
A resource sharing executive for the ARPANET*

by ROBERT H. THOMAS

Bolt, Beranek and Newman, Inc.
Cambridge, Mass.

INTRODUCTION

The Resource Sharing Executive (RSEXEC) is a distrib
uted, executive-like system that runs on TENEX Host
computers in the ARPA computer network. The
RSEXEC creates an environment which facilitates the
sharing of resources among Hosts on the ARPANET. The
large Hosts, by making a small amount of their resources
available to small Hosts, can help the smaller Hosts pro
vide services which would otherwise exceed their limited
capacity. By sharing resources among themselves the
large Hosts can provide a level of service better than any
one of them could provide individually. Within the envi
ronment provided by the RSEXEC a user need not con
cern himself directly with network details such as com
munication protocols nor even be aware that he is dealing
with a network.

A few facts about the ARPANET and the TENEX
operating system should provide sufficient background
for the remainder of this paper. Readers interested in
learning more about the network or TENEX are referred
to the literature; for the ARPANET References 1,2,3,4;
for TENEX. References 5,6,7.

The ARPANET is a nationwide heterogeneous collec
tion of Host computers at geographically separated loca
tions. The Hosts differ from one another in manufacture,
size, speed, word length and operating system. Communi
cation between the Host computers is provided by a
subnetwork of small, general purpose computers called
Interface Message Processors or IMPs which are inter
connected by 50 kilobit common carrier lines. The IMPs
are programmed to implement a store and forward
communication network. As of January 1973 there were
45 Hosts on the ARPANET and 33 IMPs in the subnet.

In terms of numbers, the two most common Hosts in
the ARPANET are Terminal IMPs called TIPs12 and
TENEXs.9 T IPs 8 9 are mini-Hosts designed to provide
inexpensive terminal access to other network Hosts. The
TIP is implemented as a hardware and software augmen
tation of the IMP.

TENEX is a time-shared operating system developed
by BBN to run on a DEC PDP-10 processor augmented

* This work was supported by the Advanced Projects Research Agency
of the Department of Defense under Contract No. DAHC15-71-C-0088.

with paging hardware. In comparison to the TIPs, the
TENEX Hosts are large. TENEX implements a virtual
processor with a large (256K word), paged vir tualmem:
ory for each user process. In addition, it provides a multi
process job structure with software program interrupt
capabilities, an interactive and carefully engineered
command language (implemented by the TENEX
EXEC) and advanced file handling capabilities.

Development of the RSEXEC was motivated initially
by the desire to pool the computing and storage resources
of the individual TENEX Hosts on the ARPANET. We
observed that the TENEX virtual machine was becoming
a popular network resource. Further, we observed that for
many users, in particular those whose access to the net
work is through TIPs or other non-TENEX Hosts, it
shouldn't really matter which Host provides the TENEX
virtual machine as long as the user is able to do his
computing in the manner he has become accustomed*. A
number of advantages result from such resource sharing.
The user would see TENEX as a much more accessible
and reliable resource. Because he would no longer be
dependent upon a single Host for his computing he would
be able to access a TENEX virtual machine even when
one or more of the TENEX Hosts were down. Of course,
for him to be able to do so in a useful way, the TENEX
file system would have to span across Host boundaries.
The individual TENEX Hosts would see advantages also.
At present, due to local storage limitations, some sites do
not provide all of the TENEX subsystems to their users.
For example, one site doesn't support FORTRAN for this
reason. Because the subsystems available would, in effect,
be the "union" of the subsystems available on all
TENEX Hosts, such Hosts would be able to provide
access to all TENEX subsystems.

The RSEXEC was conceived of as an experiment to
investigate the feasibility of the multi-Host TENEX
concept. Our experimentation with an initial version of
the RSEXEC was encouraging and, as a result, we
planned to develop and maintain the RSEXEC as a
TENEX subsystem. The RSEXEC is, by design, an evo-

* This, of course, ignores the problem of differences in the accounting
and billing practices of the various TENEX Hosts. Because all of the
TENEX Hosts (with the exception of the two at BBN) belong to ARPA
we felt that the administrative problems could be overcome if the tech
nical problems preventing resource sharing were solved.

155

156 National Computer Conference, 1973

lutionary system; we planned first to implement a system
with limited capabilities and then to let it evolve, expand
ing its capabilities, as we gained experience and came to
understand the problems involved.

