE THE TYPE OF SENTENCE,
DISPOSE OF THE WH-NP PROPERLY, THEN TRANSFER INTO
THE CORBECT PLACE IN THE S/ GRAMMAR TO ANALYZE THE
REST OF THE CLAUSE.)

(VPASSIVE *))
(HOLD (GF.TR WH))
(SETR SUBJ (BUILDQ (NP (PRO SOMETHING)))

(• A PRESENT PARTICPLE MEANS THE RELATIVE CLAUSE IS
A PROGRESSIVE SENTE~CE WITH THE Wtt-NP AS SUBJECT;
A PAST PARTICIPLE MEANS THE RELATIVE ~LAUSE IS
PASSIVIZED, AND THE WH-NP IS HELD AS THE SUBJECT OF
A PASSIVE SENTENCE USUALLY IS AT STATt VP/V 0)

)
(SETR AGFLAG 'l'))

((GETF PRESPART)
(SETR SUBJ (GETR WH))
(SETRQ ASPECT (PROGRESSIVE)))

(T (ABORT)))
(SETR V •)
(T:'.' VP/V))

(PUSH NP/ T

(• AN NP HERE IS THE SUBJECT OF THE RELATIVE CLAU~EI
THE WH-NP IS EITHER THE OBJECT, INDIRECT OBJECT, OR
PREP OBJECT--HOLD IT UNTIL WE CAN DETERMINE WHICH,)

B,30

<WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:~4PM PAGE 1:29

(HOLD (GETR wH))
<SETR SUBJ •)
(TC: S/NP))

(WRD THERE T
(SETRO THEBE T)
(SETR SUBJ (GETR WH))
(Ti' S/NP))

(CAT ADJ T

(• POST-NOMINAL ADJECTIVES ARE PROCESSED AS REDUCED
RELATIVE COPULAR SENTENCES,
'INFOR~ATION AVAILAliLE' IS ANALYZED AS 'INFORMATION
WHICH IS AVAILABLE')

(SETR SUBJ (GETR WH))
(SETRO V BE)
(SETH OBJ (BUILDQ (@ (ADJ)

)

FEATURES))

(*)

(TO VP/NP))
(CAT ADVT

(R/PREP

(ADDL VMODS (BUILDQ (ADV•)))
(T~ R/NIL)))

(MEM (WHICH WHOM)
T
(ADDL VMODS (3UILDQ (PP (PREP+)

+)

PRl:;P WH)

(* LOOKING AT RELATIVE PRONOUN AFTER THE PREP.
IF THE RELATIVB PRONOUN IS 'WHICH' OR 'WHAT, THE
WH-NP IS TH~ OBJECT OF THE PREP,
FOR 'WHOSE', THE PREP OBJECT IS A NP HEGINNING WITH
'WHOSE' AND HAVING THE WH-NP AS A POSSESSIVE
MODIFIBR. IN EITHER CASE, A PP IS BUILT AND ADDED TO
THE VERB MODIFIERS OF THE RELATIVE CLAUSE.
THIS STATE ALSO GETS !HE STRING IN PHASE WITH PATHS
THAT WENT DIRECTLY fROM R/ TO R/WH.)

B.31

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:~4PM PAGE 1:30

)

(SETR WH NIL)
{TC R/WH))

{PUSH NP/ {WRD WHOSE)
(SENOR ADJS {BUILDQ ({POSS+))

WH))
{ADDL VMOOS {BUILDQ (PP {PREP+) .)

PREP))
(SETR WH NIL)
(TO R/WH)))

{R/WH

(S/

(PUSH PP/ (CAT PREP)
(ADDL VMODS •)
(TO R/WH))

(PUSH NP/ {NOR (CATV)
(GETR RELVPFLG))

(COND
((GETR WH)

{HOLD (GETR WH))))
(SETR SUBJ•)
(TC S/NP))

(WRD THERE T
(SETR THI-;RE T)
(SETR SUBJ (GETR WH))
(TO S/NP))

(JUMPS/NP (AITD (GETR WH)
{CATV))

(SETR SUBJ (GETR WH))))

(JUMP S/Q (QSXART)

Hl I H~ i~i ~AL A~ f tt~ tt ~~ G AftftA
BASICALLY, THIS--STATE TRIES TO DEl:IDE.WHAT TYPE OF
SE~TENCE ~E HAVE: QUESTION, INTERROGATIVE, OR
IMPERATIVE. THE ARCS SET THE TYPE REGISTER AND
TRANSfER TO STATES DESIGNED TO HANDLE THE DIFFERENT
CONSTRUCTIONS. CERTAIN VERB MODIFIERS MAY OPTIONALLY
PRECEDE THE MAIN BODY or THE SENTENCE A~D PARTITIVE
CONSTRUCTIONS MAY HAVE BEEN FRONTED FROM A NOUN
PHFASE; THESE CONSTITUENTS ARE ANALYZtD BY LOOPlNG
THROUGH S/ 0)

{• ySTART IS TRUE FOR THE SMALL SET or WORDS THAT
CAN SThFT QUESTIONS.)

B.32

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM

(SETRQ TYPE Q))
(WRD PLEASE (NULL STACK)

(ADDL VMODS (BUILDQ (ADV PLEASE)))
(TO S/I.MP))

(JUMP 5/IMP

PAGE 1:31

C• AT THE TOP LEVEL,
'PLEASE' USUALLY
SlGNIFIES THE BEGINNING
OF AN IMPERATIVE.)

(• AN IMPERATIVE CAN OCCUR ONLY AT THE TOP LEVEL;
IT USU~lLY BEGINS WITH AN UNTENSED VERB: 1 GIVE ME ... ')

(AND (CHECKF V UNTENSED)
(NULL S'l'ACK)))

(JUMP S/DCL (UOR (QSTART)
(CAT PREP)
(NULL STRING))

(• THE BEST TEST FOR THE BEGINNlNG OF A DECLARATIVE
IS THAT IT NOT BE THE BEGINNING OF A QUESTION.)

(SETRO TYPE DCL))
(CAr ADV (RFEAT Nf~ADV)

(• A NEGATIVE ADVER!:l ('HARDLY', 1 !:!ARELY1) USUALLY
INVOLV!S SUBJECT-VERB INVERSION WHEN IT OCCURS AT
THE BEGINNING OF A SENTENCE.
THE TYPE IS STILL 'DCL', BUT WE GO TO STATES/NP TO
PICK UP THE VERB FOLLOWING THE ADVERB
('RARELY HAD HE LEFT •• ,'), SUBSEQUENT ANALYSIS
RESEMBLES THE PROCESSING OF YES-NO QUESTIONS.)

(ADDL '/MODS (BUILDQ (ADV•)))
/SETRO TYPJ;: DCL)
/ T ,·, S / N P))

(CAT ADVT
(ADDL VMODS (BUILDQ (ADV•)))
(T~ S/))

(PUSH PP/ (WRD OF)

(• A PARTITIVE EXPRESSION MAY HAVE ~EEN FRONTED
('OF THE ME~ How MANY ••• I). ANALYZE IT HERE, BUT
HOLD IT (WITH THE FEATURE 1 PART1TlVE') TO BE PICKED
UP AT STATE NP/QUAJT IN THE FIRST NP.)

B.33

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:32

(HOLD* (QUOTE ((PARTITIVE))))
(TO SI))

(PUSH PP/ (CAT PREP)

(S/;

(* IF THERE IS A QWORD OR QDET IN THE OBJECT OF THE
PP, IT BECOMES THE OS SUBJECT IN S/QP1)

(HC)LD * (QUOTE ((FRONTED))))
(TC, S/QP1)))

(CAT CONJ (OR (NULLR CONJ

(* A 1 ; 1 WAS FOUND AT THE END Of THE TOPcLEVEL S,
INDICATING A SEQUENCE OF SEMICOLON CONJOINED
SENTENCES, WITH REAL CONJUNCTIONS POSSiaLY FOLLOWING
THE SEMICOLONS. WE PICK UP THE CONJS IF PRESENT, AND
PUSH FOR THE FOLLOWINGS, WE KEEP THE SEQUENCE OF
S'S IN SBODY. NOTE: THE STRATEGY HERE IS ALSO USED
FOR SEMICOLON CONJOIN~D NPU'S 0)

(EQ • (GETR CONJ)))

(* IF WE FIND A CONJ, EITHER IT MUST BE THE FIRST
ONE ENCOUNTERED CONJOINING THE S'S, OR IT MUST BE
THE SAME AS PRFVIOUSLY ENCOUNTERED ONES.
THUS WB i\CCEP'l' 'Si AND S; AND S' AND 'S;
S; ANDS', BUT NOT 'S; OPS;
AND 5',)

(SETR C01'.J *)
r T -, S /;))

(PUSH S/ T
(ADDL SBODY •)
('l"- S/;S)))

B. 34

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:33

(S/;S

))

(WRD ; T
(TC S/;

(•HEREAFTER PROCESSING ONES lN A SERIES OF
SEMICOLON CONJOINED s•s. IF THE CURRENT WOBD IS •;•,
THEN ANOTHER SOR CONJ FOLLOWS--GO TO STAT£ S/;.
OTHERWISE, POP A COORDINATE LIST OF THE IDENTIFIED
S'S. NOTE: IF THE END OF THE SERIES IS REACHED WITH
NO CONJ, THE DEFAULf CONJ IS 'OR'.)

(POP (BUILDQ (@ (S #)
#)

(COND
((GETR CONJ))
(T (QUOTE OR)))

(REVERSE (GETR SBODY)))
T))

(S/AUX
(CAT NEG (NULLF NEG)

(•HEREAFTER FINDING THE FIRST VERB, WHICH MIGHT
HAVE BEEN THE MAIN VERB OR AN AUXILIARY 0

LOOP FOR AN OPTIONAL NEG (!NOT') AND UNDO
'DO-SUPPORT' IF NECESSARY. THEN If WE ALREADY HAVE
THE SUBJECT, Go TO VP/V IF IT AGREES WITH THE VERB;
IF ~E HAVEN'T IDENTIFIED THE SUBJECT
(BECAUSF. OF SUFJECT-VERB INVERSION) GO TO S/NO-SUBJ
TO FHlD ONE.)

(CC:NO
((WRD DO MODAL)

(SETR MODA: NIL)))
(SETRC'• NEG NEG)
(:.'CS/AUX))

(JUMP VP/V (OR (AND (GETR SUBJ)
(PNCHECK (GETR SUBJ)

(GETR PNCODE)))
(GETR THERE)))

(JUMPS/NO-SUBJ (NOR (GETR SUBJ)
(GETR THERE:))))

B.35

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM l?AGE 1:34

(5/DCL
(WRD THERE T

(SETR THERF T)

(* WE THINK THIS IS A DECLARA1IVE SENTENCE.
IT MUST BEGIN WITH A SUBJECT NP, A SUBJECT
COMPLEMENT ('TO HAVE THE INFORMATION 1S IMPORTANT'),
OR 'THERE' IF THERE-INSERTION HAS OCCURRED
(WE MUS'r LATER FIND I BE' OR 'EXIST'))

(TC S/NP))
(PUSH NP/ T

(SETR SUBJ*)
(TC'S/NP))

(PUSH COMPL/ (OR (WRD (FOR TO THAT))
(AND (WRD TO (NEXTWRD))

(CAT NEG)))

(* THEB! ARE 4 TYPES OF SUBJECT COMPLEMENTS: 'FuR ME
TO G0 000

1
, 'THAT I WENT•••'• 'TO GO•••'• 'NOT TO

GO ••• '. THE PUSH IS PERMITTED ONLY IF WE HAVE AN
APPROPRIATE COMPLEMfNTIZER.)

(SETR SUBJ*)
(T: 1 S/NP)))

(S/HOW

))

(CAT I. D Li T
(HCLD (BUILDQ (ADJ•)))
(H'-LD (BUILDQ (PP (PHEP 1'0)

(NP (DET WHO)
(N DEGREE)
(NU SG)))))

(T'.:.: S/NP

(* RECOGNIZES "HOW<ADJ>IS ••• "
AND "HO~ <ADV><AUX> ••• ". THE ADJECTIVE, ADVERB AND
THE WORD "HOW" ARE ALL HELD FOR LATER.)

(CAT ADVT
(H0LD (BUILDQ (ADV•)))
(HOLD (BUILDQ (PP (PREP TO)

(NP (DET WHQ)
(N DEGREE)
(NU SG)))))

(T~ S/NP)))

B.36

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:35

(S/IMP
(CATV (GETF UNTENSED

(• WE RECOGNIZE AN IMPERATIVE SENTENCE, AND SET UP
REGISTERS ACCORDINGLY. THE SUBJECT IS 1 YOU1 AND THE
TENSE IS •PRESENT'. WE SET THE V AND GO TO VP/HEAD
TO PICK UP POST-VERB CONSTITUENTS.)

(SETRO TYPE IMP)
(SETR SUBJ (BUILOQ (NP (PRO YOU))))
(SETH V •)
(SETR HEAD•)
(SETRQ TNS PRESENT)
(TO VP/HEAD)))

(S/NO-SUBJ
(WRD THERE (OR (NULLR WHQ

(• THERE WAS NO IDENTIFIABLE SU~JECT BEfORE THE
FIRST VERB. THE SUBJECT MIGHT BE HERE IN THE STRING
IF S-V INVERSION OCCURRED, OR IT MIGHT ~E IN THE WHQ
REGISTER.)

(PNCHECK (GETR WHQ)
(GETR PNCODE)))

(• ANYTHING IN WHQ MUST AGREE WITH THt VERB AND
BECOMES THE SUBJECT ('HOW MANY MEN WERE THERE ••• ').
IF WHQ IS EMPTY ('WERE THERE MANY MEN ••• ') WE MGVE
ON TO S/THERE.)

B. 37

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM

(CCND
((GETR WHQ)

(SETR Sl!BJ (GETR WHQ)))
((GETR WH)

(SETR SUBJ (GETR WH))))
(SETR THERE 1')

(TG S/THERE))
(JUMP VP/V (AND (GETR WH)

(WRD HAVE V

PAGE 1:36

(* WE CHOOSE TO MAKE WH THE SUBJECT IF THE VERB IS
"HAVE", RATHER THAN LOOKING FOR ANOTHER NP ON THE
FOLLOWING PUSH NP/ ARC. IF HAVE TURNS OUT TO BE AN
AUXILIARY FOLLOWED BY THE REAL SUBJECT, THIS ARC
WILL FAIL (E.G. IF THE SENTENCE WERE
"HOWMAN! PEARS HAVE THE BOYS EATEN?"))

(PNCHECK (GETR WH)
(GETR PNCODE)))

<SETR SUBJ (GETR WH)))
(PUSH NP/ T

(• WE LOOK FOR AN NP IN THIS POSITION.
IF NPFEATURES WAS SET (IN THE PUSH FROM STATE
5/0DET) WE PRESERVE THE OLD VALUE BECAUSE THE
REGIST~R WILL BE RESET BY THIS PUSH
(AT STATE NF/HEAD). IF THIS PUSH IS SUCCESSFUL, THE
RESULTINr. NP MUST AGREE WITH THE VERB AND BECOMES
THE SUBJECT. OUR INDECISION ABOUT THE WHQ IS
RESOLV~D--IT CANNOT BE THE SUBJECT SO IT IS HELD TO
BE PICKED UP AS AN OBJECT OR PREP OBJECT,
WE ALSO HOLD THE NPFEATURES ASSOCIATED WITH IT, FOR
LATER RESUMPTION. FINALLY, THE DO-SUPPORT NECESSARY
FOR S-V INVERSION IS UNDONE.)

B.38

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:37

))

(! (SETR HOLDNPFEATURES (GETR NPFEATURES)))
(SENOR AN~PHORFLG (GETR AHAPHORFLG))
(CC!JD

((NULL (PNCHECK * (GETR PNCODE)))
(ABORT)))

(SETR SUBJ•)
(cr·ND

((GETB WHQ)
(HOLD (GETR WHQ)

(GETR HOLDNPFEATURES))))
(COND

((GETR WH)
(HOLD (GETR WH)

(GETR HOLDNPfEATURES))))
(CONO

((WRD DO MODAL)
(SETR MODAL NIL)))

(TC: VP/V))
(JUMP VP/V (ANO (GETR WH)

(NOT (WRD HAVE V

(• IF "THERE" AND NP DIDN'T WORK, BUT "WH" AGREES
WITH THE VERB, HAKE THAT THE SUHJECT)

(PNCHECK (GETR WH)
(GETB PNCODE)))

(SETR SUBJ (GETR WH)))
(JU'1P VP/V

(* IF 'THERE' AND NP DIDN'T WORK BUT WE HAVE A WHU
WHICH AGPEES WITH THE VERB, WE TRY THAT AS THE
SUBJECT.)

(AND (GETR WHQ)
(PNCHECK (GETR WHU)

(GETR PNCODt:)))
(SETR SUBJ (GETR WHQ))))

B.39

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:38

(S/NP
(POP (GETR POPVAL)

(AND (NOR STRING HOLD STACK (GETR VMODS))
(SETR POPVAL (COND

((WRD Q T:!PE)
(BUILDQ (S NPQ +)

WHO))
(T (BUILDO (S NPU +)

SUBJ))))
(OR (NOT SIFLAG)

(INTERP (GETR POPVAL))))

(• IF WE R~ACHED THE ENO OF THE STRING AT THE TOP
LEVEL, WE BUILD A NOUN-PHRASE UTTERANCE AS THE PARSE
OF THE SENT~NCE ('INFORMATION ON •••' OR 'WHICH
MAN').)

(*HEREAFTER OUR FIRST ATTEMP AT FINDING A NP,
EITHER AS A DECLARATIVE SUBJECT OR AS A QUESTION
WORD (WHQ).)

(CAT ADVT
(ADDL VMODS (BUILDQ (AUV *))

)
(';Cl S/NP))

(CATV (GETF TNS)

(* WE ATTEMPT
SIMULTANEOUS
INTFRPRETATION IF SIFLAG
IS T.))

(• AN ADVERB MAY PRECEDE
AN AUXILIAR:t VERB)

(* USUALLY WE FIND A TENSED VER~ AT THIS STRING
POSITION, ~ITHER AS THE FIRST WORU IN A QUESTION
(IF WE JUMPED FROM S/Q), 08 FOLLOWING AN NP OR
'THERE'. IF IT IS A MODAL ('WOULD', 'COULD', ETC.)
WE PUT IT IN THE MODAL REGISTER, OTHERWISS INV.
IF wE APE IN A WH-OUESTION AND THE VERB WAS NOT AN
AUXILIARY ('WHO HIT JOHN') THEN THE WHQ IS THE
SUBJECT. IN ANY CASE, SAVE THE TENSE AND
P~RSON-NUMBER CODE.)

B.40

<WE3BER>ANNGRAM.;23 MON 12-JUN-72 9:~4PM

(COND
((MODAL)

(SETH MODAL*))
(T (SETR V •)))

(CCND
((AND (GETR WHQ)

(NOR (MODAL)
(WRD (HAVE BE))))

(SETR SUBJ (GETR WHO))
(SETR WHQ NIL)))

(COND
((AND (GETR WH)

(NOR (MODAL)
(WRD (HAVE BE DO))))

(SETR SUBJ (GETR WH)

PAGE 1:39

(* IF WE ARE IN A QREL CLAUSE AND THE VERB WAS NOT
AN AUXILIARY, THE THE WH PASSED DOWN FROM THE MATRIX
SENTENCE IS THP. SUBJECT.)

(SETR PNCODE (GETF PNCODE))
(TO S/AIJX)))

ISETR TNS (GETF TNS))
(SETR PNCOOE (GETF PNCODE))
(TO S/AUX))

(WRD ; (NULL STACK)

(* AT THE TOP LEVEL, A SEMICOLON rtERE INTRODUCES A
S~OUENCE OF NP 1 S TO BE PARSED AS CONJOINED NPU'S.
THE GRAMMAR FOR THIS BEGINS AT NPU/;

(ADDL NPU (GETR SUBJ))
(TC NPU/;))

(JUMP S/DCL (WFD IDQ TYPE)

(* WE APE IN AN INDIRECT QUESTION, PUSHED TO FROM
VP/HEAD ('I KNOW WHO YOU ARE') THE WHQ REGISTER IS
SET, BUT INVERSION HASN'T OCCURREU, I.E,, THE
BEGINNING OF THE CLAUSE AFTER THE Q-WORD LOOKS LIKE
A DECLAFATIVE, ERGO, JUMP TO S/DCL.)

(H.LD (GETP WHQ)
(GETR NPFEATURES))

(SETH WHQ NIL))
(JUMPS/AUX (GETR V)))

B.41

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM ~AGE 1:40

{S/0

)))

{WRD HOW T
(T~ S/HOW)

(• THE SENTENCE BEGINS LIKE A QUESTION.
FOUR POSSIBILITIES: (1) A OWORD--A WH WORD THAT
FUNCTIONS AS A PRONOUN ('WHO','WHAT');
(2) AN AUXILIARY VERB; (3) A Q-DETERMINER
('WHICH MAN1); (4) THE ADVERB "HOW")

(CAT OWORD T

(• THE DICTIONARY ENTRIES FOR QWORDS ARE COMPLETE NP
OR ADVERBIAL STRUCTURES. WE COPY THEM SO WE DON'T
DESTROY THE DICTIONARY ENTRIES BY FUTURE OPERATIONS.
THE FEATURE 'SUBJ/OBJ' INDICATE~ THAT THE QWORD CAN
REPRESENT EITHF.R THE SUBJECT OR THE OBJECT, SO WE
STORE IT IN WHO UNTlL FURTHER INFORMATION ENABLES US
TO DECIDE. IF THE O~ORD LACKS THIS FEATURE, THEN lT
CANNOT BE THE SUBJECT {'WHOM'); WE HOLD IT FOR
POST-VERBAL PROCESSING.)

(COND
({GETF SUBJ/OBJ)

{SETR WHQ {COPY•)))
(T {HOLD {COPY•))))

{COND
{(GETF ANAPHORIC)

(SETRO ANAPHORFLG T

C• THE QWORD "WHICH" IS ANAPHORIC: IT IMPLIES CHOICE
FROM A PREVIOUSLY MENTIONED SET.
THE QW~RD "WHAT" IS NOT. ANAPHORFLG SIGNALS THIS
DISTINCTION AND WILL BE USED IF THE SENTENCE
CONTAINS A SUPERLATIVE ADJECTIVE TO DETERMINE THE
SET THAT IT NEEDS.)

(T~ S/NP))
(JUMPS/NP (CATV))
{CAr 0DET T

{• CURR~NTLY, THE NP/ LEVEL DOES NOT PROCZSS
OUESTION DE1ERMINERS. WE PICK THEM UP HERE AND PUSH
INTO THE MIDDLPa OF THE NP/ NETWORK FROM S/QDET,
SCNDING THE QDET DOWN.)

(SETB DET •)
(T' S/QDET)))

B.42

; <WEB3ER>ANNGRAM.;23 MON 12-JUN-72 9:~4PM PAGE 1:41

(S/QDET
(PUS] NP/ART T

(! (CONO

))))

(S/QP1

((NEQ (CAR (GETR DET)

(* DET CONTAINS THE Q-DETERMINER FOUND AT STATE S/Q.
WE PUSH INTO THE MIDDLE OF THE NP/ NETWORK TO FIND
THE WHQ NOUN-PHRASE. WE INITIALIZE THE REGISTER QDET
TO PREVENT REDUCED RELATIVE CLAUSES WITHIN THE NP:
'THE MAN I SAW ••• ' AND 'HOW MANY MEN WHO I SAW ••• '
ARE ALLOWED, BUT 'HOW MANY MEN I SAW ••• , IS OUT.)

)

(QUOTE POSTART))
(SEND~Q RELVPFLG T

(•WEDO NOT RELATIVIZE THE REMAINDER OF THE
SENTENCE IF THE QDET WAS ttHOW MUCH")

(SENOR DET (GETR nET))
(SENDRO QDET T}
(SETR WHQ *)
(TC S/NP)))

(VIR PP (GETR NP)
(SETR WHP (RELATIVIZE (COPY*)

(• WE MAKE A Ql!ESTIONED NP OR QWORD IN A PBONTED PP
THE DEEP STRUCTURE SUBJEC:)

(SETRO TYPE Q)

(Tr S/QP2))

))

(JUMPS/ (NOT (GETB NP)}))

(S/QP2
(PUSH S/NP T

(SENOR VMODS (LIST (GEIR WHP)))

(• WH-QUESTIONS ARE PARSED AS NOUN PHRASE UTTERANCES
WITH THB QUESTION-NP AS SUBJECT AND THE REST OF THE
OUESTION IN A RELATIVE CLAUSE ON THE SUBJECT.
THE TYPE OF THE RELATIVE CLAUSE IS QREL TO
DISTINGUISH IT FROM A SURFACE STRUCTURE RELATIVE.
A ~HQ REGISTER IS USED INSTEAD OF A SUBJ REGISTER TO
HOLD THE SUBJECT.)

B.43

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:42

(S/S

(SENDRQ TYPE QREL)
(SETR WHQ (APPEND (GETR NP)

(LIST•)))
(TO S/VP)))

(POP (GETR POPVAL)
T

(5/SADV

(• POPVAL MAY HAVE BEEN
INTtRPRETED INS/VP)))

(PUSH NP/ T
(ADDL VMODS (BUILDQ (ADVP (ADV+) .)

SADV))
(TC S/VP)))

($/THERE
(TEST DOT

(SETQ FEATURES (GETR NPFEATURF,S)

(• THIS STATE rs PLACED BETWEEN S/NO-~UBJ AND VP/V
TO ALLOW FOR EXTRAPOSED RELATIVE CLAUSES WITH THEHE
INSERTION IN QUESTIONS: 'HOW MANY MEN WER: THERE WHO
BOUGHT•••'• THE RESUME ACTION WILL MOVE THE
RELATIVE TO ITS PROPER LOCATION IN THE NP, WHICH
THEN BECOMES THE SUBJECT. NOTICE THAT UNLESS
NPFEATURES HAS BEEN SET, THIS ARC IS ESSENTIALLY A
NO-OP. THUS, SINCE QWORDS DON'T SET NPFEATURES
(QDETS DO), 'WHO WAS THERE WHO DID ···' rs
(PERHAPS ERRONEOUSLI) NOT ALLOWED.)

)

(RESUME)
(COND

((GETR NPFEATURES)
(SETR SUBJ•)))

(JUMP VP/V)))

<WEHBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:43

(S/VP

))

(WRD • T
(TC S/VP

(* HERE WH~N THE VERB-PHRASE OF THIS S HAS BEEN
NEARLY COMPLETED. THERE MIGHT BE SOME ADVERBS OR
PP'S STILL ON THE HOLD LIST, WHICH WE PlCK UP HERE.
ALSO. AT TH! TOP LEVEL, THERE MIGHT B~ SOME TERMINAL
PUNCTUATION, OR A StMICOLON. INDICATING THAT THIS IS
THE FIRST ITEM IN A SERIES OF CONJOINED s 1 s.
THE USUAL CASE, HOWEVER, IS TO POP THE ANALYZED S
S~RUCTURE0)

(CAT ADV (RFEAT TRANSADV)
(SETR SADV •)
(TC' S/SADV))

(VIH PP T
(,\DDL VMODS •)
rr:: S/VP))

(VIR ADJ (RFEAT COPULA V)
(SETR V (BUILDQ (C~ (ADJ) (•)

#)

(COND
((WRD (APPEAR SEEM)

V)
(QUOTE (SEEMING)))))

'• THE ADJ~CTIVE PICKED UP INS/HOW R~BLACES THE
COPULA AS DS VERB. IF THE COPULA WAS "APPEAR" OR
"SEEM", THE FEA1URE "SEEMING" IS ADDED TO THE N~W
VERB.)

)
(T-~ S/VP))

(VIH !,DV T
(J\ D D L V M O D S *)
(T': S/VP))

(M E ~: (% • ? !)
(NULL STACK)

(* NOTE THAT A TERMINATING QUESTION MARK OVERRIDES
THE SYNTACTIC TYPE OF THE SENTENCE: 'l NEED SOME
INFORMATION?' IS A ~UESTION, NOT A DECLARATIVE.)

B.45

; <WEBBEP.>ANNGRAM.;23 MON i2-JUN-72 9:54PM PAGE 1:44

))

(CCND
((AND (WRD ?)

(NOT (WRD Q TYPE)))
(SETRQ TYPE Q)))

(TO S/VP))
(WRD; (NULL STACK)

(ADDL SBODY (SBUILD))
fT,) S/;))

(JUMPS/ST

ADJ

(SETR POPVAL (SBUILD)

(COND
((OR (NOT SIFLAG)

(WRD REL TYPE))
T)

((AND (OR STACK (NOR STRING HOLD))
(NOT (INTERP (GETR POPVAL))))

(SUSPEND 2)))))

(WRD THAN (COMPARATIVE V

(TO VP/ADJ-COMP))
(PUSH COMPL/ (AND (COMPARATIVE V)

(WRD THAN))
(SETR COf",PL *)
(TO S/VP))

(PUSH COMPL/ (AND (WRD (FOR TO THAT))
(EQUAL (GETR SUBJ)

(QUOTE (NP (PRO IT)

(* THIS ARC ALLOWS FOR
SIMULTANEOUS
INTfRPRETATION IF SIFLAG
IS T.)

(* VP/ADJ PROCESSES THE
COMPLEMENTS OF PREDICATE
ADJ~CTIVES, E.G. THE
INFINITIVE ON
"JOHN IS EASY TO PLEASE"

(NU SG))l))
(SETR SUBJ •l
(TO S/VP))

(PUSH COMPL/ (AND (WRD FOR)
(RFEAT FOR COMP (CADR (GETR V))))

(SETR COMPL •)
(TC.· S/VP))

(PUSH FOR/NP (AND (RFEAT TOCOMP (CADR (GETR V)))
(WRD TO))

(! (COND
((RFEAT SUBJLOW (CADR (GETR V)))

(SENOR SUBJ (GETR SUBJ)))
(T (SENOR SUBJ (QUOTE (NP (PRO SOMETHING)

(NU SG))))
(SENOR OBJ (GETR SUBJ)))))

(SETR COl"lPL *)
(TO S/VP))

(JUMP VP/VP T))

B.46

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:~4PM PAGE 1:45

(VP/ADa-cOMP
(PU~; H NP/ T

(VP/AGl'

(SENOR V (GETR V))
(SENOR ANAPHORFLG (GETR ANAPHORFLG))
(SETR OBJ•

(* WE LOOK FOR AN NP FOLLOWING ~THAN" IN A
COMPARATIVE COMPLEMENT. IF WE FIND ONE
(RATHER THAN A SENTENCE). WE MAKE IT THE OBJECT OF
THE VERB. E.G. "FRED IS TALLER THAN JIM."
IS ANALYZED AS "FRED [TALL COMPARATLVE] JIM.")

(TO VP/NP)))

(PU~: H NP/ T
(SETR SUBJ•)

(• HERE IF THE SENTENCE IS PASSIVE, WE HAVE NOT YtT
FOUND rHE AGENT, BUT w~ HAVE SEEN THE PREPOSITICN
RY, WHICH MIGHT INTRODUCE THE AGENT NP•
USALLY, THV AGENT NP WOULD BE IDENTIFIED HERE •~y• A
PUSH, BUT IN A QUESTION OB RELATIVE CLAUS~, THE
AGENT ~IGHT HAVE BEEN FRONTED, LEAVING THE 'BY'
DANGLING: 11\.,JHO IS THE INFORMATION NEEDED BY' OR 'THE
MAN THE INFORMATIO~ IS NEEDED BI ••• '.
IN THESE CASES, THE NP HlS BEEN HELD, AND ARC 2
PICKS IT UP. THE RESUME ACTION ALLOWS FOR AN
EXTRAPOSED RELATIVE CLAUSE OR PP.)

(SETR AGFLAG NIL)
(T,' VP/VP))

(VIP NP T
(RES ll ME)

(SETR SUBJ•)
(SETR AGFLAG NIL)
(T·'." VP/VP)))

B.47

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:46

(VP/COMP-ADJ
(CAT ADJ T

(SETR V (BUILDQ ((ii) (ADJ) (•)
#)

(COND
((WRD MORE MORE-MOST)

(QUOTE (COMPARATlVE)))
(T (QUOTE (SUPERLATIVE))))

(COND
((WRD (APPEAR SEEM)

V)
(QUOTE (SEEMING)))))

(* MAKES AN UNDETERMINED COMPARATlVE OR SUPERLATIVE
ADJECTIVE IN PREDICATE ADJECTIVE POSITION THE DS
VERB. IF THE COPULA WAS "APPEAR" OR "SEEM", THE
FEATURE "SEEMING" IS ADDED TO THE NEW VERB.
E.G. "FRED IS MOST INTERESTED IN SNAKES" THE DS VERB
IS (ADJ INTERESTED SUPERLATIVE))

)

(TO VP/ADJ)))

(VP/HEAD

))

(CAT PREP (SETQ TEMP (VPARTICLE V

(* HERE WHEN WE HAVE MADE FIRM DE~ISIONS ABOUT THE
MAIN VERB AND THE SUBECT0 WE LOOK FOR POST-VERBAL
MODIFIERS (OBJECTS, SENTENTIAL ~OMPLEMENTS,
PARTICLES, PREDICATE ADJECTIVES), MANY OF WHICH ARE
SPECIFIED BY ROOT FEATURES ON THE VERB.)

(* THIS ARC IDENTIFIES A PARTICLE IMMEDIATELY
FOLLOWING THE VERB ('LOOK UP', 1 LOOK FOR'). THE
FUNCTION VPARTICLE EXAMINES THE PROPERTY 'PARTICLES'
IN THE VERB'S DICTIONARY ENTRY, WHICH INDICATES WHAT
PARTICLES ARE ALLOWED, AND WHAT THE NEW ROOT VERB
CORRESPONDING TO THE VERB+PARTICLE COMBINATION rs.
THUS, •~OUK UF' MiGnT CAUSE THE MAi~ VERti TU ~E
CHANGED TO 1 LOOK-tiPi, WHICH MIGHT-HiV~ DIFFiRENT
ROOT-FEATURES THAN 'LOOK1

0)

B.48

; <WEBBER>ANNGRAM.;23

(SETR V TEMP)
(SETR HEAD TEMP)
(TO VP/V))
H N A~O UBE

STRING)
(SENDRQ V BE)

MON 12-JUN-72 9:54PM

(SENDRQ ANAPHORFLG (GETR ANAPHORFLG)

)
(SETR OBJ•)
(TO VP/NP))

(JUMP VP/NP (OR (RFEAT INTRANS V)
(A.ND (VTRANS V)

(GETR OBJ)))

PAGE 1: 147

(• WE MAKE THE NP
FOLLOWING BE ITS OBJECT
RlGHT OFF.)

(• IF THE MAIN VERB IS MARKED INTRANSITIVE, THERE IS
NO PREDICATE COMPLEMENT DIRECTLY TIED TO THE
VERB--WE SKIP TO VP/NP 0)

(PUSH S/Q (AND (VTRANS V)
(WRD (WHICH WHO WHAT WHOSE)))

(• CERTAIN VERBS CAN TAKE INDIRECT QUESTIONS AS
THEIR OBJECTS (E.G. 1 KNOW1) 0 THESE ARE MARKED AS
ORDINARY TRANSITIVES IN THE DICTIONARY, SO IN ORDER
TO RECOGNIZE THESE CONSTRUCTIONS, WE ALLOW THE
POSSIBILITY THAT ALL TRANSITIVE VERBS CAN TAKE THESE
013.JECIS, (1' I KNOW WHO WAN'.rED THE INFO.HMATION.'))

(SENDRQ TYPE IDQ)
(SETR OBJ (BUILDQ (NP*)))
(TC VP/NP))

(VIF NP (VTRANS V)

(• FOR RELATIVE CLAUSES, PASSIVES, AND
WHO-BE-QUESTIONS, THE DIRECT OBJECT HAS BEEN HELD;
WE PICK UP HERE, LOOKING FOR POSSlBLE EXTRAPOSED
RELATIVES.)

B.49

; <WEBBER>ANNGRAM.;23

(RESUME V)

(SETR OBJ •)
(TO VP/NP))

MON 12-JUN-72 9:54PM

(PUSH NP/ (AND (VTRANS V)
(NOT (WRD BEV)))

PAGE 1:48

(• HERE WE PICK UP THE REGULAR OBJECT OF TRANSITIVE
VERBS, NOTE THAT FOR A WHQ-QUESTION WITH 'BE' AS THE
MAIN VERB ('WHO IS THE LEADER?'), THE SUBJECT
('THE LEADER') WAS PICKED UP AT STATE S;NO-SUBJ, AT
WHICH POINT THE WHO WAS HELD.
THUS WE DON'T LOOK FOR THE OBJECT ON THIS ARC, BUT
RATHER ON THE SUBSEQUENT VIR ARC,)

(SENOR V (GETR V))
(SENOR ANAPH0RFLG (GETR ANAPH0RFLG))
(SETR OBJ•)
(TO VP/NP))

(WRD NORE (AND (RFEAT COPULA V

(GE'!'P (NEXTWRD)
(QUOTE ADJ)))

(TC VP/MORE))
(PUSH C0MPL/ (AND (WRD THAT)

(RFEAT THATC0MP V))

(* WE RECGGNIZE TWO WORD
INFLECTED ADJECTIVES IN
PREDICATE ADJECTIVE
POSITION))

(• VERBS MARKED 'THATC0MP' CAN TAKE A THAT-CLAUSE AS
A COMPLEMENT (1 I BELIEVE THAT THEY•••')•)

(SETR COMPL •)
(TG VP/NP))

(PUSH C0MPL/ (AND (WRD (FOR TO))
(RFEAT FORC0MP V))

(• 1 F0RC0MP I VERBS TAKE A FOR- OR TO-COMPLEMENT: 1 WE
HOPE FOR JOHN TO COME', 'WE WANT ro COME'.
FOR A TO-COMPLEMENT, THE SUBJECT OF THE COMPLEMENT
IS THE SAM£ AS THE SUBJECT OF THE SENTENCE.)

B.50

<WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5UPM

(! (COND
((WRD TO)

(SENOR SUBJ (GETR SUBJ)))))
ISETR COMPL •)
ITC VP/VP))

(PUSH COMPL/NTYPE (SCOMP V)

PAGE 1:U9

(* FINALLY, CERTAIN VERBS ALLOW THE 'THAT' PRECEDING
A COMPLEMENT TO BE DELETED,
THE PUSH HERE ALLOWS FOR THIS.)

:sENDRQ NTYPE THAT)
:sETR COMPL *)
(TC VP/NP)))

(VP/MOR:~
(CAT ADJ T

(SETR V (BUILDQ (r.i (ADJ) (*)
(COMPARATIVE)
#)

(COND
((WRD (APPEAR SEEM)

V)

(QUOTE (SEEMING))))

(* A TWO WORD COMPARATIVE ADJECTIVE REPLACES A
COPULA AS OS VERB, IF THE COPULA WERE "APPEAR" JR
"SEEM", THE NEW VER~ GETS THE FEATURE "SERMING".)

))

(T~ VP/ADJ)))

B. 51

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:50

(VP/NP

))

(PUSH COMPL/ (OR (AND (WRD (FOR THAT))
(EQUAL (GETR SUBJ)

(QUOTE (NP (PRO IT)))

))
(AND (WRD THAT)

(GETR AGFLAG)))
(CC'ND

((GETR AGFLAG)
(SETRQ AGFLAG NIL)))

(SETR SUBJ•)
(TC VP/VP

(• THE FIRST OBJECT OR
COMPLEMENT CAN SOMETIMES
BE FOLLOWED BY OTHERS.)

(• IF THE SUBJECT WAS 'IT', THE SUBJECT COMPLEMENT
OF THE VERB MIGHT HAVE BEEN EXTRAPOSED TO THIS
POSITION: 'IT IS CLEAR THAT ••• 1 OR 'IT IS EASY FOR
JOHN TO•••'• THIS ARC MOVES THESE COM2LEMENTS ~ACK
TO SUBJECT POSITION, WHERE THEY BELONG.
ALSO, A THAT-COMPLEMENT SUBJECT COULD HAVS BEEN
MOVED TO THIS POSITION BY PASSIVIZATION: 'l WAS
SURPRISED THAT ••• ' FROM 1 THAT •••
SURPRISF.D ME'. THE OBJECT 'I-ME 1 IS PICKED UP ON THE
VIP NP ARC FROM STATE VP/HEAD;
THE AGENT CLAUSE IS PICKED UP HERE.)

(PUSH FOR/NP (AND (RFEAT TOCOMP V)
(r;ETR OBJ))

(* A TO-COMPLEMENT CAN OCCUR AFTER THE OBJECT: 'I
PROMISE[JOHN TO GO' OR 'I WANT~D JOHN TO GO'.
FOR MOST V2RBS, THE SUBJECT OF THE COMJLEMENT IS THE
0 B ,J EC T (' J O K N ') 0 F TH E MA I N S E N TE NC E , B U T V E R B S
MARKED 'SUHJLOW' HAVE THE SUBJECT OF THE MAIN
s::::NTENCE PASSr:o DOWt-4 (E.G. 'PROMISE'). :t'OR
'7RANSCOMP' VERBS, THE OBJECT PASSED DOWN TO BE
SUBJECT REMAINS AS THE TOP-LEVEL OBJECT
('PERSUADE'), RUT THIS IS NOT ALWAYS TRUE
('EXPECT'))

B.52

<WEEBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM

(SENOR SUBJ (COND
((RFEAT SUBJLOW V)

(Gi::TR SUBJ))
(T (GETR OBJ))))

(COND
((NOT (RFEAT TRANSCOMP V))

(SETR OBJ NIL)))
(SETR COMPL *)
fT,::, VP/VP))

(CAT PREP (SETO TEMP (VPARTICLE V))

(SETR V TEMP)
(SETR HEAD TUlP)
(TC VP/VP))

(CAT ADVT
(ADDL VMODS (BUILDQ (ADV*)

))

(T·'.':1 VP/NP))
(PUSH NP/ (AND (RFEAT INDOBJ V)

(GI::TR OBJ))

PAGE 1:51

(• A PARTICLE CAN OCCUR
AFTER THE OBJECT: 1 LOOK
THE INFORMATION UP')

(* AN ADVERB MAY FOLLOW
THE INDIRECT OBJECT)

(• A NP CAN OCCUR IN THIS POSITION IF THE VERB CAN
TAKE AN INDIRECT OBJECT. WHAT WE THOUGHT WAS THE
OBJECT WAS REALLY THE INDIRECT OBJECT, AND THE NP
HERE IS TO BE THE DIRECT OBJECT.
('I GAVE JOHN THE INFORMATION' --> 'I GAYS THE
INFORMATION TO JOHN'))

(ADDL VMODS (BUILDQ (PP (PREP TO)
+)

OBJ))
(SETR OBJ*)
/TC VP/VP))

(PUSH COMPL/ (AND (WRD (FOR THAT))
(RFEAT INDOBJ V))

(* THE DIRECT OBJECT CAN ALSO BE A COMPLEMENT, FOR
C[RTAIN VERBS THAT ALLOW INDIRECT OBJECTS: 'I TOLD
!""ARY TI-IAT0 • 1 ')

(ADDL VMODS (BUILDQ (PP (PREP TO)
+)

OBJ))
(SETR OBJ NIL)
(SETR COMPL •)
(TU VP/VP))

(JUMP VP/VP T

B.53

(* FINALLY, JUMP TO
VP/VP)))

; <WEBBER>ANNGRAM.;23

(VP/V
(CATV T

MON 12-JUN-72 9:54PM PAGE 1:52

(• THE FIRST VERB CAN BE FOLLOWED BY OTHER VERBS TO
FILL OUT THE PERFECT-PROGRESSIVE-PASSIVE AUXILIARY
STRUCTURE. ADVERBS AND THE SUBJECT OF A
THERE-INSERTED SENTENCE CAN BE INTERSPERSBD BETWEEN
THE VERBS--WE LOOP FOR THEM HERE.)