During the early design and implementation stages it
became clear that certain of the capabilities planned for
the RSEXEC would be useful to all network users, as well
as users of a multi-Host TENEX. The ability of a user to
inquire where in the network another user is and then to
"link" his own terminal to that of the other user in order
to engage in an on-line dialogue is an example of such a
capability.

A large class of users with a particular need for such
capabilities are those whose access to the network is
through mini-Hosts such as the TIP. At present TIP users
account for a significant amount of network traffic,
approximately 35 percent on an average day.10 A frequent
source of complaints by TIP users is the absence of a
sophisticated command language interpreter for TIPs
and, as a result, their inability to obtain information
about network status, the status of various Hosts, the
whereabouts of other users, etc., without first logging into
some Host. Furthermore, even after they log into a Host,
the information readily available is generally limited to
the Host they log into. A command language interpreter
of the type desired would require more (core memory)
resources than are available in a TIP alone. We felt that
with a little help from one or more of the larger Hosts it
would be feasible to provide T IP users with a good
command language interpreter. (The TIPs were already
using the storage resources of one TENEX Host to pro
vide their users with a network news service.1011 Further,
since a subset of the features already planned for the
RSEXEC matched the needs of the TIP users, it was
clear that with little additional effort the RSEXEC sys
tem could provide TIP users with the command language
interpreter they needed. The service TIP users can obtain
through the RSEXEC by the use of a small portion of the
resources of several network Hosts is superior to that they
could obtain either from the TIP itself or from any single
Host.

An initial release of the RSEXEC as a TENEX subsys
tem has been distributed to the ARPANET TENEX
Hosts. In addition, the RSEXEC is available to TIP users
(as well as other network users) for use as a network
command language interpreter, preparatory to logging
into a particular Host (of course, if the user chooses to log
into TENEX he may continue using the RSEXEC after
login). Several non-TENEX Hosts have expressed interest
in the RSEXEC system, particularly in the capabilities it
supports for inter-Host user-user interaction, and these
Hosts are now participating in the RSEXEC experiment.

The current interest in computer networks and their
potential for resource sharing suggests that other systems
similar to the RSEXEC will be developed. At present
there is relatively little in the literature describing such
distributing computing systems. This paper is presented
to record our experience with one such system; we hope it

will be useful to others considering the implementation of
such systems.

The remainder of this paper describes the RSEXEC
system in more detail: first, in terms of what the
RSEXEC user sees, and then, in terms of the implemen
tation.

THE USER'S VIEW OF THE RSEXEC

The RSEXEC enlarges the range of storage and com
puting resources accessible to a user to include those
beyond the boundaries of his local system. It does that by
making resources, local and remote, available as part of a
single, uniformly accessible pool. The RSEXEC system
includes a command language interpreter which extends
the effect of user commands to include all TENEX Hosts
in the ARPANET (and for certain commands some non-
TENEX Hosts), and a monitor call interpreter which, in
a similar way, extends the effect of program initiated
"system" calls.

To a large degree the RSEXEC relieves the user and
his programs of the need to deal directly with (or even be
aware that they are dealing with) the ARPANET or
remote Hosts. By acting as an intermediary between its
user and non-local Hosts the RSEXEC removes the logi
cal distinction between resources that are local and those
that are remote. In many contexts references to files and
devices* may be made in a site independent manner. For
example, although his files may be distributed among
several Hosts in the network, a user need not specify
where a particular file is stored in order to delete it; rath
er, he need only supply the file's name to the delete
command.

To a first approximation, the user interacts with the
RSEXEC in much the same way as he would normally
interact with the standard (single Host) TENEX execu
tive program. The RSEXEC command language is syn
tactically similar to that of the EXEC. The significant
difference, of course, is a semantic one; the effect of
commands are no longer limited to just a single Host.

Some RSEXEC commands make direct reference to
the multi-Host environment. The facilities for inter-Host
user-user interaction are representative of these com
mands. For example, the WHERE and LINK commands
can be used to initiate an on-line dialogue with another
user:

- W H E R E (IS USER) JONES**
JOB 17 TTY6 USC

JOB 5 TTY14 CASE
- L I N K (TO TTY) 14 (AT SITE) CASE

* Within TENEX, peripheral devices are accessible to users via the file
system; the terms "file" and "device" are frequently used interchangea
bly in the following.
** "_" is the RSEXEC "ready" character. The words enclosed in paren
theses are "noise" words which serve to make the commands more
understandable to the user and may be omitted. A novice user can use
the character ESC to cause the RSEXEC to prompt him by printing the
noise words.