(• VERBS AFTER THE MAIN VERB MUST BE PARTICIPLES OR
UNTENSED FORMS. IF A PAST PARTICIPLE, THE PREVIOUS
VERB IN THE SEQENCE MUST BE EITHER 'HAVE'
(ASPECT~PERFECT) OR 1 BE' (SENTENCE IS PASSIVE, IF
POSSIBLE). A PRESENT PARTICIPLE MUST BE PRECEDED BY
'BE' (ASPECT=PROGRESSIVE), OTHERWISE, THE CURRENT
WORD MUST BE AN UNTENSED VERB AND THE REGISTER V
MUST BE EMPTY (BECAUSE THE FIRST VERB WAS A MODAL).
IF ANY OF THESE CONDITIONS IS SATISFIED, WE REPLACE
THE VERB BY THE ROOT FORM OF THE CURRENT WORD,)

(C0ND
((GETF PASTPART)

(COND
((ANr• (WRD BEV)

(VPI\SSIVE •))
(HOLD (GETR SUBJ)

(GETR NPFEATURES))
(SETR SUBJ (BUILDQ (NP (PRO SOMETHING))))
(SETR AGFLAG T))

((ANO (NULLR ASPECT)
(WRD HAVE V))

(SETRQ ASPECT (PERFECT)))
(T (ABORT))))

((GETF PFESPART)
(COND

((WRD BEV)
(ADDR ASPECT (QUOTE PROGRESSlVE)))

((WRD POSS-ING TYPE))
('11 (~.BORT))))

((OR (NOT (GETF UNTENSED))
(GETR V))

(ABORT)))
(SETR V *)
(TC VP/V))

B. 54

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:~4PM

(CAI ADJ (RFEAT COPULA V)
(SETR V (BUILDQ ((a) (ADJ) (*)

#)

(COND
((GEfF COMPARATIVE)

(QUOTE (COMPARATIVE)))
((GFTF SUPERLATIVE)

(QUOTE (SUPERLATIVi))))
(COND

((~RO (APPEAR SEEM)
V)

(QUOTE (SEEMING))))))

(* A PREDIC~TE ADJECTIVE (SIMPLE OR INFLECTED)
REPLACES A COPULA AS DS VERB,

.!:?AGE 1:53

IF THE COPULA WAS "APPi':AR" OR "SEEM", THE FEATURE
"SEEMING" IS ADDED TO THE NEW VERB.)

(T·-~ VP/ADJ))
(MEM (MORE MOST)

(AND (RFEAT COPULA V)
(G E T P (tl E X T W R D)

(QUOTE ADJ)))
(SETR MORE-MOST•)
IT~ VP/COMP-ADJ))

(PUSH NP/ (AND (GETR THERE)
(NULLR SUBJ)

(C"liD

(\.JRD (BE EXIST)
V))

((tJ O T ("P t, C H E C K • (GE T R P N C OD E)))
(AHOHT)))

(SETP SUBJ•)
rr· VP/V))

(JUMP VP/HEAD (Gt.:TR Sl18J)

(* HERE WE l:?USH FOR THE
SUBJECT OF A
THERE-INSERTED
S1::NTENCE.)

(• IF WF HAVE THE SUBJECT, WE CAN ASSUME THAT WE
ALSO H~VE THE MAIN VERE (USUALLY, THIS WILL BE TRUE
B:CAUSE WE WOULD HAVE LOOPED THROUGrl THE FIRST ARC
AS LONG AS POSSIBLE) A~D JUMP TO VP/HEAD TO LOOK FOR
POST-VERB CONSTITUENTS. IF THE V REGISTER rs EMPTY
(THE FIFST AND ONLY VERB WAS A MODAL), WE ABORT
UNLESS THF MODAL WAS 'D0 1 --WE ALLOW 'DO' TO BECCME
THE MAIN vnrn.)

B.55

; <WEBBEn>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:54

(C(1ND
((NULLR V)

(COND
((..ZRD DO MODAL)

(SETRQ V DO)
(SETR MODAL NIL))

(T (ABORT))))
(T (COND

((AND (GETR THERE)
(WRD BEV))

(SETRQ V EXIST)))))
(SETR HEAD (GETR V)))

(CAT ADVT

(VP/VP

(ADDL VMODS (BUILDQ (ADV*)))
('1'0 VP/V)))

(WRD RY (GETR AGFLAG)

(* THE ELEMENTS OF THE VERB PHRASE WHICH ARE CLOS~LY
TIED TO THE MAIN VERB (E.G. COMPLEMENTS) HAVE BEEN
PROCESSED. VARIOUS ADDITIONAL MODIFIERS ARE STILL
PERMITTED (ADVERBS, PREP-PHRASES). ALSO, WE LOOK FOR
THE AGENT OF PASSIVE SENTENCES AND THE OBJECT OR
SUBJECT OF POSS-ING COMPLEMENTS, IF THESE HAVE NOT
BLEN ALP.EADY IDENTIFIED,)

(• AGFLAG IS SET IF WE HAVEN'T FOUND THE SUBJECT OF
A PASSIVE SENTENCE. 1 BY' CAN INTRODUCE IT,)

(TO VP/AGT))
(WRD BY (AND (WRD POSS-ING TYPE)

(NULLR OBJ)
(NULLR SUBFLAG))

(*INA POSS-ING COMPLEMENT WHERE THE SUBJECT WAS
SENT DOWN FROM THE POSSESSIVE AT STATE NP/DET, THE
SENT SUBJECT MIGHT REALLY BE THE OBJECT IF NO OBJECT
WAS FOUND ('THE DUCK'S SHOOTING BY THE HUNTERS .,,')
AND THE REAL SUBJECT CAN FOLLOW A 'BY' IN THIS
POSITION,)

B.56

<WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:~4PM

(SETR OBJ (GEIR SUBJ))
(TO ING/RY))

(MEM (OF 9Y)
(GETR SUBFLAG)

PAGE 1:55

(•INA POSS-ING COMPLEMENT, IF THE SUBJECT WAS NOT
SENT DOWN FROM THE POSSESSIVE, IT CAN APPEAR
FOLLOWING EI!HER 'OF' OR 'BY': 1 THE SHOOTING OF THE
HUNTERS •••' OR 'THE SHOOTING BY THE HUNTERS')

(SETR SUBFLAG NIL)
(TG ING/BY))

(CAT ADVT
(ADDL VMODS (BUILDQ (ADV•)))
(TO VP/VP))

(PUSH PP/ (CAT PREP)
(ADDL VMODS •)
(T0 VP/VP))

(JUMPS/VP T))

STOP

B.57

Appendix c

Semantic Rules

C.l

<WEBB~R>RULES.WRITEUP;7 SUN 11-JUN-7l 12:29PM

(PROGN (LISPXPRIN1 (OUOTE "FILE CREATED")
T)

(LISPXPRIN1 (QUOTE "11-JUN-72 12:29:~8")
T)

(LISPXTERPRI T))
(LISPXPRINT (QUOTE RULESCOMS)

T)
(RPAOQ RULESCOMS ((V: GBNRULES)

(R: TRULFS)
(V: NEWRULES)
(V: TRFF.FRAGS)
(V: RULELISTS)))

(LISPXPRINT (QUOTE (V: GENRULES)) T)

PAGE 1

(RPAOQ GENRULES (ADJ:MASS ADJ:SET ANY:TERM D!ALL D:ALL-PL D!ALL\ONES
D:ANAPHORA D:ATLEAST D:ATMOST D:AVERAGE D:CAROINAL D:EACH D:EVERY
o:EXACTLY D:HOWMANY D:LESSTHAN D:MASS D:MAXlMUM D:MINIMUM o:MORETHAN
n:NEG D!NIL o:NO D:NOT-SET o:NUM!!ER D!OLDEST o:ORDINAL o:SE~I-ANAPHOR
n:SET1 D:SBTOF D:SOME D:SSET D:THE-PL D:THE-SG D:THE-SG2 D!WHQ-PL
D!WHO-SG D:WttR NP:NPR PR1 PR2 PR3 PR4 PRS PR6 R:ADJ R!PP R:QREL R:REL
s:BE-AROUND S:BE-FOUAL S:BE-GREATER-VAL s:BE-LESS;VAL s:BE-MEMBER
S:BE-MEMBER* S:DCL S:IMP S:NEG S:NPQ S:NPU s:uREL S:QREL-NEG S!WHQ
S!YES/NO SS30 SS32 SS33 S534 SS35 SS36 SS41))
(DEFINEV
(ADJ:MASS ((TT)

->
(PROGN

(• THE INTERPRETATION PRODUCED FOR A MASS NOUN
~UOIFYING ANOTHFR NOUN (E.G. "THE SlLlCA PHASE") IS
(NPR+ X / (QUOTE---)), WHERE THE STANDARD FORM OF
THE MASS NOUN 1S INSERTED IN THE SPACE.
THE FUNCTION NPR FINDS THE SPANUARD FORM)

(SF;TQ SEM (SUBST (QUOTE (NPR• X / v.))
(QUOTE DLT)
QUANT))

(SETQQ QUANT DLT)
(SZTQ SEM

(SUBST (LIST (QUOTE QUOTE)
(EVAL (CONS (QUOTE NPR)

(QUOTE (# 0 TEHM)))))
(QUOTE W)
SEM)))))

(ADJ:SET ((AOJ.NP (M~M 1 SET))
->
(PRUG1 (S2TQ SEM

(SUBLIS (QUOTS ((FOR • UNION)
(DLT (# 1 1 NRULES))))

QUAN':'))

(SETQO OUANT DLT

c.2

<WEBBER>RULES,WRITEUP;7 SUN 11-JUN-72 12:2Y~M PAGE 1:1

))))

(* ADJ:SET MATCHES A NOUN-NOUN MODIFIER WHEN IT
R:2FERS TO A SET, E.G. "RARE-EARTH ANALYSES".
RARE-EARTH REFERS TO THE SET OF ELEMENTS WITH ATOMIC
NUMBERS 58 THROUGH 11.~ THE INTERPRETATION PRODUCED
IS SIMILAP TO THAT fOR "ANALYSES OF RARE.EARTHS":
(FOR BVEBY X6 / (SEQ RARE-EARTHS): T ;
DLT) •)

(ANY:TER!i ((TT)

->
(LIST (DUOTE QUOTE)

(EV~L (CONS (QUOTE NPR)
(QUOTE (# 0 TERM))

(* ANY:TtPM IS USED TO INTERPRET VERBS, ADVERBS,
INTtGERS, PROPER NOUNS AND ADJECTIVES.
THE INTEPPBETATION rs (QUOTE---), WHERE Th~ SPAC~S
ARS FILLED BY THE STANDABD FORM Of THE hORD,
CO~PUT2D BY NP?.)

)))))

(D:ALL ((NP.DET T)
->
(YUANI (FOR ~VERY X / (# 0 NPULES)

(# 0 RPULtS)
; D!.T))))

(D:ALL-PL ((NP.O~~ (AND (EOU ALL)
(EQU 2 i'L)))

->
[PHOG~ (CSUBSI (QUOTR EVERY)

(Q U O 'i 8 G E N)

QUANT)
(QUANT (FOR ~VSRY X / (; 0 NRULES)

(-;; i RRULES)
; ~)LT)))))

(D : A L L \ 0 N E S ((N P • D i::: T (E Q U I\. L L))
CNP.PRO (EQU ONES))
(NP.PP (EOU I OF)l
->
(<)UO'.;E (# 3 2 ALL)

(* D:AL~\ONES INVOKES :HE RULE D:ALL ON THE NODE'S
DEPEND~NT PREPOSITIONAL PHRASE VIA THE TYPEFLAG "ALL".
F.G. OU THE PP OF "ALL OF THE TlPE/A SAMPLES", THE
INTERPRFTATION rs SUCH THAT THE QUANTIFIER COMES
FORM "~LL" AND THE CLASS AND RESTRICTlONS FROM THE
D :::: P E N D Z 1; T N P •)

C.3

<WEBBER>RULES0 WRITEUP;7 SUN 11-JUN-72 12:29PM

)))
(D:ANAPHORA ((OR (NP.PRO (NOT (OR (EQU 1 I)

(EQU 1 YOU)
(EQU 1 ONES))))

(NP.DET (OR (EQU 1 THIS)

(NOT (NP,PP T))
(NOT (NP.REL T))
->

(EQU 1 THAT)
(EQU 1 THESE)
(EQU 1 'I'HOSE))))

PAGE 1:2

(PROGN (SETO QVAR (ANTECEDANT (QUOTE (# 0 ID~NTITY)))

(* D:ANAPHORA MATCHES ANAPHORIC N~•S NOT MODIFIED BY
PREPOSITIONAL PHRASES OR RELATIVE CLAUSES, E.G. "lT",
"THOSE BARIUM ANALYSES", THE INTERPRETATION DEPENDS
ON THE ANTECEDANT. SEE THE FUNCTION DESCRIPTIONS OF
ANTECEDANT, ANTEQUANT AND SCOPEVARS FOR FURTHER
EXPLANhTIOH,)

(MAPC (SCOPEVARS QVAR)
(FUNCTION ANTEOUANT))

(ANTEQUANT QVAR))))
(D:ATLEAST ((NP.DET.COMP (OR (EQU 1 ATLEAST)

(EQU 1 ASMANYAS)))
->
(QUANT (FOR (EQ N (# 1 2))

XI(# 0 NRULES)

(# 0 RRULES)
; DLT))))

(0:ATMOST ((NP.DET.COMP (EQU I ATMOST))
->
(QUANT (NOT (FOR (~REATER N (# 1 2))

XI (# 0 NRULES)

(D:AVERAGE ((TT)
->

(# :; B R U L E S)
; DLT)))))

(QUOTE (SEQL (AVERAGE X / (# ~ NRULES)

(# 0 RRULES))))))
(D:CARDINAL ((NP.DET.INTEGER T)

->
(QUANT (FOR (EQ N (# 1 1 INTEGER))

X / (# 0 NRULES)

(# C RBULES)
; DLT))))

c.4

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-7~ 12:29~M

(D:EACH ((NP.DET (AND (EOU EACH)
(E0U 2 SG)))

->
(OUANT (FOF EVERY X / (# 0 NRULES)

(# ✓; R R U L E S)
; DLT))))

(D:EVERY ((NP 0 DET (AND (EQU 1 EVERY)
(F:Qtl 2 SG)))

->
(QUANT (FOR EVERY X / (# 0 NRULES)

(# !'! RRULES)
; DLT))))

(D:EXACTLY ((NP.DET 0 COMP (EQU 1 EXACTLY))
->

(QUANT (E'OR (EQ N (# 1 2))
X / (11- .:) NRULES)

(# 0 RRULES)
; DLT))))

(D:HOWMAl,Y ((NP.DET (AND (EQU 1 HOWMANY)
(OR (EQU 2 PL)

(EQU 2 SG/PL))))
->
(QUANT (FOR THE X / (# 0 NUMBER)

T ; (PRINTOUT X))J))
(D:LESSTHAN ((NP.DET.COMP (OR (EOU 1 FEWERTHAN)

(EOU 1 LESSTHAN)))
->
(0 U A 1; T (N O T (F OR (E Q N (# 1 2))

XI(# 0 NRULES)

(ff. 0 RRULES)
; DLT)))))

(D:~ASS ((~P.N (OR (MEM 1 (MASS)

PAGE 1:3

(• D:MASS MATCHES A MASS NOUN AND PRODUCES AS ITS
INTERPRFTATION~ A VARIABLE ASSOCIATED WlTH THE
S~ANDARD FORM OF rHE NOUN. E.G. "ALUMINUM" IS
INTERPRETED AS (NPR* X / (QUOTE AL203)))

->

(EQ (GETP (CAR (TERM (CONSTITUENTS (# 1))))
(OUOTE !.))

(()UOT7 MASS))))

(PROGN (SETQ SEf·i (SUBST (QUOTE (NPR• X / W))
(QUOTE DLT)
QUA.N1))

(SETQQ UUANr DLI)
(SETO SEr (SU~ST (LIST (QUOTE QUOTE)

(TABfORM (# 0 HEAD)))
(QUOTE W)
SE::1)))))

c.s

; <WEBBER>RULES0 WRITEUP;7 SUN 11-JUN-72 12:2YPM

(D:MAXIMUM ((T T)
->
(QUOTE (SEQL (MAXIMUM X I (# 0 NRULES)

(# I!) RRULES))))))
(D:MINIMUM ((T T)

->
(QUOTE (SEQL (MINIMUM X I (# 0 NRULES)

(# ~ RRULES))))))
(D:MORETHAN ((NP 0 DET0 COMP (EQU 1 MORETHAN))

->
(QUANT (FOR (GREATER N (# 1 2))

(D:NEG ((NP.NEG T)
->

X / (# 2l NRULES)

(# 0 RRULES)
; DLT))))

(QUANT (NOT (# 1 1)))))
(O:NIL ((NP 0 DET (EQU 1 NIL))

->
(QUANT (FOR GEN X / (# 0 NRULES)

(# J RRULES)
; DLT))))

(D:NO ((NP.DET (EQU 1 NO))
->
(QUANT (NOT (FOR SOME X / (# 0 NRULES)

(# 0 RRULES)
; DLT)))))

(D:NOT-S8T ((TT)
->
(Q.UO!E (# ~)

PAGE 1:4

(* o:NOT-SET IS A DEFAULT BULE USED IF AN NP NODE
CANNOT BE INTERPRETED AS REFERRING TO A SET.
AS A RESULT, THE NORMAL DRULES roe THAT NODE ARE
MATCHED.)

)))
(D:NUMBER {(TT)

->
(SSUNIONF (SEOL (NUMBER X / (# 0 NRULES)

(# 0 RRULES))))))

c.6

; <WE3BER>RULES.WRITEUP;7 SUN 11-JUN-72 12:2Y~ft PAGE 1:5

(D : 0 L D -~ S T ((T T)
->
(0UOTE (SEQL (OLDEST X / (# ~ NRULES)

(# k1 Ii.RULES))))))
(D:ORDINAL ((NP.DET.ART (EQU 1 THE))

(NP.OET.POSTART (NUMBERP (EVAL (CADADR (# 1 TERM)))))
->
(QUANT (FOR (ORDINAL (# 2 1 TERM))

XI(#(, NRULES)

(# kJ RRULES)
; DLT)

(* D:U~DINAL MATCHES DETERMINERS WHICH AR~ ORDINAL
NLiMBSRS, E.G.
"~HE THIRD POTASSIUM ANALYSIS FOR SAMPLE 1~~03"
INTERPRETATION IS (FOR (ORDINAL 3) XI
(CATALINE (WHQFILE S70l03) S10003 OVERALL K2O):
DLT))

)))

.l. HE

,,-..
.L ~

(D:SEM:-ANAPHOR ((NP.PRO (NOT (OR (EOU I)

(D : SE I' ·1

{EQU 1 YOU)
(EOU 1 ONBS))))

(NF.PP 'i')

->
(PROG1 (SEKIANAPHOR (QUOTE (# ~ IDSNTITY))

(* D:SfMI-ANAPHCR MATCHES ON TY~E Of PARTIAL
A~APHORA, PBONOUNS MODIFIED BY PREPOSlTlONAL
F~RASES. E.G. "GIVE ME THOSE FOR S1~0~3" THE
INTERP9EA7!0N DEPENDS ON THE ANIECEDANT0

S2E THE FUNCTION DESCRIPTION OF SEMlANAPHOR FOR
F' U H T H E ::. Cl ;:. T A I L •)

((NP.~ (~EM ~ SET))
(NP.DET (OR (F:ViJ

(r V. TT

->

THE)
NlL)
A)))

))))

(FRCG1 (SE:O SEM (SUBLIS (QUOTE ({FOR • UNION)

QUANT)

C.7

(DLT SETL!ST X /
(# 0 ?-.RULES)

(# 0 RRULES)
; T)))

; <WEBBE8>RULES.WRITEUP;7 SUN 11-JUN-7i 12:2YFM PAGE 1:6

(• D:SET1 MATCHES AN NP INTERPRETABLE AS A SET, E.G,
"THE TYPE/8 ROCKS WHICH CONTAIN SILICA" THE
INTERPRFTION IS THE LIST OF OBJECTS IN THECLASS
MZFTIN3 THE GIVEN RESlRICTIONS E.G.
(SETLIST X / (SEQ TXPEBS):
(CONTAIN X SILICA); T))

)

(SETQQ QUANT OLT))))
(O:SETOF ((NP.DET (AND (OR (EQU 1 THE)

(EQU 1 ALL)
(EQU 1 NIL))

(EQU 2 PL)))
->
(PROG1 (SETQ SEM (SUBLIS (QUOTE ((FOR. UNION)

(DLT SETOF X / (# ~ NRULES)

(# 0 RRULES}
; T)))

QUANT)

(• o:SETOF INVOKES THE INTfRPRETATION OF THE NODE AS
A RESTRICTED SPT, PRODUCING A SINGLE SUCCFSSOR
FUNCTION FOR THE CLASS OF THE NODE AND ITS
RESTRICTIONS. F.G., IT WOULD PRODUCE FOB
"THE BRECCIAS WHICH CONTAIN KRYPTON" THE
INTERPRfTATION (SETOF X / (SEQ TYPECS):
(CONTAD'. X (OUCTE KR)); T))

)

(SETQQ OUANT DLT))))
(D:SOME ((NP.DET (OR (EQU SOME)

(EQt! A)
(EQU AN)
(E Q IJ ANY)))

->
(QUANT (FOR SOME X / (# 0 NRULES)

(# ~' RRULES)
; DL'I'))))

(D:SSEI ((NP.DET (OR (EQU EVERY)
(EQU 2 SG/PL)
(EQU 2 PL)))

->
(OUANT (SSUNION X / (# ~ NRULES)

(# k; RRULES)
; DLT))))

c.a

; <WEBBEP>RULES0 WRIT!UP;7 SUN 11-JUN-72 12:29fM

(D:THE-PL ((NP.DET (AND (EQU 1 THE)
(OR (EQU 2 PL)

(EQU 2 SG/PL))))
->
(QUANT (FOB EVERY X / (# 0 NRULES)

(# 0 RRULES)
; DLT))))

(D : T H E •· S G ((N P • D E T (l\ N D (0 R (E Q U 1 T H E)
(EQU 1 THIS)
(EQU 1 THAT))

(EQU 2 SG)))
->
{QUANI (FO:< '.l'HI:; { #

(# 0 RRULES)
; DLT))))

(D:THE-SG2 ((NP.DET (AND (EQU 1 THE)
(EQU 2 SG)))

(NP.N (M;i':M 1 (NONSPECIFIC)))
->
(QUANT (FOR EVERY X / (# 0 NRULES)

(# 0 RRULES)
; DLT)

PAGE 1:7

(* D:THE-SG2 MATCHES DEFINITELY DETERMINED SINGULAR
NOUN PHRASES WHICH DO NOT HAVE SINGLE REFERENTS.
FOR EXAMPLE, "THE AGE OF S100~7" DOES NOT HAVE A
S I N G L E F. E F :E R E N T , B t!'f R A TH ER S E V £ R A L , 0 N E F O R EA C H
M~ASURING TECHNIQUE EMPLOYED.)

)))

(D:WHQ-PL ((NP.DET (AND (OR (EQU WHICH)
(EOU 1 WHAT)
(EOU 1 WHQ)
(EQU 1 WHICHQ))

(EQU 2 PL)))
->
(PROGK (LSUBST (QUOTE EVERY)

(QUOTE GEN)
QUANT)

(QUANT (FOR EVERY X / (# 0 NRULES)

(# '1 RRULES)

(PRINTOUT X))))))

c.9

; <WEBBER>RULES0 WRITEUP;7 SUN 11-JUN-72 12:29PM PAGE 1 :8

(D:WHQ-SG ((NP.DET (AND (OR (EQU 1 WHQ)
(EQU 1 WHICHQ)
(EQU 1 WHICH)
(EQU 1 WHAT))

(EQU 2 SG)))
->
(QUAN! (FOR THE X / (# 0 NRULES)

(# 0 RRULES)
;
(PRINTOUT X)))))

(D:WHR ((NP.DET (EQU 1 WHR))
->
(QUOTE (# e)

(• THE INTSRPRBATION OF THE RELATIVE NP IN A
RELATIVE CLAUSE IS THE VARIABLE ATTACHED TO IT IN
THE MATRIX SENTENCE.)

)))
(NP:NPR ((NP.NPR T)

->
(PROGN (SETO SEM (SUBST (QUOTE (NPR• X / W))

(QUOTE DLT)
QUANT)

(• THi INT~RPRSTION OF A PROPER NOUN IS A VARIABLE
ASSOCIATED WITH THE NOUN IN ITS STANDARU FORM.
E.G. "NASA" IS INTERPRETED AS
(NPR• X / (QUOTE NASA)))

(SETQQ QUANT DLI)
(SETO SEM

(SU8ST (LIST (QUOTE OUOIE)
(EVAL (CONS (QUOTE NPR)

(QUOTE (# 1 1 TERM)))))
(QUorE W)
SEM)))))

(PR1 (CS.CJ-NEG (NOT (LEAFMEMB P

->

(QUOTE (WHQ WHICHQ WH~N WHERE WHY HOW
HOWMAN!)))))

(PBED (TEST (# J SRULES)) (* PR1 MATCHES YES-NO
QUESTIONS PHRASED IN THE
NEGATIVE)

)))

c.10

; <WEBBER>BULES0 WRITEUP;7 SUN 11-JUN-72 12:29PM PAGE 1:9

(PR2 ((S.Q (NOT (LEAl~MEMB P

(NOT (S 0 0-MODAL T))
-· >

(QUOTE (WHQ WHICHQ WHEN WHERE WHY HOW HOWMAN!)
))))

(PRED (TEST (# 0 SRULES)) (• PR2 MATCHES YES~NO
QUESTIONS. THE
INTERPRETATION IS

"TEST THE VALIDITY OF THE PHO~OSIIION EAP~E~SED Bl TH~ ~E~tENCE.")

(PR3 ((S,NEG T)
•. >
(PRED (NOT (# 0 SRULES))

(• PR3 MATCHES REQUESTS VOICED IN THE NEGATIVE THAT
ARE NOT YES-NO QUESTIONS, E.G.
"WHICH SAMPLES DO NOT CONTAIN SILICA?")

)))

(PR4 ((OR ((S (DCL))
T)

(PRS

(PR6

-· >

((S (REL))
T)

((S (POSS-ING))
T))

(FRED (# 0 SRULES)

(• PR4 MATCHES DECLARATIVE SENTENCES AND RELATIVE
AND POSSESSIVE-PARTICIPLE CLAUSES E.G.
"S10003'S CONT~INING SILICA" ■ THE INTERPRETATION IS
THE PROPOSITION EXPRESSED BY THE SENTENCE OR
CLAUSE.)

)))

((S 0 IMP T)

-· >
IPRED (DO (# :J SRULES))

)))

(IS.NP T)
IS.VP Tl
-· >
IPRED (# 0 SRULES)

)))

c.11

(• PR5 MATCHES
IMPERRTIVE SENTENCES,)

(• PR6 MATCHES ALL
SENTENCES EXCEPT FOR
NOUN PHRASE UTTERANCES,)

; <WEBBFR>RULES0 WRITEUP;7 SUN 11-JUN-72 12:29PM

(R:ADJ (AND (NP.ADJ (NOT (USED? (# 1))))
(NP 0 N T)

->
(PROG (ANS)

(COND

PAGE 1:10

((USED? (SETQ ANS (CDR (ASSOC 1 (CAR RVECTOR)))

(• R:ADJ MATCHES ALL ADJECTIVES IN THE REQUEST WHlCH
HAVEN'T CONTRIBUTED TO ITS INTERPRETATION.
IT CAUSES A MESSAGE TO BE PRINTED OUT TO THE USER TO
THAT EFFECT, AND THAN ASKS HIM ~HETHER IT IS SAFE TO
IGNORE THOSE ADJECTlVES. THE USER IS GIVEN THE
OPTIONS or AGHEEING, TERMINATING THE REUUEST, OR
BREAKING IN ORDER TO INVESTIGATE THB MATTER
FURTHER.)

))

(RETURN T)))
(PRIN1 (QUOTE "I DO NOT UNDERSTAND")

T)
(PRINT ANS I')

(PRIN1 (QUOfE "AS A MODIFIER OF")
T)

(PRINT (CDR (ASSOC 1 (CADH RVECTOR)}))
(PRIN1 (QUOTE "DO YOU WANT ME TO IGNORE IT?")

T)
(TERPRI T)
(COND

((MEMB (SETQ ANS (READ))
(QUOTE (YEST TRUE)))

(PRINT (QUOTE OK)
T))

((EQ ANS (QUOTE BREAK))
(BFEAK1 TT SEMSUB))

(T (CJ U I T)))
T)))

c.12

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:2~rM PAGE 1:11

(R:PP '.AND (NP.PP (NOT (MEANING? (# 2) (* R:PP ACTS LIKE AS
R:ADJ ON PREPOSITIONAL
FHRA::iES •)

)))

->
(PROG (ANS)

(PFIN1 (QUOTE "I DO NOT UNDERSTAND")
T)

(PRINT (CDR (ASSOC 3 (CAR RVECTOR)))
T)

(PRIN1 (QUOTE "AS A MODirIER OF")
T)

(PRINT (CDR (ASSOC u (CAR RVECTOR)))
T)

(PRIN1 (QUOTE "DO YOU WANT ME TO IGNORE lT?")
T)

(TERPRI T)
(COND

((MEMB (SETQ A.NS (READ))
(QUUTE (YEST TRUE)))

(PRINT (UUOTE OK)
T))

((E:Q ANS (QllOTE BREAK))
(RRfAK TT SEMSUB))

('.I' (QUIT)))
T)))

(R:QRE~ C(NP.QREL (AND (RBLTAG (# 1)

(* R:QREL A.CTS LIKB AS ~:ADJ ON RELATIVE CLAUSES
DERIVING FROM THE SURF~CE STRUCTURE VERB PHRASES OF
WH-QUESTIONS.)

->
(QUOTE (#

(OR (I~TlRP (# 1))

(PROG (JI.NS)

:))))

(PRIN1 (QUOTE "I DO NOT UNDERSTAND")
T)

(P R I 1,; T (# 1)
T)

(PRIN1 (QUOTE
"DO YOU WANT ME TO IGNORE IT?")

T)
(TEP.PEI T)
(COND

((I"lEMB (SETQ ANS (READ))
(QUOT£ (Y3S T TRUE)))

(PRINT (QUOTE OK)
T))

((EQ ANS (QUOTE BRBAK))
(BREAK1 TT SEMSUB))

(T (QUIT)))
'l'))))

C.13

; <WEEBER>RULES 0 WRITEUP;7 SUN 11-JUN-72 12:29PM PAGE 1:12

(R:REL U1ND (NP.REL (AND (RELTAG (# 1) (• R:REL ACTS LIKE AS
R:AOJ ON RELATIVE
CLAUSES.)

->

)
(OR (INTERP (# 1))

(PROG (ANS)
(PRIN1 (QUOTE "I DO NOT UNDERSTAND")

Tl
(PRINT (# 1)

T)

(FRIN1 ((JUOTE
"DO IOU WANT ME TO IGNORE IT?")

T)
(TERPR! T)
CCOND

((MErlB (SEl'Q AN::i (READ))
(QUOTE (YEST TrlUE)))

(PRINT (QUOT3 OK)
T))

(BREAK1 TT SEMSUB))
(T (\JUITJ))

T))))

(?RED (# 1 1))))
(S:BE-AROUND ((S.NP-V (AND (MtM 1 (ANALYSIS CONCENTRATION)

)

(• S:AROUND MATCHES
REQUESTS LIKE WHICH
ALUMI~UM ANALYSES ARE
AROUND 7 PERCENT?)

(EQU 2 BE)))
(S.COMP-N (AND (OR (EQU 1 AROUND)

->

(EQU 1 APPROXIMATELY))
(ME'.'! 3 UNIT)))

(3UILDQ (AROUNDVAL (d 1 1)

)

(LIST (~UOTE QUOTE)
(CONS (# 2 2 INTEGER)

('11 2 3 UNIT))))))
(S:BE-EUUAL ((S.NP-V (AND (EQU 2 BE)

(NOT (OR (EQU 1 WHQ THING SG)
(EQU 1 WrlQ THING PL)
(EQU 1 WrlQ THING SG/PL)))))

(S.OBJ (AND (NOT (OR (EQU 1 wHQ THING SG)

->

(EOU 1 WH~ THING PL)
(EOU 1 WHQ THING SG/PL)))

(EQU 2 SG)))

(fH~r (~QUAL (# 1 1)
(# 2 1))

C.14

<WEBBER>RULES 0 WRITEUP;7 SUN 11-JUN-7i 12:292M PAGE 1:13

(* S:BE-EUUAL MATCHES QUESTIONS Of THE fORM IS X Y?
, E 0 G0 IS S10~72 THE OLDEST ROCK?)

)))

(S:BE-GBEAT:R-VAL ((S 0 NP-V (AND (MEM 1 (ANALYSIS CONCENTRATION)

)
(EQU 2 BE)))

(* 5:BE-GREATER-VAL
f!ATCHES REQUESTS LIKE
A~E ALL ALUMINUM
CONCENTRATIONS GREATER
THAN 5 PERCJ::NT?)

(S.COMP-N (AND (OR (EQU 1 MORETHAN)
(EQU 1 GREATERTHAN))

(1:-1:'.M 3 UNIT)))
->
(BUILDQ (GREATER {# 1 1)

#)

(LIST (QUOTE QUOTE)
(CONS (# 2 2 INTEGER)

(# 2 3 UJ.14IT))))))
(S:BE-LESS-VAL ((S.NP-V (AND {MEM 1 (ANALISlS CONCENTRATIJN)

(* s:BE-LFSS-VAL ~ATCHES REQUESTS LIKE 1S THE
AVERAGE CO~CENTRATION OF ALUMINUM IN HRECCIAS LESS
THAN 9 PERCENT?)

)

(EUU 2 BE)))
(S.CO~P-N (ANU (OR (EQU 1 LESSTHAN)

(iQU 1 FEWERTHAN))
(MEM 3 UNIT)))

.. >
(BUILDQ (LESSVAL (# 1 1)

#)
(LIST (QUOTE QUOTE)

(CONS (# 2 2 INTEGER)
(# 2 J UNIT))))))

(S:BE-ME~BER ((S.NP-V (AND (EUU 2 BE)
(NOT (OR (EQU i WH(,2 THlNG SG)

(EOU 1 wHQ THING PL)
(EQU 1 WHQ THlNG SG/PL)))))

(S.OBJ (AND (NOT (OR (EQU 1 WHO THING SG)
(EQU 1 WHQ THING PL)
(SQU 1 WHQ THING SG/PL)))

(OR (MEM 1 SET)
(EO.U 2 PL)
(EQU 2 SG/PL))))

->
(PRED (MEMBER (# 1 1)

(# 2 1 SET?))

c.15

<WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29PM PAGE 1:14

(• S:BE~MEMBER MATCHES QUESTIONS OF THE FORM IS X A
Y? AND ARE X'S Y'S? E.G. rs 510~03 A ~RECCIA?)

)))

(S:BE-MEHBER• ((S 0 NP-V (EQU 2 BE))
(S.OBJ (HEM " TYPE))
->
(QUOTE (!'!EMBER* (# 1 1)

(# 2 1))

(• S:BE-MEMBER• MATCHES QUESTIONS Of THE FORM WHAT
KIND OF XIS Y? AND IS YA TYPE Of X? E,G, WHAT KIND
OF ROCK IS S1~J~3?)

)))

(S:DCL ((S.DCL-S T)
->
{PR::;D (# 1 1)

(* S:DCL, S:IMP, S:NEG, S:WHQ, AND S:YESgNQ MATCH S
NODES OF THE FORM (S (DCL (S •••))),
(S (IMP (S •••))), (S (NEG
(S •••))), AND (S (Q (S •••))), OTHER POSSIBLE DE~P
STRUCTURES FOR SENTENCES THAT THE PARSER MIGHT BE
REQUIRED TO PBODUCE,)

)))

(S:IMP ((S.IMP-S T)
->

(PF:'.:D (DO (# 1 1)))))

(S:NEG ((S.~SG-S T)
->
(PR:SD (NOT ("i • 1)))))

(S:NPQ ((S.NPQ I)
->
(PP~n (# 1 1 REFS?)

)))

(S:NPU ((S.NPU Tl
->
(PRZD (PRINTOUT (#

(S:QREL (((S (QREL))
T)

->
(OUOTE (# '.":·· SRUJ,LS)

R'.::FS?))l))

(* s:NPQ MATCHES NOUN
?HRASE QUESTIONS, E 0 G0

WHICH BARIUM ANALYSES?)

(• s:uREL MATCHES RELATIVE CLAUSES DERIVING FROM THE
SURFAC STEUCTUPE VERB PHRASES OF WH-QUESTIONS 0)

c.16

; <WEBBER>RULES0 WRITEUP;7 SUN 11-JUN-7~ 12!2~PM PAGE 1:15

)))

(S!QREL-NEG (((S (QREL NEG))
T)

->
(QUOTE (N:JT (# ;'1 SRULES))

)))

(• S!QREL-NEG DOES THE
SAMB FOR WH-QUESTIONS
?HRASED IN '£HE
NEGATIVE.)

(S!WHQ ((S.Q-S (LEAFMEMB P (QUOTE (WHQ WHICHQ WHEN WHERE ~HY HOW
HOWMANY))))

... >
(PR:D (# 1 1))))

(S:YES/NO ((S.Q-s (NOT (LEAFMEMB P

->

(QUOTE (WHU WHlCHQ WHEN WHERE WHY HOW
HOWMANY)))))

(PRED (TEST (# 1)))))
(5S30 ((S.NP-V (~~U 2 3E))

(S.OBJ (OR (EQU 1 WHQ THING SG)
(EOU 1 WHU THING PL)
(EQU 1 WHQ THING SG/PL)
(f,QiU 1 WHAT)))

->
(PRED (PHINTOUT (1 • 1))

(* 5S30 MATCHES QUESTIONS OF THE FORM WHAT IS •••
AND WHAT ARE •• ,?)

)))

(5S32 ((S.~P-V (AND (MEM 1 INTEGER)
(BOU 2 BE)))

(S • C O M P (A N D (0 R (E O U '! AT u; A S T)
(EQU 1 AS MANY AS)
(EQU ATLEP,ST)
(EQU 1 kSMANYAS))

(~~n 2 INiEGER)))
->
(PRF[, (NOT (GPF.:AT~;B (2 • ?)

(1. 1))))))

(SSJ} ((S.KP-V (Aro (MEM 1 INTEGER)
(SOU 2 BE)))

(S.COMP (AND (OR (EOU ; MORE THAN)
(EQU . MORETHAN))

(ME~ 2 INTEGER)))
->
(PP.ED (GREATER (1 •)

(2 , 2) l)))

C.17

; <WEBBER>RULES,WRITEUP;7 SUN 11-JUN-7:.:?

(S534 ((S,NP-V (AND (MEM 1 INTEGER)
(EOU 2 BE)))

(S.COMP (AND (EQU 1 EXACTLY)
(M EM 2 INTEGER)))

->
(P2ED (EQUAL (1 • 1)

(2. 2)))))

(5S35 ((S.NP-V (AHD (MEM 1 INTEGER)
(EOU 2 BE)))

CS.COMP (AND (OR (EQU 1 FEWER THAN)
(EQU 1 LESS THAN)
(EQU 1 FEWERTHAN)
(EQU 1 LESSTHAN))

(MEM 2 INTEGER)))
->
(PRED (GREATER (2 • 2)

(1 •)))))

(SS36 ((S.NP-V (AND (MEM 1 INTEGER)
(FOU 2 BE)))

fS.COMP (AND (OR (EQU 1 AT MOST)
(EQU 'I ATNOST))

(MEM 2 INTEGER)))
->
(PRFD (~OT (GREATER (1 • 1)

(2. 2))))))
(SS41 ((S 0 NP-V (OR (~UU 2 BE)

(EOU 2 EXIST)))
->
(PFFD (EXIST (1 ~ 1))

12:29Hl PAGE 1:16

(* SS41 MAICHES REQUESTS Of THE FORM IS THERE AN X?
AND ARE THERE Y'S?)