A Resource Sharing Executive for the ARPANET 157

Facilities such as these play an important role in
removing the distinction between "local" and "remote"
by allowing users of geographically separated Hosts to
interact with one another as if they were members of a
single user community. The RSEXEC commands directly
available to TIP users in a "pre-login state" include those
for inter-Host user-user interaction together with ones
that provide Host and network status information and
network news.

Certain RSEXEC commands are used to define the
"configuration" of the multi-Host environment seen by
the user. These "meta" commands enable the user to
specify the "scope" of his subsequent commands. For
example, one such command (described in more detail
below) allows him to enlarge or reduce the range of Hosts
encompassed by file system commands that follow.
Another "meta" command enables him to specify _a set of
peripheral devices which he may reference in a site inde
pendent manner in subsequent commands.

The usefulness of multi-Host systems such as the
RSEXEC is, to a large extent, determined by the ease
with which a user can manipulate his files. Because the
Host used one day may be different from the one used the
next, it is necessary that a user be able to reference any
given file from all Hosts. Furthermore, it is desirable that
he be able to reference the file in the same manner from
all Hosts.

The file handling facilities of the RSEXEC were desig
nated to:

1. Make it possible to reference any file on any Host by
implementing a file name space which spans across
Host boundaries.

2. Make it convenient to reference frequently used files
by supporting "short hand" file naming conventions,
such as the ability to specify certain files without
site qualification.

The file system capabilities of the RSEXEC are designed
to be available to the user at the command language
level and to his programs at the monitor call level. An im
portant design criterion was that existing programs be
able to run under the RSEXEC without reprogramming.

File access within the RSEXEC system can be best
described in terms of the commonly used model which
views the files accessible from within a Host as being
located at terminal nodes of a tree. Any file can be speci
fied by a pathname which describes a path through the
tree to the file. The complete pathname for a file includes
every branch on the path leading from the root node to
the file. While, in general, it is necessary to specify a
complete pathname to uniquely identify a file, in many
situations it is possible to establish contexts within which
a partial pathname is sufficient to uniquely identify a
file. Most operating systems provide such contexts,

designed to allow use of partial pathnames for frequently
referenced file, for their users.*

It is straightforward to extend the tree structured
model for file access within a single Host to file access
within the entire network. A new root node is created with
branches to each of the root nodes of the access trees for
the individual Hosts, and the complete pathname is
enlarged to include the Host name. A file access tree for a
single Host is shown in Figure 1; Figure 2 shows the file
access tree for the network as a collection of single Host
trees.

The RSEXEC supports use of complete pathnames
that include a Host component thereby making it possible
(albeit somewhat tedious) for users to reference a file on
any Host. For example, the effect of the command

^-APPEND (FILE) [CASE1DSK:<TH0MAS>DATA.
NEW (TO FILE) [BBN]DSK: <BOBT>DATA.OLD**

is to modify the file designated Q) in Figure 2 by append
ing to it the file designated (2).

To make it convenient to reference files, the RSEXEC
allows a user to establish contexts for partial pathname
interpretation. Since these contexts may span across sev
eral Hosts, the user has the ability to configure his own
"virtual" TENEX which may in reality be realized by the
resources of several TENEXs. Two mechanisms are
available to do this.

The first of these mechanisms is the user profile which
is a collection of user specific information and parameters

Figure 1—File access tree for a single Host. The circles at
the terminal nodes of the tree represent files

* For example, TENEX does it by:
1. Assuming default values for certain components left unspecified in
partial pathnames;
2. Providing a reference point for the user within the tree (working
directory) and thereafter interpreting partial pathnames as being rela
tive to that point. TENEX sets the reference point for each user at login
time and, subject to access control restrictions, allows the user to change
it (by "connecting" to another directory).

** The syntax for (single Host) TENEX pathnames includes device,
directory, name and extension components. The RSEXEC extends that
syntax to include a Host component. The pathname for@specifies: the
CASE Host; the disk ("DSK") device; the directory THOMAS; the
name DATA; and the extension NEW.

158 National Computer Conference, 1973

AMES

TREE FROM FIG. 1

Figure 2—File access tree for a network. The single Host access tree from Figure 1 is part of this tree

maintained by the RSEXEC for each user. Among other
things, a user's profile specifies a group of file directories
which taken together define a composite directory for the
user. The "contents" of the composite directory are the
union of the "contents" of the file directories specified in
the profile. When a pathname without site and directory
qualification is used, it is interpreted relative to the user's
composite directory. The composite directory serves to
define a reference point within the file access tree that is
used by the RSEXEC to interpret partial pathnames.
That reference point is somewhat unusual in that it spans
several Hosts.