)))

(LISPXPRINT (UUO!f (R: TrULiS)) T)
(RPAOQ TRUL~S (TOPIC\ADJ 10PIC\ADJ-N TOPIC\ADJ-N;R TOPIC\ADJ.NP
TOPIC\AND-NP TOPIC\AND-S TOPIC\ESP fOPIC\N TOPIC\NOM TOPIC\NR 0 S
TOPIC\NR.NP TOPIC\NOT-NP TOPIC\NOT-S TOPIC\NPR TOPIC\OR-NP TOPIC\OR-S
TOPIC\PP TOPIC\REL TOPIC\S.COMPL TOPIC\S.~P TOPIC\S 0 0BJ TOPlC\S 0 PP
TOPIC\S.V TOPIC\TERM TnPIC\TERM2 TOPIC\AUTHOR T0?1C\AUTHOR2
TOPIC\NP 0 COMPL TOPIC\PP.COMPL TOPIC\V-INTRANS TOfIC\V-TRANS
TOPIC\V-TRANS2 TOPIC\BMPHhSIS TOPIC\ADJ.SUPER TOfIC\ADJ 0 COMP))
(DEFINEG

[TOPIC\ADJ
AND
(NP.ADJ (AND (NOT (MEM DOCUMENT))

(NOT (f.O (CAR (# 1))
(QUOTE NP)))

(~OT (MEM PADDING))))
-> (QUOTf (# 1 1 TERM))]

c.1s

; <WEBBER>RULES0 WRITEUP;7

[TOPIC\ADJ-N
OR

SUN 11-JUN-72 12:2~PM

(NP.ADJ-N (NOT (AND (OR (MEM 1 DOCUMENT)
(MEM 1]?ADDING))

(MEM 2 DOCUMENT)))}
(OB (NP.PP T)

CNP.REL I)
(NP.COMPL T)J,
-> (ADJPHRSE (UUOTE (# \1 IDENTITY))) J

[TOPIC\ADJ-NPR
OR
(NP.NPR T)
(NP.ADJ T)
(OF (NP.PP T)

(NP.REL T)
(NP.COMPL T))
-> (ADJPHRSE (QUOTE (# 2 IJDENTITY))) J

[TOPIC\ADJ.NP
ANfl
(NP 0 T,DJ0 NP T)

-> (QUOTE (# 1 1 TOPIC))]

[TOPIC\AND-NP
l\ ND
(NP.AND T)

-> (QUOT! (# 1 1 TO~lC))]

[TOPIC\l1ND-S
AND
(S .. AND 7)

-> ((,JUOTE (It 1 1 TOPIC)) J

[TOPIC\ESP
(NP.ADVP (ME~ 1 TRANSADV)}

-> (•FLAG (OGOTE (# 1 2 TOPIC))) J

[TOPIC\N
(N?.N (AiD (NOT (MEM PADDING))

,~or (MEM , DO~U~ENI))))
>

[TOPIC\i;oM
(N?.N M T)

-> (QUOTE (# 1

[TOPIC\NR.S
(N '? • 1'l D. • S T)

TCJPIC)))

-> <QUOTE (~ 1 1 TOPIC))]

C.19

PAGE 1:17

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29PM

[TOPIC\NR.NP
(NP,NR.NP T)

-> (QUOTE (# 1 TOPIC)) J

[TOPIC\NOT-NP
(NP.NEG T)

-> (QUOTE

[TOPIC\NOT-s
(S.NEG T)

-> (QUOTE

[TOPIC\NPR
(NP.NPR T)

(NOT (# TOPIC)))

(NOT (# 1 TOPIC)))

-> (QUOTt (# 1 1 TERM))]

[TOPIC\OR-NP
OR
(NP.OR Tl

-> (QUOTE (# 1 1 TOPIC))]

[TOPIC\OR-S
OR
(S.OR T)

-> (QUOTE (# 1 1 TOPIC)) J

[TOPIC\PP
AND
(0 R (N P • P P (!J OT (E Q (C A A D DR (# 2))

J

J

(QUOTE COMPL))))
(NP.PP.AND.PP (NOT (EU (CAADDR (# 2))

(QUOTE COMPL)))))
-> (QUOTE (# 1 2 TOPIC))]

[TOPIC\REL
AND
(NP.REL T)

-> (QUOTE (# 1

[TOPIC\S.COI1PL
(S.COMPL T)

TOPIC))]

-> (QUOTE(# 1 1 TOPIC)) J

[TOPIC\S.NP
(S • NP (A N D (t;Q T (i1 SM 1 P A DD I N G))

(NOT (:•1Ei'J 1 DOCUMENT))))
(NOT (S.PRO 1'))

-> (QUOTE (# 1 1 TOPIC))]

c.20

PAGE 1:18

; <WEBBER>RllLES 0 WRI'I'EUP;7 SUN 11-JUN-72 12:29PM

[TOPIC\S. C·BJ

(OR (S.OBJ (AND (NOT (MEM 1 PADDING))
(NOT (MEM 1 DOCUMENT))))

(S.OBJ 0 REL T))
-> (QUOTE (# 1 1 TOPIC))]

[TOPIC\S 0 PP
AND
(OR (S.PP T)

(S.PP.AND.PP T))
-> (QUOTE (# 1 2 TOPIC)}]

[TOPIC\s.v
(S.V NIL)

flAGE 1:19

-> (LIST (P~,CK (NCONC (QUO~CE (# 1 1 TERM)) (QUOTE (ING)))))]

[TOPIC\TERM
(OR (NF 0 N (A:-JD (LESSP (LENG'l.H (KEYPHRASB (LIST P)))

5)
(GREATERP (LENGTH (KEYPHRASE (LIST P)))

1)

(NOT (MEM 1 PADDING))
(NOT (MEM 1 DOCU!UNT))))

(NP.NPR (AND (LESSP (LENGTH (KEYPHRASE (LIST P)))
5)

(GREATERP (LENGTH (Kl:YPHRASE (LIST P)))
1))))

01CT (NP.REL T))
-> (KEYPHRASE (LIST (QUOTE (# k'.l IDENTITY)))) J

[TOPIC\TERM2
(NP.N (AND (LESSP (LENGTH (K!YPHFASE (LlST P)))

5)
(GBEATERP (LENGTh (KEYPHRASE (LIST P)))

i)
(OR (MEM 1 PADDING)

(l'iF,M 1 DOCUMENT))))
(NP.I-.DJ (AND (NOT (MEM PADDING))

(NOT (MEM DOCUMENT))))
(NOT (NP.REL T})

-> (KEYPHRASE (LIST (QUOTE (# ~ IDENTITY)))) J

[TOPIC\AUTHOR
l\ N [I
(OR (S.AND.~PF T)

(S.NPR T))
(S,V (MEM 1 WRITE))

-> (AUTHOR: (QUOTE (# 1 1 TERM)))]

c.21

<WEBBER>RULES.WRITEUP;7

[TOFIC\AtJTf!OR2
AND
(NP.N (MEM 1 DOCUMENT))
(NP,PP.NPR (EQU 1 BY))

SUN 11-JUN-72 12:29PM

-> (AUTHOR: (QUOTE (# 2 2 TERM)))]

[TOPIC\NP.COMPL
(NP.CCMPL T)

-> (QUOTE (# 1 1 TOPIC))]

[TOFIC\FP,COMPL
(NP,PP.COMPL T)

-> (QUOTE ('If 1 1 TOPIC)) J

[TOPIC\V,..INTRANS
(NOT <s.oaJ T))
(S.V T)

PAliE 1:20

-> < APPEND (LIST (QUOTE V:)). (QUOTE (# 2 1 TERM))) J

[TOPIC\V-TRANS
(S.OBJ (NOR (MEMB (QUOTE AND)

(# 1))

(MEMB (QUOTE OR)
(# 1))))

(S. V T)

-> (APPEND (APPEND (LIST (QUOTE VP:)) (LIST (NFLCT-ING (CAR
(QUOTE (# 2 1 TERM)))))) (ADJPHRSE (QUOTE (# 1 1 IDENTITY)))) J

[TOPIC\V-TRANS2
OR
(OR rs.osJ.AND Tl

(S.OBJ,OR T))
(S.V T)

-> (APPEtJD (APPEND (LIST (QUOTE VP:)) (LlST (NFLCT-ING (CAR
(QUOTE (P 2 1 TE~M)))))) (ADJPHRSE (QUOTE (# 1 1 IDENTITY)))) J

L T OP I C \ E ~'. P H A S I S
(NP.PP (MEM 2 EMPHASIS))
(NP,PP,PP T)

-> (•FLAG (OUOTE (# 2 2 TOPIC))) J

[TOPIC\ADJ,S!JPER
AND
(NP.DET.POSTART (MEMB (QUOTE SUPERLATlVE)

(CADR (# 1))))
(NP.NT)

-> (APPEND (LIST (NFLCT-ADJ (CADR (QUOTE (# 1 1 TE.HM))) (QUOTE
SUPERLATIVE))) (OUOTE (# 2 TERM))))

c.22

; <WEBBBR>RULES0 WRITEUP;7 SUN 11-JUN-72 12:2YPM PAtiE 1:21

[TOPIC\ADJ.COMP
AND
(NP.ADJ.COMP T)
(NP.NT)

-> (APPEND (LIST (NFLCT-ADJ (CAR (~UOTE (# 1 1 TERM))) (QUOTE
COMPARATIVE))) (QUOTE: (# 2 TERM)))]
)
(LISPXPRINT (QUOTE (V: NEWRULES)) T)
(RPAOQ NEWRULES (N:AGE N:AGE' N:ANALYSIS N:AVERAGE N:AVG-CONC? N:BASALT
N:CONCENTRATION N:CORETURE N:DOCUMENT N:DUST N:ELT N:GABBRO N:HALOGEN
N:LINE# N:MAJOR-ELT N:MAXIMUM N:MINERAL N:MINIMUM N:MODAL-ANALYSIS
N:MODAL-CJNC N:NUMBER N:OLDEST N:ONE N:ONEOf N:ONES N:ONES-OF-PRO
N:PHASE N:RARE/EhRTH N:RATIO N:ROCK N:ROCKTYPE N:SAMPLE N:SAMPLETYPE
N:SPEC-ACT N:TYPEA N:TYPEB N:TYPZC N:TYPED R:ANALYSIS-REF R:ANALYSIS-TAG
R:AROUND R:BIBLIOGRAPHY R:DOC-ON R:ELT#1 R:ELT#2 R:GLASS R:GREATERVAL
R:LESSVAL R:N-DOC R:ONE R:ONEOF R:ONES R:PHASE R:PHASE#2 R:ROCKTYPE
R!SAMPLE-WITH R:SAMPLE-WITH-COMP R:SAMPLETYPE REFRULE REFRULE? S:ADD
s:ADDLINE S:ANALYZE S:AND s:B~-ABOUT S:BE-IN S:BE;IN2 s:BE-lNTERESTED
s:CHANGE S:COMMON s:cONC!kN S:DELETE S:DELETE# S:UISCOVER S:EDIT S:GIVE
s:GREAl s:I-NEED S:LIKE s:OLD S:OR S:PAPER-HAVE S:PBRTAIN S:POSSESS
s:PRINTFILE s:REFER s:SAMPLE-BE-COMPOSED S:SAHPLE;CONTAIJ
s:SAMP1E-HAVE#1 s:SAMPLE-HAVB#2 s:SEARCH S:SORT))
(DEFINEV
(N:AGE ((NP.N (EOU 1 AGE))

(NP.PP (MlM? SA~PLE))
->
(SSUNIONF (AGE (# 2 2 SSET))

)))

(N:AGE' ((NP.N (EQU 1 AGE))
(NP.ADJ {MEM 1 CLOCK))
(NP.PP (OR (M~M 2 SAMPL1)

(SAMPLEP (HEAD (# 2)))))
->
(SSUNIO~F (AGE (# 3 2 SSET)

(# 2 :))

)))

C.23

(• E.G. THE AGE OF EACH
T:t'PE/8 ROCK)

(• E.G. THE K-AR AGE OF
EACH TYPE/BROCK)

<WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29PM

(N:ANALYSIS ((NP.N (MEM 1 ANALYSIS))
(NOT (NP.ADJ (EQU 1 MODAL)))
(OR (NP.PP (MEM 2 (SAMPLE ROCK)))

(NP.PP.PP (MEM 2 (SAMPLE ROCK)))
(NP.PP.PP.PP (MEM 2 (SAMPLE ROCK)))
(DEFAULT (2 NP (DET ALL)

(N SAMPLE)
(NU PL))))

(OR (NP.PP (MEM 2 (PHASE MIN.C:RAL)))
(NP.PP.PP (MBM 2 (PHASE MINERAL)))
(NP.PP.PP.PP (MEM 2 (PHASE MINERAL)))
(NP.ADJ#2 (MEM 2 (PHASE MINERAL)))
(NP.PP 0 ADJ-N (AND (OR (EQU 2 FINE)

(EQU 2 COARSE))
(MEM 1 DUST)))

(DEFAULT (2 NP (NPR OVERALL))))

PAGE 1:22

(OR (NP.PP (MEM 2 (ELEMENT OXIDE ISOTOPE)))
(NP.PP.PP (MBM 2 (ELEMENT OXIDE ISOTOPE)))
(NP.PP.PP.PP (MEM 2 (ELEnENT OXIDE ISOTOPE)))
(NP.ADJ#2 (MEM 2 (ELEMENT OXIDE ISOTOPE)))
(DEFAULT (2 NP (DET EVERY)

(ADcJ MAJOR)
(N ELEMENT)
(NU SG))))

(OR (NP.ADJ (EQU 1 CHEMICAL))
(DEFAULT (NPR NIL)))

->
(SSUNIONF (DATALINE (WHQFILE (# 3 2 SSET))

(# 3 2 SSET)
(# 4 2)
(# 5 2 SSET))

(• E,G. ANALYSES OF
KRYPTON IN TYPE/BROCKS)

)))

(N:AVERAGE ((NP.tJ (MtM 1 (MEAN AVERAGE)))
(NP.PP (M.EM 2 (QUANTITY)))
->
(QUOTE (# 2 2 AVERAGE)

(• N:AVERAGE INVOKES THE RULE D:AVERAGE ON THE NP
HANGING OFF THE NODE HEADED BY AVERAGE)

)))
(N:AVG-CONC? ((NF.N (MEM 1 (CONCENTRATION)))

(NP.DE! (AND (i~U 1 THE)

->

(EQU 2 SG)
(AVERAGE?)))

(0. ll OT E (# ,; A VE: RAGE)

c.24

; <WEB8ER>RULES,WRITEUP;7 SUN 11-JUN-72 12:2Y2M PAGE 1:23

(• N:AVG-CONC? CAUSES A MESSAGE TO BE ~RINTED OUT TO
THE USER, ASKING IF HE MEANT BY 'THE CONCFNTRATIO~•,
'THE AVERAGE CONCENTRA- TION'' THE RULE MATCHES If
THE USER ANSWERS 'YES 1 AND INVOKES THE RULE
D:AVERAGE,)

)))

(N:BASALT ((NP,N (MEM 1 (BASALT)))
->
(QUOTE (SE:Q TYPEAS))))

(N!CONCENTRATION ((NP,N (MEM 1 (CONCENTRATION)))
(NOT (NP.ADJ (EQU 1 MODAL)))
(OR (NP.PP (MEM 2 (SAMPLE ROCK)))

(NP.PP.PP (MEN 2 (SAMPLE HOCK)))
(NP.PP.PP.PP (MEM 2 (SAl1P1E ROCK)))
(DEFAULT (2 NP (DET ALL)

(N SAMPLE)
(NU PL))))

(OR (NP.PP lMEM 2 (PHASI ftINEHAL)))
(NP.PP.PP (HEM 2 (PHASE MINERAL)))
(NP.PP.PP.PP (MEM 2 (PHASE MINERAL)))
(NP.ADJ#2 (MEM 2 (PHASE MINERAL)))
(NP.PP.ADJ-N (AND (OR (EQU i FINE)

(EQU i COARSE))
(l"IEM 1 DUST)))

(DEFAULT (2 NJ? (NPR OVERALL))))
(0 E (N P • P P (M Hl 2 (E L E ME N 'I' 0 X I D E I S O T O P E)))

(NP.PP.PP (MEM 2 (ELEMENT OXIDE ISOTOPE)))
(NP.PP.PP.PP (MEM 2 (ELEMENT OXIDE ISOTOPE)))
(NP.ADJ#2 (MEM 2 (ELEMENT OXIDE ISOTOPE))))

->
(SSUNIO~F (DATALINE (WHQFILE (# 3 2 SSET))

(# 3 ~ SS.ET)
(# 4 i)
(#:, ~ SSET))

(* :2,G. THE
CONCBNTRATION OF KRYPTON
IN TYPE/B SAMPLES)

)))

(N:CORETVBE ((OR (NF.~ (~EM 1 (CORETUBE)))
(NP.ADJ-~ (EQU 1 CORE)

.:... a.:.
->
(QUOTE (S?'.Q C:ORE'l'UBBS))))

(N:DOCUHENT ((NP.N (MEM 1 DOCUME~T))
(NOT (NP.ADJ (MEN ~ LUNAR)))
->
(Q U O T E D O C U r,; E N T)))

c.2s

; <WEBBER>RULES0 WRITEUP;7 SUN 11-JUN-7i 12:29PM PAGE 1:24

(N:ousr ((NP.N (OR (MEM
(EQU
(EQU

(SOIL))
DUST)
FINE)))

->
(QUOTE (SEQ DUSTS))))

(N:ELT ((NP 0 N (EQU 1 ELEMENT))
(NOT (NP,ADJ (EQU I MAJOR)))
->
(QUOTE (SEQ ELEMENTS))))

(N:GABBRO ((NP,N (OR (~EM , (GABBRO))
(EQU I MICROGABBRO)))

->
(OUOTE (SEQ TYPEBS))))

(N:HALOGEN ((NP.N (MEM 1 (HALOGEN)))
->
(QUOTE (SEQ HALOGENS))))

(N:LINE# ((NP,N (EQU 1 NUMBER))
(NP,ADJ (EQU 1 LINE))
CNP.PP (AND (EQU i OF)

(MF.M 2 ANALYSIS)))
->
(QUOTE (SEQL (# 3 2)))))

(N:MAJOR-ELT ((NP,N (EQU 1 ELEMENT))
(NP,ADJ (EOU MAJOR))
->
(QUOTE (SEO MAJORELTS)) l)

(N:MAXIMUM ((NP,N (OR (EOU i MAXIMUM)
(AND (MEM 1 (BIG))

(SUPEBLATIVE 1))))
(NP.PP (MEM 2 (QUANTITY)))
->
(QUOTE (# 2) MAXIMUM)

(• N:MAXIMUM INVOKES THE RULE D:MAX!MUM ON THE NP
HANGING OFF THE NODE HEADED BY !MAXIMUM'.
'MAXIMUM' CAN THEN ACT LIKE A FUNCTION, RATHER THAN
A SET,)

)))

(N:MINERAL ((NP.N (EQU 1 MINERAL))
->
{QUOTE (SEO MINERALS))))

(N:MINIMUM ((NP.N (OR (EOU i MINIMUM)
(AKO (MEM 1 (LITTLE))

(SUPERLATIVE 1))))
(NP.PP Pl~M 2 (QUANTITY)))
->
(QUOTE (# 2 2 ~INIMU~)

)))

C.26

(• SEE N:MAXIMUM)

; <WEBBER>RULES0 WRIT!UP;7 SUN 11-JUN-72 12:2YPM

(N:MODAL-ANALYSIS ((NP.N (OR (MEM 1 ANALYSIS)
(EQU 1 MODE)))

(OR (NP.ADJ (EQU 1 MODAL))
(NP.N (EQU 1 MODE)))

(OR (NP.PP (MEM 2 (SAMPLE)))
(DEFAULT (2 NP (DET EVERY)

(N SAMPLE)
(NU SG))))

PAGE 1:25

(OF (NP.PP (MEM 2 (PHASE MINERAL ELEMENT OXIDE
ISOTOPE)))

(NP.ADJ#2 (MEM 2 (fHASE MINERAL ELEMENT OXIDE
ISOTOPE))))

->
(SSUNIONF (CATALINE (WHQFILE (# 3 2 SSET))

(# 3 2)
OVERALL
(# 4 2))

)))

(N:MODAL-CONC ((NP.N (MEM (CONCENTRATION)))
(OR (NP.PP (MEft 2 (SAMPLE)))

(NP.PP.PP (MEM 2 (SAMPLE)))
(DEFAULT (2 NP (DET EVERY)

(N SAMPLE)
(NU SG))))

(• E.G. MODAL ANALYSES
OF OLIVINE IN TYPE/C
ROCK.3)

(OR (NP.PP (MEM 2 (PHASE MINERAL ELEMENT OXIDE ISOTOPE)))
(NP 0 ADJ#2 (MEM 2 (PHASE MINERAL ZLEMENT OXIDE

ISOTOPE))))
->
(SSUNIONF (DATALINE (~HQFILE (# 2 2 S.SET))

(1$ 2 2 SSET)

(N:NUMBEB ((NP.N (EQU 1 NUMBER))
(NP.PP (EQU 1 OF))
->

(QUOTE (# 2 2 NUMBtR)

OVERALL
(# 3 2)))))

(* N : N lJ MB f. H I N V O K E S D : ;-1 U M 131;:; R O N TH E N P D E P E N D E ~;i :J N
1 NUt1IlER'. E.G. 'THE NUMoER OF TYPE/A SAMPLES' IS

INTERPRETED AS (SEOL (NUMHER X /
(SEQ TYFEAS): T)))

)))

(N:OLDEST ((NP.N (AUD (MEM (OLD))
(SUPERLATIVE 1)))

(NP.PP (MEM 2 (SAMPLE)))
->
(OUOTL (# 2 2 OLDEST)

c.27

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-7i 12:29~M PAGE 1:26

(* N:OLCEST INVOKES THE RULE O:OLDEST ON THE NP
DEPENDENT ON "OLDEST". LIKE N:MAXIMUM AND N:NUMBEH,
IT ALLOiS "OLDEST" TO ACT LIKE A FUNCTION, RATHER
THAN A SET)

)))
(N:ONE I (NP.PRO (EQU 1 ONE))

->
(PROGN (SETO ANTEVAR {ANTECEDANT (QUOTE (#~IDENTITY)))

(* N:ONE MATCHES THt ANAPHORIC fRONOUNS 'ONE' AND
'ONES', THE INTERPRETATION DEPENDS ON THE CLASS OF
THE ANTECENDANT.)

)

(MAPC (SCOPEVARS ANTEVAR)
(FUNCTION ANTEQUANT))

(NEWCLASS ANTEVAR))))
(N:ONtOF ((NP.PRO (EQU 1 ONE))

(NP.PP (EQU 1 OF))
->
(QUOTE (# 2 2 NRULES)

(* N:ONEOY MATCHES THE PRONOUNS 'ONE' AND 'ONES'
WHEN FOLLOWED BY A PARTITIVE CONSTRUCTIN
EXPRESSING THE SET. E,G, 'ONE OF THE TYPE/BROCKS.'
THE INTERPFETATION IS THE CLASS OF THE DEPENDE~T
NP.)

)))

(N:ONES ((NP.PRO (EQU 1 □ NES))

(NP.PP (AND (EQU Of)
(NEO (CAADR (# 2))

(QUOTE PRO))))
->
(QUOTE (# 2 2 NRULES)

(• N:ONES rs LIKE N:ONEOF, bUT IS USED TO MATCH
SPECIAL PARTITIVES CONSTRUCTED BY THE ?ARSER.)

)))
(N:ONES-OF-PRO ((~P.PRO (EQU 1 ONES))

(NP.PP (AND (EQU 1 OF)

->

(EQ (CAADR (# 2))
(QUOTE PRO))))

(QUOTE (# 2 2)

c.2a

; <WEBBYR>RVLES.WRirEUP;7 SUN 11-JUN-72 12:2YPM PAGE 1:27

(* N:ONES-DF-PRO MATCHES NODES WITH PARTITIVE
CONSTRUCTIONS, WHERE THE HEAD or THE PARTITIVE IS
ITSELF ANAPHORIC.)

)))

(N:PHA~E ((NP.N (EQU 1 PHASE))
->
(QllOTE (SEQ PHASES))))

(N : R A R E: / F, A R T H ((N P • N (E Q U ! R A R E / E A R T H))

(QUOTL (S1-~Q RABE/EARTHS))))
(N:RATIO ((NP 0 N (EQU 1 RATIO))

(OR (NP 0 ADJ,N/N (AND (MEM 1 (ELEMENT lSOTOPE OXIDE))
(MEM 2 (ELEMENT !SOTOPE OXIDE))))

(N P , A D ,J - A D J (A lW (ME M 1 (EL E M E N T l S OT O P E O X I D E))
(MEM 2 (ELEMENT lSOTOPE OXID~)))))

(OR (NP,PP (AND (OR (EQU 1 IN)
(EO.U 1 FOR))

(MEM 2 (PHASE MINERAL))))
(NP,PP.PP (AND (OR (EUU 1 IN)

(EQU 1 FOR))
(MEM. 2 (PHASE MINERAL))))

(DEFAULT (2 NP (NPR OVERALL))))
(OR (NP,PP (AND (OR (EQU 1 IN)

->

(EQU 1 OF)
(EQU 1 FOR))

(MEl'l 2 (SAMPLE ROCK))))
(NP,PP.PP (AND (OR (EQU 1 IN)

(EQU 1 OF)
(E<;.itJ 1 FOR))

(MEM 2 (SAMPLE ROCK))))
(DEFAULT (2 NP (DiT EVERY)

(N SHiPLE)
(NU SG))))

{APPLY (FUNCTION SSUNIONF)
(LIST (BUILDU (RATIO (QUOTE#)

(QUOTE#)
(# 4 2 SSJ::T)
(# 3 '2 SSET))

(TABFORM (# 2 1 HEAD))
('l'ABFORM (# 2 2 HEAD))))

(* E.G. POTASSIUM/ RUBIDIUM RATIOS INTERPRETS AS
(SSUNiaN xi / (SEQ SAMPLES): T;
(RA'i'IO (QUOTE K20) (QUOTE RB) X1
(OUOTE OVEPALL))))

C.29

; <WEBBER>RULES0 WP.ITEUP;7 SUN 11-JUN-72 12:29PM

)))
(N:ROCK ((NP.N (OR (EQU 1 ROCK)

(EQU 1 VOLCANIC)))
->
(OUOTE (SEQ VOLCANICS))))

(N:ROCKTYPF ((NP,N (MEM 1 (TYPE)))
(OR (NP.PP (AND (EQU 1 OF)

->

(EQ (HEAD (# 2))
(QUOTE ROCK))

(TAG (# 2)
(QUOTE USED)
T)))

(NP.ADJ (EQU 1 ROCK)))

(QUOTE (SEQ ROCKTYPES))))
(N!SAMPLE ((OR (NP.N (EQU SAMPLE))

(NP.ADJ-N (AND (EQU 1 LUNAR)
(EQU 2 MATElUAL))))

(OR (NP.ADJ (EQU 1 LUNAR))
(DEFAULT (1 ADJ NIL)))

->
(0UOTE (SEQ SAMPLES))))

(N:SAMPLETYPE ((NP.N (MEM (TYPE)))
(OR (NP.PP (AND (EUU 1 OF)

->

(SQ (HEAD (# 2))

(QUOTE SAMPLl::))
(TAG (# 2)

(QUOTE USED)
T)))

(NP.ADJ (EQU 1 SAMPLE)))

(OUOTE (SBQ SAMPLETYPES))))
(N:SPEC-ACT ((NP.~ (EQU 1 ACTIVITY))

(NP •. t.DJ (EQll I SPECIFIC))
(NP.PP (MEM 2 (ISOTOPE)))
(OR (NP.PP (MEM 2 (SAMPLE)))

->

(NP.PP.PP (MEM 2 (SAMPLE)))
(DEFAULT (2 NP (DET EVERY)

(N SAMPLE)
(NU SG))))

(QUOTE (DAT~LIN1 (WHQFILE (# 4 2))
(# 4 2)
OVERALL

PAGE 1:28

(,i; 3 2)) (• B.G. THE SPECIFIC
ACTIVITY OF C056 IN
S10003)

)))

c.3o

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:2Y?M

(N:TYPEA ((NP.N (OR (EQU 1 PARTICLE)
(EQU 1 ROCK)
(EQU 1 SAMPLE)))

(OR (NP,ADJ (EQU : TYPE/A))
(NP.ADJ~ADJ (AND (EQU 1 HIGH)

(OR (EQU 2 ALKALI)
(EQU 2 ALKALINE)
(MEM 2 (RUBIDIUM)))))

(NP.ADJ-ADJ-ADJ (ANO (EQU 1 FINE)
(EQU 2 GRAINED)
(OR (EQU 3 IGNEOUS)

PAGE 1:29

(EQU 3 CRYSTALLINE)))))
->
(QUOTE (SE:O TYPEAS))))

(N:TYPEB ((NP.N (OR (EQU 1 PARTICLE)
(EQU 1 SAMPLE)
(EQU 1 ROCK)))

(OR (NP.ADJ (EQU TYPE/B))

->

(NP.ADJ-ADJ (AND (!QU 1 LOW)
(OR (EQU 2 ALKALI)

(EQU 2 ALKALINE)
(MEM 2 (RUBIDIUM)))))

(NP.ADJ-ADJ-ADJ (AND (EQU 1 COARSE)
(EQU 2 GRAINED)
(OR (EQU 3 CRYSTALLINE)

(EQU 3 IGNEOUS)))))

(QUOTE (SfO TYPEBS))))
(N:TYPEC ((O~ (NP.N (OR (EQU l 6RECCIA)

->

{EQU 1 MICROBRECCIA)))
(NP.AtJ-N (AND (OR (EQU 2 PARTICLE)

(gQU 2 SAMPLE)
(EQU 2 ROCK))

(EQU 1 TYPE/C))))

(QUOTE (SEQ TYPECS))))
(N:TYPED ((OR (NP.N (OR (EQU 1 SOIL)

->

(.t::QU ': DUS'.r)
(EQU 1 FINE)))

(NP.ADJ-N (AND (OR (gQU 1 PARTICLE)
(l~QU 1 SAMPLE)
(EQU 1 ROCK))

(EQU 1 TYPE/D))))

(QUOTE (SEQ DUSTS))))

c.31

; <WEBBER>RULES0 WRITEUP;7 SUN 11-JUN-72 12:29PM

(R:ANALYSIS-REF ((NP.N (MEM 1 (ANALYSIS)))
(OR

(NP.PP
(DOCP (CADR (ASSOC (QUOTE N2R)

PAGE 1:30

(CDR (CONSTITUENTS
(# 2)))))))

(NP.PP.PP

->

(DOCP (CADY (ASSOC (QUOTE NiR)
(CDR (CONSTITUENTS

(# 2)))))))

(NP.ADJ#2 (DOCP (CADR (# 2)))))

(QUOTE (REF• X (# 2 2)))))
(R:ANALYSIS-TAG ({NP.N (MEM 1 (ANALYSIS)))

(OR (NP.PP.ADJ-NPR CANO (EQU 1 TAG)

.. >

(NUM~ERi (CADR (# 2)))))
(NP.PP.PP.ADJ-NPR

(AND (EQU 1 TAG)
(NUMBERP (CADR (# 2))))))

(QUOTE (TAG• X (# 2 2)))))
(R:AROUND ((NP.N (MEM 1 ANALYSIS))

(NP.PP.COMP (AND (OR (EQU 3 AROUND)
(EQU 3 APPROXIMATELY))

(MEM 2 (ELEMENT ISOTOPE OXIDE))))
->
(BUILDQ (ABOUNDVAL X #)

(LIST (QUOTE OUOTE)
(CONS (# 2 U INTEGER)

(# 2 5 UNI'I)))

(• R:AROUND MATCHES NP'S LIKE 'ANALYSES WITH AROUND
7 PPM TITANIUM'. THE INTERPRETATION OF THE
RESTRICTION THAT R:AROUND PRODUCES IS
(AROUND X (7. PPM)), WHERE 1 X 1 REFERS TO THE
ANALYSES.)

)))

(R:BIBLIOGRAPHY ((NP.N (EQU 1 BIBLIOGRAPHY))
(NP.PP (OR (EQU 1 ON)

(EQU 1 ABOUT)))
... >
(QUOTE (ABOUT X (# 2 2 TOPie)))t)

(R:DDC-ON ((NP.N (MEM 1 DOCUMENT))
(!-JP.PP T)
->
(QUOTE (~BOUT X (# 2 2 TOPIC)))))

C.32

; <WEBBETI>RULES.WRITE!IP;7 SUN 11-JUN-7i 12:29fM

(R:ELT#l ((NP.N (EQU 1 ELEMENT))
(NP.ADJ (AND (MEM 1 (ELEMENT OXIDE ISOTOPE))

(NOT (MEM 1 (SET)))))
->

PAGE 1:31

(QUOTE (EQUAL X (# 2 1)) (* E.G. TriE URANIUM
ELEMENT)

)))
(R:ELT#2 ((NP.N (EQU 1 ELEMENT))

(NP.ADJ.HP (AND (MEM 1 (ELEMENT OXIDE ISOTOPE))
(MEM. 1 (SET))))

->
(QUOTE (MEMB X (# 2 1 NRU'LES)) (* E.G. A RARE-EARTH

ELEMENT)
)))

(R:GLASS ((NP.N (MEM (SAMPLE FRAGMENT PARTICLE)))
(NP.ADJ (EQU 1 GLASS))
->
(QUOTE (CONTAIN X (# 2 1)))))

(R:GREATERVAL ((NP.N (MEM ANALYSIS))
(NP.PP.COMP (AND (Ok (EQU 3 GREATERTHAN)

(EQU 3 MORETHAN))
(MEM 2 (ELEMENT ISOTOPE OXIDE))))

->
(BUILDQ (GREATER X #)

(LIST (OUOTE QUOTE)
(CONS (# 2 4 INTEGER)

(# 2 5 UNIT)))

(• R:GREATERVAL IS TBE ANALOGUE Of R:AROUND FOR
PHRASES WITH 'GREATtR THAN' OR 'MORETHAN' •)

)))

(R:LESSVAL ((NP.N (MEM 1 ~NALYSIS))
(NP.PP.COMP (AND (OR (EQU 3 LESSTHAN)

(EQll 3 Fl::WERTHAN))
(MEM 2 (ELEMENT OXIDE ISOTOPE))))

->
(8UILDQ (LESSVAL X #)

(LIST (QUOTE QUOTE)

)))

(CONS (# 2 4 INTEGER)
(# 2 ::>UNIT)))

(R:N-DJC ((NP.N (KEM 1 DOCUMiNT))
(NP.ADJ.NP T)
->
(QUOTE (ABOUT X (# 2 1 TOPIC)))))

C.33

(• R:LESSVAL lS THE
ANALOGUE GF R:AROUND FOR
PHRASES WITH 'LESS
THAN'.)

; <WEBBER>RULES1 WRITEUP;7 SUN 11-JUN-72 12:29PM PAGE 1:32

(R:ONE ((NP.PRO (EOU 1 ONE))
->
(PROG1 (NEWPX ANTEVAR

(• R:ONE MATCHES THE ANAPHORIC PRONOUN 'ONE'.
ITS INTERPRETATION IS THE SET OF RESTRICTIONS ON
THE ANTEAEDANT OF 'ONE' THAT WERE NOT PRODUCED FROM
THE VERB PHRASE. SEE THE FUNCTION DESCRlPTION OF
NEWPX FOR FURTHER DETAIL,)

))))

(R:ONEOF ((NP.PRO (EQU 1 ONE))
(NP.PP (AND (EOU '. OF)

)))))

(NOT (EU (CAADR (# 2))
(QUOTE PRO

(• R:ONEOF MATCHES THE PRONOUN 1 0NE' WHEN IT
DOMINATES A PARTITIVE CONSTRUCTION WHOSE HEAD IS NOT
A PRONOUN. E.G. 'WHICH ONE OF THE TYPE/A ROCKS'.
R:ONEOF CALLS FOR THE CLASS RESTRICTIONS ON THE H~AD
OF THE PARTITIVE NP.)

->
(QUOTE (# 2 2 RRULES))))

(R:ONES ((NP.PRO (EQU 1 ONES))

))))

(NP.PP (AND (EQU OF)
(NEC (CAADR (# 2))

(QUOTE PRO

(* R:O~ES IS THE ANALOGUE OF R:ONEOF USED FOR THE
PRONOUN 'ONES' INSERTED BY THE PARSER FOR DtEP

STRUCTURE PARTITIVES. E.G.
'ALL THE BOYS' IS PARSED AS 'ALL ONES OF THE BOYS'.)

->
(QUOTE (# 2 2 RaULES))))

(R:PHASE ((NP,N (EQU 1 PHASE))
(NP.ADJ (MEM 1 (PHASE MINERAL)))
->
(QUOTE (EQUAL X (# 2 1)))))

(R:PHASE#2 ((NP.N (EOU 1 PHASE))
(NP.PP (OR (~EM 2 (SAMPLE))

(SAMPLEP (HEAD (# 2)))))
->
(QUOTE (CONTAIN (# 2 2 SSET)

X))))

C.34

..,

; <WEBBER>RULES0 WRITEUP;7 SUN 11-JUN-72 12:29~M PA~E 1:33

(R:ROCKTYPE ((NP.ADJ-N (AND (EQU 1 ROCK)
(!1EM 2 (1'YPE))))

(NP.PP (MEM 2 (SAMPLE)))
->
(QUOTE (MEMBER• (# 2 2)

.()

)))

(R:SAMPLE-WITH ((NP.N (MEM SAMPLE))
(NOT (NP.PP,COMP T))
(NP.PP (AND (EQU 1 WITH)

(• ~.G. THE ROCK TYPE Of
SAi1PLE 101<103)

(MEM 2 (ELEMENT ISOTOPE OXIDE))))
(OR (NP.PP (AND (EOU 1 IN)

(MEM 2 (MINERAL PHASE))))
(NP.PP.PP (AND (EQU 1 IN)

(MEM 2 (MINERAL PHASE))))
(DEFAULT (2 NPR NIL)))

->
(QUOTE (CONTAIN X (# 3 2)

(# 4 2))

)))

(• E.G. SAMPLES WITH
BERYLLIUM)

(R:SAM?LE-WITH-COMP ((NP.N (MEM 1 (SAMPLE)))
(NP.PP.COMP (AND (EQU 1 WITH)

(MEM 2 (ELEMENT ISOTOPE OXIDE))))
(OR (NP.PP (MEM 2 (PHASE MINERAL)))

(NP.PP,PP (MEM 2 (PHASE MINERAL)))
(DEFAULT (2 NPR NIL)))

->
(QUOTE (CONTAIN' X (# 2 2)

(# 3 2)
(# 2 6 TlRM))

)))
(R:SAMPLETYPE ((NP.ADJ-N (AND (EOU 1 SAMPLE)

(t1EM 2 (TYPE))))
(NP.PP (MEM 2 (SAMPLE)))
->
(QUOTF; (MEMBER* (# 2 2)

X))))
(REFRULE ((TT)

->

(• 2.G. SAMPLES WITH
MOR;:: THAN 6 Pl?M
BERYLLIUM IN PLAG)

(QUANT (FOR EVERY X / DOCUMENT (ABOUT X (# 0 TOPIC))
;
(PRINTOUT X)))))

(REFRULE? ((T (INTERP P))
->
(QUO'£?, (1t r,))))

c.35

; <WEBBER>RULES0 WRITEUP;7 SUN 11-JUN-72 12:29PM

(S!ADD ((S.V (MEM 1 (ADD)))
(S.ORJ.NPR7 (AND (SAMPLEP (CADR (# 1)))

(MEM 2 (PHASE MINERAL))
(MEM 3 (ELEMENT OXIDE ISOTOPE))
(NUMBERP (CADR (# 4)))
(MEM 5 (UNIT))
(DOCP (CADR (# 6)))
(NUM~ERP (CAOR (# 7)))))

(S.PP (MEM 2 (FILE)))
->
(PR[D (APPLY (FUNCTION PRENEWLINE)

(LIST (# 3 2)
(# 2 1)
(# 2 2)
(# 2 3)
(# 2 4)

(# 2 5)
(# 2 6)
(# 2 7)))

PAGE 1 :34

(* E.G, ADD THE LINE (S10003, OVERALL, BE, 6, PPM,
D70-154, ~) TO APOLL011)

)))

(S!ADDLINE ((S.IMP T)
(S,V (OR (EQU ; ADDLINE)

(EQU ADD)))
(S,OBJ.NPR T)
(OR (S.PP (MEM 2 (FILE)))

(S,ORJ.PP (MEM 2 (FILE))))
->
(BUILDO (APPLY (FUNCTION PRENEWLINE)

(QUOTE #))

(CONS (QUOTE (# 4 2))
(QUOTE (# 3 1 TERM)))

(E.G. ADD
(t S10003 OVERALL BE 6 PPM D70-15~ 0)
TO APOLL011 THE INTERPRETATION IS
(APPLY (FUNCTION PRENEWLINE)

(QUOTE

C.36

(APOLL011 S10~03 UVERALL BE 6
PPt 070-154 0)))))))

; <WEA8ER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29PM

(S:ANALYZE ((S.NP~V (AND (MEM 2 (ANALYZE))
(COND

((NOT (M.EMB (CADR (# 1))

.l?AGE 1:35

(QUOTE (SOMEONE SOMETHING ANYONE)
)))

(PRIN1 (QUOTE I PRESENTLY IGNORE SUBJECTS
OF THE VERB)

T)
(PRINT HEAD 'I'))

(TT))))
(S.OBJ (MEM 1 (SAMPLE)))
(S.PP (EQU 1 FOR))
->
(SSUNIONF (CATALINE (WHQFILE (# 2 1 SSET))

(# 2 1 SSET)
OVERALL
(# 3 2 SSET))

(* E.G. HAS S12003 BEEN ANALYZEU FOR KRYPTON? ThE
INTERPRETATION IS (TEST (CATALINE
(WHQFILE S10003) S1JJ03 OVERALL KR)))

)))

(S:AND (AND (S.AND T)
->
(PRED (# 1 1))))

(S:BE-ABOUT ((S,NP (MEM 1 DOCUMENT))
(S,V (:SOU 1 BE))
(S,PP (OR (EQU 1 ON)

(EQU 1 ABOUT)

->

(EQU 1 TO)
(EQU 1 FOR)))

(PREC (PRINTOUT (# 3 2 REFS)))))
(S : B E - :: N ((S • N P - V (A N D (M E M 2 (B E E X I S T O C C U R) l

(MEM 1 (ELEMENT OXIDE ISOTOPE PHASE MINERAL))))
(OR (S.PP (AND (EQU 1 IN)

(MEM 2 (SAMPLE))))
(S,PP,PP (~ND (EQU 1 IN)

(MEM 2 (SAMPLE)))))
(OR (S,PP (AND (EQU 1 IN)

->

(MEM 2 (PHASE MINERAL))))
(DEFAULT (? NPR NIL)))

(PRED (CONTAIN (# 2 2 SET?)
(# 1 1)
(# 3 2)))))

C.37

<WEBBER>RULES0 WRITEUP;7 SUN 11-JUN-7~ 12:29PM PAGE 1:36

(S:8E-IN2 ((S.NP,COMP (MEM ~ (ELEMENT OXIOE ISOTOPE PHASE MINERAL)))
(S 0 V (MEM 1 (BE EXIST OCCUR)))
(OR (S,PP (AND (EOU 1 IN)

(OR (MEM 2 (SAMPLE))
(SAMPLEP (HEAD (# 2))))))

(S 0 PP.PP (OR (MEM 2 (SAMPLE))
(SAMPLEP (HEAD (# 2))))))

(OR (S 0 PP (AND (EOU 1 IN)

->

(MEM 2 (PHASE MINtRAL))))
(DEFAULT (2 NPR NIL)))

(PRED (CONTAIN' (# 3 2)
(# 1 1)
(# 4 2)
(# 1 2 TERM))

(* E 1 G1 IS THERE MORE THAN 7 PPM KRYPTON IN S10~03?
THE INTERPRETATION rs (TEST
(CONTAIN' (QUOTE SH~0i3) (QUOTE KR)
(MORF.TH}.N 7 PPM))))

)))
(S:BE-INTERZSTED ((S.V (EQU 1 BE))

(S.ADJ (EQU 1 INTEREST~LJ))
(S.PP (EQU 1 IN))
->
(PRED (PRINTOUT (# 3 2 REFS)))))

(S:CHANGE ((S.V (EOU 1 CBANGE))
<S.IMP T)
(S.OBJ (MSM 1 FIELDNAME))
(S.08J 0 PP (AND (EQU 1 OF)

(MEM 2 ANALYSIS)))
(OR (S,OBJ.PP (EQU 1 TO))

(S 0 0BJ 0 PP 0 PP (EQU 1 TO)))
->
(PRED (CHANGE1LINE (# 4 2)

(QUOTE (# 3 1 HEAD))
(QUOTE (# 5 2 HEAD))))))

(S:COMMON ((S.NP-V (AND (MEM 1 (PHASE MINERAL ELEMENT ISOTOPE OXIDE))
(E.OU 2 COMMON)))

(S.PP (EQIJ 1 TO))
->
(PRED (CONTAIN (# 2 2)

(# 1 1))
(E 0 G1 WHAT PHASES ARE COMMON TO ALL SAMPLES?))))

(S:CONCETIN ((S.NP (MEM 1 DOCUMENT))
(S.V (~EM 1 CONCERN))
(S.OBJ T)
->
(PRED (PRINTOUT (# 3 1 REFS?)))))

C.38

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-7~ 12:29~M

(S:OELETE ((S.IMP T)
(S.V (EOU 1 DELETE))
(S.OBJ (MiM 1 ANALYSIS))
->
(PRED (DELETE1LINE (# 3 1)))))

(S:DELETE# ((S.IMP T)
(S,V (EQU 1 DELETE))
(S.OBJ.NPR (LINEP (# 1)))
(OR (S.PP (MEM 2 (FILE)))

(S 0 0BJ 0 PP (MEM 2 (FILE))))
->
(QUOTE (DELETE# (# 4 2)

(# 3 1)))))
(S:DISCOVER ((Nor (S.IMP T))

(S.V (MEM 1 (DISCOVER CONTAIN)))

PAGE 1:37

(S 0 0BJ (MEM 1 (ELEMENT OXIDE ISOTOPE MINERAL PHASE)))
(OR (S.PP (MEM 2 (MINERAL PHASE)))

(DEFAULT (2 NPR NIL)))
(OH (S.PP (MEM 2 (SAMPLE)))

(S.PP.PP (M1M 2 (SAMPLE)))
(DEFAULT (2 NP (DET ANY)

(N SAMPLE)
(NU PL))))

(S,NP (COND

->

((NOT (EIJU 1 SOMETHING))
(PRIN1 (QUOTE I PRESENTLY IGNORE SUBJECTS Of THE

VERB)
T)

(PRINT HEAD T))
(TT)))

(PREt (CONTAIN (# 5 2 SET?)
(# 3 1)
(# 4 2)))))

(S:EDIT ((S.V (EQU 1 EDIT))
(S.OBJ.NPF (LINEP (# 1)))
(OR (S,PP (MEM 2 (FILE)))

(S,OPJ,PP (MEM 2 (FILE))))
->
(PRED (EDITLINE (# 3 ?.)

(# 2 ·:)))))
(S:GIVf ((S.V (MEM 1 GIVE))

(S,OBJ T)
(OR (S,If';P T)

(S.O-MODAL ~))
->
(PRED (PRINTOUT (# 2 1 REFS?)))))

(S:GRE,T ((S.NP-V (MEM 2 GREAT))
->
(PRED (# 1 1))))

C,39

; <WEBBER>RULES0 WPITEUP;7 SUN 11-JUN-72 12:29~M

(S:I-NEED ((S 0 NP (EQU 1 I SG))
(S.V (OR (EQU NEED)

(EQU 1 WANT)))
(S.OBJ T)
->
(PRED (PRINTOUT (# 3 1 REFS?)))))

(S:LIKE ((S 0 V (MEM 1 LIK~))
(8 0 0BJ T)
->
(PPED (PRINTOUT (# 2 1 REFS?)))))

(S:OLD ((S 0 NP-V (MEM 2 OLD))
->
(PP.:2D (I:'OR EVERY X0 / (AGE (# 1 1))

T; (PRINTOUT X0)))))
(S:OR (JR (S.OR T)

->
(FRED(# 1 1))))

(S:PAPER-HAVE ((S 0 NP (MEM DOCUMENT))
(s.v (EQU 1 HAVE))
(S 0 OBJ T)
->
(PRED (PRINTOUT (# 3 1 REFS?)))))

(S:PERTAIN ((S.NP (MEM 1 DOCUMENT))
(S.V (MEM 1 PERTAIN))
(S.PP (OR (EQU WITH)

(EOU TO)))
->
(PRED (ABOUT (# 1 1)

(# 3 2 TOPIC)))))
(S:POSSESS ((S.NP-V (AND (MEM 1 (WE YOU THEY))

(MEM 2 (POSSESS))))
(S.OSJ T)
->
(PRED (EXIST(# 2 1)))))

(S:PRINTFILE ((OR (S.IMP T)
(S.Q-~lODAL T))

(s.v (MEM 1 (GIVE)))
(S.OBJ (MEM (FILE)))
->
(PRED (PRINTFILE (# 3 1)))))

(S:PEFER {(S.NP (MEM 1 DOCUMENT))
(S.V (EQU 1 REFER))
(S.PP (EOU 1 TO))
->
(PBED (ABOUT (# 1)

(# 3 2 TOPIC)))))
(S:SAMPLE-BZ-COMPOSED ((S.NP-V (AND (MEM 1 (SAMPLE))

PAGE 1:38

(EQU i BE)))
(S,OBJ.COMP (MEM 1 (PHAS~ MINERAL)))
->
(PRED (CONTAIN' (# 1 1)

(# 2 1)
(# 2 2 T ER!'l)))))

c.40

; <WEBBER>RULES0 WRITEUP;7 SUN 11-JUN-72 12:29PM

(S:SAMPLE-CONTAIN (AND (S.NP (MEM 1 (SAMPLE)))
(S.V (OR (EQU 1 HAVE)

(EOU 1 CONTAIN)))

PAGE 1:39

(OR (S.OBJ (MEM 1 (ELEMENT OXIDE ISOTOPE MINERAL)
))

(S,OBJ,AND (MEM 1 (ELEMENT OXIDE ISOTOPE
MINERAL))))

(OR (S.OBJ,PP (MEM 2 (MINERAL PHASE)))
(S.PP (MEM 2 (MINERAL PHASE)))
(DEFAULT (2 NPR NIL)))

->
(PRED (CONTAIN (# 1 1 SET?)

(# 3 1)
(# 4 2)))))

(S:SAMPLE-HAVE#1 ((S.NP-V (AND (MEM 1 (SAMPLE))
(MEM 2 (HAVE CONTAIN))))

(S.OBJ.COMP (MEM 1 (ELEMENT OXIDE ISOTOPE)))
(S.PP (MEM 2 (PHASE MINERAL)))
->
(PRED (CONTAIN' (# 1 1)

(# 2 1)
(# 3 2)
(# 2 2 TERM)))))

(S:SAMPLE-HAVE#2 ((S,NP-V (AND (MEM 1 (SAMPLE))
(MEM 2 (HAVE CONTAlN))))

(S.OBJ.COMP (MEM 1 (ELEME~T OXIDE ISOTOPE PHASE
MINERAL)))

->
(PP.ED (CONTAIN' (# 1 1)

(# 2 1)
(# 2 2 TERM)))))

(S:SEAFCH ((S.V (MEM 1 SEARCH))
(S,PP (OB (~QU FOR)

(~QU IN)
(EQU ON)))

->
(PRED (PRINTOUT (# 2 2 RE:FS?)))))

(S:SORT ((S.V (EOU 1 SORT))
(S.IMP T)
->
(PRED (SORTNEW))))

)

(LISPXPRINT (QUOTE (V: TREEFRAGS)) T)
(RPAOQ TRERFRAGS (ADJ,NP NP.ADJ NP,ADJ#2 NP,ADJ-ADJ NP.ADJ-ADJ-ADJ
NP.ADJ-N NP.ADJ,COMP NP.~DJ.NP NP,ADJ,NPR NP,ADJ,N/N NP,ADVP NP.AND
NP,AND2 NP.COMPL NP,DET NP.DET.ART NP,DET,COMP NF,DET,COMP-UNIT
NP.DET.INTEGBR NP,DET.MANY NP.DET,POSTART NP.N Nf,NEG NP.NOM NP,NPR
NP.NR.NP NP.NR.S NP,OR NF,OR2 NP.PP NP.PP.ADJ-N NP,PP,ADJ-NPR NP.PP.AND
NP.PP.AND.PP NP.PP.COMP NP.PP,COMPL NP,PP,NPR NP.PP.PP NP,PP.PP#U
NP,PP.PP.ADJ-NPR NP 0 PP 0 PP,COMP-UNIT NP.PP,PP,PP NP,PP.PP.PP,ADJ-NPR

C.41

<WEEBER>RULES0 WRITEUP;7 SUN 11-JUN-72 12:29PM PAGE 1:40

NP.PRQ NP.OREL NP.REL S.ADJ S.AND S,AND.NPR s.COMP S.COMP-N s.coMPL
s.COMPL-THAN s.COMPL.OBJ s.DCL s.DCL-S s.IMP S.lMP-S s.NEG s.NEG-S
s.NP S.NP.COMP S,NPR S.NPQ S.NPU S.NP-V s.OBJ S,OBJ.ADJ#2 S,OBJ.AND
s.OBJ.COMP s.oBJ.NPR S,OEJ.NPR7 s.OBJ.OR 5,0BJ.PP S,OBJ.PP.PP
s.OBJ,PP,PP.PP s.OBJ.PP,PF.PP.PP s.OBJ.REL s.oR s.PP S.PP#1
S.PP.AND,PP s.PP.PP s.Q s.Q-MODAL S,Q-NEG s.Q-S s.v s.VP))
(DEFINEV
(ADJ.NP (ADJ ((~P NIL 1))))
(NP.ADJ (NP ((ADJ NIL 1))))
(NP.ADJ#2 (NP ((ADJ NIL 2))))
(NP.ADJ-ADJ (NP ((ADJ NIL .)

(ADJ NIL 2))))
(NP.ADJ-ADJ-ADJ (NP ((ADJ NIL 1)

(ADJ NIL 2)
(AD,J NIL 3))))

(NP.ADJ-N (NP ((ADJ NIL 1)
(N NIL 2))))

(NP.ADJ.COMP (N~ ((ADJ ((COMPARATIVE))
1))))

(NP.ADJ.NP (NP ((ADJ ((NP NIL 1))))))
(NP.ADJ.NPR (NP ((ADJ ((NPR NIL 1))))))
(NP.ADJ.NIN (NP ((ADJ (p:P ((N ((N NIL 1)

I
(N NIL 2))))))))))

(NP,ADVP (NP ((ADVP ((ADV NIL 1)
(NP NIL i))))))

(NP.AND (NP (AND (NP NIL 1))))
(NP.AND2 (NP (AND (NP NIL l

(NP NIL 2))))
C C .L

(NP 1 DET (NP ((DET NIL 1)
(NU t!IL 2))))

(NP.DET.ART (NP ((DET ((hRT NIL 1))))))
(NP.DET.c:Mp (NP ((DET ((POSTART ((COMP ((ADV NlL 1)

S.PP.AND

(NP ({INTEGER NIL 2)))))
MANY))))

(NU NIL 3))))
(NP.DET.C0MP-UNIT (NP ((DET ((POSTART {(COMP ((ADV NIL 1)

(N~ ((INTEGER NlL 2)
(UNIT NIL 3)))))

MUCH)))))))
(NP.DET.INT:SGER (NP ((DET ((POSTART ((NP ((INTEGER NIL 1)))

MANY)))))))
(NP.DET.llhNY (NP ((L~T ((NP ((INTEGEF NIL 1)))

t'ANY))
(;:1 U N I L 2))))

(NP.DET.PGSTART (NP ((DET ((POSTART NIL 1))))))
(NP.N (fH ((r;'. NIL 1))))
(NP.NEG (NP (NEG (NP ((DET NIL 2))

1))))

c.42

; <WEBBER>RULES 0 WRITEUP;7 SUN 11-JUN-72 12:29?M

(NP.NOM (NP (NOM (S NIL 1))))
(NP.NPR (NP ((NPR NIL 1))))
(NP.NR.JP (NP ((NR ((NP NIL 1))))))
(NP.NR.3 (NP ((NR ({S NIL))))))
(NP.OR {NP (OR (NP NIL 1))))
(NP.OR2 (NP (OR (NP NIL 1)

(NP NIL 2))))
(NP.PP (NP ((N NIL 4)

(PP ((PREP NIL)
(NP NIL 2))

3))))
(NP.PP.ADJ-N (NP ((PP ((ADJ NIL 2)

(N NIL 1))))))

(NP.PP.ADJ-NPR (NP ((PP ({NP ({AD,J NIL 1)
(NPR NIL 2))))))))

(NP.PP.AND (NP ({PP ((PREP ~IL 1)
(NP (AND {NP NIL 2)

(NP NIL 3))))))))
(NP.PP.AND.PP (NP ((PP (AND (PP ((PREP NIL 1)

(NP NIL 2))))))))
(NP.PP.COMP (NP

((pp

{(PREP NIL 1)
(NP ((DET ((POSTAFlT ((COMP ((ADV NIL 3)

PAGE 1:41

(NP ((INTEGER NlL 4)
(UNIT NIL 5))))

6)
MUCH)))))

'2))))))

(NP 0 PP.COMPL (NP ((PP ((KP ((COMPL ((S NIL 1))))))))))
(NP.PP.NPR (NP ((PP ((PREP NIL 1)

(NP ((NPR NIL;!))))))))
{NP.PP.PP (NP ((PP ((NP ((PP ((PREP !,IL 1)

(NP NIL 2))))))))))
(NP.PP.PP#4 (NP ((PP ((PREP NIL 3)

(NP ((PP ((PREP NIL 1)
(NP NIL 2))))

4))))))
(NP 0 PP.PP.ADJ-NPR (NP ((PP ((NP ((PP ((NP ((ADJ NIL 1)

(NPR NIL 2))))))))))))
(NP 0 PP.PP.CGMP-U~IT (NP

((PP
((Np

((pp

((NP

c.43

((DET
((POSTART

((COMP ((ADV NIL 1)
(NP ((INTEGER NIL 2)

(UNIT NIL 3)))))
MUCH)))))))))))))))

<WEB8ER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29PM PAGE 1:42

(NP.PP.PP.PP (NP
((PP ((NP ((PP ((NP ((PP ((P1'EP NIL 1)

(NP NIL :t)))l))))))))))

(NP.PP.PP.PP.ADJ-NPR (NP
((pp

((NP
((pp

((NP ((PP ((NP ((ADJ NIL 1)
(NPR NIL 2))))))))))))))

))
(NP.PRO (NP ((PRO NIL 1))))
(NP.QREL (NP ((S (OREL)

1))))
(NP.REL (NP ((S (REL)

1))))

(S.ADJ (S ((VP ((ADJ NIL 1))))))
(S.AND (S (AND (S NIL 1))))
(S.AND.NPR (S ((NP (AND (NP ({NPR NIL 1))))))))
(S.COMP (S

((V P ((t: P ((D E T ((P O S T A R T ((C O M P ((A D V N I L 1)

(S.COMP-N (S
((V p

(NP ((INTEGER NIL 2)))))
MANY)) l))))))))

((NP ((DET ((POSTART ((COMP ((ADV NIL 1)

(N NIL 3))))))))

(NP ((INTEGER NIL 2)))))
MANY))))

(S.COMPL (S ((VP ((COMPL ((NP (NOM (S NIL 1))))))))))
(S.COMPL-THAN (S ((VP ((COMPL ((NP (THAN (S NlL 1))))))))))
(S.COMPL 0 CBJ (S

((V p
((COMPL ((NP (NOM (S ((VP ((NP NIL 1))))))))))))))

(S.DCL (S (DCL)))
(S.OCL-S (S (DCL (S NIL 1))))
(S.IMP (S (IMP)))
(S.IMP-S (S (IMP (S NIL 1))))
(S.NEG (S (NEG)))
(S.NEG-S (S (NEG (S NIL 1))))
(S.NP (S ((NP NIL 1))))
(S.NP 0 COr-;P (S ((NP ((DET ((PQ::;7ART ((COMP ((ADV N.lL))

2)
MUCH)))))

1))))
(S.NPR (S ((NP ((NPR NIL 1))))))
(S.NPQ (S (NPQ (NP NIL 1))))
(S.NPU (S (~PU (NP NIL 1))))
(S.NP-V (S ((NP NIL 1)

(VP ((V NIL 2))))))
(S.OBJ (S ((VP ((NP ((NU NIL 2))

1))))))

c.44

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29iM

(S.OBJ.ADJ#2 (S ((VP ((NP ((ADJ NIL 2))))))))
(S.OBJ.AND (S ((VP ((NP (AND (NP NIL 1))))))))

PAGE 1:43

(S.OBJ.COMP (S ((VP ((NP ((DET ((POSTART ((COMP ((ADV NIL))
2)

MUCH)))))
1))))))

(S.OBJ.NPR (S ((VP ((NP ((NPR NIL 1))))))))
(S.OBJ.NPR7 (S

((VP
((NP

((NR ((S ((NP (OF (NP ((NPR NIL 1)))
(NP NIL 2)
(NP NIL 3)
(NP ((NPR NIL 4)))
(NP NIL 5)
(NP ((NPR NIL 6)))
(NP ((NPR NIL 7))))))))))))))))

(S.OBJ.OR (S ((VP ((NP (OR (NP NIL 1))))))))
(S.OBJ.PP (S ((VP ((NP ((PP ((PREP NIL 1)

(NP NIL 2))))))))))
(S.OBJ.PP.PP (S ((VP ((NP ((PP ((NP ((PP ((PREP NIL 1)

(NP NIL 2))))))))))))))

(S.OBJ.PP.PP.PP (S
((V p

((Np
((pp

((NP ((PP ((NP ((PP ((PR:r:P NIL 1l
(NP NIL 2)))))))))))))))

)))

(S.OBJ.PP.PP.PP.PP (S
((V p

((NP
((PP

((Np
((p F

((NP
((pp

((NP ((PP ((PREP NIL 1)

))))))))))))
(S.OBJ.REL (S ((VP ((NP ((S NIL 1))))))))

(S.OR (S (OR (S NIL 1))))
(S.PP (S ((VP ((PP ((PREP NIL 1)

(NP NIL 2))))))))

(S.PP#1 (S ((VP ((PP ((NP NIL 1))))))))
(S.PP.AND (S ((VP ((PP ((PREP NIL 11)

(NP (AND (NP NIL 2)
(NP NIL 3))))))))))

(S.PP.AND.PP (S ((VP ((PP (AND (PP ((PREP NIL 1)

(NP NIL 2))))))))))

(NP NIL 2))))))))))

C.45

; <WEBBER>RULES0 WRITEUP;7 SUN 11-JUN-72 12:29~M PAGE 1:44

(S.PP.PP (S ((VP ((PP ((NP ((PP ((PREP NIL 1)
(NP NIL~))))))))))))

(S.Q (S (Q (NP NIL)
(VP NIL))))

(S.Q-MODAL (S (Q (AUX ({MODAL NIL))))))
(S.Q-NEG (S (Q NEG (NP NIL)

(VP NIL))))
(S.Q-S (S {Q (S NIL 1))))
(S.V (S ((VP ((V NIL 1))))))
(S.VP (S {(VP NIL))))
)

(LISPXPRINT (QUOTE (V: RULELISTS)) T)
(RPAQQ RULFLISTS (TOPICRULES PR[RULES DRULES SETRUL 3ETRUL? NPRRULE
TEPMRULE HEADRULES DALL SSETRUL OWORDS SEM-NOUNS SEM-VERBS AVERAGEFLAG))
(DEFINEV
(TOPICRULES (TOPIC\NOT-NP TOPrC\NOT-S TOPIC\AUTHOB NIL

(OR TOPIC\TERM TOPIC\TERM2 TOPIC\ESP
TQPIC\EMPHASIS TOPIC\NR.S TCPlC\NR.NP
(AND TOPIC\OR-S TOilC\AND-S TUPIC\OR-NP

TOPIC\AND-NP TOPIC\ADJ 0 N~
TOPIC\NP.COMPL TOPIC\S.COMPL
TOPIC\PP TOFIC\AUTHOR2
TOPIC\PP.COMPL TOPIC\REL
(OR TOFIC\ADJ 0 COMP

(A~D TOPlC\ADJ (OR
TOPIC\AUJ.SUPER

TOPlC\N)
TOP.LC\NPR)

TOPIC\ACJ-N TOPIC\ADJ-NPR)
TOPIC\NOM TO~IC\NR.S TCPIC\NR.NP
TOPIC\S.NP TOIIC\V-INTHA~S
TOPIC\V-TRANS TOPIC\V-TRANS2
TOPIC\S. OBJ TOPIC\S. PP)) l)

(PREFULES (S:AND S:OR S:DCL S:IMP S:WHQ s:QREL-NEG NIL S:QR~L S:YES/NO
NIL PR1 NIL PR2 NIL PR3 NIL PR4 NIL PRS NIL S:NPU
S:NPQ NIL PR6))

(D B U L E S (N : tl i r M B E R N I L D : M A S S N I L N P : N P R D : S OM E D : N I L D : H O w M A N Y
D:ATLEAST □ :EXACTLY D:MORETHAN D:LESSTHAN D:ATMOST
D:fVERY D:ALL-PL D:NEG D:THE-SG D:WHQ-S~ D:WHQ-PL
D:EACH D:ORDINAL D:CARDINAL D:ANAPHORA D:SEMI-ANAPHOR
D:ALL\ONES O:THE-SG2))

(SETBUL (D:SRTOF NIL O:NOT-SET))
(SEIRUL? (n:SET1 NIL D:NOT-SET))
(NPRRULE (NP:NPR))
(TE Rt": R 11 LE (A ~ Y : T t: R M))

C.46

<WEBBER>RULES0 WRITEUP;7 SUN 11-JUN-72 12:29PM

(HEADRULES (((S (NPU))
(QUOTF. NPU))

((S (NPQ))

(QUOTE NPQ))
((S (AND))

(QUOTE AND))
((S (OR))

(QUOTE OR))
({S (Q (S NIL)))

(OUOTE Q))
((S (Q (VP NIL 1)))

(HEAD 1))
((S (DCL (S NIL)))

(QUOTE DCL))
((S (DCL (VP NIL 1)))

(HEAD 1))
((S (IMP (S NIL)))

(QUOTE IMP))
((S (NEG (S NIL)))

(QUOTE NEG))
((S (NEG (VP NIL 1)))

(HEAD 1))
((S ((VP NIL 1)))

(HEH, 1))
((VP ((VP NIL)))

(HEAD 1))
({VP ((V NIL 1)))

(TERM 1))

((NP ((NPE. NIL ')))
(TEFM 1))

((NPR NIL 1)
(Ti:,;RM 1))

((NP ((N NIL 1)))
(TERM 1))

((N NIL ·1)

(TERM 1)1

((NP (OR)J
(QUOTE OR))

((Nl? (AND))
(OUO'!:'E AND))

((ADJ NIL 1)

(TE'RM 1))
((PREP NIL 1)

(TERM 1))
((NP (NOM (S NIL 1)))

(HEAD 1))

((V NIL 1)
(TERM 1))

((NP ((PRO NIL)))
(TEkM 1)')

c.47

1-'AGE 1:45

; <WEBBER>RULES0 WRITEUP;7

((INTEGER NIL
(TERM 1))

((UNIT NIL 1)

(TERM 1))
((PRO NIL 1)

(TERM 1))
((NP (NEG))

(QUOTE NEG))))
(DALL (D:l,LL))

SUN 11-JUN-72 12:2~PM

(SSETRUL (D:SSET NIL D:NOT-SET))
(QWORDS (HOW~ANY ~HICHQ WHEN WHERE WHY HOW WHQ))

PAGE 1:46

(SEM-NOUNS (AGE ANALYSIS AVERAGE BIG CONCENTRATION DOCUMENT DUST LITTLE
OLD))

(SEM-VERBS (CONCERN CONTAIN DISCOVER GIVE LlKE PERTAIN REFER))
(AVERAGEFLAG NIL)
)
STOP

C.48

APPENDIX D: DOCUMENTATION OF FUNCTIONS

This appendix is designed to give a detailed
description c)f the complete set of functions involved in
the parser, interpreter, and grammar of the system. It
describes each function, Places it the overall framework
of the system, expl~ins how it jnteracts With other
functions, and describes the functions of various
arguments and temporary storage locations. Together with
the listings of the programs, grammar, and semantic
rules, it provides a thorougn documentation of the LSNLIS
system.

Each function is given with the names of its
arguments in the form of a typical call to the function
(e,g, (GETB BEG WHERE) is a call to tne function GETR
with arguments BEG and WHERE, Those functions Which take
an indefinite number of arguments bound as a list to a
single atom are listed as a dotted pair of the function
and the argument list (e.g. (BUI~D • ARGS) represents a
call to the function BUILD with the CDR of the calling
form bound to ARGS),

D,l

Page 2

I. EXECUTIVE AND PARSING FUNCTIONS

(ABORT)

ABORT is a function for terminating fruitless paths
in a parsing. ?t is used as an action on arcs of the
grammar (usually embedded in a COND) to abort the arc if
some condition is not satisfied.

(ACT ACTIONS NONT!RMFLAG)

ACT is the function called bY STEP to execute the
actions on the arcs of the grammar. ACTIONS is the list
of actions to be performed, and normallY it is terminated
by a terminating action (JUMP, TO, or ABORT). However,
there are cases (e,g. on a JUMP arc) when ACT is called
with a list of actions Which js not so terminated. In
this case, the argument NONTERMFLAG 1s set to permit a
normal return from ACT. If NONTERMFLAG is not set and a
nonterminated list of actions is encountered, then th~re
is a bug in the grammar and ACT prints an error message.

Terminating actions are indicated hY returning a
value •LO, •L1, •L2, •END, •HELP, indicating a location
in the STEP routine to Which control is to resume.
Terminal acts other than ABORT also have the
responSiblity of setting up the configuration on Which
STEP is to operate,

(ADDL REG EXPRESSION)

ADDL is a function for use on arcs of the grammar
for adding to the contents of a reg1ster, It adds the
results of evaluating EXPRESSION to the left of the
contents of the register REG (Which must be a list).

(ADDLEX STRINGPOS LEXPAIR)

ADDLEX is a function to add lex;cal information to a
table LEXTABL! which ~eeps a record of the results of
calls to LEXIC. STRINGPOS is a pointer into the input
string where the current word beg1ns, and LEXPAIR is a
pair consisting of the word found and a pointer into the
input string immediateJy following the word, In the
current system these string pointers are merely the LISP
pointers into the list of words Which make up the
sentence and the dotted pair consist1ng of the word and
the rest of the sentence 1s the same pointer as the
pointer to the beginning of the word. However, the
function ADDLEX was written to permit more flexible use
of STRINGPOS,

D.2

Page 3

(ADDR REG EXPRESSION)

ADDR is like ADDL except that jt adds information to
the right end of the list in register BEG.

(ADJVERB)

ADJVERB tests whether tne verb was produced
predicate ad)ective replacing a copula verb,
case, the verb has the form tV ADJ ---), and
tests for the presence of ADJ.

(ALT.STACK ALT)

from a
In this
ADJVERB

This function extracts the stack from an alternative
ALT. It is used in several places by other functions.
It is one of cl large class of such functions which have
been named to aid the readibility of the programs. All
functions containing a period in tne1r names in this
fashibn are functions for extracting information from a
list that is functioning as a special "data type". The
porti6n of the name before tne period names the data type
to which the function applies, and the portion of the
name which follows the Period names tne "field" of the
data type whose value is being extracted. Thus an
expression of the form (ALT,STACK X) embedded in a piece
of code tells the reader botn that X 1s an ALT (the data
type for alternatives in the grammar) and that the value
of the expressi6n will be the stack which was saved in
that alternative.

(ALT.STATE ALT)

This function 1s similar to ALT.STACK, but extracts
the state of the alt~rnative,

(ALT.STRING ALT)

This function
alternative.

(ALT.WEIGHT ALT)

extracts the string from an

Extracts the weight associated with an alternative.
(The weight of an alternative js a measure of how
"likely" the alternative is.)

(ALTARC.ACONFIG ALT)

ALTA~C.ACONFIG is a function for extracting the
ACONFIG associated with an ALTABC alternative from the
entry for that alternative.

D.3

Page

(ALTARC.ARCS ALT)

This function extracts the 11st of arcs from an
ALTARC alternative,

(ALTARC.TRAIL ALT)

This function extracts a peinter to the TRAIL entry
from an ALTARC alternative ALT~

(ALTARCGEN)

This function ls caJled tn a number of Places in the
STEP function to store ALTARC alternatives, If there are
arcs which are as yet untried (and if LEXMODE is not set)
then an alternative is stored which will enable those
arcs to be ried later if the current path is not
successful. (LEXMODE is set durjng the processing of
certain parts o~ reduced conjunctions, when the parser is
constrained to follow the trail left bY a previous
parsing of the same string, and ALTARC alternatives are
not qenerated~)

(ALTCONJGEN PPATH)

ALTCONJGEN generates ALTCONJ alternatives for
restartinq a previous configuration of the parse on the
strinq which follows a conjunction (it is called bY
SYSCONJ as part of the system facility for handlin9
reduced conjunctions). PPATH is tne partial path entry
from some previous configuration Which saves the
necessary information for restartjng.

(ALTLOC ALTS STATE STACK)
ALTLOC is a function Which locates alternatives for

the selective modifier Placement facility, It looks for
the alternative which is in a specJfjed state and has a
specified stack pointer.

(ARCPICK LOCX LOCY)

ARCPICK is a function used bY tne selective modifier
placement facility to select a particular arc out of a
list of arcs and replnce it by an equivalent arc which
can only be followed if a flag •SPOP is not on. This
enables the selective modifier placement facility to take
a particular arc out of a list of arcs and replace it
with an equivalent arc that can onlY be taken if in the
context of another SPOP.

(ASSIST)

D.4

Page 5

ASSIST is a function called bY PARSER when no
parsings have been found and no more alternatives remain
to be tried, When the flag ASSISTFLAG is not set, it has
no effect. Otherwise, it locates the blocked
confiquration which got the farthest into the input
strinq before blocking, and executes a call to HELPER to
allow the user to investigate. (It identifies itself
with the typed message "ASSISTANCE:"), This function is
used only for system debugging, and ASSISTFLAG would
normally be off for users. If the call to HELPER is
terminated with RPT instead of OK, ASSIST will attempt to
resume the Parsing from that point,

(BACKUP)

This function is designed for use in an ASSIST break
(i,e, a call to HELPER from ASSIST). It allows the user
to back up the configuration along tne path leading to
it, Thus the user can back up along the computation of
the blocked c6nfiguration (and by terminating the call to
HELPER with RPT he can restart the computation from the
confiquration t~ which he has backed up), Each call to
BACKUP backs up the configuration one step and Prints out
the state of the configuration after the backup,

(BUILD , ARGS)

BUILD is a function which can be used on the arcs of
the grammar to build sentence structure, It takes an
indefinite number of arguments, the first of which is the
name of a structure fragment, The remaining arguments of
BUILD (if any) are items to be substjtUted for specially
marked leaves in the structure fragment, The structure
fragment is processed from left to right, and when a node
+ is encountered the next item in tne remaining argument
list is taken as the name of a reg1ster whose value is to
be inserted for the symbol +, When a node # is
encountered, the next item is taken as a form to be
evaluated, and. the resulting value is substituted for the
symbol#. In addition, when the symbol• is encountered,
the current value being scanned bY the pointer* is
copied into the structure, and where subexpressions of
the form(~ xi X2 •• Xn) are encountered, a single list is
generated which is the result of appending X1, X2, , ••
Xn (which must be lists) into a single list, BUILD1 and
BUILD2 are the tunctions that do most of the work.

(BUILD1 X)

See BUILD.

(BUILD2 X)

D.5

See BUILD,
(BUILDQ. ARGS)

Page 6

BUILDQ is like BUILD except that 1ts first argument
is taken literally as the stFucture fragment wh1le
BUILD•s first argument is evaluated,

(CAT CATEGORY)

CAT is a function for use in conditions on arcs in
the grammar for testing the syntactic categories of the
current word being scanned, CATEGORY can be either a
single syntactic category name or a 11st of category
names. CAT is true if the current word can be in the
indicated category or one of the indjcated categories,

(CATCHECK CATEGORY FLAG)

CATCHECK is the function used by CAT and by STEP for
accessing the dictionary to determine whether the current
word can be a memher of a particular category, It
returns a list (called a form~features list) Whose first
member is the standard (uninflected or "root") form of
the word as used in this category and whose remaining
elements are inflectionaJ features associated with this
word used as this category. In addition, if there are
other such lists (corresponding to different senses of
the word) for the same syntactic category and the flag
FLAG iS set, then an ALTCAT alternatjve is generated to
enable that alternative to be pursued later, This flag
is set When STEP calls CATCHECK for a CAT arc, but is not
set for other uses,

(CCHECK TEMPLATE MLIST)

CCHECK is the function whicn checks semantic
conditions in templates during the matching of semantic
rules by the interpreter. TEMPLATE is the template in
question, and MLIST is a LIST of possible matches for the
template which are to be screened bY CCHECK. Each
element of MLIST is an ALIST whose elements are dotted
pairs of node numbers in the template and their
corresponding matches in the tree,

(CHANGEWORD • ARGS)

CHANGEWORD is a function for use in a REQUESTO!F
break when the system encounters an unknowwn word. It
takes an indefinite number of arguments ~RGS, and it
patches this list into the input string in place of the
current word, If ARGS is NIL, then the current word is
deleted. It performs the necessarY side effects to
enable the Parsing to continue as if the resulting string

D.6

were the one originallY typed.

(CH!CKF CATEGORY rEAT)

Page 7

CHECKF is a function Which checks the current word
(•) to see if it has feature FEAT under syntactic
category CATEGORY in the dictionary. FEAT may be a list
of features instead of a single feature, in which case
CHECKF is true if• has anY of the indicated features.
rhe dictionary checking is actuallY performed bY CHECKF1.

;CH!CKF1 CATEGORY rEAT)

See CHECKr.

(CHOOSEALT N)

CHOOSEALT is a function for debugging grammars which
enables the user to specify the alternative which Will be
tried next when the user tYpes GO(PARSE) to TALKER. The
number N refers to the number which 1s printed out with
the alternative when running with TRACEFLAG set to T.

(COMPARATIVE ARGS)

COMPARATIVE tests whether the verb was produced from
a comparative predicate adjective (e.g. JOHN WAS
BIGGER •••) replacing a copula verb. In this case, the
verb has the form (V ADJ ••• COMPARATIVE), and
COMPARATIVE tests for the presence of the word
COMPARATIVE.

(COMPFORM ENDING)

COMPFORM is a function to check Whether the given
ending is the indicated ending form the comparative form
of the adjective•• Ir is used in MORPHTABLE for the
morph~logical analysis of comparative adJectives.

(CONJOIN)

This function iS one of three Primary functions in
the SYSCONJ facilitY. (The funct1ons are CONJOIN,
POPCONJ, and SYSCONJ.) It is never called explicitly from
any part of the code, but a call to CONJOIN is placed on
the stack bY SYSCONJ alono with the current status of the
confiquration which is being suspended in order to
restart an earlier configuration on the string which
follows the conjunction. Wnen the restarted
configuration has completed the construction which it was
building, control will pop to thJS special stack entry,
and the function CONJOIN will be executed to resume the
SUSQen~ed configuration on some tail of the string

D.7

Page 8

consumed bY the restarted confjgUration, CONJOIN
enumerates all possible such taiis, and generates
alternatives for each of them. It also gathers up
multiple con1uncts into a single level conjunction (i,e.
(AND ABC) instead of (AND A (AND B C))--this is done bY
the first COND in the prog~am) and 1t uses a heuristic
strategy for selecting the "p~eterred" tail to try first,
The strategy is that if the word which immediately
preceded the conjunction word (i.e. (CAa (P~TH.STRING
(CAAR TEMP)))) 1s repeated somewhere 1n the string
consumed bY the restarted configuration, then the
preferred place to resume the suspended alternative is
immediately after this word. The location of such an
alternative is performed bY the loop at L1,

(CONJSCOPE SCOPEWO!D CONJ)

This function ls a predicate Which is true of a
conjunction and its left-hand scope indicator, That 1s,
CONJSCOPE is true when scoPEWORD is "both" and CONJ is
"and" or when SCOP!WORD is "either" and CONJ is "or". It
is used in CONJSTARTS for selecting preferred restart
confiqurations,

(CONJSTARTS PPATH STATES)

This function computes restart configurations for
SYSCONJ. It returns a list of the possible restart
configurations ordered with the most likely one last, so
that when they are placed on the ALTS list in the order
given, the most likely one will be the most recent ALT,
CONJSTARTS operates by backing up the partial path
(PPATH) leading to the configuration where the
conjunction was encountered and picking up possible
restart configurations. It is forced to back up across
at least one word in the string, and the flag fIBSTFLAG
is used to remember whether this conditon has heen met,
It backs up along the partial p~th at each level until it
is exhausted and then goes up the stack one level and
starts backing across that level. It is forbidden,
however, from backing up the stack beYond a previous
SYSCONJ entry. When such a condition is encounttered, or
if the stack 1s emptied, then QUITFLAG is set to indicate
that all possible configurations have been found. It
will not generate a restart configuration Which was
reached as a result of a JUMP arc, since that would
duplicate a configuration which can be reached by
restarting the configuration at the beginning of that
JUMP arc. Also, if CONJSTARTS 1S given a list Of states
as its second argument STATES, then only restart
confiqurations in those states wjll be consideredJ
otherwise, any state is possible.

D.8

Page 9

CONJSTARTS uses several heurist1cs to locate
preferred restart configurations. In the course of
operation it selects up to tnree preferred alternatives
(PBEF!RRED0,PR!FEFRED1 and PREFERRED2, favored in that
order). PREFE!RED0 is that alternatjve, if any, which is
indicated by a scopeword for the current conjunction
("both" for "and" or "either" f6r "or"). PBEFERRED1 is
the alternative that is indicated bY a repeated word-
i.e. when the word whicn immediately follows the
conjunction ,occurs in the preceding string. PREFERRED2
is the alternativee which is the beginning of the current
constituent being built.

(CONSTITUENTS NOOE)

CONSTITUENTS is the function which When applied to a
node of a 'Parse tree Yields a list of the immediate
constituents (daughters) of that node. For the tree
notation currently in use, this is simply the CDR of the
node.

(CONTRACTP WORD)

CONTRACTP is a function for morphological analysis
of words which appear to be contract numbers. It is only
a crude approximation to an actual recognizer of contract
numbers. It is only called for words which are not
alreadY in the dictionary, and hence will not cause any
conflicts with words which are entered in the dictionary
that might meet its conditions but not be contract
numbers. The conditions are that the word contains at
least one hYPhen, one numerical digit, one alphabetic
letter, and no other punctuatton marks,

(CTYPE ENDING)

CTYPE is a predicate used in MORPHTABLE entries for
determining whether the ,0ojugatioo tige of the current
word is the same as that given as the argument ENDING.

(D)EF • ARGS)

DDEF is a function for add;ng entries to the
dictionary. It is not called explicitly by any
functions, but is intended for use by a user or systems
programmer at the executive level or in a break. ARGS
should be a list whose first element ~s the word to be
defined, and whose remaining elements in Pairs are
property names and property values to be added to the
dictionary entry for the word. It also adds the word to
the global list DICTIONARY.

D.9

(DETBUILD)

DETBUILD is a function which is called bY
the grammar te build the determiner structure
phrase. It combiftes the contents of the
POSTART and D!T with the appropriate structure,

(D!TOUB)

Page 10

arcs of
of a noun
registers

DETOUR is the function whicn chooses the next
alternative to be tried when the parser encounters a dead
end or is instructed to find another parsing. It
searches for the most recent alternative with the lowest
weight.

(DICT? WOBO)

DICT? is a function for examing the dictionary entry
for a word WORD. It is not called bY any function, but
is intended for use by a user or systems programmer.

(DICTCHECK LEX CATEGORY)

This funetion checks the dictionary entry for the
word LEX to see if it can be aftalYZed as a member of the
syntactic category CATEGORY, ?t returns a list each
member of which is a list consisting of a standard (root)
form of the word and the inflectional features associated
with that word as an inflected form of the indicated
root. This is the function which decodes the various
types of abbreviated dictionary formats into the standard
list of form~features lists.

(DICTFETCH WOBD)

DICTFETCH is a function Whjch retrieves the
dictionary entry for a word from the external dictionary
file. The name of the external file is assumed to be on
a global variable DICTFILE, OICTF!TCH does a binary
search on the file for the indicated word after first
checking to verify that it nas not already tried to find
this word on the file before, In addition to calling in
the dictionary entry for the word, it also calls itself
recursively to obtain the entries for certain related
words (see RELATEDWORDS).

(EQU N • ARGS)

EQU is a predicate used ln the conditions in
semantic rules. It verifies that the terminal string
dominated bY the node numbered N is equal to the string
ARGS.

D.10

Page 11

(EVALLOC FORM)

EVALLOC is a function Which 1s used bY several of
the functions which are used bY the grammar, FORM is an
argument list for some £Unction, and EVALLOC decides
whether the argument is the name of a register (in which
case it applies GETR to get the contents of a register)
or a form for EVAL in whiCh case it calls EVAL. It also
handles the evaluation of the spec~al current constituent
pointer •, and fills the current constituent in as a
default for certain cases Where an argument is missing.

(F.NODE FRAGMENT)

F.NODE is a function used 1n the tree match facility
to obtain the node name of a node in a partial tree
fragment of a template,

(F.REF FRAGMENT)

F.REF is a function to access the reference number
if any associated with a node in a partial tree fragment
of a template.

(F.SONS FRAGMENT)

F.soNs is a function for accessing the list of
constituents of a node in a partJal tree fragment,

(FILEMATCH WORD FILE POS)

FILEMATCK is a function used by DICTFETCH to compare
a given word with the word at tne specified position POS
on the external FILE. It returns one of the atoms
GREATER, LESS, or EQUAL.

(F30NTED? SONS)

FRONTED? is used when the parser is doing
simultaneous interpretation. It runs tnrough the SONS of
a node, looking for prepositional phrases Which were
preposed in surface structure, and returns~ list of
those that were. This list is used by SORTREFS in
deciding quantifier ordering, since quantifiers in
fronted prepositional phrases retain their surface
structure scope.

(G~TF FEATURE)

GETF is a function which obtajns the value of a
feature FEATURE for the current word on a CAT arc. As a
side effect of the call to CATCHECK on a CAT arc, the
atom FEATURES is bound to the list of inflectional

D.11

Page 12

features associated with tne current inflected word.
GETF accesses features from this list.

(GETLEX STRINGPOS)

GETLEX is a function for accessing the LEXTABLE
constructed by LEX?c.

(GETR REG WHERE)

GETR is a function for getting the contents of a
register REG. During the parsing, tne contents of the
registers are kept on a Jist ~EGS of alternating register
names and register values. GETR searches this list for
the register REG. However, there are times when one
wants to get the contents of a register at some higher
level on the stack, The argument WHERE allows for the
specification of the stack locatien, If WHERE is T, then
the tbp level is used. If it is "NEAREST" then GETR
searches the current leveJ and then successively looks up
the stack until it finds an instance of REG. If WHERE is
a number, then GETR looks at tnat numerical stack
position. Otherwise WHERE can be a condition on the
STATE. REGS, and ACTIONS of a stack entry which
determines the level of the stack to use,

(GETROOT WORD CATEGORY)

GETROOT is a function for obtaining the root form of
the word WORD viewed as a member of category CATEGORY.
Note: if there are several possible roots, only the first
one in the dictionary iS found. e.g. (GETROOT (QUOTE
SAW) V) will return SAW or SEE depending on which is
first in the dictionary entry under the category v.

(HOLD FORM FEATURES)

HOLD is a function for use on arcs of the grammar
which adds items which have been found in the sentence in
some position other than their legjtjmate deep structure
position to a special HOLC list, Entries on the HOLD
list may later be recognized by VIR arcs in the grammar
as if thev had been found at the point in the sentence
where the VIR arc 1s applied. The values of FORM and
FEATURES are saved on the ltst so that when the VIR arc
is applied, • will be bound to FO~M and FEATURES will be
bound to the saved value of FEATURES.

(HOLDSCAN HLIST CATEGORY TST)

This function scans the list HLIST (Which Will be
the HOLD list) for elements of the type CATEGORY Which
meet the condition TST. rt is used for prcessing VIR

D.12

Page 13

arcs in the function STEP.

(H1PHENADJ WORD)

HYPENADJ is a predicate which is true of words which
look like hyphenated adjectives. It is a crude
approximation of a function to recognize hyphenated
strinas of English words. HYPHENADJ is true if wnRo
contains at least one hyphen, at least one alphabetic
character, no numeric digits, and no other punctuation
marks, It is used 1n the morpnological analysis of
adjectives.

(JUMPS)

JUMP
grammar
advancing
the new
indicate

is a function whicn can be used on arcs of the
to indicate transition to a new state Without

the input string. It does this bY setting up
configuration CONFIG and returning •L1 to

that the function STEP is to continue at
location L1.

(LEXALIZE STRING)

LEXALIZE is a function which obtains the list of
(lex • strinqpos) pairs which can be obtained from a
given string bY the compression of compound expressions
into single lex•s and by lexical substitutions.

(LEXIC ALTS)

LEXIC is the function wnose job is to determine the
next word in the input string. It is called bY PARSER
whenever the input string is to be moved. LEXIC provides
for the expansion of contractions, tne substitution ot
some sYnonyms, the compaction of compound pnrases which
are to be treated as single words, and the requesting
from the user of definitions for unknown words.

The next word in the sentence is not always uniquely
deter~ined, and for this reason, LEXIC is designed to
enumerate the alternative possible "next words"~ It does
this as follows: When LEXIC is called, it chooses one of
the possible next words and sets up the va1ue LEX to hold
it (and ad)UStS STRING accordingly so that LEX is (CAR
STRING). If there are other possible "next words", then
LEXIC qenerates alternatives (ALTCOMP's or ALTSUB'S) for
these and returns a list of them as its value. If there
is only one possible choice for LEX, then LEXIC returns
NIL. The portion of PARSER which calls LEXIC takes any
alternatives returned by LEXIC and generates an ALTLEX
alternative on the parser's ALTS 11st. In restarting one
of these ALTLEX's PARSER will call LEXIC With a list ot

D.13

Page 14

alternatives ALTS, and L!X?C will generate the
appropriate choice for another "next word", Thus the
first COND in LEX!C tests for whether LEXIC has been
called in this mode to enumerate another alternative, and
if so branches to location ALT,

Normally, dictionary entries are stored on the
property lists of atoms wnich are provided bY the LISP
system. However, numbers and the special atom NIL are
not permitted to have Property 11sts in LISP nor can
pieces of list structure have property lists, However,
we would li~e to be able to recognize such constructions
when they occur in input sentences, and therefore LEXIC
tests for these special types of LEX, If the input
"word" is one of these types, then the functions of the
morphological analyzer which are stored on MOBPHTESTS can
recognize them, and LEXIC will consider them known
possible next words. In additJon, for Pieces of list
structure. LEXIC will consider the possibility that the
parentheses in the input were superfluous and will
generate an ALTCOMP alternative in Which the Parentheses
have been removed. This alternative will not be tried.
however, unless there is no other way to Parse the
sentence.

If the input word is not one of the special forms
discussed above, then LEXIC checks to see if the word has
a dictionarY entry (PLIST determines whether the property
list is empty) and, if not, Whether the word can be
derived bY reqular inflection from a known word (the
function MORPH performs this type of morphological
analysis). If the word turns out to be known for any of
these reasons, then the routine branches to location
SUBSTITUTE? to consider possible substitutions or
compound phrases.

If the "word" is not known, one possible reason is
that it contains some Punctuation marks that were not
separated from it by a space or that it has been run
together with another word with onlY punctuation marks
separating them. The next tning which LEXIC does is to
look for such punctuation bY unpacking the characters of
the word and processing them to look for punctuation.

When a word is known to the system by virtue of
having a dictionarY entry, then LEXIC looks to see
whether the dictionarY specifies a substitution to be
performed. If so, it will find on the property list of
LEX the property SUBSTITUTE followed bY a list of
alternative substitutions. Each substitution is a list
(possibly NULL) of words to be inserted in Place of the
current word in the input string. If there is more than
one substitution, then the first one is taken and an

D.14

Page 15

ALTSUB alternative 1s generated for the rest. Following
the testing for substitutions, L!XIC checks for the
presence in the dictionary of a COMPOUNDS entry which
indicates that LEX can begin a compound phrase. The
value of the property COMPOUNDS is a search tree for the
possible compounds that can begin with LEX, and LEXIC
compares this tree with the sequence of words following
LEX in the input string. If tt finds a match, it chooses
the longest one and generates ALTCOMP alternatives for
any shorter ones.

(LEXPAIRS STRINGPOS)

LEXPAIRS is the function called bY LEXIC to produce
the list of (lex. stringpos) Pairs which can be found
at the indicated posjtion STRINGPOS. Each Pair indicates
a o6ssible lex together with the stringpos which
immediately follows it.

(LIFTR REG FORM WHERE)

LIFTR is a function for setting register contents at
higher levels on the stack, REG is the name of the
register, FORM is the vaJue to which it is to be set, and
WHERE is a specification of the level on the stack at
which the register is to be set, WHERE permits the same
options for LIFTR that it does for GETR with the
esception of "NEAREST".

(LONGBLOCK)

LONGBLOCK is a function which is called bY ASSIST to
determine the blocked configuration which got the
farthest through the input string when a sentence is
unparsable. This is a likely site for the error which
caused the sentence not to parse, especially if the error
has to do with the dictionary entry for a word.

(MARKER X Y)

MARKER is a function Which checks whether the word X
has the semantic marker Y.

(MEMBSTACK PTR STACK)

MEMBSTACK is a function used bY PARSER as part of
the well-formed substring facil1ty to test whether a
qiven alternative could possibly add to a given position
in the string. STACK is the stack of an alternat~e from
the ALTS list and PTR is a pointer to a list of
well-formed substrings. MEMBSTACK returns T if STACK
contains the pointer in its WFST3 entrY at some level.

D.15

Page 16

(MODAL)

MODAL is a predicate for use on the arcs of the
grammar and is true if the current value of• is a modal
verb.