One of the ways a user can reconfigure his "virtual"
TENEX is by editing his profile. With one of the "meta"
commands noted earlier he can add or remove compo
nents of his composite directory to control how partial
pathnames are interpreted.

An example may help clarify the role of the user pro
file, the composite directory and profile editing. Assume
that the profile for user Thomas contains directories
BOBT at BBN, THOMAS at CASE and BTHOMAS at
USC (see Figure 2). His composite directory, the refer
ence point for pathname interpretation, spans three
Hosts. The command

- A P P E N D (FILE) DATA.NEW (TO FILE) DATA.OLD

achieves the same effect as the APPEND command in a
previous example. To respond the RSEXEC first consults
the composite directory to discover the locations of the
files, and then acts to append the first file to the second;
how it does so is discussed in the next section. If he
wanted to change the scope of partial pathnames he uses,
user Thomas could delete directory BOBT at BBN from
his profile and add directory RHT at AMES to it.

The other mechanism for controlling the interpretation
of partial pathnames is device binding. A user can
instruct the RSEXEC tn interpret subsequent use of a

particular device name as referring to a device at the Host
he specifies. After a device name has been bound to a
Host in this manner, a partial pathname without site
qualification that includes it is interpreted as meaning
the named device at the specified Host. Information in
the user profile specifies a set of default device bindings
for the user. The binding of devices can be changed
dynamically during an RSEXEC session. In the context
of the previous example the sequence of commands:

- B I N D (DEVICE) LPT (TO SITE) BBN
- L I S T DATA.NEW
- B I N D (DEVICE) LPT (TO SITE) USC
- L I S T DATA.NEW

produces two listings of the file DATA.NEW: one on the
line printer (device "LPT") at BBN, the other on the
printer at USC. As with other RSEXEC features, device
binding is available at the program level. For example, a
program that reads from magnetic tape will function
properly under the RSEXEC when it runs on a Host
without a local mag-tape unit, provided the mag-tape
device has been bound properly.

The user can take advantage of the distributed nature
of the file system to increase the "accessibility" of certain
files he considers important by instructing the RSEXEC
to maintain images of them at several different Hosts.
With the exception of certain special purpose files (e.g.,
the user's "message" file), the RSEXEC treats files with
the same pathname relative to a user's composite direc
tory as images of the same multi-image file. The user
profile is implemented as a multi-image file with an image
maintained at every component directory of the com
posite directory.*

* The profile is somewhat special in that it is accessible to the user only
through the profile editing commands, and is otherwise transparent.

A Resource Sharing Executive for the ARPANET 159

Implementation of the RSEXEC

The RSEXEC implementation is discussed in this sec
tion with the focus on approach rather than detail- The
result is a simplified but nonetheless accurate sketch of
the implementation.

The RSEXEC system is implemented by a collection of
programs which run with no special privileges on TENEX
Hosts. The advantage of a "user-code" (rather than
"monitor-code") implementation is that ordinary user
access is all that is required at the various Hosts to devel
op, debug and use the system. Thus experimentation with
the RSEXEC can be conducted with minimal disruption
to the TENEX Hosts.

The ability of the RSEXEC to respond properly to
users' requests often requires cooperation from one or
more remote Hosts. When such cooperation is necessary,
"the RSEXEC program interacts with RSEXEC "service"
programs at the remote Hosts according to a pre-agreed
upon set of conventions or protocol. Observing the proto
col, the RSEXEC can instruct a service program to per
form actions on its behalf to satisfy its user's requests.

Each Host in the RSEXEC system runs the service
program as a "demon" process which is prepared to pro
vide service to any remote process that observes protocol.
The relation between RSEXEC programs and these
demons is shown schematically in Figure 3.

The RSEXEC protocol

The RSEXEC protocol is a set of conventions designed
to support the interprocess communication requirements
of the RSEXEC system. The needs of the system required
that the protocol:

Figure 3—Schematic showing several RSEXEC programs
interacting, on behalf of their users, with remote server programs

1. be extensible:
As noted earlier, the RSEXEC is, by design, an
evolutionary system.