(MOOES!T MODE)

MODESET is a function for 1nitial1zing some standard
mode settings. MODE T causes all parsings to be obtained
and interpreted and executed. MODE 1 does parsing only,
MODE 2 does Parsing and semantic interpretation, and MODE
3 does parsing, semantic interpretat1on, and execution.

(MORPH LEX CATEGOBY CMODE)

MORPH is the function wnich performs morphological
analysis for rugularlY inflected words. LEX is the word
being MORPH'ed, If CATEGORY ts a single category name,
then the analysis 1s performed for that category only;
but if CATEGORY is NIL, then the analYsis is performed
for all possible categoreis, MORPH makes use of two
tables -- MORPHTESTS and MORPHTABLE. The first contains
arbitrary LISP tests for particular types of words, while
the second contains inflectional endjngs.

MORPHTESTS is used both in MORPH and in CATCHECK; it
consists of a list of entries for different syntactic
categories, with each entry consisting of the name of the
category and a series of two~element lists which specify
a predicate to be tested and a form to be returned as the
form-fetures list if the predicate if true, A simple
MORPHTESTS entry would be (INTEGER ((NUMBERP •) (LIST
•))), indicating that any wrd • which passes the test
(NUMBER•) will be considered as an instance of the
syntactic category INTEGER, with a standard (root) form
identical to itself (•) and w1th no inflectional
features. CMODE is a flag which can be set to skip the
MORPHTESTS analysis.

MORPHTABLE indicates the possible inflectional
endinqs for regularly inflected words, and the Procedures
for obtaining the underlying root forms for inflected
wrds, MORPHTABLE also contains entries for several
different syntactic categories. Each entry specifies a
syntactic category and then a sequence of entries of the
form:

(E- E+ CATEGOBY CONDITION FEATURES•)

where E- is an ending to remove f~om the end of the word
(if it is not there, then tne rule doesn't apply), E+ is
an ending to add to the stem that results from

D.16

Page 17

subtracting E •. , CATEGORY iS the syntactic category of the
root which is to be checked, CONDITION is a condition
whch must be true of the root When viewed as category
CATEGORYJ and FEATU~ES (there may be any number of them)
are the inflectional features whichare to be associated
with the work if the condition is satisfied. The
CONDITION in the rules is used to verify that the
tentative root is indeed in the class of wrds which
underqo the regular inflection represented bY the rule,
For example, the entry (N ((S) NIL N (PLURAL -S) (NUMBER
PL))) says that lf we re looking for a noun (N) and if
the wrd ends ins, then we remove the S from the end, add
nothing (NIL) and look at tne result ➔ ng wrd as a noun (N)
to test the c~ndition (PLURAL -S) (Which tests the
dictionary entry tor the word for the property N with
value -s) to see if the word undergoes this type of
inflection. If so, then the jnflectonal features
associated with the word consist of the single feature
(NUMBER PL).

If a dictionary entry is computed for a word by
means of morphblogical analysis, then it is added to the
property list for that word for tne duration of the
console session with the sYstem, Thus, the morphological
analysis described will be done only once fer each word
for which it is required.

(MORPHTABCHECK TABLE)

MORPHTABCHECK is the functlon which tests the
entries in the MORPHTABLE for MORPH. It returns a list
of appropriate form.features lists for the dictionary
entry if a line of the table js successful and NIL
otherwise.

(MORPHTSTCHECK TAB)

MORPHTSTCHECK is the function wr1icn checks entries
in the MORPHTESTS table for MORPH, It also returns a
list ~f form~feature lists.

(NEGAOV WORD)

NEGADV 1s a function which tests tor negative
adverbs such as "haroly", etc, wnich cause subject/verb
inversion when the beqin a sentence,

(NEXTWRD WRDS)

NEXTWRD 1s a function wntch is used on arcs of the
grammar and returns the next word in the input string.

D.17

Page 18

(NPBUILD)

NPBUILD is the function which builds the syntactic
tree structure for a noun Phrase. It 1s used on POP arcs
in the grammar.

(NPCHECK NODE TEBMINALS)

NPCHECK is a function used in PNCHECK for testing
constituents of a noun pnrase node, It uses the free
variable NP Which is bound to a noun phrase node by
PHCHECK and looks for a constituent of the noun phrase of
type NODE. It checks whether the immediate constituent
of this NODE is a member of the list TERMINALS,

(NPREP ARGS)

NPREP tests whether a given preposition is usually
associated with the head noun of a noun phrase. ARGS may
be a preposition or a prepositional phrase, in Which case
its preposition 1s extracted and tested. This is a
primitive foray into correct modifier Placement, but it
works in more cases than not.

(NULLR REG)

NULLR is a predicate for use jn conditions in the
arcs of the grammar for testin~ whether the register REG
is empty.

(ORFLAG X)

ORFLAG is a function Which can set a special mode
that tells the system to interpret all "and" conjunctions
as if they were "or" conjunctions, This mode can be used
by s6me users who habitually say "and" when they mean
"or" in document requests. When Xis T the special mode
is set, and when x ls NIL it is reset.

(PARSELIST SENTLIST)

PARSELIST is a function for debugging a system. It
takes sentences successively from the list SENTLIST and
processes them as queries.

(PARSER STRING MODE ALTS)

PARSER is the controlling routine of the parsing
component. STRING is the sentence to be parsed and MODE
is a variable which governs the mode in which the parsing
is to proceed. (ALL causes all parsings to be found,
SPLIT causes all parsings to be followed in parallel, and
non-null values in general cause automatic selecton of a

D.18

Page 19

new alternative number, whenever a blocked configuration
is encountered.) ALTS is a list of alternatives which is
NIL unless PA~S!a is being called to continue looking for
parsings, in vhieh case it will be 11st of alternatives
generated bY a previous call to PARSER, PARSER returns a
list whose first element is a 11st of parsings found, and
whose second element is a list of alternatives which it
did not trY It is this liSt of alternatives wh~ch can be
used to continue looking for additional Parsings if the
first one is found not be satisfactory.

PARSER manages a list, of active configurations
(ACFS) which its calls the function STEP to advance. A
configuration c6ns1sts of a c~mplete record of a state of
the machine ~~ i.e., a list of the state, stack,
registers. contents of the HOLD list, and a Path entry
which records the history of how the cofiguration was
reached from the initial configuration,

PARSER runs in two mod~s depend1ng on the setting of
a flag LEXMODE. In the normal mode, LEXMODE is NIL and
the parser proceeds by calling LEXIC to determine the
next word in the string. LEXMODE is set when the parser
is operating on a reduced conjunction during the part of
the processing when the suspended configuration for the
first conjunct is being resumed on a tail of the string
consumed by the second coniunct (See SYSCONJ and
CONJOIN). At this time, the parser follows the trail
(TRAIL) left bY the previous parsing of this substring,
and the normal lexical analysis 1s bypassed. This is due
to the fact that the two components of the conjunction
are required to analyze the shared substring in the same
way.

If after calling LEXIC, the current word LEX is
still an unknown word. then the conf1guration is added to
a list of blocked configurations and the Parsing is
aborted under the assumption that no other alternatives
will be able to parse beyond the unknown word in the
sentence. When LEX is a known word, however, PARSER
calls the function STEP to advance the active
configurations and produce a new list of active
configurations at the next position of the input string,
it advances the input string to the next position and
repeats. If at any time there are no new active
confiqurations, then depending on tr,e setting of the flag
MODE (Which is normallY set to the value of the global
flag PMODE) it either goes into a break at location HELP,
or it selects an alternative to be tried bY calling the
function DETOUR at location ALT. If there are no more
alternatives, but there have been some complete parsings
found (if so they are stored on VALUES bY the function
POP which is executed in interpretlng tne POP arcs in the

D.19

Page 20

grammar), then PARSER returns those parsings, If this
call to parser was not itself an attempt to find
additional Parsings (in whicn case ALTFLAG would be set),
then the failure to find any parsings of the sentence
will cause a call to ASSIST. This js the function which
would eventuallY contain facilities for making helpful
diagnostic comments to the user as to the likelY cause of
the error, and perhaps even correct them and continue.
At the moment it mereJy goes into a break (if the flag
AHELP is set) at the blocked configuration Which got the
farthest into the string befo~e blocking,

The various locations ALTCONJ, ALTLEX, and ALTARC
know how to restart their corresponding types of
alternatives, which have been found on the ALTS list by
OETOU~,

(PATH,ARC PATH)

PATH.ARC is a function which extracts the last arc
followed from a path entry,

(PATH,STRING PATH)

PATH.STRING is a function which extracts the current
strinq position from a path entFY,

(PATH.VAL PATH)

PATH.VAL is a function which extracts the VAL (i,e,
the word or construct "consumed" bY the last transition)
from a Path entry,

(PLOG N FILE)

PLOG is a function whicn prints
sentence processing to a file. N lS

of the processing to be printed
interpretation, and 3. execution),
when LOGFLAG is set,

(PLURAL ENDING)

out a record of the
the number of phases

(1, parsing, 2.
It is called bY QGO

PLURAL is a function for use as a condition in the
MORPHTABLE of the morphological analYsis component, It
tests whether the dictionary entry for the current word•
is marked as a noun with regular jnflection of the type
ENDING,

(PNCHECK NP PNCODE)

PNCHECK (person-number check) is the function which
checks for person-number agreement between a noun phrase

D.20

Page 21

(NP) and a person-number code (PNCODE). It is used in
the grammar to check person-number agreement between
verbs and their subiects,

(POP POPVAL POPF!ATUR!S)

POP is the function which returns from a recursive
call in the transition network grammar. It is used by
the function ~ITEP for the interpretation of POP arcs, and
can occasionally be used as an action on an arc of the
grammar. POPVAL is the structure that is to be returned
from the recursive call (and bound to the current
constituent p6inter •) and POPFEATURES is the list of
features which is to be associated with the current
constituent.

POP restores the configuratjon wh1ch was saved on
the stack at the time of the PUSH Which initiated the
present level of computation and performs the actions on
the push arc, after setting the flag NOMOVEFLAG which
indicates that the function TO at the end of the PUSH arc
is nbt to advance the input string (s~nce it has already
been advanced by the recursive computation). If the
stack is empty, and the STRING 1s also empty, then POPVAL
is a complete parsing of the sentence, and 1s added to
the list VALUES Which is being maJnta1ned by PARSER. It
the string is not empty at this time, then the
configuration is blocked.

(POPARC.FEATURES ARC)

POPARC.FEATUR!S iS a function for extracting from a
pop arc a form which evaluates to a list of features to
be associated with the construction Which is being
returned by the pop arc.

(PCPARC.FORM ARC)

POPARC.FORM is a function which extracts from a pop
arc a form which is to be evaluated to Produce the
structure which is to be returned by the pop arc.

(POPCONJ)

PCPCONJ is one of tne £unctions used for the
facility which handles reduced conjunctions (see CONJOIN
and SYSCONJ). A call to POPCONJ is placed on the stack
bY CONJOIN when it resumes the suspended configuration
for the first conjunct in a conjunction. This call to
POPCONJ will be invo~ed when the first conjunct has been
completed, at which time it wtll determine whether the
two components of the conjunction are compat1ble, compute
the syntactic representation of the conjoined phrase, set

D.21

Page 22

up a configuratioA on the alternatives list for the
computation which is to be resumed at this point, and
abdicate control bY returning •END as its value, This
will enable DETOUR to pick up the configuration from the
ALTS list and continue parsing, (This method of
proceeding with the parsing is used to restore the value
of the input string, which has been temporarily destroyed
by the operation of STEP in LEXMODE mode, Without
interfering with any other active configurations which
may be on the current ACFS list~)

(PPATH,ACONFIG PPATH)

A partial path (PPATM) is a path entry without a VAL
(that is, it represents a Path which has decided what arc
to take next but does not Yet have tne result of the
transition), It is saved in the stack entry when a
computation pushes to a lower level and is used to build
the full Path entry when the embedded computation
returns. PPATH.ACONFIG is a function Which extracts the
previous augmented configuration from the PPATH entry,

(PPATH,ARC PPATH)

PPATH,ARC is a function which extracts the arc
followed from a PPATH entrY.

(PPATH.BACK PPATH)

PPATH,BACK is a function fer backing up along the
path entries for a configuration, Its argument is a
partial path (PPATH) which consists of a record of an
augmented configuration (ACONFIG) and the arc which was
followed from that configuration, It lacks the
information about the computation of that arc Which is a
part of a complete path. (See the listing FORMATS in the
computer listinq for the specification of the LISP
structure formats for partial Paths, paths,
confiaurations, ~nd augmented configurations,) If the
partial path PPATH ls not the first one in a call to the
network, then its last element is tne full PATH entry
recording the configuration prior to the current one, and
CDR of this is the partial path associated vith it, If
there is no Previous path as the last element of PPATH,
then this configuration is the first one after some PUSH
(or indeed the first one in tne analysis of the string)
and the preceding partial path is taken from the STACK
assoociated with PPATH,

(PPATH,CONFIG PPATH)

PPATH,CONFIG is a function which extracts the
previous configuration from a PPATH entry,

D,22

Page 23

(PPATH.HOLD PPATH)

This function extracts the HOLD 11st from a Partial
path.

(PPATH.PATH LIST)

This function extracts the previous path entry from
a partial path.

(PPATH.REGS PPATH)

This function extracts the regjsters list from a
partial path.

(PPATH0 STACK PPATH)

This function extracts the stac~ from a Partial
path.

(PFATH.STATE PPATH)

PPATH.SThTE extracts the preVlOUS state from a PPATH
entry.

(PFATH.STRING PPATH)

PPATH.STRING extracts tne string position at the
beginning of the transition from~ PPATH entry,

(PPT XTR FILE)

PPT (pretty print tree) prints a parse tree (XTR) in
a pretty format to the file FILE. The function which
actually does the printing is PPT1.

(PPT1 XTR XID FILE)

See PPT.

(PRINTPARSES FILE)

PRINTP~RSES is the function used by SENTPROC to
printout the result of the parsjng when the appropriate
flags are set. If the global flag PPTFLAG is set, then
this happens using PPT to obtain the printout in a pretty
format. Otherwise, the Pr1nt1ng 1s in the ordinary
parenthesis notation corresponding to the internal list
structure.

(PUNCTALIZE STRING)

D.23

Page 2'-'

PUNCTALIZ! is a function called bY LEXPAIBS as part
of the LEXIC ~ackage to Perform punctuation ana~Ysis on
the first atom in the list STRING, PUNCTALIZE is called
when the next "word" in the sentence 1s not in the
dictionary to see if it might really be a known word with
punctuation at the end or two words run together w1th
punctuation. If this is the case, then PUNCTALIZE
returns an Updated string (or a list of alternative such
strings) with the word and the punctuation separated,
Otherwise it returns NIL.

(PUSH PS)

PUSH is the function Used by STEP to interpret PUSH
arcs in the grammar. It can also be used as an action on
the arcs of the grammar under certain circumstances. In
the normal mode (when LEXMODE is not set) it saves the
current state, register contents, actions to be
performed, HOLD list, and partjal path on the stack and
starts a new configuration at the lower level with the
initial register contents from SREGS (those register
contents sent down bY calls to SEND~). When LEXMODE is
set, then PUSH must take its constitutent from the trail
which the parser is following, If nothing was sent down
with a SENOR, then it merely takes the value stored in
TRAILVAL for the trail being followed. If there were
register contents sent down, however, then it calls REDO
to follow the path associated with the computation of
that constituent to construct the new constituent based
on the new initial registers sent down,

(PUTLEX STRINGPOS LEXLIST)

PUTLEX is a function called by LEXIC to add the list
of alternative lexical analyses at the current stringpos
to the table LEXT~BL!. Thus, when other paths encounter
the same string postion, the lexical analysis will be
available there and will not be recomputed,

(Q • QUERY)

o is the function called by TALKER for Processing
input sentences, It sets the variable SENTENCE, calls
SENTP~oc, and logs the resUlttng output if LOGFLAG is
set.

(QGO LABEL)

QGO is the function called
looking for more parsings,
interpretation, etc. It calls
LABEL which specifies a Jocation
processing is to be started.

D.24

bY TALKER to continue
to repeat a semantic

SENTPROC With a label
w j t r1 in s ENT p RO C at w hi Ch

Page 25

(QSTART)

QSTART is a predicate used in the grammar at the
:beginning of a sentence to determine whether it looks
like a question -- i.e., it starts With an interrogative
word ~r with an auxiliary verb.

(REDO TRAIL REGS)

REDO is a function called by PUSH when it is
following a trail during the LEXMODE phase of the
recognition of a reduced conjunction. It will redo the
:amputation indicated by TRAIL start1ng with the register
contents REGS instead of those which were originally used
by TRAIL.

(RELATEDWOROS WORD)

RELATEDWORDS is a function used by DICTFETCH to
determine the list of words related to a given word that
should also be fetched into the in-core dictionary with
it. If returns any words Which are used in substitute or
compounds entries in the dictionary entry for the word,
and if the word is irregular it returns the root,

(RELATIVIZE FORM)

RELATIVIZE does a top level search of the list FORM
for the first NP node. When found, 1t converts it into
an appropriate form for sending down into relative
clauses, i.e. it replaces the determiner with (DET WHR)
and removes any prepositional phrase or relative clause
modifiers. RELATIVIZE is used 1n state S/QP1 to make the
rest 6£ the sentence following a fronted questioned
prepositional phrase, a relative clause on the head noun
of the PP.

(REQUESTDEF LEX)

REQUESTDEF is the function which is called to
interact with the user of the system when an unknown word
is encountered bY the parser, It prjnts out a comment
followed bY the un~nown word, and goes into a break to
allow the user to define the word (using DDEF) or to
change it (Usina CHANGEWORD),

(RESUME AF.GS)

RESUME is a function Which can be called on an arc
of the grammar to resume a PUSH computation which has
been assigned a feature RESUME by the function RF.SUMETAG,
This provides for the termtnat1on of a PUSH computation
at one point in the string and resuming it later at

D.25

Page 2b

another part of the string, aftd it provides a mechanism
for handling certain phenomena which would be called
right-extraPosition transformations 1n transformational
grammar theory. A~GS is a list of registers which are to
be sent down to the lower network when the PUSH is
resumed.

(RESUMETAG STATE)

RESUMETAG
feature for
resumed later,
arcs of the
RESUME.

is a function for computing a RESUME
it to be
used bY
function

(RFEAT • ARGS)

a configuration which will enable
beginning in state STATE. It is
~rammar in conjunctjon with the

REFEAT is a function for retrieving syntactic
features from the dictionary efttries for words, ARGS is
a list whose first element is the name of the syntactic
feature desired, and whose second element indicates the
word whose dictionary entrY is to be consulted (which may
be indicated either bY the name of a register which
contains it, but the special pointer*, or by some other
LISP expression).

(SAMPLEP WORD)

SAMPLEP is a function used bY the morphology
component to recognize words that look like sample
numbers -- i,e, ans followed by five digits~

(SBUILD)

SBUILD is the function called
building the syntactic structures
gathers up the various pieces of the
reqisters in which they have been
them into a syntactic tree using the

(SCANSTACK TEST)

bY the grammar for
of sentences. It

struc~ure from the
stored and assembles
function BUILDQ.

SCANSTACK is the function which scans the
looking for a stack level Which satisfies the test
It is used in LIFTR and GETR for locating levels of
stack where registers are to be set or interrogated.

stack
TEST.

the

(SCOMP V)

SCOMP is a function which tests Whether a verb V
takes a sentence compJement by checking the dictionary
entry for v.

D.26

Page 27

(SENOACTP ACTION)

SENDCTP is a predicate used bY STEP and REDO for
identifying actions which send register contents down to
lower levels (i.e. SENOR and SENDRQ),

(SENOR REG FORM)

SENOR is a function which sets the contents of the
register REG tc> the value of FORM at the next lower level
to which control Will be passed bY a PUSH arc,

(SENDRQ REG FORM)

SENORQ is like SENOR except that FORM is not
~valuated.

(SENTPROC SENTENCE LABEL)

SENTPROC is the major dispatching routine for the
processing of an input sentence. It dispatches the input
to the various routines PARSE~, SPROC, and EXECUTE, times
computations, prints out intermediate results and
timinqs, and logs the results, as appropriate, rt also
provides for the feedback to the parser to obtain
additional Parsings jf the semantic jnterpretation of the
first Parsing fails (Up to maximum number of times
specified bY MAXREPARSES), and for the redoing of a
previous execution or interpretation or the continuation
of parsing by calls which specify a LABEL = EXECUTE,
INTERP, or PARSE, respectively,

(SEiR REG FORM)

SETR is the function Which sets the contents of a
register REG to the value of form at the current level of
?rocessinq.

(SE?RE REG FORM)

SETRE is like SETR except that REG 1s evaluated to
obtain the name of the register to be set.

(SETRQ REG FORM)

SETRQ is like SETR except that FORM
evaluated, but taken literally,

(SETUP FILENAME)

is not

SETUP is the function to be called bY a user when he
enters the sytem to set up the.lower fork. FILENAME is
the name of the lower fork file -; usually

D.27

<WARNER>LOWFORK.SAV.

(SHOWTIME CONSES TIME FIL!)

SHOWTIHE is the function Which prints
information to a file in the BBN LISP system.

(SPLIT , SPLITARCS)

Page 28

timing

SPLIT is a function which can be used on arcs of the
grammar to cause two or more alternatives to be followed
at once. SPLITA~CS is a list of alternative
continuations of the arc on which the SPLIT action
occurs, and all such alternatives will be followed in
parallel, This feature has net been used in the current
grammar.

(SPOP POPVAL POPFEATURES)

SPOP is a function which is used to perform the
selective modifier placement triggered bY the SPOP arcs
in the grammar. It locates the alternatives (if any) to
the arc which pushed for the constituent about to be
popped and determines whether that configuration could
have popped instead, If so, if follows out the
possibilities of that alternative to see if any of the
configurations that could be reached bY successive JUMPS
and POPs (or SPOPs) coUld also push for the same
consituent. If it finds any other configurations which
could have pushed for this constituent, it considers them
all as candidates and decides which one to follow on the
basis of semantic entries in the dictionary.

(SPROC P)

SPROC is the function wh1ch begins the semantic
interpretation of the node P and returns the list of
possible semantic interpretattons, It calls the function
INTERP which does the work,

(STACKELT.PPATH LIST)

This function is used to extract the PPATH entry
from an element of the stack,

(STACKELT,REGS STACKELT)

STACKELT,REGS is a function for extracting the
register contents of a hi9her~level computation saved on
the stack from the stack entry,

(STEP CONFIG ALT)

D,28

Page 29

STEP is the maior funct16n of the transition network
parser. Its job is to take a single configuration
(CONFIG) from the active configurations list of PARSER
and compute from it a list of configurations which are
possible at the next point in the 1nput string, It takes
the list of arcs for the state of the configuration and
considers each in turn until it finds one which can be
followed. It also interprets the conditions and actions
on the arcs, and generates ALTARC alternatives on the
ALTS list for any arcs which remain untried when it
decided to follow one.

STEP is also the function which 1s called to Pick up
the processing of an alternative taken from the ALTS
list, In this case, the argument ALT will be set to the
alternative to be restarted, and the setting of CONFIG
will be irrelevant, In this case, STEP will branch to
location ALT where it determines the type ot alternative
and d6es the ap~ropriate thing to resume the processing.

At location 10, STEP unpacks the configuration
CONFIG into its component parts (STATE, REGS, HLIST, and
PATH), and at location L'., it begins the determination of
the list of arcs to be considered. If, however, the time
already spent in the parsing exceeds a global limit
MAXTIME, the parsing is terminated with an appropriate
comment. If the current LEX (the current word in the
strinq) is marked with the property LEXARCS, then it is
an "interrupt word" and the list of arcs to be tried is
not taken from the value of the state name as would
usually be the case, but is instead computed bY the
expression Which is the value of the property LEXARCS.
This facility allows for the convenient handling of
special function words Which can occur at almost any
point in a sentence with a regular effect, For example,
the conjunction scope indicators "both" and "either" are
handled bY this facility in the current system, Another
special case for the determ1natjon of a list of arcs
other than that listed for the state is the SYSC0NJ
facility, If the fla~ SYSCONJFLAG is set and the current
LEX is a conJunction and there are no CAT CONJ arcs
leaving the current state, then the SYSCONJ facility
provides its own special default CAT CONJ arc in place of
the normal list of arcs. This does not happen when
LEXMOnE is set, however (i.e. when STEP is already
interoreting a part of a reduced conjunction), When the
global flag SPLIT is set, the list of arcs will be moved
to a list of "untried" Spltt alternatives (SPLITS) and
control will branch to END wnere there is a test for
uncompleted SPLITS (i,e, alternatives to be followed in
parallel) before returning. Normally, nowever, the 11st
of arcs is ta~en from the value of tne state, and control
passes to L2,

D.29

Page 30

12 begins the basic loop wh1ch tries successive arcs
from the list A!CS. If there are no more arcs, then
depending on the settings of various mode variables and
other Parameters, control either passes to END or HELP.
Also if MODE is non-null, the blocked conf1gurat1on is
added to the list BLOCKS (for later use bY LONGBLOCK in
ASSIST). If the number of blocked configurations exceeds
the global parameter MAXB~OCKS, the parsing is
terminated.

L3 begins the processing of tne arc selected bY
initializing the values of •, FEATURES, SREGS, and
NOMOVEFLAG. The atom• is the pointer to the current
constituent (initially it ts equal to the current word
LEX, but after popping from a lower level it is the value
of the constituent returned, and on a virtual ARC it is
the value of the constituent wh1ch is taKen from the HOLD
list). FEATU~ES is the list of features associated with
the current value of •, aftd SREGS is the list of
registers which have been sent down to the lower level bY
SENOR actions immediately Prior to a PUSH to a lower
level). NOMOVEFLAG is a flag Whlch indicates whether the
input string is to be advanced after the transition
caused bY the arc (it is initially set to NIL indicating
that the string is to be advanced, but various actions on
the arc can cause it to be reset), The major part of the
function STEP consists of the S!LECTQ at location L3
which determines the type of arc and performs the
appropriate actions.

A CAT arc is followed if LEX can be a member of the
syntactic category indicated bY the label on the arc
(ARC.LABEL ARC). If LEXMODE is set, however, this arc
can only be taken if the word was also taken as a member
of this category in the trail which is being followed.
The value TEMP Which is set by the call to CATCHECK or
taken from the trail (TRAILVAL) is a form-features list
whose CAR is the root form of the word LEX and whose COB
is a list of inflectiona) features for the word. These
values are bound to• and rEATURES, respectively, as a
result of choosing a CAT arc, and control Passes to
location TST which chec~s tne condltions associated with
the arc.

A PUSH arc indicates a recurs1ve application of the
network to find a phrase of the type recognized bY the
state which is given as the arc label. The condition on
the arc is tested before tne PUSH 1n order to determine
whether to perform the PUSH. If LEXMODE is set, then the
PUSH does not occur unless tne corresponding entry on the
trail being followed was also a PUSH to the same state.
To facilitate the use of SENDR's to send register
contents down iftto the lower level prior to the push,

D.30

Page 31

there is an optional constituent of the PUSH arc
immediately after the condition on tne arc Which consists
of a list of actions to be executed prior to the actual
call to PUSH, This list of actions js indicated bY an
1nitial element "!", Also for the same reason, any
initial sequence of actions of the SENOR type (tested bY
SENDACTP) are executed Prior to the PUSH, The call to
~he function PUSH will save the current state and
register contents and the uncompleted actions on the arc
on the pushdown stack for continuation after the embedded
phrase has been recognized,

POP is a "pseudo" arc in the sense that it has no
~destination" at the end, Rather jt indicates a return
:Eroman embedded computation to the configuration which
PUSH'ed for it. It 1s represented as an arc so that its
,:hoice can be ordered with respect to those of the other
arcs and so that it can be made conditional on the
:ontext bY using a test on tne arc. POP arcs are not
permitted when LEXMODE is set, sjnce the PUSH•s are never
~ctually executed 1n this case (and therefore, the trails
~hich are being followed never have POP arcs on them).
?OP's are also forbidden if there are entries on the HOLD
list put on at this level Which have not Yet been used bY
~ny virtual (VIR) arc (thiS is part of the HOLD facility
for dealing with left-extraposition transformations),
SPOP is a variant of POP which is used in some systems
for selective modifier placement but is equivalent to POP
in the current system,

A JUMP arc is an arc Which performs some actions but
does not advance the input string. The label on the arc
names the state to which control is to go after the
actions are executed if there is no terminating action on
the arc.

A VIR (virtual) arc is an arc Which picks up a
constituent from the HOLD list (placed there bY a call to
HOLD 6n some arc of the grammar) and treats 1t as if it
had just pushed for and found the constituent at this
point in the string. It sets • and FEATURES to the
values taken from the HOLD list and then executes the
actions on the arc (after setting NOMOVEFLAG to Prevent
the input string fr6m advancing),

A WRD arc tests for the presence of a Particular
word in the input string, Similarly a MEM arc tests for
one of a specific list of words. A TST arc allows for
the testing of an arbitrary cond1t1on expressed in LISP
as the condition on the arc. The label on a TST arc has
no effect on the operation and can be used for purely
mnemonic purposes by the grammar writer. A SUSPEND arc
is an arc which suspends the processing of the current

D,31

Page 32

state with an incremented weight (incremented by the
amount indicated in the arc label). This can be used to
control the order in which parsings are discovered bY
suspending "un 4ikely" alternatives to be tried only after
more likely possiblities have been tried. There is also
a SUSPEND action which can be used on an arc to suspend
the processing of just that arc.

A SPLIT arc is essentially a group of arcs grouped
together with the "conjunction" SPLIT to indicate that
the arcs in that group are to be followed in parallel.
It is similar to the SP~IT action which can be used on
arcs to indicate parallel alternative "tails" for a
single arc.

A DO arc is an unconditional list of actions to be
performed with a destination specified at the end.

The location TST performs the cnecking of conditions
on the arcs for a number of different arc types, and
similarly the location ACT executes the actions on the
arcs. The location ALT performs the appropriate actions
for resuming an alternative, and HELP provides a break
for user interaction in certain cases.

The location END is entered when a given
configuration either bJocks or is completed. It checks
whther there are any uncompleted configurations (UCFS)
placed there by SPLIT actions on arcs, and if so
processes them. It also tests for any unprocessed
configurations (SPLITS) placed there bY a SPLIT arc or by
the mode flag MOOE being set to SPLIT, and it processes
all 6f these before returning. When all "parallel"
computations have been performed, it returns the list
(VCFS) of resultino configurations which have been
constructed. (The actuaJ construction of the resulting
configurations is performed by the function TO when it
occurs as terminal action on an arc.)

(STORALT ALT)

STORALT is the function used jn many Places for
placing alternatives on the ALTS list.

(SUBJLOW VERB)

SUBJLOW is a predicate which Jndicates whether the
indicated verb undergoes subject lowering (as opposed to
object lowering) when it occurs with both a direct object
and a to complement. SUBJLOW 1s true of "promise" type
verbs Where the interpretation of "I promised John to go"
means that I will be qoing (as opposed to "I orderen John
to qo").

D.32

..,

Page 33

(SUPFORM ENDING)

SUPFORM is a predicate for use in MORPHTABLE entries
for testing the type of conju;ation which an adjective
underqoes for the superlative form.

(SUSPEND N)

SUSPEND is an action for use on arcs of the grammar
for suspendi~g a 91ven computation in favor of "more
likely'' ones. It increments the weight associated with
the current computation bY the amount N and generates an
ALTARC alternative on the ALTS list,

(SQSPENDW WEIGHT INCREMENT)

SUSPENDW is the function Whicn computes the
resulting weight determined by the current weight WEIGHT
and the increment specified on a SUSPEND arc (INCREMENT),
It currently adds the tw-0, but is factored out as a
separate function so that we could experiment with
multiplicative rather than additive weights.

(SlSCONJ STATES)

SYSCONJ is the action which invokes the system
conjunction (SYSCONJ) facility for reduced conjunctions.
It can either be used on CAT CONJ arcs by the grammar
writer, or it will be supplied automatically for states
which don't have CAT CONJ arcs if SYSCONJFLAG is on. It
is the first function of the trJo of SYSCONJ functions
(SYSCONJ, CONJOIN, and POPCONJ) to be executed. It
causes the insertion of a special stack entry With a call
to CONJOIN into the stacks of a set of restart
configurations (computed by CONJ STARTS) and the
generation of an ALTCONJ alternative for each such
confiquration, It then retu~ns •END so that STEP will
terminate the curre~t configuration and pick up one ot
the generated ALTCONJ alternatives.

CT.NODE NODE)

T.NODE is a function Which extracts the node name
from a node in a tree fragment,

(T.REF NODE)

T.REF is the function wnich ass 4 gns to nodes in the
syntax tree a reference which is used for associating
information with that node in tne TAGLIST, rt is
currently identical with the LlSP pointer to the node,

D.33

Page 34

(T.SONS NODE)

T.SONS is a function for computing the list of the
sons of a node of a tree. It depends on the notation
being used for trees in tne system, If it is the
two-paren notation, then the sons are the CAOR of the
node; otherwise they are the coa.

(TAILS LIST)

TAILS is a function for enumerating the tails of a
list. (E.g. the tails of (A B C) are (A B C), (B C) and
(C).) It is used by CONJOIN for computing the possible
tails on Which the suspended first conjunct of a
conjunction may be resumed,

('l'AILS1 LIST)

TAILS1 is like TAILS but it omits the singleton
tail. (E.g. TAILS1 of (ABC) gives (ABC) and (BC) ,
but not (C).)

(TALKER MODE)

TALKER is the major executive of the English
Language preprocessor The first thing to be done bY a
user after loading the system is to call TALKER with an
argment MODE (usuallY NIL) to indicate the mode in which
he wants to operate. (MODE of NIL indicates use of the
mode settings as theY exist at that time, without change,
while a non-null MODE ViJl cause MODESET to be called to
set the appropriate mode variables.) TALKER takes care of
the interaction with the user, accepting sentences and
LISP commands as input, and performing the appropriate
actions for each. In the BBN LISP system, it also takes
care of saving the input sentences on a history list
which enables the user to refer to and reuse the results
of his previous tYPein.

(THATCOMP VERB)

THATCOMP is a predicate which tests whether a verb
can take a THAT complement.

(TIMEP X)

TIMEP is a function
morphological analysis of an
(i.e. a number less than 24
by a number less than 60).

(TO S)

D.34

which can be called for
atom wh1cn looks like a time
followed bY a colon followed

Page 35

TO is the !unction used bY arcs in the grammar to
indicate the destination (next state) for an arc. It
computes the configuration which results from the
transition and returns a label to STEP (through ACT)
indicating what location it should pass control to (Which
depends on such factors as whether NOMOVEFLAG is set,
whether it is at the end of the string, etc.)

(TOCOHP VERB)

TOCOMP is a predicate wnich tests whether a verb can
take a To complement.

(TRACER • ARGS)

TRACER is a function Which is called at many points
in the parser for providing a tracing of the course of
the Parsing when the flag TRACE js set. It is an
extremely valuable tool for debugging grammars, and is
alao a useful instructional tool for teaching the
operation of the parser and the grammar.

(TRAIL PATH)

TRAIL makes a list of tne path entries in a path in
the order in Which the transitions occur so that they can
be followed by the parser in LEXMODE mode. (The normal
order of entries in a path is reversed and "right
nested".)

(TRAIL1 PATH)

TRAIL1 is
confiqurations
transitions.

(TRAILS PATH)

like trail except that it skips the
that occur immediately after JUMP and VIR

TRAILS is a function Called by CONJOIN to make a
list 6£ the trails at different levels of the analYsis of
the right-hand shared portion of a reduced conjunction.
These trails are the possible trails on Which the
suspended first component of the conJunction can be
resumed.

(TRANS VERB)

TRANS is a predicate Which tests Whether a verb is
transitive (i.e. can take a direct object).

(TRAN3COMP VERB)

D.35

Page 36

TRANSCOMP is a predicate which tests whether a verb
can take both a direct object and a complement,

(VPARTICLE • ARG~)

VPARTICL! is a function fo~ testing Whether a verb
combines with a particle to form a verb (e,g. "call up,"
etc.). ARGS is a list whose CA! specifies the verb in
question (usually by naming the register which contains
it) and whose CADR specifies the particle in question
(again bY naming a register or bY reference to the
pointer•).

(VPASSIVE V)

VPASSIVE is the predicate which tests whether a verb
V can be passiv1zed, This 1s true either if it is so
marked in the dictionary or (as a default) if it is
totallY unmar ► ed for syntactic features.

(VPREP ARGS)

take
ARGS.

VPREP is a function which tests whether a verb can
a prepositional modifier with a given preposition,

(VTRANS O ARGS)

VTRANS is a function Which tests whether a given
verb is transitive (i.e. whether it can take a direct
object). This is true either if the verb is so marked in
the dictionary under the property FEATURES, or (as a
default) if the verb 1s not marked with any syntactic
features at all.

(WRO • ARGS)

WRD is a function for use in conditions
grammar to test whether the current word• or a
some register is a member of a list of words,
AFGS is the J.ist of words to be tested, and CADR
specifies the word to be tested,

D.36

in the
word in
CAR of
of ARGS

Page 37

II. SEMANTIC INTERPRETATION FUNCTIONS

(# N)

The function# is used in templates of semantic
rules to reference the node 6f the tree that matches the
node numbered Nin the tree fragment used for the match.
For example, in a template (NP,N (TESTFN (# 1))), the
expression (# 1) will evaluate to the node of the tree
which matches node 1 of the fragment NP.N. TESTFN in
this case is a hypothetical conditjon Which is to be true
of node (# 1).

•FLAG is used bY the interpreter in interpreting a
node as a topic, !f the user has emphasized any Phrases
bY saYing, for example, "vugs, jn particular" or
"especially vugs", "vugs", as a topic, is starred:

(FOR EVERY X1 / DOCUMENT : (ABOUT X1 (VUG •) •••) ;
(PRINTOUT X1)).

(AGREEMENT ANTECEOANT SPECIFIER NOUN ADJ SEMARKERS)

AGREEMENT is a predicate which tests anaphorism
antecedant agreement. The criteria for agreement are:

1. The candidate ANTECEDANT has semantic markers
which match those required of the true antecedant
(SEMARKERS). It is not always possible to decide what
semantic criteria the antecedant should meet. Hence,
SEMARKEFS is an optional argument, semantic requirements
are sometimes made bY the dominant verb. For example, in
"Does it contain Aluminum?" the antecedant of "it" must
be a sample, for this questJon to make sense to the
system. SEMARKERS for the above would be (SAMPLE),

2. A pronominal anaphortsm matches any candidate
antecedant.

3, If the anaphorism rests on 1ts determiner e.g.
"those analyses", the head noun of the antecedant must
match the head noun of the anaphorJsm,

4. If the anaphorism contains anY adjectives e.g.
"those barium analyses", tne antecedant must contain at
least one of them.

(A~TECEDANT ANAPHORISM MARKERS)

ANTECEDANT locates the antecedant of an
MARKERS is an optionaJ argument. When
contains a list of semantic markers, one or
must be characteristic of the antecedant.

D.37

anaphorism.
present, it

more of which

Page 38

(ANTEQUANT VARIABLE)

ANTEQUANT inserts the quantif1ed antecedant found bY
ANTECEDANT into the semantic jnterpretation under
construction, · If the antecedant 1s a proper noun,
ANTEQUANT acts like QUOTE in the right hand side of a
rule, otherwise it acts like QUANT.

(ANTORDER V1 V2)

ANTORDER is a compare function used by SORT in
ordering the list of possible antecedants, SORT is
called following the interpretation of a request,
ANTORDER returns T 1S V1 should pre<:ede V2 in the list,
ANTECEDANTS. For example, V1 should precede V2 if V1 is
a variable used in the latest request and V2 is not.

(AVERAGE?)

AVERAGE? is a help function that is called by the
interpreter when the user refers to "tne concentration of
X". since the system knows about many concentrations of
X, one for each analysis of x, AVE~AGE? asks the user if
he means "the average concentration of X". If he does,
the system returns the average over the concentrations
given in all Analyses of X.

(CCHECK TEMPLATE MLIST)

CCHECK is the function which checks semantic
conditions in templates durtng the matching of semantic
rules by the interpreter, TEMPLATE is the template in
question, and MLIST ls a LIST of possible matches for the
template which are to be screened bY CCHECK, Each
element of ML?ST is an ALIST whose elements are dotted
pairs of node numbers in the template and their
corresponding matches in the tree,

(CONSTITUENTS NOOE)

CONSTITUENTS 1s the function whjch when aPPlied to a
node of a parse tree Yields a list of the immediate
constituents (daughters) of that node. For the tree
notation currently in use, this is simply the COR of the
node,

(DEFAULTSEM P TYP!FLAG)

This function ls used in the semantic interpretation
system to provide the default jnterpretation T for the
restrictions on the range of quantification of a noun
phrase, when there are no restrictions implied bY the
RRULES, It is called by INTEBP,

D.38

(DJCP X)

DOCP is a predicate tnat tests whether
document according to LSNLIS conventjons, i,e.
form DYY-YYY~

(DRULEF P)

Page 39

X is a
X has the

DRULEF
interpreting
P.

returns a list of DRULES to try when
the determiner structure on the noun phrase

(EQU • ARGS)

EQU is a function for use in the templates of
semantic rules. ARGS is a list Whose first element is a
number. EQU checks whether the termjnal string dominated
bY the node corresponding to this number in the template
match is identical with the remainder (CDR) of the list
ARGS,

(G~TREFS P REFLISTS)

GETREFS is a function used in the semantic
interpretation component by the function SORTRErs, which
sorts the list of sub nodes to be interpreted into
left-to-right order. It serves double duty as a
predicate indicating whether Pis a node which is to be
interpreted, and lf so, returning the list of the
alternative reflists which belong to that node, For more
detail, see SORTREFS.

(GETTAG P TAGNAME)

GETTAG is a function for retrieving items from
TAGLIST, a global variable which holds tags associated
with nodes in the tree and behaves like a property list
for tree nodes. GETTAG returns the value of the tag
TAGNAME for the node P.

(HELPER SS COMMENT)

HELPER is an interactive help routine Which many
semantic inter" preter functions call When they need help
from the user. For example, INTERP calls HELPER when it
can't interpret a node. RMATCH calls HELPER when a node
can have several interpretations though only a single
interpretation is allowable (FAIL mode). ANTEOUANT calls
HELPER when an antecedant is missing !ts INTENSION.

(IMPORT VBL)

o.39

Page 40

IMPORT assigns an importance number to a quantified
variable. IMPOBT iS called bY ANTORDER Which uses it to
order the variables according to their likelihood of
being referenced anaphorically. The importance of a
variable is raised if it has any class restrictions, It
is also raised if the class has to be computed, rather
than merely being read off a list,

(INTERP P TYPEFLAG)

INTERP is the main function of the semantic
interpretation component, It computes the interpretation
of the node P "as" or "with respect to" the flag
TYPEFLAG, That is, TYPEFLAG 1s a parameter Which tells
INTERP how to interpret the node P. For example, to
interpret a noun phrase as a set jnstead of the normal
quantification over individuals one can use the typeflag
SET, For interpreting normal noun phrases, the three
phases of interpreting the determiner structure, the noun
itself, and the restrictive modifiers, are indicated by
the typeflags NIL, NRULES, and ~RULES, The NIL typeflag
is the normal interpretation Which is assumed if no other
typeflag is specified, The typeflag TOPIC is used to
indicate the interpretation of a node as a Boolean
combination of keyphrases,

INTERP's first action is to determine if the node P
has already been interpreted with this typeflag, in which
case it recovers the interPretation from the TAGLIST and
returns without redoing tne jnterpretation, Also for
special TYPEFtAG•s HEAD, TERM, AND IDENTITY, Where the
interpretation does not require the use of semantic
rules, INTERP returns immediately with the appropriate
interpretation, INTERP returns as 1ts value a list of
alternative which consists of pairs of semantic
interpretations and governing quantifiers, Each pair,
called an SQ-PAIR consists of a semantic interpretation
(SEM) which is to be attached to the current node, and a
quantifier (QUANT) which is to be passed up to a
governing sentence node. When tne typeflag is not one of
the three special cases listed above, the semantic
interpreter called the function RULES with the arguments
PANO TYPEFLAG to determine tne list of semantic rules to
use for the interpretation, and calls HATCHER to perform
the matching and return the SEMtIST WHICH IS TO BE THE
VALUE, If there is no semantic interpretation, then
DEFAULTSEM may SUPPlY a default interpretation (currently
only in the case of the typeflag RRULES), but if not,
then INTERP either return NIL nr goes into a break
depending on the setting of the flag HELP,

(ISOTOPE X)

D.40

Page 41

ISOTOPE tests whether x 1s an isotope of some
element. If so, it returns the element, otherwise, NIL.

(KE!PHRASE TREELIST)

KEYPHRASE returns a list of the significant terminal
nodes of TRE!LIST. It ignores determiners, auxiliary
verbs, tenses, number and non~restrict1ve modifiers.

(LElFMEMB X LIST)

LEAFMEMB is a function for determining if any of the
~leaves" of the 11st structure x are members of the list
LIST,

(LIJEP NODE)

LINEP is a predicate Which checks whether NODE has
the f6rm (N LINE n), where n ts an integer.

(MARKERS WRD)

MARKERS returns the list of semantic markers
:haracteristic of WRD, If W~D is a sample (e.g.
S10003), MARKERS returns (SAMPLE), If WRD is a document
(e,g. 070-221). MARKERS returns (REFERENCE). Otherwise,
it gets the semantic markers off the property list of
~RD.

(MATCHER RULELIST P MODE)

MATCHER is the function which matcnes semantic rules
against nodes in the tree. RULELIST is the list of rules
to he matched, Pis the node to be matcned against, and
MOOE is a flag which indicates what to do with multiple
matches. If MOOE is AND then multiple matches are ANDed
together; if it is OR, then tney are OR'edJ if it is
SPLIT, then they are split into distinct (semantically
ambiguous) interpretations, and if it is FAIL, then
multiDle matches cause an error, MATCHER accumulates a
list SEMLIST of possible interpretations (S-Q pairs),
calling the function MATCHGROUP for each (non-null)
element of RULELIST. NIL's in RULELIST serve as
"barriers" which terminate tne testjng of rules if a
matching interpretation has already been found in the
list, but allow the testing to continue if there have
been no matches yet. MATCHER calls the user help
function NO-M~TCHES if none of the rules on RULELIST
match and the flag USERFLAG is set to T.

(MATCHGROUP RGROUP)

D.41

Page 42

The elements of the list BULELIST in MATCHER may be
either single semantic ruies or "groups" OF SEMANTIC
RULES WHICH AR! GROUPED TOGETHER WITH A MODE OPERATOR
WHICH SPECIFIES HOW SIMULTANEOUS MATCHES OF DIFFERENT
RULES ARE TO BE HANDLES WITHIN THAT GROUP, MATCHGROUP is
the function which hand)es the matching of such a group.
If RGROUP is an atom, then it is a rule to be matchedJ
otherwise it is a group Whose first element (like MODE)
specifies that simultaneously matching rules are to be
SPLIT into different interpretat1ons, AND'ed, OR'ed, or
cause FAILure. The first element of the RGROUP is saved
on CONJ, and all of the rules in the group are tried.
The WHILE expression eleminates the results of
non-matching rules, and if there are not more than one,
then the result of the matching rule is returned. In
general, each rule in the group maY nave returned several
distinct interpretations, and the function COMBINATIONS
takes all combinations of these. The function SEMCONJ
performs the task of combining these interpretations with
the operator CONJ.

(MEANING? NPNODE)

MEANING? is a predicate which returns T if the noun
phrase NPNODE has been interpreted and the flag USERFLAG
is T.

(MEM N MARKER)

MEM is used in the Jeft hand side of semantic rules
to check whether a numbered node in a tree fragment
belongs in one of the semantic classes in MARKER, MARKER
is a list of semantic markers, The node may belong to a
semantic class for one of several reasons:

1. the head of the node has the same name as one of
the markers. E.g. ROCK belongs to the semantic class
ROCK,

2. the head of the node has on its property list
one of the semantic markers in MARKER.

3. for a partitive constructjon, e.g. "Which of
the type/A samples" one of the above 1s true of the head
of the prepositional phrase.

4, if the head of the node is a pronoun, one of the
above is true of its antecedant,

(NEWCLASS AVAR)

Both NEWCLASS and NEWPX are used 1n interpreting the
anaphoric pronoun "one", as inc

example,
contain

"Which breccias contain alum1num?"
"Which ones contain krypton?" "ones", in this

refers to "breccias", not to "breccias Which
aluminum", After the interpreter finds the

D.42

...,

Page 43

antecedant of "ones" (AVAR), NEWCLASS returns the class
of AVAR. modified to refer to the current variable QVAR.
The class of AVAR is gotten from its INTENSION property.
NEWPX returns the class restrictions on the node, those
restrictions 6n AVAR not made by the verb phrase, In the
above case, NEWPX would not find any such restrictions.
If the first request were

"Which breccias that are over ij0~ million years
old contain aluminum?" NEWPX would return the
restrictions associated with the phrase "that are over
400 million years old".

(NEWFRAG NAME FRAG)

NEWFRAG is used to update the list of tree fragments
TREEFRAGS. It sets NAME to FRAG and then adds it to
TREEFRAGS. F6r example,

(NEWFRAG S.OBJ.NPR (S ((VP ((NP ((NPR NIL 1))))))).

(NEWPX AVAR)

See NEWCLASS.

(NEWRULE ARGS)

NEWRULE adds new semantic rules to the system and
indexes them properlY. (C~R ARGS) is the name of the
rule and (CDR ARGS) is its value.

(NO-MATCHES)

NC-MATCHES is called by MATCHER if nonee of the
rules which might be used to interpret the current node
match it. NO-MATCHES gives the user the choice of
quittina or breaking. If ne breaks, he can fiddle with
the semantic rules to see Why non matched, then reset the
variable RULELIST, Upon nis return from the break,
MATCHER will be re-run on the current node and the new
set of rules in RULELIST. Tne MATCHER - NO-MATCHES cycle
can be repeated by the user indefinitely many times.

(NXTVAR)

NXTVAR is the function which gets the next available
variable name for use 1n the quantifiers during the
semantic interpretation. It uses variables cyclically
from a list called VAFIABLES.

(ODDP N)

ODDP is a predicate Which test if N is an odd
integer.

D.43

Page 44

(ORMATCH TEMPLIST)

ORMATCH is a routine for matching OR'ed templates in
RMATCH, That is, when in Place of a s1ngle template in a
semantic rule, there is an OR of several templates, then
ORMATCH is called to perform the matching of all of them,
It also provides for a standard DEFAULT interpretation as
the last component of an OR. It will take the default
interpretation if and only if there are no other matching
templates in the OR,

(PRED SEMFORM)

PRED is one
SSUNIONF) Which
semantic rules
quantifiers.

of three functions
are used in the

to indicate what

(PRED, QUANT, and
ri9ht-hand sides of

1s to happen to

QUANT indicates
quantifier that is
constituent, With the
current node being
quantifier.

that the right-hand side is a
to be passed up to a higher
semantic interpretation of the
the variable assigned to that

PRED indicates that the right-hand side is a
predicate which is to "grab" anY quantifiers passed up bY
constituents -- that is, any such quanthfiers will be
treated as quantifYing the expression SEMFORM Which is
the argument to PR!D,

SSUNIONF indicates that the right-hand Side is a
successor function which is to "grab" some quantifiers,
but wrap others tightly around itself, The
interpretation of the current node is then one big
successor function over the sets gjven bY the quantifiers
and the original successor function, SSUNIONF is used to
distinguish the scope of "each" which is usually a
maximum, from those of "every" and "all" which generally
follow left to right order, For example, the right-hand
side of N:ANALYSIS is (SSUNIONF (CATALINE (WHQFILE (# 3 2
SSET))(# 3 2 SSET)(# 4 2)(# 5 2 SSET))), The
interpretation of the request "Howmany analyses of
Krypton are ther for all samples?" is

(FOR THE X9 / (SEQL (NUMBER X10 / (SSVNION XS/ (SEQ
SAMPLES) : T; (CATALINE (WHQFILE XS) xe OVERALL KR)
~ T)) : T; (PRINTOUT X9)),

There is a single answer for the ent1re set of samples,
The interpretation of "Howmany analyses of Krypton are
there for each sample?" is however:

(FOR EVERY XS/ (SEQ SAMPLES) : T 1 (FOB THE X9 /
CSEQL (NDMBER X10 / (DATALINE (WHQFILE XS) XS
OVERALL KR) : T)) : T; (PRINTOUT X9))),

There is one answer for each sample in the set, (The

D,44

Page 45

~ypeflag SSET indicates that if the node can be
interoreted as a set, it should be, "All sample" can be
interpreted as a set, "Each sample" can not be,)

(QUANT SEMFORM)

QUANT is a function used in the r1ght~hand
~emantic ru1es to indicate that SEMFORM
interpreted as a quantifier. (See PRED.)

(QUIT)

side
is to

of
be

QUIT effects a quick return to TALKER from wherever
,ne is processing in the upper fork,

(REFLOC RHSFRAG RVECTOR)

REFLOC is a function used by SEMSUB in the semantic
interpreter to make up REFLISTS for a given right-hand
side ~fa rule and a given vector of matches (RVECTOR).
If RHSFRAG (a fragment of the right-hand Side of the
rule) is a REF (i.e., an expression which refers to the
semantic interpretation of some constituent of the node
being interPreted), then REFLOC returns the REFLIST for
that constituent. Otherwise 1t scans RHSFRAG for
instances of REF•s. The REFLIST Which is returned
consists of the pointer (SUBP) to the constituent in the
tree to which the REF refers (for th;s particular match
specified by ~VECTOR), the REF itself (RHSFRAG), and the
interpretation of the node SUBP using the typeflag
specified bY the REF,

(REFP RHSFRAG)

REFP is a predicate which tests a fragment of a
right- hand side of a semantic rule to determine Whether
it is a REF (i.e., whether it refers to a constituent of
the tree being interpreted whose semantic interpretation
is to be used as a part of tne current interpretation).
This is true if the £rag- ment is ejther a dotted Pair of
integers. or a list beingging with the atom#.

(REFPTR RHSFRAG)

REFPTR is like REFP, except that it also returns a
pointer to the node in the tree to which the REF refers
(the matching pointer being obtained from the current
RVECTOR).

(REFOUANTS REFVECTOR)

REFQUANTS is a function Wh1Ch gathers the
quantifiers from all of the REFLIST's in REFVECTQR into a

D.45

Page 46

single quantifier "collar" Which is to be wrapped around
the expression which it governs. It assumes that the
REFLIST's on REFVECTOR have been sorted into the order in
which they are to occur. This sorting is accomplished bY
the function SORTREPS in a call from S!MSUB, REFQUANTS
also separates the type of quantifier arising from
"each", from those arising from "every" and "all". It
does this so that "each" will nave a maximum scope,
independent of its surface structure location, "Each"
will produce a quantifier of the form

(FOR EVERY X / •••)

while the others will produce one of the form

(SSUNION X / •••).

(REFSUB REFVECTOR)

REFSUB is a function Which takes the current value
of RHS (maintained bY SEMSUB), substitutes the semantic
interpre- tations of its REr•a, and evaluates the result
to obtain the semantic interpretation of the current
node. REPSUBl actually performs the substitution, and
prior to the execution of the substituted right-hand
side, REFQUANTSis used to construct the appropriate
quantifier "collar". The eall to EVAL Will result in
these quanti- fiers being "grabbed" and wrapped around
the semantic interpretation of the current node if the
right-hand side of the rule (RHS) lS embedded in a PRED;
if it is embedded in a QUANT, then the call to EVAL will
result in the quantifier being inserted into the "hole"
of the collar (substituted for DLT) and the semantic
interpretation of the current node w111 be set to the
variable name associated with the quantifier.

(REFSU81 RHSFRAG REFVECTOR)

REFSUB1 performs the substitutions in the RHS of a
semantic rule before it is evaluated by REFSUB. It
substitutes the current value of the variable (QVAR) for
occurrences of the atom "X" wnen interpreting
restrictions on the ran9e of quantifi- cation in
interpreting noun phrases, and substitutes the semantic
interpretations for REF's.

(REFSUB2 RHSFRAG ~EFVECTOR)

REFSUB2 is used bY REFSUBl to walK across a sublist
of a RHS and spply REFSUBl recursively,

(REFTYPE REF)

D.46

Page 47

REFTYPE is a function for extracting the reftype of
a REF i.e. the typeflag that is to be used for
interpreting the node to wn\ch the REF refers. For
dotted pairs, the REFTYPE is NIL, while for REF's that
begin With#, the reftype is the element of the list
~hich follows the numbers that denote the node to be
interpreted.

(R!1TAG PLIST)

RELTAG is the function used by the semantic
interpreter for locating the relative pronoun of a
:relative clause to be inter- preted and tagging that node
vith the variable of quantification (QVAR) associated
vith the noun phrase which the relatjve clause modifies.

(RM~TCH RULE P MOOE)

RMATCH is the basic semantic rule matching function.
It matches the single semantic rule RU~E against the node
P with mode MOOE, (unless MOOE is reset bY the first
element of the rule itSeJf). It calls TEMPMATCH to match
each of the templates of the rule or ORMATCH to match
DR'ed groups of templates, and if a successful match is
found it calls SEMSUB for each possible way in Which the
rule can match. If there are mult1ple matches, then it
combines them in the way indicated by MODE.

(RULES P TYPEFLAG MODE)

RULES is used bY INTERP to furnish the list of rules
to use in interpreting the node P, according to TYPEFLAG.
TYPEFLAG specifies what kind of 1nterpretation is
required. The following kinds of interpretation are
recognized by PULES:

1. ALL - for partitive constructions determined by
"all".

2. SET, SSET?, SSET - for nodes to be interpreted
as sets.

3. AVERAGE, MAXIMMM, MINIMUM, NUMBER, OLDEST - for
partitive constructions headed by one of these words.

4. REFS? - for nodes to be interpreted as requests
or topics.

5. REFS - for nodes to be interpreted as topics, if
possible.

6. s - for sentence nodes,
7. TOPIC - for nodes to be interpreted as topics.
8. NP - for interpreting th@ determiner structure

on noun phrases.
9. NRULES - for interpreting the class of noun

phrases.
1~. RRULES - for interpreting the restrictions on

noun phrases.

D.47

Page 48

11 •
sentence.
then used
DRULES to

SRULES - for interpreting the main verb of a
RULES sets the MODE of interpretation which is

bY RMATCH. RULES calls DRULEF for the list of
use in interpreting the determiner structure on

a noun phrase.

(SAMPLEP X)

SAMPLEP is a predicate which tests if X has the form
of a sample according to LSNLIS conventions, that is, X
is of the form Syyyyy.

(SCOPEFINDER FORM CONTEXT)

SCOPEFINDER makes intension and scopevars entries on
the property lists of variables in quantifiers,

(SCOPEVARS X)

SCOPEVARS accumulates tne closure of the scopevars
of a variable.

(SEMCONJ CONJ SEMLIST)

SEMCONJ 1s the function whjcn combines multiple
semantic interpretations with the conjunction CONJ. It
conjoins the SEM's of the interpretations under the
conjunction CONJ, and produces a quantifier which is the
nexting of all of the quantifiers w11ich are associated
with the individual interpretations.

(SEMIANAPHOR ANAPHOR)

SEMIANAPHOR is used to resolve one type of Partial
anaphora: a pronoun modified by a prepositional phrase.
For example, "Give me analYses for krypton in breccias."
"Give me those for magnesium" The antecedant of "those
for magnesium" is "analyses for magnesium in breccias".
SEMIANAPHOR finds the node dominating "analyses for
krypton in breccias" as the partial antecedant of
"those", replaces "for krypton~ with "for magnesium", and
calls for the reinterpre- tation of the new node,

(SEMNET N1 N2)

SEMNET test whether N1 and N2 are semantically
similar, e.g. they share semantjc markers or they are
both samples or documents. S?.MNET, at present, is only a
bare attempt at doing the sort of things that could be
done with a semantic network,

(SEMSUB RHS RVECTOR)

D.48

..,

Page 49

SEMSUB is the function which substitutes semantic
inter- pretations for their REF1 s in the right-hand sides
of semantic rules. It is the ma;or dispatcher among the
functions REFLOC, SORTREFS, and REFSUB,

(SORTREFS REFLISTS P)

SORTREFS is the function which sorts REFLISTS into
the order in which the Quantifiers associated with the
REF's are to be incorporated into the interpretation
namely in order of their left-to-right position in the
structure P. This is acc6mplished by the function
SORTREFSl Which walks the tree P and adds REF•s to the
list in the order in which it sees them.

(SORTREFS1 REFLISTS P)

See SORTBEFS.

(SPROC P)

SPROC is called on the output of the Parser, P. It
clears TAGLIST before beginning and returns a list of
possible semantic interpretations of P. SPROC also calls
for the reordering of the antecedant list ANTECEOANTS
following the interpretation of P,

(SSUNIONF SEMFORM)

SSUNIONF is a function used in the right;hand side
of semantic rules to indicate that SEMFORM is a successor
function. (See PRED.)

(SUPERLATIVE N)

SUPERLATIVE tests whetner the head of the node
numbered N is a superlative adjective. A superlative
adjective with a definite determiner is Parsed as a noun,
while its associated surface structure noun is made the
head ~fa dependant partitive construction, For example,
"the oldest sample" is parsed as if it were "the oldest
of the samples~. MEM caJlS SUPERLATIVE on a node to see
whether its semantic properties snould be gotten off the
head noun or the head of a Partitive construction,

(SYNONYMS? HEAD XYPEFLAG)

SYNONYMS? is a help function called by RULES When it
cannot find any semantic rules to use in interpreting the
head noun or head verb of a node, It tells the user it
cannot understand the word and asks if it is a synonym of
one of the words it knows. If it JS, the system will get
the semantic rules off the synonym and continue~

o.49

Page 50

(TAG P TAGNAME VALUE)

TAG is the function which places tags on the
TAGLIST. It associates with the node P the property
TAGNAME with the value VALUE.

(TEMPMATCH TEMPLATE P)

TEMPMATCH is the semanttc interpretation function
which matches templates with nodes of the tree (it is
called by RMATCH and ORMATCH). It calls the functions
TMATCH to perform the tree matching of the tree fragment
with the node P, and CCHECK to check the semantic
conditions of the template for any resulting tree
matches. It also provides tne resuits of a simulated
match in the case of a DEFAULT template.

(TERM TREELIST)

TERM is a function which returns the
"leaves" or "terminal nodes" of a 11st of tree
nodes (TREELIST). It does so by walking
structure and gathering up tne "leaves".

(THATCH PLIST FLIST)

list of
structure
the tree

TMATCH is the function which pertorms the subtree
matching for the semantic interPreter (called by
TEMPMATCH). PLIST ls a JiSt of nodes on the tree Which
are to be matched against the fragment nodes (from the
semantic rules) in the list FLIST, It returns a list of
all possible matches--each match being represented by a
vector (ALIST) of correspondences between numbered nodes
in the tree fragment and the nodes in the tree being
interpreted.

(USED? ADJ)

USED? is a predicate which tests whether the
adjective ADJ has been tag9ed bY MATCHER as being used in
the interpretation of some node,

D.50

III. RETRIEVAL FUNCTIONS

(ABOUT DOCUMENT TOPIC)

ABOUT is a predicate for a DOCUMENT
under one or more of the keyphrases
example, the interpretation

Page 51

being indexed
in TOPIC. For

(FOR EVERY X7 / DOCUMENi I (ABOUT X7 (OR (
FERROUS ?RON)

(AND (FERROUS)(IRON)))) ; (PJINTOUT X7))
retrieves all documents whicn1 have been indexed under
"FERROUS IRON" 6r under both "FERROUS" and "IRON".

(AGE ARGS)

AGE can take two or three arguments, a sample
number, a radiometric clock, and a restart pointer. If
the clock is specified, AGE returns the age of the sample
as may have been measured by that radiometric clock.
Otherwise, AGE returns the age of the sample according to
each of the radiometric clocks in AGELTS, for which such
measurements have been made. AGE calls DATALINE to find
all the necessary age analyses. For example, (AG! (NPR•
X3 / (QUOTE S10071))(0UOTE •PB207) INDEX) will return the
first age analysis of sample 10071 by lead isotope dating
if INDEX is NIL, subsequent analyses otnerwise.

(ANALYSES FN GAZ)

ANALYSES is a successor function like OATALINE,
which returns, one bY one, all the chemical analyses in
all the files on FILEDIRECTORY0 FN and GAZ are both
restart pointers, the first to the remaining analYses in
the current analysis file, tne second to the remaining
files in FILEDIRECTORY. It is not currently used, but
could be, instead of DATALINE, in situations where it
would be more efficient. For example, in response to
"Give me all the analyses in your files."

(AROUNDVAL Ql Q2)

AROUNDVAL is a predicate which tests whether Ql is
within an engineer's approximation of Q2. That 1s, .9•Q2
< Q1 < 1.1•Q2. Ql and Q2 may be scalar quantities,
number-unit Pairs or analyses. In the latter case, the
value of the analYSiS is fetched from the appropriate
file.

(ASSOCNEXT LISTV NTRY)

D.51

Page 52

ASSOCNEXT returns the tail of LISTV whose CAAR is
equal to NT~Y. LISTV is a list of lists. ASSOCNEXT
differs from ASSOC in returning the whole tail and not
just the head of the taiJ. For example,

(ASSOCNEXT (QUOTE CPX)(OUOTE ((OVERALL • 2877)(CPX •
2900) (PLAG •

2958)(••· • 3017))))
((CPX • 2900)(PLAG • 2958)(••• • 3017))

ASSOCNEXT is called by DATALIN!,

(AVERAGE •X• I CLASS : PX)

AVERAGE ealculates the numerical average of the
members of CLASS which meet the requirements stated in
PX. AVERAGE is used to compute average ages, average
concentrations and average ratios. For example, "What is
the averaqe potassium / rubidium ratio in low-alkali
rocks?" is interpreted as

(FOR THE Xl / (SEQL (AVERAGE X2 / (SSUNION X3 / (SEO
TYPEAS) :

T; (RATIO (QUOTE K20) (QUOTE RB) X3 (QUOTE
OVERALL))) : T))

:T : (PRINTOUT Xl)).

(AVGSTEP Xl)

AVGSTEP is used by AVERAGE to compute average
analyses (concentrations). It fetches the value of the
current analysis Xl, does any unit conversion necessary,
and increments the accumulator with the value,

(BOOLGET X)

When the quantifier function FOR is quantifying over
a set of documents (i.e. the CLASS in "DOCUMENT"), it
calls the function BOOLGET with X set to the restriction
on the range of qualification (i.e, the PX term in the
quantification). BOOLGET searches tne expression x for
all instances of the predicate ABOUT {Which represents
the prediction of a document being about a topic) and
gathers up the corresponding Boolean combination of
topics. This is used as an argument to BOOLRET (after
being converted to conjunctive normal form) and is used
to enumerate the appropriate set of documents bY
performing the Boolean operations on the inverted file
lists for the keyphrases of the topics.

(BOOLREQ CNF)

BOOLREQ converts a normal
Boolean expression CNF into n
BOOLRET, bY sorting negations
negations if necessary so that

D.52

conjunctive normal form
modif1ed form suitable for
to tne end and raising
tneY are always components

..,

Page 53

of an AND and not of an OR. The latter is done in order
to Provide a Boolean request whjch can always be done by
intersecting inverted files and never requires
constructing the complefflent of an iRverted file.
BOOLREQl performs the bulk of this operation. NEGSORT
aorts the NOT1 s to the ends of clauses, and converts such
clauses to instances of the 6perator SDIFF (which
represents the operation of taking the set difference
between two Bbolean expressions).

:BOOLRET BOOLEXP)

BOOLRET is the function which
operations indicated in BOOLEXP
lists of documents associated with
BOOLEXP. It returns a list of
~atisly the Boolean expression.

(BU!LDCA CA FLDNS)

performs the Boolean
on the inverted file
the key Phrases in

all documents which

BUILDCA is used when building tne lower fork to set
~P the codearrays and do tne appropr1ate coding, FLDNS
is a list of field names in the same order as their
corresponding code array in CA. Each member of FLDNS is
~ound to a list of its field values to be coded.

(CH.11.NGELINE ARGS)

CHANGELINE changes a single field on each line
meeting the specifications given in ARGS to a value also
specified in ARGS. The format of ARGS is <fieldname>
<new-value> <file> <old-spec>•• wnere file meeting the
specifications in <old-spec>•, The order of
specifications must match the order of fields in a file
record. For example, (CHANGELINE ELT AL203 APOLLOll
510084 OVERALL AL213) will cnange the value of every
~L203 analysis of SJ0~84 OVERALLwhich has been
incorrectly specified ~s an Al213 analysis. To change
the value of more than one field on a single line, one
should use EDITLINE instead.

(CHANGEILINE FN FIELD VALUE)

CHANGElLINE is called by CHANGELINE after CHANGELINE
has found a line that meets the given specifications. It
the file is not sorted on FIELD, CHANGlLINE changes the
current value of FIELD to VALUE. Otherwise, CHANGElLINE
deletes the line and inserts the corrected line at the
end of the corresponding Patch file. The patch file has
the same name as the main fil.e, with the extension PATCH,
e.g. APOLLOll and APOLLOll.PATCH. The argument FN is
(FILE • LINE-NUMBER).

D. 53

(CLEARMAP)

and
CLEARMAP is called by RETRIEVER to remap file pages

reset t~e GAZETTEER after a request has been
serviced.
lower fork
CLEARMAP.

(CNF BOOLESP)

In case the user inadvertently leaves the
via an interrupt, he can type EXECUTE() to run

CNF is the function which converts Boolean
expressions to conjunctive normal form. The result of
CNF is a list of lists of keyphrases or their negations.
Each element of the top level list is a disjunction (OR)
of its contained Phrases, wnile the top level list is a
conjunction (ANO) of these disjunctions, although the
AND's and OR's are implicit in the 11st structure and do
not explicitly appear. BOOLREQ uses the output of CNF to
construct its Boolean request.

CODE VAL ARY)

CODE replaces the CODE and ENCODE functions of the
previous LSNLIS system, CODE examines the CODES property
on VAL for the occurrance of ARY, a code array in which
VAL has presumably been coded.

(COMBINATIONS LIST)

computes the cross product of a 11st of lists. For
example, COMBINATIONS (((ABC))) = (B) (C)) COMBINATIONS
(((A B)(C 0))) = ((A C)(B C)(A D)(B 0)) COMBINATIONS (((A
B)CC)(D E))) = ((AC D)(B C O)(A C E)(A CE))

(COMPLEMENT LITERAL)

This function returns the complement of the literal
key-phrase LITERAL. If LITERAL is negated, then
COMPLEMENT drops the negation; otnerwise, it adds a
negation. The function is used in BoOLREQl.

CONTAIN tests whether sample •X• contains the phrase
or element •Y• (if •Z• is NIL) or Whether it contains
element •Y• in phase •Z• (if •Z• jn non-NIL). If only an
element is specified, CONTAIN checks the ELTS property on
•X• for •Y•. If •Y• iS a Phase, CONTAIN checks the index
on •X• since files are indexed on sample-phase Pairs. If
both •Y• and •Z• are given, CONTAIN 1ssues a call to
DATALINE.

o.54

Page 55

(CONTAIN• SAMPLE !LPH ARGl ARG2)

CONTAIN' is used to answer "how much" questions and
to c~mpare the average concentration of some mineral or
element in a sample against some given amount, Like
CONTAIN, CONTAIN' may be called with a mineral or an
element or an element Within some phase of SAMPLE as
arguments. If a phase is specified, CONTAIN' takes four
argumentsJ otherwise, it takes three. The last argument
to CONTAIN' is either (HOW), for a "how much" question,
or a test (E.G 0 (MORETHAN 5 PPM) 1 (ATLEAST 3,5 PCT)). In
the first case, CONTAIN I returns the average
concentration, in the second, T or NIL, depending on
'~hether the average concentration passes or fails the
test. For example, "Which rocKs have greater than 50 PPM
Jickel?" is interpreted as:

(FOR EVE~Y X3 / (SEO VOLCANICS) : (CONTAIN' X3
(QUOTE NIO)

(GREATERTHAN 50 PPM)) ; (PRINTOUT X3))

(CONVERT Ql.Ul U2)

is a neat call to CONVERTU.

(CO~VERTN N Ul U2)

sets up a call to CONVERTU on (N • U1) and U2.

(CO~VERTU NUP UNIT OUMMYl DUMMY2)

CCNVERTU converts the number-unit pair NUP to the
unit specified in UNIT. DUMMYl and DUMMY2 are dummy
variables. CONVERTU iS called by CONVERT, CONVERTN and
UQUOTIENT.

(DATALINE ARGS)

ARGS is a list with the format <file><fldspec>•
<index>. DATALINE is a successor function which searches
a file for lines which meet the specifications given in
fldspec •• Any number of fjelds 1n a file re may be
speci~ied, but they must follow the order of the fields
in a file rec6rd and be non-NIL, The tormat of index ,
the restart pointer, is ((<file> • <line#>) , filetop
). DATALINE does a binary search on sorted fieids, and a
linear search on non-sorted fields. It takes advantage
of whatever indexing has been done on the file, recorded
on the property 11st of tne prJmarY sort keY. For
example, (CATALINE APOLLOll 510056 OVERALL AL203 INDEX),
if INDEX is NIL. w111 return a pojnter to the first
OVERALL analysis of samples 10056 for AL203, in this case
((APOLLOll • 7763) • 13248). If CATALINE is called
again for the next line meeting thJS description, it will

D.55

Page 56

be called with INDEX set to ((APOLLOll
13248), the answer returned above,

(DECODENUM ARRAY ~ODE)

• 7763)

DECODENUM returns the decoded value of CODE
according to the code array ARRAY. For example,
DECODENUM (MABRll 27) returns SILICA.

(DELETELINE ARGS)

ARGS is a list vith the format tile fldspec ••
DELETELINE will delete all lines in file Which meet the
description given in fldspec •• For example, (DELETELINE
APPOLLOll S10003 CPX FEO) Will delete all CPX analyses of
sample 10003 for FEO, if there are any, in the APOLLOll
file,

(DELETElLINE FN)

FN is the dotted pair <f:tle> • <line#>) .
DELETElLINE inserts a deletion indicator, 1000, in the
primary sort field of the line indicated in FN,
DELETElLINE is called bY CHANGElLIN!, DELETELINE and
EDITLINE,

(DO X)

calls for the evaluation of X, DO IS THE
INTERPRETER"S P.ESPONSE TO AN IMPERATIVE QUESTION,

(DOCP X)

DOCP is a
(citation) number,
is any integer.

(DOCUMENT INDEX)

predicate for X being a document
i.e. having the form Dnn-nnn, Where n

DOCUMENT is a successor function which, one bY one,
returns the document numbers known to the system,

(EDITLINE FILE N)

EDITLINE allows the user to make any number of
changes to line N of fiJe FILE, If the user has changed
the value of a field on which tne file is sorted,
EDITLINE makes a new entry corresponding to the changed
line in the appropriate paten f1le. If an altered field
is not a sort key, then tne new value just replaces the
old one in the original file.

D.56

Page 57

(ELr:LINE FN)

FN is the dotted pair (<fjle> , <line#>).
ELT:L?N! computes the entry 1n MAPARRAY corresponding to
the given file~line number patr~ ELTsL!NE also sets the
value of FORMAT, the file format description, for its
calling functions FETCH, FETCHLINE, STORELINE and
STOREVAL.

(EXECUTE FORM)

EXECUTE is the function which performs the execution
of query language expressions~ It may be either of two
distinct functions LOCEX or REMEX Which perform the
execution in the same (local) fork or 1n fa remote fork,
respectivelY. In either case, EXECUTE provides for the
opening of a file HITFILE in wh1cn the answer is to be
recorded and the maintenance of a counter COUNTwhich is
incremented by the functions which write information onto
HITFILE. When the execution is completed, EXECUTE closes
HITFILE, and if COUNT is not greater than 5 copies the
HITFILE to the teletype as the answer. If COUNT is
greater than 5, then EXECUTE types a message giving the
number of hits and asking tne user wnether he wants to
see them on the TELETYPE. (If not, he has the option of
listing HITFILE offline or saving jts value for later
listing.)

In the case of REMEX, which is the way that the
LSNLIS system is currently running, the above procedure
is additionallY complicated bY the fact that the
retrieval c6mponent in which the query language
expression is executed resides jn a complete separate
fork of the TENEX system. ln thjs case, EXECUTEw writes
the query language expression into a buffer file QBUF,
and calls the LISP function RUNFORK to wak up the
retrieval fork. The retrieval fork then reads the
expression from QBUF and executes it as discussed above,
with the answers being written onto HITFILE. When the
execution is completed, tne retrjeval fork writes the
value of COUNT into another file buffer ABUF, and returns
contr~l to the language processing fork. At this point,
EXECUTE regains control, reads the value of COUNT FROM
ABUF, and proceeds to type tne answers or notify the user
of the number of h1ts as above,

(EXIST X)

EXIST is a predicate Which is unlversallY true ot
every argument.

(EXPANDARRAY ARNAME)

D.57

Page 58

EXPANDARRAY expands a code array lf it runs out of
space by recopying it into a larger array. EXPANDARRAY
is called bY CODE.

(FETCH FN FIELD)

FETCH returns the value in the field FIELD for a
given file- line number Pair PN. FETCH saves the value
of FN in the global variable OLDFN, so that if the value
of FN doesn't change on subsequent calls, FETCH will not
have to call !LT:L!NE to compute a new pointer into
HAPARRAY. The value of the pointer is saved in OLDELT,
and the value of the file format in OLDFORMAT,

(FETCHLINE FN)

FETCHLINE returns a list of the b1nary words making
up the record for the given file-line number pair FN.
FETCHLINE is used bY LINEORDP to save time, since
alphanumeric order is matched in tne APOLLOll and
APOLLOll.PATCH files bY binary order.

{FETCHVAL FN FIELD)

FETCHVAL returns the value 1n FIELD for the
file-line number pair FN. If tne value is encoded,
FETCHVAL calls COD! to decode it.

(FLTBOX LOC)

FLTBOX returns the boXed value of the quantity in
memory location LOC. FLTBOX is called by FETCH when the
field type of the field to be retrieved is FLT,

(FOR ARGS)

FOR performs quantification in the retrieval
component. FOR has been made an NLAMBDA so that the user
can specify a new quantifier in case the one produced bY
the interpretive component is incorrect. This will
happen often when there are many values of •X• for which
a statement is true and the user has requested "the"
value. meaning the one.

(GETDOCS PHRASE)

GETDOCS returns the inverted file indexed on PHRASE
from the external file PHRASETABLE, It is called bY
BOOLRET.

(GETPAGE FILE PAGE)

o.ss

Page 59

GETPAG! determines whether page PAGE of file FILE
has been ma~ped onto MAPARRAY. If it has not, GETPAGE
calls PAGEMAP to do the mapping. The record of which
~ages of Which files are currently mapped onto MAPARRAY
is kept on the list GAZETTEER.

(GR :UTE R Q l Q 2)

GREATER is a predicate which tests whether Ol is
greater than 02. Ol and Q2 maY be scalar quantities,
~umber-unit Pairs, 6r analYses, If the latter, the value
of the analysis is fetched fr6m the appropriate file,

(IN ;J EX F FIL E)

INDEXF indexes all sample~phase combinations in a
coded chemical analysis file FILE, printing the size of
1!ach sample-Phase block for. later decision on deeper
indexing. The index is sectioned off bY samPle number,
~nd each section is maintained on the property list of
the cbrresponding sample, under the property APOLLOll,

(INrERSECT LIST)

takes the intersection of all the lists on LIST.
l!'or example, INTERSECT (((A C D F) (C F) (B F H C))) ::i: (C
F)

(LESSVAL Ql Q2)

LESSVAL is a predicate which tests whether Ql is
less than 02, !n all other ways, it resembles GREATER,

(LINEORDP FNl FN2)

Both FNl and FN2 are of the form (<file> , <line#>
). LINEORDP returns T if the first line precedes the
second in alphanumeric order. ThiS version of LINEORDP
takes advantage of the fact that a cnemical analysis file
is sorted on all fields and only fields in the first two
words of each record. Given this, alphanumeric order
corresponds to binary order on the first two words of the
record. Thus, LINEORDP can use LESSP on the first two
words of the record, rather than consecutive,
time-consuming checks on the sorted fields.

(LINE#OF X)

LINE#OF is intended to return the line number of x.
In the current system, it is assumed that Xis a line
number. and LINE OF returns x.

D. 59

Page 60

(LOADLOW LOADFILES)

LOADLOW is used when building the lower fork to load
in all the ne~essarY functions and global variables, It
also sets up the array and values needed for page
mapping.

(LOCEX FORM)

LOCEX would be the executive program for executin;
semantic interpretations in undivided retrieval system.
See EXECUTE for further details.

'.MATCHLINES ARGS)

ARGS has the format <FILE><LINE ><FLDSPEC>•,
FLDSPEC may have a value or be ~IL, but there must be a
FLDSPEC for each field in the file record. MATCHLINES
tests whether the given line of tne given file matches
the field specifications. MATCHLINES returns WORTHLESS
if the given line would follow a l!ne with these speci
fications in the file, ALMOST if the given line would
proceed it, and OK if the lines match, A match occurs if
the specification is NIL or if the value of the
specification is the same as the value of the field on
the given line,

(MAXIMUM XI SAMPLESET : PX)

MAXIMUM calculates the maximum value over those
members of S~MPLESET which meet the conditions specified
in PX.

(MEMBER• INOIV CLASS)

MEMBER• tests whether INOIV is a member of CLASS.
It differs from MEMBER in that CLASS may be a variable
bound to an atom whose value is a ljst, or a 11st itself.
Otherwise. MEMBER• returns an error messaqe, MEMBER•
calls MEMBER.

(MINREAD INPUTFILE OUTPUTFILE)

MINREAD is a function to create a binary chemical
analysis file for the new data base from a LISP written
file for the old one. OUTPUTFILE must nave been opened
for I/0 prior to the calJ to MINREAD.

(NEGSORT CLAUSE)

NEGSORT is a function used in the Boolean request
generation to move negated pnrases to the end and convert
them to calls to SOIFF, the function which indicates the

o.Go

Page 61

~et difference between two Boolean descriptions. See
BOOLREQ for more details.

(NEWLINE ARGS)

ARGS has the format <file ► <fldSpec> •• NEWLINE
liets up successive calls to STOREVAL to store the record
:specified in fldspec • in the next empty record of file •
NEWLINE updates the proPerty TOP on file to one higher
than its previous value, and this value is returned bY
NEWLINE. For example,

(NEWLINE APOLLOll,PATCH Sl0022 OVERALL AL203 070-194
0 PCT 7.l)

6
The order of <fldspec> • must £011ow the order of fields
in a record, NEWLINE is called bY EDITLINE and MINREAD.
l~EWLINE should be used otherwise only on unsorted files.

(NEXNUM INDEX)

NEXNUM finds the leftmost
~lso a number in the tree
DATALINE in search1ng the file
start of the ne~t sample-phase

(NPB ARGS)

terminal
INDEX.

index on
block,

element which is
NEXNUM is used bY
a sample for the

NPS is a variant of QUOTE, If ARGS have a special
significance in the system, indicating a line number, a
citation. a specimen, a phase, or a constituent, NPR
returns the standard form. Otherwise, NPR acts like
QUOTE~ For example,

(NPR SAMPLE 10003)
S10003
(NPR LINE NUMBER 10)
10
(NPR BERYLLIUM)
BE

(NPR• •X• / CLASS)

NPR• sets the value of •X• to tne value of CLASS.
It is used tb associate a scope var~able with a proper
~oun for referencing purposes, It is produced bY the
interpretive component for all proper nouns. For
example, (NPR• X7 / (QUOTE Sl~056)),

(NU~BER ARGS)

counts the number of times the form ARGS IS TRUE.
~UMBER returns a one-place list containing the count, and
is used to answer "how manY" questions,

D.61

Page 62

(OLDEST •X• / SAMPLESET : PX)

OLDEST calculates the average age of each sample in
SAMPLESET which meets the conditions specified in PX, and
returns that sample which has the greatest average age,
OLDEST records its answer tn the list DEFDESC, so that
the oldest member of SAMPLESET need only be calculated
once.

(OUTPUTLINE FN)

FN has the format (<file> • <line#>), OUTPUTLINE
is in general Printing function for file records which
gets the information about tne record format and printing
format from the property list of the file name and prints
out the record accordingly, OUTPUTLINE is called bY
PRINTOUT and PBINTFILE,

(PAGEMAP MEMPAGE FILE FILEPAGE)

PAGEMAP maps page FILEPAG! of FILE onto page MEMPAGE
in the lower fork.

(PHRASEMATCH PHRASE PHILE POS)

PHRASEMATCH tests whether the inv~rted file indexed
on PHRASE starts at position POS of the file PHILE, or
would start earlier in the file or later. PHRASEMATCH is
called bY GETDOCS to determine the next move in its
binary search.

(PRINTFILE FILE)

PRINTFILE takes the place of the functions POLO and
PNEW in the former LSNLIS system, to print, in readable
format, the binary files in the data base.

(PRINTLINE N)

The values to be printed by PRINTLINE are the values
in PRINTFIELDS. The vaJues printed on the prior line bY
PRINTLINE are stored in OLDPRINTFLDS. The printing of a
field is suppressed if its value is the same as the
former value, unless the field is a floating point
number, which always prints. N 1s tne number of fields
to be Printed, and is present to maKe PRINTLINE more
general. In the current system, all binary files have
the same number of fields and it corresponds to the
length of PRINTFIELDS.

(PRINTOUT •X•)

D,62

Page 63

PRINTOUT prints out the answers to requests made to
the retrieval component and increments the variable COUNT
maintained by RETRIEVER. PRINTOUT HAS SEVERAL OPTIONS.
If •x• represents the result cf a DATALINE computation,
PRINTOUT prints out the associated analysis, If •X• is
within the scope o~ anY other variables, PRINTOUT prints
out the values of those variables in addition, If •X•
~as any additional information associated with it,
produced during the evaluatioft of the request, that
additional information is printed out along with the
answer. If •X• is not a variable, PRINTOUT merely prints
out its value.

(RATIO ELTl ELT2 SN MIN POINT)

RATIO is a successor function which returns, one bY
one, the ratios it computes of EiTl to ELT2 in the MIN
phase of sample !N. POIN!' 1s the restart pointer,
Ratios are onlY computed between analyses With the same
reference - i.e. done bY the same set of authors.

(REF• FN REFR)

REF• is a predicate which
reference associated with the
REF. FN has the format (<file> •

(REFILEPHRASES INFILE OUTFILE)

tests whether the
analYsis FN is equal to

<line#>).

REFILEPHRASES converts the set of inverted files on
INFILE into one, OUTFILE, suitable for binary search.
Inverted files on the same keyphrase are merged, and each
inverted file is bounded on both ends bY square brackets.

(REMAP MEMPAGE)

REMAP remaps page MEMPAGE of the lower fork onto its
associated filepage.

(RETRIEVER)

RETRIEVER sets up the lower fork of the two fork
LSNLIS system. It exits to the Exec with HALTFN so that
the lower for~ can be saved. When the lower fork is
called by REM!X. it is entered in RETRIEVER following the
call to (HALTrN).

(SAMPLEP X)

SAMPLEP is a predicate for X bejnQ a sample number -
a string beginning with "S" and followed bY a five-digit
number.

D.63

Page 64

(SCOPEFINDER FORM CONTEXT)

makes INTENSION
property lists of
SCOPEFINDER is used
referents.

and SCOPEVARS
the variables

in determining

entries on the
in quantifiers.

correct anaphoric

SEQ is a successor function wnich enumerates the
members of a list. •I• ts its restart pointer. SEQ
returns (CDR (EVAL •I•)) if •I• 1S non-NIL. Otherwise,
SEQ returns (EVAL •L•>, This value 1s then used by SEQ's
calling function as its restart pointer. The variable
AGAINFLG prevents SEQ from restarting •L• after •I• is
NIL.

SEQL is equivalent to (SEQ (LIST,.,)), It is
produced in the semantic component for single-membered
sets.

(SETLIST •X• / CLASS : PX; QX)

SETLIST returns a list of the members ot CLASS which
satisfy condition PX, if QX = T. otherwise, SETLIST
returns QX applied to each of those members, SETLIST is
similar to SETOF; however, 1t returns a list of its
answers, rather than each one in turn.

(SETOF •X• / CLASS : PX ; QX POINT)

SETOF is a successor function which returns the
members of the class CLASS wnich satisfy PX, after having
applied QX to them. POINT is the restart pointer.

(SORTNEW FILE)

SORTNEW does a bubbJe sort of tne unsorted portion
of FILE into the sorted Portion. The boundaries of the
unsorted portion are the values of SORTTOP and TOP, both
on the property list of FIL!~ SORTTOP is reset to TOP
after the file is sorted. SORTNEW is called bY CATALINE.

(SSUNION •X• / CLASS : PX; QX INDEXO)

SSUNION is a successor function. For
CLASS meeting the conditions in PX, QX is
is either Tor another successor function.
restart pointer for both CLASS and QX.

D.64

each member of
evaluated. QX

INDEXO is a

Page 65

(STORELINE FILE LINE# LINE)

STORELINE inse~ts the binary record given in LINE on
line LINE of FILE. It is used by CHANGElLINE to save
time, instead of a series Of STOREVALS, CHANGElL!NE gets
the binary record with a call t~ FETCHLINE,

(SUNION ARGS)

SUNION is a successor function which, one by one,
enumerates all the members ef all the sets listed in
ARGS.

(TABFORM X)

returns the standard form of X, as it appears in the
mineral analysis data base.

(TABFORM oaTHOPYROXENE)
OPX

(TAG• FN TAG)

TAG• is a predicate which test if the value of the
tag field of FN is equal to TAG. FN has the form (
<file> • <line#>).

(TEST SENT)

calls for the evaluation of SENT, If SENT is
non-null, TEST types "YES". If null, TEST types "NO",
TEST is the function used to answer yes-no questions.

(UNADOPROP X Y Z)

UNADDPROP is the reverse of ADDPROP, It removes the
entry Z from the property Yon the atom x.

(UQUOTIENT NUPl NUP2)

UQUOTIENT returns
number.unit pairs, NUPl
unit conversion necessary.

(WHQFILE SN)

tne quotjent of the two
and NUP2, f1rst performing any

WHQFILE returns the chemical analYsis file on which
the analyses of sample SN are stored, For example,
(WHQF!LE (QUOTE S10017)) returns <WARNER>APOLL011,

D.65

·;,

Appendix E.

THE ORGANIZATION OF THE DIC'l1 IONARY

The following description is intended to serve two purposes:

first, to provide a general picture of the dictionary, indicating

what types of information must be specified for lexical entries;

and second, to demonstrate the precise format in which this infor

mation must be represented.

·I. An Overview

The dictionary entry for a given word is stored on its LISP

property list as a sequence of property-value pairs (see the appen

dix for a formal specification of the syntax required in a defini

tion., Usually the properties will be the names of lexical categories

(e.g .. N, V, ADJ), indicating that the word can be a member of the

cateqory, but three other properties are allowed: SUBSTITUTE,

COMPOUNDS, and FEA'TURES. SUBSTITUTE supplies a mechanism for map

ping abbreviations and alternative spellings of a word into a single

form, which contains the full dictionary entry. If a word can be

the first word of an idiom or compound expression (e.g. "United" in

"United States"), then the property COMPOUNDS denotes the following

word in the compound and a standard form which will replace the

whole sequence when it is found in a string. Thus the pair

COMPOUNDS ((STATES UNITED-STATES)) on the property list of UNITED

would convert all occurrences of the sequence UNITED STATES into

the single word UNITED-STATES, which then must be entered separately

in the dictionary. The implementation of the lexical category

properties, SUBSTITUTE, and COMPOUNDS, all support the general

philosophy that the dictionary information for a number of related

items should be stored on only one standard form but should be

accessible by any of the items.

E.l

II. Lexical Categories

The lexical categories are the properties explicitly referenced

by the grammar and the parsing algorithm. When the grammar asks if

a word is in a particular lexical category, the dictionary look-up

routines provide a yes-no answer and, if yes, two kinds of informat

ion: (1) the root form of the word, and (2) a set of inflectional

features. Thus if the grammar asks if BOOK is a noun, the answer

is "yes--with root BOOK and inflectional feature {NU SG)". For the

verb TALK the root would be TALK with inflectional features

{TNS PRESENT) and {PNCODE 3SG).

The value of the lexical category property encodes the root

and feature information in several ways {see Section VI). The most

transparent notation is simply a parenthesized sequence {a list)

whose first element is the root and whose succeeding elements are

the features. If the word has a number of different interpretations

within a single category {e.g. SAW as a verb), the value of the cate-

. 'W

gory property is a list of root-feature lists, one for each interpre- .,,,,,

tation. If the value of the property is an atom, {a character-

sequence instead of a list), then the root features are supplied by

default dictionary routines: If the value is "*", then the word it-

self, is taken as its own root and the set of features is:the empty

set. For any other atomic value, the root is still the word itself,

but a default set of features is provided, depending on the category

{e.g., nouns are marked as singular by default).

Atomic values have another side-effect: they specify the

morphological paradigm of which the word is the root. Thus for

verbs, the atomic values-ED indicates that the third-person

singular is formed by adding an S, the past tense and past parti

ciple result by adding ED, and the present participle is formed

with ING. With the inflectional paradigm encoded in this way, only

the root forms of regular verbs, nouns, adjectives, and adverbs

E.2

must be entered in the dictionary. Definitions for inflected

forms are constructed as needed by removing suffixes to obtain

a potential root and making sure that the potential root is in

the dictionary and is marked to allow the removal of that suffix.

If so, the inflected form is defined as having that root and fea

tures determined by the suffix in a regular way.

Having outlined the general structure of definitions, we can

now look at the lexical categories in some detail. We distinguish

two kinds of lexical categories, open and closed. Open categories

are large, potentially infinite classes of words (such as nouns and

verbs) which will never all be in the dictionary. These classes

are quite productive, with new members arising almost daily, as

technology progress.es. The closed categories are finite, and, for

the most part small, and they are not growing. These categories

include prepositions, determiners, conjunctions, and modals.

A. Open Category Properties.

B.

N
NPR
V
ADJ
ADV

Closed

CONJ
PREP
PRO
DET
ORD
NEG

=
=
=
=
=

noun (man, airplane, city)
proper noun (John Smith, USAF)
verb (walk, fly, see)
adjective (tall, happy, green)
adverb (quickly, suddenly, certainly)

Category Properties

= conjunction (and, or, but)
= preposition (to, for, over)
= pronoun (I, you, they)
= deiterminer (the, a, those)
= .ordinal (first, second, last, final)
= negative (not)

COMP = comparative (more, less, greater)
OP = operation (plus, times)
QWORD = question noun (who, what, why)
QDET = question determiner (which, what)
MODAL = modal verb (should, would, can)
INTEGER= integer (one, two, three)

E.3

III. Open Categories

A. N - Noun

The property N indicates that the word can be interpreted

as a common noun. Every noun is mapped into its root form and

supplied with an inflectional feature for number. 'l'his feature is

encoded as follows:

(NU SG) if this is a singular form

(NU PL) if this is a plural form (e.g. OXEN)

(NU SG/PL) if this form is considered both singular and plural

(e.g. FISH, SHEEP)

The property N should not have the value*; the feature (NU SG)

is supplied by default for other legal atomic values.

The atomic arguments specify how the plural, if any, is formed

The following atoms are recognized (the hyphens are required):

-S nouns with regular S plurals (e.g. BOOK, BOOKS, I-ll.JLE, HULES) 'ffll
-ES nouns with regular ES or IES (if the root ended in Y)

plurals (e.g. CHURCH, CHURCHES, PONY, PONIES)

MASS mass and abstract nouns which have no plural (e.g. WP.TER,

HEALTH)

IRR nouns whose plural form is irregular (e.g. DATUM, OX)

(note that the plural form must have a separate dictionary

entry)

The definitions given for the following words illustrate these

conventions:

BOOK
HEALTH
ox
OXEN

(N -S)
(N MASS)
(N IRR)
(N (OX (NU PL)))

E.4

B. NPR - Proper Noun

Proper nouns have a very simple structure, since they do not

have inflectional forms or features. The basic entry for a proper

noun is {NPR *), although it is possible to use the root retrieving

routines to provide a SUBSTITUTE effect. Thus if JOSEPH were defined

as {NPR *), {NPR (JOSEPH)) and {SUBSTITUrl'E {{JOSEPH))) would be

equivalent definitions for JOE.

C. V - Verb

The inflectional structure of verbs is more complicated than

that of nouns. A verb is marked as a tensed form (present or past)r

an infinitive, and/or a participle {present or past). In addition,

if the verb is marked as tensed, it must also Le marked for person

and number. These! features are specified in the following way:

{TNS PRESENT)
{TNS PAST)

{PRESPART T)
{PASTPART T)
{UNTENSED T)

{PNCODE 3SG)
{PNCODE X3SG)
{PNCODE ANY)

for tensed forms

for present participles
for past participles
for untensed infinitive forms

for third-person singular forms
for every thing except the third-person singular
for all person-number combinations

If the value of an inflectional feature is T, the T need not be

specified. Thus, the following abbreviations may be used where

appropriate: {PRESPART), {PASTPART), {UNTENSED). In addition, the

grammar has been designed so that a tensed verb that has no PNCODE

specified will be interpreted as if it has {PNCODE ANY) permitting

the elimination of this very common feature.

As for nouns, the atom* is not a permissible property value.

For other legal atomic values, the default features are

{TNS PRESENT) (PNCODE X3SG) {UNTENSED), which correspond to

E:.5

the normal behavior of the infinitive ~oot) form. The legal atomic

values are (note the absence of an initial hyphen):

S-D

S-ED

ES-ED

IRR

regular verbs which add S for the third-singular, D
for the past tense and past participle, and ING for
the present participle (e.g. INCLUDE, INCLUDES, INCLUDED,
INCLUDED, INCLUDING).

regular verbs like the above except that they add ED
for the past tense and past participle (e.g. HAPPEN,
HAPPENS, HAPPENED, HAPPENED, HAPPENING)

the same as S-ED except that the third-singular is
formed with ES. Verbs that change Y to I and add ES
or ED are also included. (e.g. PASS, PASSES, PASSED,
PASSED, PASSING, STUDY, STUDIES, STUDIED, STUDIED,
STUDYING)

infinitive forms of irregular verbs--all the other
forms must have separate entries. (e.g. GIVE, MAKE,
RUN)

Illustrative examples:

INCLUDE (V S-D)
HAPPEN (VS-ED)
GIVE (V IRR)
GAVE (V (GIVE (TNS PAST) (PNCODE ANY)))

SAW (V ((SEE (TNS PAST))
(SAW (TNS PRESENT) (PNCODE X3SG) (UNTENSED))))

SAWED (V (SAW (TNS Pl\ST)))

Notice that if the root of one verb and an inflected form of another

are homographs (i.e. they are spelled the same)., the regular in

flectional machinery cannot be used--all the forms of the homographic

root must be explicitly defined. There is one other restriction:

the features (UNTENSED) and (PASTPART) are mutually exclusive, so

that the few verbs whose infinitive and past participle are the same

must be handled specially, as illustrated below.

(RUN (V ((RUN (TNS PRESENT) (PNCODE X3SG) (UNTENSED))
(RUN (PASTPART))))

E.6

RUN is thus defined as an ambiguous verb whose two interpretations

have the same root but different. :features.

D. ADJ - Adjective

Ordinary adjectives i~ English do not have any features, but

many of them have inflected comparative and superlative forms.

'i'hese are marked b~(the features (COMPARATIVE T) and (SUPERLATIVE T),

which may be abbreviated (COMPARA"rIVE) and (SUPERLATIVE). Adjectives

which do not admit these inflections in a regular way are simply

markE!d as (ADJ *) ' for example' EXTREME and ESSENTIAL. Otherwise'

adjectives can have the atomic values

R-ST if they form the comparative by adding Rand the
superlative by adding ST (e.g. CLOSE, CLOSER, CLOSEST)

ER-EST if they add ER and EST instead (e.g. PINK, PINKER, PINKEST)
Adjectives which change Y to I are also included.

These atomic values do not supply any default features for the root

form,, Examples:

HAPPY
GOOD
BETTER
BEST

{ADJ ER-EST)
{ADJ *)
{ADJ (GOOD {COMPARATIVE)))
(ADJ {GOOD (SUPERLATIVE)))

It should be noted that nouns which can be used as modifiers need

not be categorized as adjectives, since the grammar recognizes noun

noun modification.

E. ADV - Adverb

Like adjectives, adverbs can also be inflected for comparative

and superlative, but the root itself has no features. Thus, irregu

lar adverbs or adverbs that do not have comparatives or superlatives

are marked (ADV*), while the regular forms use the same atomic value

codes {ER-EST and R-ST) as adjectives. Examples:

E.7

HARD
FAR
FURTHER

(ADV ER-EST)
(ADV *)
(ADV (FAR (COMPARATIVE)))

IV. Syntactic Features

The property FEATURES is required in the definitions of root

forms to specify the syntactic behavior of the root and all its

inflected forms. At present, the grammar only examines FEATURES

on verbs so that the property need not appear on roots in other

categories. The value of FEATURES is a simple unordered list of

atoms, each one denoting a different characteristic. The features

which may be included for verbs are:

TRANS

INTRANS

INDOBJ

COPULA

PASSIVE

if the verb can be transitive (e.g. HIT, KICK)

if the verb can be intransitive (e.g. WALK, GO)

if the verb can take an indirect object
(e.g. GIVE, BUY, TELL)

if the verb can be a copular (i.e. can be followed
by a predicate adjective) (e.g. BE, SEEM, APPEAR)

if the verb can be passivized (e.g. DISCOVER, FIND)
(Note: all PASSIVE verbs are TRANS, but not all

TRANS verbs are PASSIVE--e.g. COST)

Section VII contains a set of sentence frames which define these

verbal characteristics.

With one exception, if a feature does not appear in the list,

the grammar assumes that the verb does not have the characteristic

in question. Thus, if the root WALK is not marked INTRANS, the

grammar will not be able to parse the sentence "John walked." The

exception is that in the special case when the only features a verb

has are TRANS and PASSIVE, the whole FEATURES property may be ommitted.

The following two definitions for KICK are equivalent:

KICK
KICK

(VS-ED FEATURES (PASSIVE TRANS))
(V S-ED)

E.8

Since a large proportion of verbs have only these two features, this

convention reduces the total size of the dictionary. Examples

of cm~lete dictionary entries are:

GIVE
GIVEN
GO
:BECOME

{V IRR FEATURES (PASSIVE TRANS INDOBJ))
{V {GIVE {PASTPART)))
{V IRR FEATURES {INT'RANS))
{V IRR FEATURES (COPULA))

V. SUBSTITUTE and COMPOUNDS

The properties SUBSTITUTE and COMPOUNDS change the words in

the si~ntence, before the grammar has even looked at them. If none

of the substitutions or compounds lead to a valid parse, the parser

restores the sentence to its original form. In this case, the

grammar examines the lexical category information in the word's defi

nition; thus a definition can contain lexical category properties as

well as SUBSTITUTE and COMPOUNDS.

The value of SUBSTITUTE is a list of lists, each list being a

possible string to be substituted for the word. Whereas COMPOUNDS

causes a sequence of words to be replaced by a single word,

SUBSTITUTE can have the opposite E:?ffect: If SRO were define as

{SUBSTITUTE { {STANDING ROOM ONLY)) , every occurrence of SRO in a

sentence would effectively lengthen the string to be parsed.

As indicated earlier, COMPOUNDS provides a means of mapping

idioms and compotnd expressions (ser:uences of words whose joint

meaning is not simply the composition of the meanings of the indi

vidual words) into a single word representing the joint meaning.

Thus in the earlier example, the sequence UNI'l'ED STATES was mapped

into the "word" UNITED-STATES, which was then explicitly defined.

The COMPOUNDS mechanism is general enough to handle arbitrarily

long sequences and sequences which are identical to the initial

E.9

segments of longer sequences (e.g. UNITED STATES and UNI'l'ED STATES

AIR FORCE). The various possibilities are expressed in the value

of the COMPOUNDS property.

The compounds value (defined in Section VI can be thought of

as a tree structure rooted in the word being defined (e.g. UNITED}.

Non-terminal nodes in the tree specify intermediate words in the

compound expression, so that the non-terminal nodes encountered in

tracing a path in the tree down from the root denote the sequence

itself. The terminal node at the bottom of the path is the joint

meaning of the sequence. There is a terminal node under each non

terminal to specify the joint meaning of subsequences that can occur

independently; if the terminal is the atom NIL, then the non-terminal

in question cannot be the last word in a sequence. The following

example shows the value for COMPOUNDS and the corresponding tree

structure necessary to recognize the expressions UNITED STATES,

UNITED STATES AIR FORCE, UNITED STATES NAVY, and UNITED FRUIT ..,

COMPANY:

(UNITED COMPOUNDS ((STATES UNITED-STATES (AIR NIL (FORCE USAF}}

(NAVY USN}}

(FRUIT NIL (COMPANY UFC}}}}

UNITED

/
STATES

---------------FRUIT

/~ / \--------
UNITED-STATES AIR NAVY

/~ I
NIL COMPANY

r
NIL FORCE USN UFC

I
USAF

Of course, UNITED-STATES, USAF, USN, and UFC must be defined

separately (probably as (NPR *}}.

E.10

VI. Dictionary Pormats

The following is a formal specification of the syntax for

dictionary definitions. The notation is similar to that used

to describe conb~xt-free languages, except that nonterminal

symbols are enclosed in angle-brackets and alternations are rep

resented by the vertical bar. The only addition is the Kleene

* operator, used to denote an arbitrarily {zero or more times)

repeatable constituent.

(1) <definition> + <definiens> <pair>*)

+ <lexical category><legical category value>

SUBSTITUTE

FEATURES

COMPOUNDS

<substitute value>

<feature value>

<compounds value>

(3) <legical category> + N IV I ADJ I ADV

(4) <legical category value>+ <morphology code>

(5) <root-feature list> +

II* II

<root-feature list>

{<root-feature list>*)

<root> <inflectional feature>*)

(6) <inflectional feature> + (<inflectional feature name>
<inflectional-feature value>

(7) <substitute value> +

(8) <substitution> +

(9) <feature value> +

(10) <Compounds value> +

(11) <tree> +

(12) <result> + <word>

<substitution>*)

<word>*

<feature>*

<tree>*

<word> <result> <tree>*

NIL

<lexical category>, <morphology code>, <root>, <inflectional

fHature name>, <inflectional-feature value>, <word>, and <feature;,

are all atoms a:s specified in the text. <definiens> is the word

being defined.

E .11

VII. Frames for Syntactic Features

The following is a suggestive set of sentence frames for the

determination of the syntactic features which must be specified

in the definition of verbs. If a verb can fit into the open slot

in a frame, then the root form of the verb must be marked with the

syntactic feature (under the property FEATURES} with which the

frame is associated. It should be noted that for some verbs it

might be necessary to change the pronouns or substitute other noun

phrases in the frame in order to arrive at meaningful sentences; if

a grammatical sentence results after these modifications, the verb

must still be marked with the feature in question.

A. TRANS: A verb must be marked TRANS if it can be immediately

followed by a direct object noun-phrase.

They ___ it. (e.g. "hit" but not "go"}

B. INTRANS: A verb is intransitive if it does not require a direct

object. (Note: a verb can be both TRANS and INTRANS,

if the direct object is optional.}

They___ (e.g. "ran", but not "surprised"}

c. INDOBJ: A verb can take an indirect object and must be marked

INDOBJ if (1} it can be followed by two noun-phrases,

and (2} if interchanging the two noun-phrases and in

serting the word "to" between them does not change the

meaning of the sentence.

They ___ him it. (e.g. "gave~ but not "hit"}

They it to him.

E.12

D. COPULA: A verb is a copula if it can be immediately followed

by an adjective which is predicated of the subject.

They tall. (e.g. "are: but not "weigh")

E. PASSIVE: Transitive verbs which can be passivized must be

marked both TRANS and PASSIVE.

He ___ them.

The~{ were ___ by him.

E.13

(e.g. "see (saw, seen)
but not "cost")

Appendix F

THE RETRIEVAL COMPONENT

I. Introriuction

II. The LSNLIS Data Base

A. Overview

B. File Handling

1. Fixed-recorn-lengtn-files

1.1 file description information

1.2 codinq arrays

1.3 file indexing

2. Free-record-length files

c. In-ClJre Data

III. Building the Lower ForK and Data Files

IV. Updating the Data Base

A. CTs~r Requests

·I
' .

2.

3.

4 •

Addjna analvses

Deleting analyses

Alterina analyses

Printinq the analysts t~les

B. Adding New Dat~ Files

F, 1 ,

THE RETRIEVAL COMPONENT

I. INTRODUCTION

In this appennix we wiJJ give a detailed description of

the general operation of the LSNLIS retr~eval component and

of the data structures and storage techniques used in the

system. We ma ► e no claims that the

accessing techniques used are tne best ones

ones) for our data base, but rather,

file

(or

we

storage and

even good

include this

aPPendix for the sake of giving a complete specification ot

the current system. Since the goals of the LSNLIS project

involved the lanquage processing capability rather than file

structures and nata management technjques, we have adopted,

wherever possible, techniques wnich are straight-forward and

convenient, and we have

facilities of TENEX such as tne

random file I/O.

caP1tal1zed extensively

page-mapping facility

on

and

The current data base consists of two files compiled bY

Dr. Jeffrey Warner at the 1anned spacecraft center in

Houston. The first is a formatted, flxed-record-length file

of chemical analysis data on the Apollo 11 samples and the

second is an inverted index hy keyphrases to a smal1

collection of nocuments. The former file is the data base

of primary interest since it contains tne specific factual

material to answer questions. The second file was a

peripheral effort in order to combine botn fact retrieval

F.2

and document retrieval in the same natural language querying

facility. The current state of the ~eyphrase file would be

inadequate for an effective document retrieval system since

the keYphrases were oriqinally extracted by machine and

there is no standardization of vocabulary (or even of

inflection) in the file and we have not introduced any

compensating synonym facility.

In the NASA LSNLIS, the retrieval component resides in

a separate for~ of the TENEX time-sharing system which we

will call the lower fork or retrieval forK. This

under the control of the language processing fork.

fork. is

When the

semantic interPretation component has finished constructing

the interpretation of a request, it calls a function EXECUTE

with this interpretation as its argument. EXECUTS passes

the interpretation to the retrteval fork bY means of a

buffer file QBUF {for query buffer) and wakes up the

retrieval for~. ~hen the retrieval fork has completed

processing t~e q"erY, it will nave wrjtten tne answer(s)

onto a file HITFILE, and it will t11en write the number ot

hits into a huffer file ~BUF and return control to the upper

fork. The fun~tion EXECUTE then prints out the answer it

there are fewer than 5 hits, or notjf1es the user of the

nu~ber of hits otherwise and asks 1. 1 m Whether he wishes to

see the an~wers. The function EXECUTE, thus serves as the

ac:ess port to the lower forK.

F.3

II. THE LSNLIS DATA BASE

A. OVERVIEW

In the first LSNLIS prototype demonstrated in Houston

in January. 1971. the entire data base was contained in the

virtual core memory of the retrieval component, This

system, while adequate for the demonstration, Placed a limit

of approximately 100K on the size of the data base that

could be stored due to the limit of 256K for the total

retrieval component. The Apollo11 data which the system

then contained nearly filled that capac1tY.

In the current orototype, the data base has been moved

from the virtual core memory to external disk file storage.

This facility provides access to any number of independent

disk files, each of which may contain up to 256K words of

data. The current system contains conventions for both

fixed and variable record-length files, Accessing of the

files uses both the page maPping facjlltY of the TENEX

system and its random file I/0 capability,

Due to our use of the hardware page-mapping facility in

TENEX and more detailed indexing, moving the chemical

analysis data base to external files nas not hurt the

retrieval component's performance time. With the function

optimization that has accompanied tnis major change in the

retrieval component, the average

request has actuallY been reduced,

F.4

retrieval time for a

For example, the form

constructed from the request, "Gtve me chromite analYSes for

sa~ples containing chromite.", now ta~es 11.5 seconds, on

the average, (828 conses), to execute, whereas previously it

took 2U seconds (1025 conses), "Potassjum / Rubidium ratios

for breccias" executes in 22 seconds (1830 conses), rather

than 28 seconds (654 conses). (Part of the increase in

speed was due to the correction of a bug in tne original

retrieval program which caused wasted searching to take

place.)

To avoid the nuisance of constant, time;consuming

updates to large files, we have carried over the "main table

- Patch table" idea from the Previous system into the new

one. Each main file may have associated with it a patch

file, to which updates may be added sequentially.

Fa:ilities are then provided for sort1ng tne patch file into

the same ora~r as tl,e main file, mergJng tne two files and

resettinq the patch file

The retrieval functions have

information in the oatch

to accept a new set of updates.

been wrjtten to search for

file, before going on to its

associated main file. In this waY, new information or

corrected information is found first,

In the new system, we have again employed field coding

and record pac ► ing wherever possible to reduce the size of

the files. In the Apollo1 chemtcal analysis table, each

line (or recor1) contains seven fjelds (for the sample

F.5

number, phase, constituent, content, unit, citation, and

tag). If each of these entries were represented bY one

machine word, then an entry would requjre at least seven

machine words of storage per record, However, the number of

different possible values for a given field is usually far

less than the number of distinct numbers that can occupy a

machine word (36 bits) or even a LISP pointer (18 bits),

Thus, we can save significant space

possible value for a g1ven field a unique

reservinq for that fJeld Just enough

bY assigning each

code number and

space to hold the

largest such number (plus perhaps some margin for growth),

such field codinq sign1ficantly reduces the number of bits

required for each field. Record packing involves compacting

a record to fit into the minimum number of words possible,

several fields may be assigned locat)ons within a single

word, rather than each fieJd requ1ring one or more words to

itself. In the current sYstem, the only type of field which

still requires a full word to itself is one Which contains a

real number. The records of tne Apollo 11 file, with 7

fields per record, require only 3 macnine words Per record

of storaqe.

A code number does not have to be decoded until the

field of the record in which it is located is accessed, The

decoding process is a very simple one and does not add

aPPreciablY to the cost of retrievjng the information. The

saving in file space is immense, Tne original symbolic file

F.6

of Apollo 11 chemical analysis information has been reduced

hY a factor of 3 by employing field coding and record

packing.

The above discussion of tield cod1ng and record Packing

aPPlies only to the fixed record length files of the system.

At present, the one free-record-length file that is in the

data base (the inverted file of documents by key Phrase) is

not bit packed in any way. Similar techniques could be

aPPlied to reduce the storage for such variable length

re1:ords if space for their rePresentation became critical.

The files currrentlv in tne data base are (1) a 13,248

record file APOLL011, (2) 1ts empty patch file,

APOLL011.PATCH, (3) the inverted file of documents indexed

bY key Phrase, PHRASETABLE, and (4) one auxilliarY file,

LOWFORK.SYSOUT, used for maintaining updates to the lower

fork.

B. FILE HANDLING

1. FIXED RECORD-LENGTH FILES

A process running under the TENEX system has a Virtual

~emery of 256K, divided into 512 word units or pages. A

user's files are also segmented into pages, and it is on

these facts that the LSNLIS data handling is based. Given

information about a file's organization, an algorithm can

F.7

compute the ~age on which any record within that file is

located. It will also note on what word, within that page,

the particular record starts. TENEX allows one to map pages

from an external file onto pages within an ongoing process,

Within the lower fork (retrieval component), 10 Pages have

been reserved for file page mapping. Wnen a page of a file

is needed bY the retrievaJ function, 1t is mapped onto one

of these 10 ~ages and is then available to all the standard

LISP functions as if it were part of core memory, A

gazetteer keeps track of which pages of which files are

currently maPPed onto the reserved area. If a given file

page is already mapped onto the reserved area, it is

available for use immediately, and no further mapping must

be done in order to access it. (• 1)

The following discussion details the current

implementation:

1.1 FILE DESCRIPTION INFORMATION

The names of the data files available to the system are

(• 1) The m~opina area was reserved bY setting up a LISP
array across 11 pages and freezjng jt there via the LISP
HAKESYS commRnd, once a page from a file is mapped into the
lower fork, it is accessed bY means of the standard LISP
array functions, Recently, a new facility, GETBLK, was
added to LISP for assigning a block of storage guaranteed
not to move during garbage collections, just for the purpose
of such paqe mapping as we are doing.

F.8

on the list FILEDIRECTORY. FILEDIRECTORY is a list of

dotted pairs, the first member of each being a file name,

and the second being the current version. For example,

FILEDIRECTORY is currently set to;

((APOLL011 , <WEBBER>AP0LL011)

(APOLL011.PATCH • <WEBBER>APOLL011,PATCH))

A user is not ex~ected to know the current version of any

file. If a name isn•t on FILEDIRECTORY, the system assumes

it has no further information about that name as a file, and

returns an error message.

All the file names on FILEDIRECTOP.Y have on their

property

need to

lists the information that the retrieval functions

locate the file-record-field combination they

require. In addition, the Property list of each file name

contains the information needed to print out that file in a

legible manner. Each of these propertjes is detailed below,

with the propertv name being followed by a description of

its value and examples of its use:

TOP - the number of records in toe file, Plus one.

This value changes as new records are added to the

file.

SORTTOP - the number of sorted records at the top end

of the file. This value changes only when the

recentJy added*·unsorted records at tne bottom of

the file are sorted in w1t11 tile rest, using the

function SORTFILE. At that time, SORTTOP is reset

to TOP. This property 1s only useful information

for Patch files; main files are always assumed to

he sorted.

NREC/PAGE - the number of records per page ot the file.

This number must be an integer, as records are not

allowed to cross

implementation.

boundaries in this

AS there are 512 words per page,

NREC/PAGE is equaJ to the jnteger quotient of 512

and the length of tne file record in woras. The

APOLL011 file has three word records, so NREC/PAGE

is 512/3 = 170.

FORMAT - the form~t of the file record - its length and

field specific~tions. The f;rst item in FORMAT is

th~ record length in words, and the remaining

items are format speclficat~ons of the fields

wit~in a record. A field js specified as:

(<fiel~nan1e><fje}dtype><sortkeyflg><word-increment>

where

<mSh><lsb><codearraY>)

<field type> : =: FLT I INT CODE

<sortkeyflg> . - . T I NIL . - .
<word-increment> . - . . - . 2 I 3 I . ..
<msh> . - . 0 2 35 . - . • ••

<l~b> . - . 0 1 2 I 35 . -. • ••

<fieldtype> specJfjes whether the value

in the fie)d is a floating point number, an

integer or a code number. All alphanumeric

F,10

strings, as mentioned prev1ous1~, have been

coded to save space.

<sortkeyflg> indicates whether the file

is sorted on that fjeld. over the sorted

fields, the order of the sort is from left

to right.

<word-increment> indicates in which

word of the record the field is located.

cmsb>,<lsb> are the bit boundaries of the

field, Jf it does not occupy a full word.

Only floating points numbers currently

occupy a full word, <codearraY> is only

included for coded fields. The code number

in the field is a pojnter into this array,

which contains the uncoded, alphanumeric

information.

PBINTFORMAT ~ the Width of eacn field, as it is to be

Printed, one nnmber per f~eld. A field must be as

wide as its longest alphanumer~c value.

For example, the oropertY list of tne file of Apollo 11

data, APOLL011, is:

F.11

(APOLI.011
TOP 13248
SORTTOP ~3248
NREC/PAGE 170
FORMAT (3 (SN CODE T 1 0 13 SARR11)

(MIN CODE T 1 14 24 MARR11)
(ELT CODE T 1 25 35 EARR11)
(REF CODE T 2 0 13 BARR11)
(TAG INT T 2 14 24)
(UNIT CODE NIL 2 25 35
UARR11)

(VAL FLT NIL 3))
PRINTFORl'1A T (8 8 10 10 10 10 10 4))

1.2 CODING ARRAYS

Each file in the data base may have its own code arrays

or share them With another file, SARR11, MARR11, EARR11,

RARR11 and UARR11 are the code arrays ot the sample,

mineral, element, reference and unjt fields, resPectivelY,

of the APOLL011 file. All ApOllo11 samples are coded via

the SARR11 code array, all ~inerals via the MARR11 code

array, etc. A value whlch occurs 1n more than one field or

more th~n one file may be coded via several arrays. This

information is stored on the property 11st of the field

value, under the property CODES. For example,

(SILICA

CODES ((MARRl~ • 27) (EARR11 • 13~)))

says that SILICA is coded 27 as a mineral field value and

135 as an element field value.

A codinq array contains in its first entry a Pointer to

its first empty entrv. That entrY wjll be used for tne next

F.12

field value that needs to be coded, Tne remaining non-empty

entries of the array point to tne decoded field values. For

example, entry 27 of MARR 1; points to the string SILICA.

The entries are accessed via trie LISP arraY functions SETA

and. ELT.

The property list of a codjng array contains the

properties CODESFOR and SORTTOP. CODESFOR points back to a

list of values for which it is a coding arraY. This list is

used by the retrieval function FOR. Botn the coding array

and this list are updated when -new fJeld values come in,

For examole.

(MARR11

CODESFOP. PHASES)

When a new value ls entered and coded in MARR11, it is

also aopended to the llst PHASES.

As the chemical analysis files are expected to be

sorted alPhabetically and maintained in this order, the

values ir each codinq array have been coded in this order

too. In this wav, the compacted, coded files maintain the

alphabetic order. When new analyses with new field values

are added to a chemical analYsis file, the code assignen to

the fiel~ value may not refJect its alPnabetic order. The

property SORTTOP indicates tne end of tne ordered values

within the array.

F.13

An example of the compJete property list on a coding

array is:

(MARR11

CODESFOR fHASES

SORTTOf 67).

1.3 FILE INDEXING

To aid in locating information WJtnin a file, a file is

indexed on its orimary sort key, For each member of the

primary field, the index to the f1le for that member is

qiven on its property list. The property name is the name

of the file: thus, several files may be indexed on the same

primary sort keys, (This might be useful 1£ one were to

have some files of the sampJes bY mJSSion number and others

bY sample type,) The value of tne property 1s the detailed

index to the file for that value of the primary field, This

index may vary in depth according to the size of the block

delimited, (It is assumed that the file ~s sorted, at least

on its initial fielc.)

The index structure is:

<index> :=: (<fieJdindex>• <lastindex>)

<fieldindex> :=: (<fieldname> , <integer>)

(<fieldname><jndex>)

<lastindex> :=: (••• • <integer>)

F,14

Examples of a possible index to two samples in the

APCLL011 file, whose prJmary sort key is sample number, are:

(510003
,\POLL011 ((OVERALL. 19)(CPX. 180)

(510017

(GLASS • 88)(ILM • 212)(PLAG • 213)
(*** • 216)))

APOLL011 ((OVERALL. 334)(BOT • 650)
(BOTTOM 655)(CPX (AL203, 66~) (CAO
669)(CR203 678)(FEO 682)(MGO • 691)
(MNO • 700)(NA2:Z,. 705) (0 706)(018
707)(PB , 710) (PB206/20 711)(SI02
715)(TH • 724)(TI~2 • 726) (U , 735)(••• •
737))(ILM • 737), •• (••• • 928)))

(While the APOLL011 file is currently indexed only bY sample

phase combination, the retrieval functions have all been

written for variable depth indexing.)

In the above examples, there 1s a pointer to the start

of the 510017-ROT block, containjng the five analYses ot

S10017 for the BOT phase. The 510017-CPX bloc~ however,

which contains ~37 analyses, has been indexed further bY

element. Thus there 1s a pointer to the start of the

510017-CPX-FEO blnck, the 510~17-CPX-MGO block, etc, This

variable indexing is a help in reducing the amo~nt of

information that must be searche~ to find a given item.

2. FREE RECORD LENGTH FILES

We have changed our manner of nandling the inverted

lists of documents by keyphrase in t11e new LSNLIS system.

Previously, these lists were kept in core on the property

F.15

list of the word heading tne pt,rase. For example, the

inverted file associated with "Quenched terrestrial basalts"

was on the property list of "Quenched". (We hope there will

be no confusion because of our use of the word "file" in

both its information retrieval and its computer

implementation senses. we will try, however, to use the

ohrase "external file" to distinguish tl1e computer sense.)

In order to accommodate larger numbers at larger inverted

files, it was decided to ~eep them on an external file and

access it with a binary search. The d1ctionarY file in the

upper fork is also accessed in this way.

In the current system, there is a single external file

PHRASETABLE containing a}J the inverted files ot documents

bY keYPhrase. Each inverted file 1s a s~ngle record on this

external file. we assume a keyphrase w1i1 nave only one

inverted file associated with it (1.e. w~ll occur only once

on the list). The external file is sorted on tne KeYphrases

that head th~ inverted fjles. To retrieve a record from the

external file, we do a binary search on the file using

random file I/0 commands recently introduced into LISP.

While we have not done comparatjve t~ming studies with

the previous inverted fiJe retrlPVal functions, recent

timings of the function GETDOCS, whJch returns the inverted

file for a phrase given as input, have produced the

followinCT results:

F.16

phrase

ABRASION
ZOHED CRYSTAL
QUENCHED TERRESTRIAL BASALTS
MOLTEN SILICATE

timing

5,3 sec,
6,4 sec,
4,9 sec:,
1.07 sec.

number of calls
for random I/0

19
26
16

2

This is of course much slower tnan the corresponding in-core

ve~sions. but one cannot expect to teep an index to a

realistic document collection in 256K of core.

sacrifice in speed of retrieval ts inevjtable,

C, IN-CORE DATA

Some such

In addition to the chemical analysis information stored

on external files, we also have a small amount of

information resident 1n core, ThJS intormation includes

lists of sample tvpes, samples by type, elements, isotopes,

mi~erals. rare-earths, phases and oxides, and for each

sa~ple, on its property list. a 11st of the phases and a

list of the constituents which the sample contains, This

latter information is derived from the chemical analysis

files and represents for eacn sample those Phases and

constituents for which anal_1ses have been made, All this

in-core information qreatly improves the system's

performance in answering requests about the elements,

oxides, Prases, etc, that a sample contains, Without

increasing very mDch the amount of memory required bY the

SYStE)m.

For each sample, its list of const~tuents is on the

F.17

property ELTS on its property ljst. !he phases that a

sample contains are found on the property wnose name is the

same as the file to which the sample belongs. For example,

the phases of S1~017 can be found under the property

APOLL01i. This ProPertY, as was mentioned in the previous

section, is also the index to the f1le bY

Pair. It is also used to see what

contains. Both of these properties are put

list of each sample by

constructs the sample - phase

[S10018
CODES ((SARR11 • 6))
APOLL011 ((OVERALL. 923)

(CPX. 1!?181)
(GLASS • 1093)
(ILM. 1173)
(PLAG. 1185)
(*** • 1196))

the function

j_ndex of the

sample phase

phases the sample

on the property

INDEXF When it

ti.le,

ELTS (AL203 AL26 AU BA BE CAO CE CL CO C056 CR203 CU DY ER EU

]

FEO GA Gn HF HO IN K20 LA Ll LU MGO MNO MN54 NA20
NA22 NB ND NIO O POSITRON PR P205 RB RB87/SR8 S Sc
SC46 SI02 SM SB SR87/86 TA TB TH TI02 UV Y YB ZN ZR)

III. BUILDING THE LO~ER FORK AND DATA FILES

The following sequence of instructions was used to

build the lower fork and convert the LSNLIS chemical

analvses file for Apollo 1~ into a coded file and reformat

the LSNLIS set of inverted files (* 2). (The external files

are independent. If anYt~inq snould happen to the chemical

analvsis or keYPhrase files, they may be reload or recreated

F.18

without affecting the lower fork, The chemical analysis

file does not have to be retndexed. If anything should

happen to the lower fork, neither of tne data files needs to

be redone. OnJy the property list information for the

chemical analysis file and its index1ng must be restored,)

1. @ILISP

2. ~LOAD(<WEBBER>LOADLOW)

3. ~(LOADLOW LOADFILES) LOADLOW will call for the

loading of all the function and variable files

needed in the lower fork, It will also set up all

the global variables needed for page mapping,

4. ~(BUILDCl CODEABRAYS FIELDNAMES) SUILDCA Will set UP

the code arrays for the APOLL011 file listed in

CODEARRAYS and code tne appropriate field values,

for the lists in FIELDNAMES, into the arrays.

(* 2) The facility for getting the JFN of a file from within
LISP has not been implemented yet at the time of this
report. Because of this, the following additional set of
instructions must be performed before loading the first
f 1:. e:
@L::sPX
BBN LISP-10 03-09-72 •••
:~DOT()
@DilT
FSCH=[~LISP$:FSCH]12006
tC
taBgE
2~PUT(FSCH COREVAL 12~060)
51:26

(W H A TE V E R N U MB E R I S R ET U R N ED F R OM TY PI N G '' F SC H-= " , S H OU L D B E
USED IN THE PUT COMMAND, FOLLOWED BY A "Q", INDICATING THE
NUMBER IS IN OCTAL.)

F.19

5. MINREAD(<WOODS>MINTABLE <WEBBER>APOLL011) MINREAD

creates a compacted, binarY-coded file from a

svmholic (i.e. Printable) chemical analYsis file.

6. ► INDEXF(<WEBBER>APOLL011) INDEXF indexes a coded

chemical analysis file by samPle~Phase combination.

(N.B. Although the retrieval functions accept

variable depth indexing, we found we did not need

to index beyond the second level, (1.e. the

Pha~e), for reasonable effjcJencY.

7, ► REFILEPHRASES(<WOODS>PHRASETABLE

<WEBBER>PHRASETABLE) REFILEPHRASES converts the

LSNLIS set of inverted files on the external file

<WOODS>PHP.ASETABLE into one suitable for binarY

search.

8. ,c

~SSAVE (PAGES FROM) J ro 777 (ON) LOWfORK.SSAV

~CONTINUE

MAKESYS (LOWFORK0 SAV)

This firal ~eauence of instructJons sets up the lower

fork for use bY the upper fork.

IV. UPDATING TH! DATA EASE

A. USER RBQUESTS

F.20

In addition to its retrieval facjlities, LSNLIS has

facilities which allow tne user to alter tne data base of

chemical analysis information. These facil1ties allow him

to add and delete analyses, to change tne value of one or

more field~ within a s1ngle analysis, and to print out the

cht~mica l analysis files, all us~ng naturai language,

althouoh with some restrictions.

As the main chemical analysis files are in alphanumeric

order and must remain so, all ct,anges in analyses which

w o ll l d u p s e t t hi s or d er c a use t 11 e a n a 1 y s i s in q u es t i on t o be

aeleted fro~ the main fiJe and put in its altered ±orm in

the corresoondirq Patch file. Tn1s eliminates a Painful

resh~fflinc of the maln file Whenever an update is made. At

a later eate~ the main file and the paten file m2y be

and the Patch file cleared ±or new entries, thus

combininq ~ase of maintenance w1tn effic:~nt searching.

t-.s far as tr,e user iS conc:erned, tr1ere is on ... y one :ile

for eac~ mission. He does not need to know at~~t the

main-file/ Paten-file dichotomy, Hence, i.-nen ne 1,u t.s to

specify atditions to the analyses for a give~ ~issior, he

cnly need s~ecify the main file, Deletions and ctatges

however can he ma~e to all the files for a mission.

S1~ce c~anges made to the data nase may alsc c~~nge

values in the lower ~ork, tne currencY of tne low~r forK

~Lst als~ ~e maintained. This 1s done using the LISP

F.21

function SYSOUT, which will save the pages on Which these

chanoes were made on a file. Whenever a new entry is made

in a coding array using the function CODE, or a new file is

sorted using SORTNEW, the command:

(SYSOUT (QUOTE <WARNER>LOWFORK.SYSOUT))

is executed automatically. At the start of a user session,

this file is automaticalJy overlajd over the lower fork,

bringing it up to date.

ways:

1. ADDING ANALYSES

The user can add a new analysis to a file in one of two

A. **(ADDLI~E (t S10003 OVERALL DY 24.7 PPM

D70-22~ ~) to APOLL011)

B. ••(~DD THE LINE (S100~3, OVERALL, DY, 24,7,

PP ,1 , D 7 0 - 2 2 0 , 0) t o A PO L LO 1 i)

(The English here, as might be expected, is somewhat

c o n st r a i n e <'l , I t i s , d i f f i cu 1 t tt, o u g 1, t o i ma g i n e w ha t t he

casual fnrm for such a request might be.)

The user ca~ sav ADDLINE or ADD, followed by a list of

the field values enclosed in parentneses, preceded by an

up-arrow, as in example A., ment1on1ng the file to which the

analysis should he added. (The up arrow at the beginning ot

a list lR our analog of underlining a Pnrase. It makes the

remainder of the list into a Proper noun.) This is the tirst

F.22

wa~' of adding an analysis.

The second wav of adding an analysjs involves the user

saring ADD, as in example B. (When the line contents are

indicated by a phrase "the line " . . . , the values of the

fields should be separated by commas, and no up-arrow should

be used.) Again the file to which the analysis should be

added must be mentioned,

Both of these requests, When executed, return the line

number (record number) in tne paten f1le of the new

analysis. For example:

F.23

SENTENCE:
(ADD (t S10003 OVERALL DY 24.9 PPM D70-675 0) TO APOLLO11)
PTIMING:
1095 CONSES
5.519 SECSNOS
PARSINGS:
S IMP

NP PRO 'X'OIJ
AUX TNS PRESENT
VP V ADD

NP DET
NPR

NIL
S 100C'l3

OVERALL
DY
24.9
PPM
D7"l .. 675
0

NU SG
PP PREP TO

NP DET NIL
NPR APOLLO11
Nil SG

ITIMING:
541 CONSES
2.366 SECONDS
INTERPRETATIONS:
(DO (APPLY (FUNCTION PRENEWLINE) (QUOTE ((NPR• X1 / (QUOTE
APOLLO11))

S10003 OVERALL DY 24.9 PPM 070-675 0))))
EXECUTING
5
T

2. DELETING ANALYSES

To delete a line from any of the cnemica! analysis

files, the user can either sPeci.fy the line number and flle

name of the line he wishes to delete, as ~n:

••(DELETF LINE 17 OF APOLLO11)

or describe t.he analvsis contained on t11e line, as in:

••(DEL~TE THE OVERALL AMAlYSIS OF AL26 FOR S10002).

F.24

uaing the second method, the user need not specify the file

name, as it is obtainable from the sample number,

However, using the second method, the user faces the

~roblem of potential ambiguitY: there maY be several overall

analyses of Al26 for s10002. He may specify the analysis

further by giving tag and reference numbers, but the

possibility of ambiguitY still exists, Because the user has

specified "the analysis", he seems to believe there is a

unique referent for his description. If there is then more

than one analYSis satisfying his descrjption, the retrieval

·component will tell h1m so, and how many. At this point,

the user may specify all, one, the f~rst or whichever ot

them he chooses to be deleted,

To avoid this ambiguitY, the user may nave first

requested to get the exact line number(s) of the analysis or

analyses he wished to delete, as by:

••(WHAT ARE THE OVERALL ANALYSES OF AL26 FOR

S10002)

3. ALTERING ANALYSES

The user is also given tne abjlitY to make natural

language requests for alteration of one or more analyses

within a file, He can get at an analYsis in one of two

ways: by givinq the file name and line number of the

analysis in a call to EDIT, as inl

F.25

••(EDIT LINE 173 OF APOLL011)

or bY providing a description of the line or lines to be

changed and the type of change, as 1n:

••(CHANGE THE ELEMENT IN ALL AL203 ANALYSES TO

AL203),

Using the first method, he can make as many changes as

he wishP.S, but to only one line. using the second method,

he can make only one specific cnange, but to as many lines

as he wants.

If the user chooses the first method, the machine w1ll

resp on 1 by print in g o 11 t the an a 1 y s; s on line l 7 3 of the

APOLLOll file in the order: sample, phase, constituent,

reference, tag, unit, content. To change any field, he can

specify its position (sample= l, Phase= 2, etc), followed

bY the new va].ue, For example, the above request to EDIT

would produce

(S10003 OVERALL •K/AB D70-2Ul 0 M,Y.3900,0)

EDIT

•

To chanqe the phase, the user mJgnt say (2 CPX) or (2

GLASS). To change the content, the user might say (7

185~.8), He can insoect the current result at any point bY

typing P. When he is finished, he can tYPe OK, If a field

on which the anaJysis file is sorted rias been changed during

the editing, the system aeletes the ortginal line and adds a

F.26

copy of the altered line to the end of tne

patch file. Otherwise, it simply makes

corresponding

the indicated

changes to the original Jine. (Of course, the user can also

edit lines in the patch file, but tne above considerations

still hold.)

The following is complete example of a user requesting

a change in the Apollo11 patch file, The system returns at

the end of executing the request the line number of the

original line if no recopying was necessary, the line number

of the new line in the patch file, if tae line was copied.

F.27

SENTENCE:
(EDIT LINE 3 OF APOLL011.PATCH)
PTIMING:
971 CONSES
5.669 SECONDS
PARSINr.S:
S IMP

NP PRO YOU
AUX TNS PRESENT
VP V EDIT

NP DET NIL
NPR LINE

3
NU SG
PP PFlEP OF

NP DET NIL
NPR APOLL011.PATCH
NU SG

!TIMING:
S42 CONSES
2.415 SECONDS
INTERPRETATIONS:
(DO (EDITLINE (NPR• X2 / (QUOTE APOLLO11.PATCH)) (QUOTE 3)))
BSN LISP-1? 03-~9-72 •••
F.XECUTING
(S10058 CPX SI02 D70-212 0 NIL 11 1 9)
EDIT
,•(7 13.2)

2•0K .,

4. PRINTING FILES

T~e che~icaJ analysis files, beJng binary tiles, are

not printable (that is, comprehendable wnen printed) bY the

TENEX executive command LIST. However, the user can request

a file to be expanded, decoded, and printed by saying

••(PRINT ~POLL011) or ••(PRINTOUT APOLL01,.PATCH)

tnat 1s. "orint" or "prJntout", followed OY the name of the

file ne ~i~~P.s to have printed.

F.28

The following 1s an example of the above request:

SENTBNCE:
(PRINTOUT APOLL011.PATCH)
PTJ:MTNG:
35 :! CON SES
1.fl49 SECONDS
PARSINGS:
S ::MP

UP PRO YOU
RUX TNS PRESEN'r
VP V PRINTOUT

NP DET NIL
NPR APOLL011.PATCH
NU SG

IT:CMING:
466 CONSES
2. 159 SECONDS
INTERPRETATIONS:
(D0 (PRINTFILE (NPR• X5 / (QUOTE APOLL011,PATCH))))
EXl!:CUTING
1 S100~3 OVERALL
2
3
4

T

S10058
S10057

CPX

DY

SI02
MNO

B. ADDING NEW DATA FILES

24.7
24.7
13.2
8. 8

PPM

NIL

D70-220

D70-212
D70-245

For each new chemical analysis file to be added to the

data base, the following addtt1onal information must be

stored. (We shall use a hypotnetical file of Apollo 12 data

RS an example, and assume both the orJ.ginal LSNLIS file, say

MINTABLE12, and the coded file are to reside on the file

directory <WARNER> This is the only time the user need

know the current version (i.e. the directory location) o±

the file.

1. ~RUN LOWFORK.SSAV

F,. 29

2

2. ..SETQQ(APOLL012 APOLL012)

3. If any new code arrays are to be created for
the file:
.. SETQQ(CA12 ("list of new code arrays"))
.. SETOQ(FLDNM12 ("list of field names in same

order as code arrays. Each name should be
bound to a ltst containing the values
possible in the field,"))

.. BllILDCA (CA12 FLDNL'112)
4. Add APOLL012 to FILEDIRECTORY:

.. SF.TQ(FILEDIRECTORY (CONS (QUOTE
(APOLL012 , <WARNER>APOLL012))
FILEDIRECTORY))

s. Build the property list for APOLL012. See
nrevious section for the properties to be
included.

-6. If an empty patch file for the new main file is
to be created concurrently, steps 4 and 5 should
he repeated for the patch file. It 1s really not
necessary to create the patch file until it is
needed.

7. Convert LSNLIS fiJe <WARNER>MINTABLE12 into a
coded file:
MINREAD (<WARNER>MINTABLE12 <WARNER>APOLL012)

8. Index the latter file by sample~pnase combination:
INDEXF(<WARNER>APOLL012)

9. no any further indexinq thougnt necessary.
10. Re~et up the lower fork with the new information;

see step 8 of the prevtous sequence,

F.30

APPENDIX G

Examples

The following examples illustrate a variety of the

types of questions that the system can handle. They were

run with a setting of flags which prints out the parse tree

and the times involved in parsing and semantic interpretation

as well as the resulting semantic interpretation and the

answer. The parse times include the time required to access

dictionary entries from external files when words are encountered

that are not already in core (approx 1 sec. per word) as well

as a considerable fluctuation in system overhead due to paging,

which det~ends on system load at the time the example was run

(ti~es can fluctuate within a factor of four due to variations

in system load). Since the examples were run at various times

of day, and with varying numbers of words to be looked up from

the external dictionary files, cross comparisons of times

between sentences in this sample are meaningless, and the times

themselves can give only a rough order of magnitude. The same

system run in 256K of real core instead of virtual core would

run much faster.

G.l

SENTENCE:
(WHAT IS THE AVERAGE COMPOSITION OF OLIVINE)
PTIMING:
7168 CONSES
4.9 SECONDS
PARSINGS:
s 0

NP DET TH~
N AVERAGE
NU SG
PP PREP OF

NP DET NIL
N COMPOSITION
NU PL
PP PREP OF

NP DET NIL

AUX TNS PRESENT
VP V BF:

NP DET WHQ
n THING
NU SG/PL

ITIMING:
2285 CDNSE:3
9.877 SEC'.:NOS
INTERPRE:ATIONS:

N OLIVINE
NU SG

(FOR EVEPY X8 / (SEQ MAJORELTS) : T ; (FOR THE X4 / (SEQL (AVERAGE
X 5 / (S S U N I O ~l X 6 / (S E Q S A M PL E S) : T ; (D A TA L I N E (W H Q FI L E X 6) X 6 (N PB •
X7 / (QUC'T~ ·1IV)) X8)) : T)) : T; (PRINTOUT X4)))

SI02 (36.93518 • PCT)
TI02 (. 1544S09 • PCT)
AL203 (.1236187 , PCT)
FF.:2O3 IJ.'~)
FEO (28.97409 , PCT)
MNO (.3488541 , PCT)
MGO (33.824R7 • PCT)
CAO (.1!93421 • PCT)
J-:2O 10.{i • PCT)
~A20 (.1381333 , PCT)
tL

G.2

SENTENCE:
(WHAT IS THE AVERAGE PLAGIOCLASE CONTENT IN CRYSTALLINE ROCKS)
PTIMING:
'1396 CCINSES
6 • B 5 SE: CON D S
PARS I NG:S:
s 0

NP OE:T THE
N AVERAGE
NU SG
PP PREP OF

NP DET NIL
ADJ NP N PLAGIOCLASE
N CONTENT
NU PL
PP PREP II~

NP.DET NIL

AUX '.ms PRESENT
VP V BE

Nl? DET WHO

!TIMING:

N THING
NU SG/PL

2083 CONSES
'i 0 • 9 2 5 S ECO N D S
INTERPRETATIONS:

ADJ CRYSTALLINE
N ROCK
NU '.Pl,

(FOR THE X10 / (SEQL (AVERAGE X11 / (SSUNION X12 / (SEQ VOLCANICS)
: T ; (DATALINE (WHQFILE X 12) X12 OVERALL (NP:R• XU / (QUOTE PLAG))))
: T)) : T ; (PRINTOUT XHi))

(26.02778 • ·••)
tL

G.3

SENTENCE:
(WHAT IS THE AVERAGE CONCENTRATION OF ALUMINUM IN EACH BRECCIA)
PTIMING:
:256 CDNSES

4.925 SECCNDS
PARSINGS:
s 0

NP DET THE
N AVERAGE
NU SG
PP PREP OF

NP DET NIL
N CONCENTRATION
NU PL
PP PREP OF

NP DET NIL
N ALUMINUM
NU SG

PP PREP IN
NP DET EACH

AUX TNS PRESENT
VP V BP.

NP DET WHQ
N THING
NU SG/PL

!TIMING:
2223 CDNSES
9.428 SEC:'JNDS
INTERPRETATIONS:

N BRECCIA
NU SG

(FOR EVERY X17 / (SEQ TYPECS)
X16 / (DI\TALINE (WHOFILE X 7)
X19 / (QUCT! AL203))) : T))

srn0·:o (12.48526 . PCT)
S10019 (12.80726 . PCT)
SH'1?1?1 (1 2.R297 . PC':')
s1:rn1.6 ('i1.7149 • PCT)
S1vl01U8 (1) • l"',)3 2 4 . PCT)
S 1 (~056 (1 1.712208 . PCT)
S 1 i c, S 9 (1 ?.::.6518 . PCT)
S 1 0C16l-l (' 1.42~93 . PCT)
S ·1 ~ ?I b 1 r~2.9q457 . PCT)
S:0063 (13.i13755 . PCT)
S1~'~64 (1 1. 2.i5357 . PCT)
Sh.H1f5 (P.4707 . PCT)
S1Vi0fb (13. t;iJ992 . PCT)
SH.'1067 (1 3.7':3335 . PCT)
S10]FH <12.18727 . PCT)
S 'IV,~ 7 l1 (13.79'335 . PCT)
SH:1073 (1J.og23 • PCT)
S10t.17t.i. (1 4.3602 • PCT)
S10775 (1Ll.f-l.d62 . PCT)
1 L

: T 1 (FOR THE X15 / (SEQL (AVERAGE
X17 (NPR* X18 / (QUOTE OVERALL)) (NPR•
T ; (PRINTOUT X15)))

G.4

SENTE!1CE:
(LIST MOD~L PLAG ANALYSES FOR LUNAR SAMPLES)
PTIMING:
·, 0 3 9 CO N S ES

7.Ll16 sEc:Nos
PARSHIGS:
S I[1P

NP l?RO YOU
AUX TNS PRESENT
VP V LIST

!~ P D ET NIL

ITIMH:G:

h D ,1 :10 D A L
ADJ NP N PLAG
N ANil.LYSIS
NU PL
PP PREP FOR

NP DET NIL
AD-1 LUNAR
N SAMPLE
NU PL

659 cor~sEs
R. l? 11 SBC~'NDS

INTEFl?Hr:TATIONS:
(DO (FOR GEN X14 / (SSUNION x15 / (SEQ SAMPLES) : T; (CATALINE (WHQFILE
X"5) X15 CVFRALL (NPR• X16 / (OUOTE PLAG)))) : T; (PRINTOUT X1U)))

s1i0713 OVERALL PLAG 33.8 ••• D70-154
29.0 D70-173

5 ~ J ;:; 1 ;,, [1 1 7 2 5. 1 D70-155
5 •; 4 2 i • 5 D70-179

30.7 D70-159
fi H ~, 3 1 2 1 • LI 070-173
681 40 2 8. 5
6 8 7. 0 2 LI • 6 D70-305

ri.11 c.;7('.;322 1 5. 6 D70-179
2727 ::i '/:'124 16, 4

3 3. 1 D70-154
3 4 • 1

S ", /.Z46 LI• 7 D70-305
1.; /.J. Li ,: ~ 1 '.I ? 4 7 37,8 D70-159
c4g~ 3~'.'·?157 1 ~. 2 D70-173
'--79S s~~·7,58 :n., D70-155
6354 S1??i71 2 1 • 7 D70-173
RS B 2 S ·; ;· ·.17 2 20.4
PS83 1 8. 5 D70-179

2 2 , 0 D70-186
o 3 ..• 2 1 5. 0 D70-304

G.5

SENTENCE:
(REFERENCES ON TRITIUM PRODUCTION)
PTIMING:
981.1 CONSES
8.686 SECC'NDS
PARSINGS:
s npu

NP DET NIL
N REFERENCE
NU PL
PP P:-:'.EP ON

!TIMING:

NP DET NIL
ADJ NP N TRITIUM
N P:.lODUCTION
NU SG

1465 CONSES
8.81.17 SEc:~NDS
INTERPRETTITIONS:
(FOR GEN X17 /DOCUMENT: (ABOUT X17 (OR (TRITIUM PRODUCTION) (AND
(TRITIUM) (AND (TRITIUM) (PRODUCTION))))) ; (PRINTOUT X17))

D70-046
D70-051
fL

G.6

SENTENCE:
(POTASSillM / RUBIDIUM RATIOS FOR TYPE A ROCKS)
PTIMING:
;241 CONSES

9.127 SP.cC:NDS
PARSINGS:
S NPU

NP DET' NIL
ADJ NP N N POTASSIUM

I
N RUB!:DIUM

N Hi-.TJO
NU 01
PP P!:E:P F'OR

ITIMING:

1-'P DET NIL
ADJ TYPE/A
N ROCK
Ntl PL

496 CONSES
9.412 Sl::C'NDS
I N T E R P R E •.:: :1 T I O N S :
(FOR GEN X2J / (SSUNION X1 / (SEQ TYPEAS) : T
(QUOTE RF) X1 (NPR• X2 / (QUOTE OVERALL))))

1524.4755 S10~17 070-205)
[558.43~ S11~17 □ 70-215)
[519.~2U1 ~10~17 071/-218)
r4qs_7g~2 :,~~17 P7?-236)
(S v~ 5 • le-2 I 7 : 1 v' ;-) 1 7 D 7 ;-· - 2 4 2)
(516.W4~) ~12~17 ~7i-253)
(4V1.~3.~ S17/17 D7C-256)
t590.f3j3 :11J17 D7S-257l
(4 6 4 • 9 ?. '1 .:.. :3 1 ? :;-_1 2 '2 D 7 '.~ - 2 2 Z, l
r ... c,; "J • ,·, 1 •.. s: :: ; f'.• ti 2 2 r 7 :· - 2 3 6 1
•5v3.~~~7 ~,~~2~ D7r-20s,
I 5 4 <=i • h ,. :-, J :: ~ :~ 1') i.. D 7? - 2 1 8)
1 5 ~ ~ • i, / ·, 1 ,; 1 (-' ,, 2 W. D 7 :1 - 2 4 2)
'5f3.L3~~ =~J049 C7J-215J
(5S2.-~- 1 ~•r057 P70-235)
r 4 F, S • t, 1 ~ ·, .3 1 •-~ ,J:, 7 !) 7 r• - ?, 5 7)
1527,77~7 ~1~~~7 D7~-2SBl
r 4 9 1 • ti 7 • F ::· • ? J fi g D 7 c1 - 2 3 6 ,
(51S.)?~1 '11/J69 07r_253)
C :; 6 ? • ti? • 3 :: ; ? 117 1 D 7 i' - 2 1 5 l
(5 2 7 • l 1 ~ C .' '1 ? ;,; 7 1 D 7 :7; - 2 5 8 '
. s ,~.CJ3,-' s !21:n2 ·:__i7:~--?.0s1
, "i 3 t.1 • ·1 1 -~ ~ :'1 (1 7 2 D 7 12 - 2 1 8)
r 6 ·· 2 • ,! ~; . 7 .,,, i v~ ;;1 7 ? D 7 :,, - ::?. 3 5)
t l

G.7

i (RATIO (QUOTE K20)
T ; (PRINTOUT X2121))

SENTENCE:
(WHAT IS THE AVERAGE K / RB RATIO IN BRECCIAS)
PTIMING:
~247 CONSES
i0.06 SECONDS
PARSINGS:
s Q

NP DET THE
N AVERAGE
NU SG
PP PREP OF

NP DET NIL
ADJ NP N N POTASSIUM

I
N RUBIDIUM

N RATIO
NU PL
PP PREP IN

NP DET NIL

AUX TNS PRESENT
VP V BE

NP DET WHQ
N THING
NU SG/PL

ITIMING:
2004 CONSES
9.387 SECCNDS
INTERPRETATIONS:

N BRECCIA
NU PL

(FOR THE X5 / (SFQt (AVERAGE X6 I (SSUNION X7 / (SEQ TYPECS) : T :
(RATIO (OUOTE K20) (QUOTE RB) X7 (NPR* X8 / (QUOTE OVERALL)))) T))
: T; (PRINTOUT XS))

OVER~LL (u76.9119)
tL

G.8

SENTENCE:
(IN WHICH SAMPLES HAS APATITE BEEN IDENTIFIED)
PTIMING:
1523 CONSES
'10.819 SECONDS
PARSINGS:
s Q

NP DET WHICHQ
N SAMPLE
NU PL
S REL

NP PRO SOM!THJ:NG

PER FEC:T
VP V IDENTIFY

NP DET NIL
N APATUrE
NU SG

PP PREP IN
NP DET WHR

N SAMPLE
NU PL

AUX 1~ NS NIL
VP V BE

!TIMING:
1 878 CONSES

7 • 6 7 7 ~; EC ON D S
INTERPRETATIONS:
(FOR EVERY X15 / (SEQ SAMPLES)
(QUOTE NIL)) ; (PRINTOUT X 5))

S 10044
S10045
S10085
• L

(CONTAIN X15 (NPR• X17 / (QUOTE APATITE)

G.9

SENTEl'lCE:
(WHICH ROCKS CONTAIN CHROMITE AND ULVOSPINEL)
PTIMING:
:423 CONSES

7 • 743 SEC, 1 NDS
PARSINGS:
S NP<.)

NP DET WHICHQ
N ROCK
NU PL
SOREL

NP DET WHR
N ROCK
NU PL

AUX TNS PR?SENT
VP V CONTAIN

ITIMING:

NP AND
NP DET NIL

N CHROMITE
'.iU SG

NP OET NIL
N SPINE:L
NU SG

•890 CONSES
o.782 SEC nos
INTERPRETT,TIONS:
(FOR EVEPY X7 / (SEQ VOLCANICS) : (AND (CONTAIN X7 (NPR• X9 / (QUOTE
SPIN1:L)l (()UGTE NIL)) (CONTAIN X7 (NPR• X10 / (QUOTE CHROMITE)) (QUOTE
NIL))) ; (PRINTOUT X7))

S1vl;12Ll

S1001..15
tL

G.10

SENTENCE:
(DO ANY BRECCIAS CONTAIN ALUMINUM)
PTIMUIG:
·; 1Ql0 C:ONSES
6.48 SECONDS
PARSINGS:
s Q

NP DET ANY
N 8RECCIA
NU PL

AUX TNS PRESENT
VP V CONTAIN

NP DET NIL

ITHJitiG:

N ALtrMIN!J~
NU SG

990 CONSES
5. 01 ·1 SECCNDS
INTERPRETATIONS:
(TEST (FOR SOME X2 / (SEQ TIPECS)
AL203)) (QUOTE NIL))))

YES •
..,
J.

"'L

G.11

T ; ((;ONTAIN X2 (NPR• X3 / (QUOTE

SENTENCE:
(WHAT AFl THOSE BRECCIAS)
PTIMING:
474 CONSE:S
2,375 SECCNOS
PARSINGS:
S 0

NP DET THOSE
N BRECCIA
NU PL

AUX TNS PRESENT
VP V BE

NP DET WHQ

Il'IMING:

N THING
NU SG/PL

624 CDNSFS
'2 , 8 ~ 4 S E c:: N D S
INTSRPRETATIONS:
(FOR EVERY X2 / (SEQ TYPECS) : (AND T (CONTAIN X2 (NPR• X3 / (QUOTE
AL20:)) (QUOTE NIL))) ; (PRINTOUT X2))

S10~18
S'l00i9
S'lkHn1
S100U6
S10~48
srn056
S 10059
S1~v)6,~
SH~361
S 1[~06 3
S116v.'l64
S ·: vl 0 6 5
:31l-'.'~66
S 1(H'.\67
S 109J7·J
S1tl~71
S1J~74
SH~075
'L

G,12

SENTENCE:
(HOW MANY SAMPLES CONTAIN CHROMITE)
PTIMING:
r-1 8 C O !~ S E S
3,579 SEC~NDS
PARSINGS:
S NPQ

NP ogr HOWMANY
N SAMPLE
NU PL
S QREL

NP DBT WHR
N SAMPLE
NU PL

AUX TNS PRESENT
VP V CONT~IN

ITI i1I N 3 ~

UP DET NIL
N CHROMITE
NU SCi

· 5 4 6 C) ;. SES
t.277 SEC.NDS
INT:RPRr'.T!•.TIONS:
(FOR THE X13 / (SEOL (NUMBER X13 / (SEQ SAMPLES) : (CONTAIN X13 (NPR•
X1 5 / IQUrTE CHROMIT£)) (QUOTE NIL)))) : T; (PRINTOUT X13))

G.13

SEN'L~NCE:

(~HAT ARE THEY)
PTH1ING:
376 CONSFS

.536 SE:C~•NDS
Pl,RSING:3:
s 0

NP PRO TH:SY
Nll PL

AUX T•\JS PRESENT
VP. V BE

NF DET WHQ

ITIMIN3:

N 'fHING
'f,llJ SG/PL

4 3 3 CO i~ SES
7.296 sEc:Nos
J. N T ?:: R P R E T i. T I O N S :
(FOR EVERY X13 I (SEQ SAMPLES) : (CONTAIN X13 (NPR• X15 / (QUOTE
CrltOMIT:.:)) (OUOTE NIL)) ; (PRINTOUT X13))

C ·:,H120
':,, ?045
s , 0 :rn 4
f L

G.14

SENTENCE:
(CAN YOU GIVE ME ALL CHROMITE ANA~YSES FOR THOSE SAMPLES)
PTIMINCi:
·1 1 7 3 C O N SES
4. 729 SEC'::'NDS
PARSINGS:
s Q

NP PHO YOU
NU SG/PL

AUX TNS PRESENT
MODAL CAN

VP V GIVE
NP DET ALL

PRO ONES
NU SG/PL
PP PREP OF

NP DET NIL
ADJ NP N CHROMITE
N ANALYSIS
NU PL
PP PREP FOP

NP DET THOSE
N SAMPLE
NU PL

Pl? PREP TO
'JP PRO I

NT! NIL

ITI'1IN:;:
-.~205 CJNSE~

2.421 3FCONOS
INTERPRETATIONS:
!FOR EVERY X1J / (SFQ SAMPLES) : (CONTAIN X13 (N?R• X15 / (QUOTE
CHROMITE)) (QUOTE NIL)) ; (FOR EVERY X18 / {SSUNION X1 / (SEQ MAJORELTS)
: T ; (DATALINE (WHQFILE X 3) X13 (NPR• X20 / (QUOTp CHROMITE)) X1))
: T ; (PRINTOUT X18)))

,, 777
772
774
776
775

3632
363.1
J622
3623
'3626
3627
363:-1
3631
362A
3629
,,.L

S1?1020 CHROMITE

S'l2045

TIO2
AL203
FEO
MNO
MGO
TIO2

AL2O3

FEO

MNO

MGO

2 1 • 9 PCT D70-160
7.05
44.4
• 17
3.7
2 1 • 4 1 D ·10-19 5
22.08
6.32
5.74
44.36
4 4 • 41
,59
.69
3,22
3.2

(* The other sample has only modal chromite analyses.)

G.15

0

20
21
20
21
2"1
2 1
20
21
20
2 1

SENTENCE:
(HOW MANY BRECCIAS DO NOT CONTAIN EUBOPIUH)
PTIMING:
1223 CONSES
6.272 SECONDS
PARSINGS:
S NPQ

NP DET HOWMANY
N BRECCIA
NU PL
SOREL

NEG
NP DET WH~

N BRECCIA
NU PL

AUX TNS PRESENT
VP V CONTAIN

NP DET NIL

!TIMING:
i570 CONSES

N EUROPIUM
NU SG

8.593 SECONDS
INTERPRETATIONS:
(FOR THE X3 / (SEQL (NUMBER X3 / (SEQ TYPECS) ; (NOT (CONTA1N X3 (NPR•
X5 / (QUOTE EU)) (QUOTE NIL))))) : T; (PlUNTOUT X3))

(·1)

tL

G.16

SENTENCE:
(WHICH BRECCIA IS THAT)
PTIMING:
921 CONSES
7.46 SECONDS
PARSINGS:
S NPQ

NP DET WHICHO
N BRECCIA
NU SG
SOREL

NP PRO THAT
NU NIL

AUX TNS PRESENT
VP V BE

NP DET WHR

ITIMING:
1653 CONSES

N au:cc:cA
NU SG

6.783 SECONDS
INTERPHETATIONS:
(FOR THE X6 / (SEQ TYPECS) : (FOR EVERY XJ / (SEQ TYPECS) : (NOT
CONTAIN X3 (NPR• XS/ (OUOTE EU)) (QUOTE NIL))) J (EQUAL X3 X6)) J
(PRINTOUT X6))

S10068
tL

G.17

SENTENCE:
(DOES S10004 CONTAIN EUROPIUM IN PLAG)
PTIMING:
1469 CONSES
0.525 SECONDS

PARSINGS:
s Q

NP DET NIL
NPR S10004
NU SG

AUX TNS PRESENT
VP V CONTAIN

NP DET NIL

ITIMING:

N EUROPIUM
NU SG
PP PREP IN

NP DET NIL
N PLAG
NU SG

952 CONS-PS
].931 SECONDS
INTERPRETATIONS:
(TEST (CONTAIN (NPR• X3 / (QUOTE 510001+)) (NPR• X4 / (QUOTE EU)) (NPR•
XS/ (OUOTE PLAG))))

t L

G.18

SENTENCE:
(DOES IT CONTAIN IT IN OLIVINE)
PTIMING:
862 CONSES
4 • 5 0 8 ~; E C C' N D S
PARSINGS:
s Q

NP PHO IT
NU SG

AUX TNS PRESENT
VP V CONTAIN

NP PRO IT
NU SG
PP PREP IN

ITIMING:
301 CONSES

NP DET NIL
N OLIVINE
NU SG

h • 3 7 5 :3 EC O N D S
INTERP3ETATIONS:
(TEST (CONTAIN (NPR• X3 / (QUOTE S1012104)) (NPR• X16 / (QUOTE EU))
(NPR• X17 / (QUOTE OLIV))))

G.19

SENTENCE:
(HOW MANY LUNAR SAMPLES ARE THERE)
PTIMING:
484 CONSES
2.039 SECONDS
PARSINGS:
S NPQ

NP DET HOWMANY
ADJ LUNAR
N SAMPLE
NU PL
S QREL

NP DET WHR
N SAMPLE
NU PL

AUX TNS PRESENT
VP V EXIST

ITIMING:
998 CONSFS
5 • 1 5 2 S EC C· N D S
INTERPRETATIONS:
(FOR THE X12 / (SEQL (NUMBER X12 / (SEQ SAMPLES)
T; (PRINTOUT X12))

(4])
tL

G.20

(EXIST X12)))

.,,,,

SENTENCE:
(WHAT TYPE OF SAMPLE IS 510046)
PTIMING:
2000 CONSES
i1.075 SECONDS

PARSINi:;s:
S NPQ

NP o:e:r WHO
N TYPE
NIJ SG
Pl? PREP OF

NP DET NIL
N SAMPLE
NU SG

S QREL
NP DET NIL

NPR 5102146
NU SG

AUX TNS PRESENT
VP V BE

ITIMIN3:

NP DET WHB
N TYPE
NU SG

-;455 C:)NSES
7.544 SECONDS
INTERPRETATIONS:
(FOR THE X3 / (SEQ SAMPLETYPES) : (AND (MEMBER• (NPR• X4 / (QUOTE
S10046)) X3) T) ; (PRINTOUT X3))

BRECCIAS
tL

G.21

SEN'l'ENCE:
(WHICH IS THE OLDEST ROCK)
PTIMING:
870 CONSES
4.35 SECONDS
PARSINGS:
s Q

NP DET THE
NOLD

SUPERLATIVE
NU SG
PP PREP OF

NP DET NIL
N ROCK
NU PL

AUX TNS PRESEN'l'
VP V BE

NP DET WHQ
N THING
NU SG/PL

!TIMING:
097 CONSES

4.717 SECONDS
INTERPRETATIONS:
(FOR THE X14 / (SEQL (OLDES'l' X15 / (SEQ VOLCANICS)
X 1 4))

S1k10U7
tL

G.22

T)) T ; (PRINTOUT

WI

SENT:C:N::E:
(HOij MUCH TITANIUM DOES EACH B8ECCIA CONTAIN)
PTIMilVi:
,'131 C::>NSE::
R • 56 1 SEc:NDS
PAPSIN3S:
S 0

NP DE:T EJI_CI{
N BPECCIA
lJ U S G

AUX TNS PRESENT
VP V CONTAIN

NP DET POSTART COMP ADV HOW
MUCH

N TITANIUM
NU Sr;

!TIMING:
858 CONSES

c;.313 SEC NDS

INTEFPREi~TIONS:
(FOR EVERY X1n / (SEO TYPECS)
TI02)) (H('-W)))

S70~18 (8.252875 • PCT)
5100~9 (B.4A4685 • PCT)
S10021 (7.33964 • PCT)
S1~~u6 (7.473045 • PCT)
S,~~48 /8.7h608 • PCT)
S1~056 f8.2R4897 • PCT)
S1~0~Y (8.13199 , PCT)
:, '! f '.'I "i lO (8 • 6 4 H 5 3 LI • PCT)
S1V~61 fB. 1 71667 • PCT)
S 1 J16~ (8.8U09~ • PCT)
s1~Gf~ <9.34136 • PCT)
S'01fS 17.840~7 • PCT)
s~v~~b (B. 17369 • PCT)
:3 1 "' '.:'· 6 7 r t! • 8 4 J 9 3 • P c T)
S 1 !-';.,1-5 f7.i<LIC1G7 • PCT)
s 1 v:71(;) (o.34r~:i. per)
510? 1 , /3.,~]69 • PCT)
S I,;,'·' 7 4 (-, • .:s 1J ~• -ii 7 , PCT)
f1~?7~ (1.~~645 • PCT)
tL

G.23

T 1 (CONTAIN' X16 (NPR• X17 / (QUOTE

SENTENCE:
(WHICH SAMPLES HAVE GREATER THAN 20 PERCENT MODAL PLAGIOCLASE)
PTIMING:
1140 CONSES
5.353 SECONDS
PARSINGS:
S NPQ

NP DET WHICHQ
N SAMPLE
NU PL
SOREL

NP DET WHR
N SAMPLE
NU PL

AUX TNS PRESENT
VP V HAVE

NP DET ART NIL
POSTART COMP ADV GREATERTHAN

NP INTEGER 20
UNIT PCT

MUCH
ADJ MODAL

ITIMING:

N PLAGIOCLASE
NU SG

i425 CONSES
6.8·11 SECONDS
INTERPRETATIONS:
(FOR EVERY XB / (SEQ SAMPLES) : (CONTAIN' X8 (NPR• X9 / (QUOTE PLAG))
(GREATERTHAN 20 PCT)) ; (PRINTOUT XS))

S10003
510017
S1~020
S1~044
S10047
S10058
S H'.1071
'!' L

G.24

SENTENCE:
(IN HOW MANY BRECCIAS IS THE AVERAGE CONC!NTRATION OF ALUMINUM GREATER
THAN 1.3 PERCENT)
PTIMING:
2123 CONSES
9 • 7 4 9 :5 E C ONO S
PARSINGS:
S NPQ

NP o·c:r HOWMANY
N _BRECCIA
NJ PL
S REL

NP DET THE
N AVERAGE
NU SG
PP PREP OF

NP DET NIL
N CONCENTRATION
NU PL
PP PREP IN

NP DET WHR
N BRECCIA
NU PL

PP P'R'E:P OF
NP DET NIL

N ALUMINUM
NU SG

ATJX 'I'NS PRESE:NT
VP V BE

NP DET AR'l' NIL
POSTART COMP ADV GREATERTHAN

NP INTEGER 13
MANY

N PCT
NU SG

ITI c1n·G:
353, C:OblSES

2 0 • 8 0 ~' s F. c o N n s
I N T E R P R E ! !, T I O N S :
(FOR TH~ X9 I (SEQL (NUMBER X9 / (SEQ TYPECS) : (FOR THE X1~ / (SEQL
(AVEIH.GE X11 / (DATl~LINE (WliQE'ILE X9) X9 (NPR• X13 / (QUOTE OVERALL))
(NPR• X14 / (QUOTE i\1203))}: T)): T; (GREATER X10 (QUOTE (13,
PCT))l \)) : T ; (PRINTOUT X9)}

(7)
t L

G.25

w

Unclassified
Sect ritv Classification

DOCUMENT CONTROL DAT A - R & D
rSecurity classification of title, body of abstract and indexing annotation must be entered when the overall report i_<.; classified)

1 ORIGINATING AC Tl VI TY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION

Bolt Beranek and Ne"v.'1Tl.an Inc. Unclassified
50 Moulton Street 2b. GROUP

Cambridge, Massachusetts
3 REPORT TITLE

THE LUNAR SCIENCES NA'rURAL LANGUAGE INFORMATION SYSTEM: FINAL REPORT

4. PESCRIPTl'/E NOTES (Type of report and.inclusive dates)

Scientific, final report, July 1, 1970 - June 15, 1972
s AU THOR(S) (First name, middle initial, [Bst name)

W.A. Woods, R.M. Kaplan, B. Nash-Webber

6. REPORT DA TE 78. TOTAL NO. OF PAGES 17b, NO. OF REFS

15 June 1972 387 14
Ba. CON TRAC r OR GRANT NO. 9a. ORIG1NATOR 0 5 REPORT NUMBER(S)

NAS9-1115
b. PROJECT NO. BBN Report No. 2378

c. 9b. OTHER REPORT NO{S) (Any other numbers that may be assigned
this report)

d.

10. OISTRIBU~·10N STATEMENT

Distribution of this document is unlimited. It may be released to
the Clearinghouse, Department of Commerce for sale to the general
public.

11- SUPPLEME:NTARY NOTES 12. SPONSORING MILITARY ACTIVITY

This research was performed by BBN,
subcontractor to Lansruage Research
Foundation, for NASA,MSC,Houston.

13. ABSTRAC1

The Lunar Sciences Natural Language Information System (LNSLIS)
is a research prototype of a computer system to allow English language
access to a large data base of lunar sample information. It allows
a lunar geologist to ask questions,, compute averages and ratios, make
selective listings, etc. on a file containing currently some 13,000
chemical analyses of the lunar samples, as well as to retrieve refer-
ences from a keyphras4~ index of documents (currently some 10,000
postings).

The emphasis: of the LSNLIS project has been the development
of the language proce:ssing techniques for understanding natural
English requests, and the system contains a powerful language process-
ing component. The language processor has a vocabulary of some 3500
words, a transition network grammar for a sizable subset of English,
and a set of semantic interpretation rules for translating input
English requests into formal procedures for answering them.

This report includes detailed descriptions of the system,
and how it operates, together with examples of its performance and

I

an evaluation of the future prospects for such systems.

(PAGE 1)
Unclassified

5 /N O 1 0 1 - 8 1
) 7 - 6 8 1 1 Security Classification

,1-:1110.s

'4

Unclassified
Security Classification

KEY WORDS

artificial intelligence

computational linguistics

computational semantics

data management

data retrieval

English grammar

English language processing

fact retrieval·

information systems

language processing

LSNLIS

lunar geology

lunar sciences

man-machine communication

natural language

natural language processing

non-deterministic programming

parsing

query languages

question-answering

semantic interpretation

semantics of natural language

transition network grammar

5/N 0101-807-6821

LINK A LINK B LINK C

ROLE WT ROLE WT ROLE WT

w

unclassified
Security Classification

	006.pbm
	007.pbm
	008.pbm
	009.pbm
	010.pbm
	011.pbm
	012.pbm
	013.pbm
	014.pbm
	015.pbm
	016.pbm
	017.pbm
	018.pbm
	019.pbm
	020.pbm
	021.pbm
	022.pbm
	023.pbm
	024.pbm
	025.pbm
	026.pbm
	027.pbm
	028.pbm
	029.pbm
	030.pbm
	031.pbm
	032.pbm
	033.pbm
	034.pbm
	035.pbm
	036.pbm
	037.pbm
	038.pbm
	039.pbm
	040.pbm
	041.pbm
	042.pbm
	043.pbm
	044.pbm
	045.pbm
	046.pbm
	047.pbm
	048.pbm
	049.pbm
	050.pbm
	051.pbm
	052.pbm
	053.pbm
	054.pbm
	055.pbm
	056.pbm
	057.pbm
	058.pbm
	059.pbm
	060.pbm
	061.pbm
	062.pbm
	063.pbm
	064.pbm
	065.pbm
	066.pbm
	067.pbm
	068.pbm
	069.pbm
	070.pbm
	071.pbm
	072.pbm
	073.pbm
	074.pbm
	075.pbm
	076.pbm
	077.pbm
	078.pbm
	079.pbm
	080.pbm
	081.pbm
	082.pbm
	083.pbm
	084.pbm
	085.pbm
	086.pbm
	087.pbm
	088.pbm
	089.pbm
	090.pbm
	091.pbm
	092.pbm
	093.pbm
	094.pbm
	095.pbm
	096.pbm
	097.pbm
	098.pbm
	099.pbm
	100.pbm
	101.pbm
	102.pbm
	103.pbm
	104.pbm
	105.pbm
	106.pbm
	107.pbm
	108.pbm
	109.pbm
	110.pbm
	111.pbm
	112.pbm
	113.pbm
	114.pbm
	115.pbm
	116.pbm
	117.pbm
	118.pbm
	119.pbm
	120.pbm
	121.pbm
	122.pbm
	123.pbm
	124.pbm
	125.pbm
	126.pbm
	127.pbm
	128.pbm
	129.pbm
	130.pbm
	131.pbm
	132.pbm
	133.pbm
	134.pbm
	135.pbm
	136.pbm
	137.pbm
	138.pbm
	139.pbm
	140.pbm
	141.pbm
	142.pbm
	143.pbm
	144.pbm
	145.pbm
	146.pbm
	147.pbm
	148.pbm
	149.pbm
	150.pbm
	151.pbm
	152.pbm
	153.pbm
	154.pbm
	155.pbm
	156.pbm
	157.pbm
	158.pbm
	159.pbm
	160.pbm
	161.pbm
	162.pbm
	163.pbm
	164.pbm
	165.pbm
	166.pbm
	167.pbm
	168.pbm
	169.pbm
	170.pbm
	171.pbm
	172.pbm
	173.pbm
	174.pbm
	175.pbm
	176.pbm
	177.pbm
	178.pbm
	179.pbm
	180.pbm
	181.pbm
	182.pbm
	183.pbm
	184.pbm
	185.pbm
	186.pbm
	187.pbm
	188.pbm
	189.pbm
	190.pbm
	191.pbm
	192.pbm
	193.pbm
	194.pbm
	195.pbm
	196.pbm
	197.pbm
	198.pbm
	199.pbm
	200.pbm
	201.pbm
	202.pbm
	203.pbm
	204.pbm
	205.pbm
	206.pbm
	207.pbm
	208.pbm
	209.pbm
	210.pbm
	211.pbm
	212.pbm
	213.pbm
	214.pbm
	215.pbm
	216.pbm
	217.pbm
	218.pbm
	219.pbm
	220.pbm
	221.pbm
	222.pbm
	223.pbm
	224.pbm
	225.pbm
	226.pbm
	227.pbm
	228.pbm
	229.pbm
	230.pbm
	231.pbm
	232.pbm
	233.pbm
	234.pbm
	235.pbm
	236.pbm
	237.pbm
	238.pbm
	239.pbm
	240.pbm
	241.pbm
	242.pbm
	243.pbm
	244.pbm
	245.pbm
	246.pbm
	247.pbm
	248.pbm
	249.pbm
	250.pbm
	251.pbm
	252.pbm
	253.pbm
	254.pbm
	255.pbm
	256.pbm
	257.pbm
	258.pbm
	259.pbm
	260.pbm
	261.pbm
	262.pbm
	263.pbm
	264.pbm
	265.pbm
	266.pbm
	267.pbm
	268.pbm
	269.pbm
	270.pbm
	271.pbm
	272.pbm
	273.pbm
	274.pbm
	275.pbm
	276.pbm
	277.pbm
	278.pbm
	279.pbm
	280.pbm
	281.pbm
	282.pbm
	283.pbm
	284.pbm
	285.pbm
	286.pbm
	287.pbm
	288.pbm
	289.pbm
	290.pbm
	291.pbm
	292.pbm
	293.pbm
	294.pbm
	295.pbm
	296.pbm
	297.pbm
	298.pbm
	299.pbm
	300.pbm
	301.pbm
	302.pbm
	303.pbm
	304.pbm
	305.pbm
	306.pbm
	307.pbm
	308.pbm
	309.pbm
	310.pbm
	311.pbm
	312.pbm
	313.pbm
	314.pbm
	315.pbm
	316.pbm
	317.pbm
	318.pbm
	319.pbm
	320.pbm
	321.pbm
	322.pbm
	323.pbm
	324.pbm
	325.pbm
	326.pbm
	327.pbm
	328.pbm
	329.pbm
	330.pbm
	331.pbm
	332.pbm
	333.pbm
	334.pbm
	335.pbm
	336.pbm
	337.pbm
	338.pbm
	339.pbm
	340.pbm
	341.pbm
	342.pbm
	343.pbm
	344.pbm
	345.pbm
	346.pbm
	347.pbm
	348.pbm
	349.pbm
	350.pbm
	351.pbm
	352.pbm
	353.pbm
	354.pbm
	355.pbm
	356.pbm
	357.pbm
	358.pbm
	359.pbm
	360.pbm
	361.pbm
	362.pbm
	363.pbm
	364.pbm
	365.pbm
	366.pbm
	367.pbm
	368.pbm
	369.pbm
	370.pbm
	371.pbm
	372.pbm
	373.pbm
	374.pbm
	375.pbm
	376.pbm
	377.pbm
	378.pbm
	379.pbm
	380.pbm
	381.pbm
	382.pbm
	383.pbm
	384.pbm
	385.pbm
	386.pbm
	387.pbm
	388.pbm
	389.pbm
	390.pbm
	391.pbm
	392.pbm
	393.pbm
	394.pbm
	395.pbm
	396.pbm
	397.pbm
	398.pbm
	399.pbm
	400.pbm
	401.pbm
	402.pbm
	403.pbm
	404.pbm
	405.pbm