2. support many-party as well as two-party interac
tions:
Some situations are better handled by single multi
party interactions than by several two-party interac
tions. Response to an APPEND command when the
files and the RSEXEC are all at different Hosts is
an example (see below).

3. be convenient for interaction between processes
running on dissimilar Hosts while supporting effi
cient interaction between processes on similar Hosts:
Many capabilities of the RSEXEC are useful to
users of non-TENEX as well as TENEX Hosts. It is
important that the protocol not favor TENEX at
the expense of other Hosts.

The RSEXEC protocol has two parts:
1. a protocol for initial connection specifies how pro

grams desiring service (users) can connect to pro
grams providing service (servers);

2. a command protocol specifies how the user program
talks to the server program to get service after it is
connected.

The protocol used for initial connection is the standard
ARPANET initial connection protocol (ICP).12 The
communication paths that result from the ICP exchange
are used to carry commands and responses between user
and server. The protocol supports many-party interaction
by providing for the use of auxiliary communication
paths, in addition to the command paths. Auxiliary paths
can be established at the user's request between server
and user or between server and a third party. Communi
cation between processes on dissimilar Hosts usually
requires varying degrees of attention to message format
ting, code conversion, byte manipulation, etc. The proto
col addresses the issue of convenience in the way other
standard ARPANET protocols have.131415 It specifies a
default message format designed to be "fair" in the sense
that it doesn't favor one type of Host over another by
requiring all reformatting be done by one type of Host. It
addresses the issue of efficiency by providing a mecha
nism with which processes on similar Hosts can negotiate
a change in format from the default to one better suited
for efficient use by their Hosts.

The protocol can perhaps best be explained further by
examples that illustrate how the RSEXEC uses it. The
following discusses its use in the WHERE, APPEND and
LINK commands:

- W H E R E (IS USER) JONES
The RSEXEC queries each non-iocai server program
about user Jones. To query a server, it establishes
connections with the server; transmits a "request for
information about Jones" as specified by the protocol;

160 National Computer Conference. 1973

and reads the response which indicates whether or not
Jones is a known user, and if he is, the status of his
active jobs (if any).

- A P P E N D (FILE) DATA.NEW (TO FILE)
DATA.OLD
Recall that the files DATA.NEW and DATA.OLD are
at CASE and BBN, respectively; assume that the
APPEND request is made to an RSEXEC running at
USC. The RSEXEC connects to the servers at CASE
and BBN. Next, using the appropriate protocol
commands, it instructs each to establish an auxiliary
path to the other (see Figure 4). Finally, it instructs
the server at CASE to transmit the file DATA.NEW
over the auxiliary connection and the server at BBN
to append the data it reads from the auxiliary connec
tion to the file DATA.OLD.

- L I N K (TO TTY) 14 (AT SITE) CASE
Assume that the user making the request is at USC.
After connecting to the CASE server, the RSEXEC
uses appropriate protocol commands to establish two
auxiliary connections (one "send" and one "receive")
with the server. It next instructs the server to "link"
its (the server's) end of the auxiliary connections to
Terminal 14 at its (the server's) site. Finally, to com
plete the LINK command the RSEXEC "links" its
end of the auxiliary connections to its user's terminal.

The RSEXEC program

A large part of what the RSEXEC program does is to
locate the resources necessary to satisfy user requests. It
can satisfy some requests directly whereas others may
require interaction with one or more remote server pro
grams. For example, an APPEND command may involve

AUXILIARY
S- \ /CONNECTION ^ - \

/ SERVER \ / (SERVER \
PROGRAM H PROGRAM

\ AT BBN / V AT BBN /

RSEXEC
AT USC

Figure 4—configuration of RSEXEC and two server programs required
to satisfy and APPEND command when the two files and the

RSEXEC are all on different Hosts. The auxiliary connection is used
to transmit the file to be appended from one server to the other

interaction with none, one or two server programs
depending upon where the two files are stored.

An issue basic to the RSEXEC implementation con
cerns handling information necessary to access files:
in particular, how much information about non-local
files should be maintained locally by the RSEXEC? The
advantage of maintaining the information locally is that
requests requiring it can be satisfied without incurring
the overhead involved in first locating the information
and then accessing it through the network. Certain highly
interactive activity would be precluded if it required
significant interaction with remote server programs. For
example, recognition and completion of file names* would
be ususable if it required direct interaction with several
remote server programs. Of course, it would be impracti
cal to maintain information locally about all files at all
TENEX Hosts.

The approach taken by the RSEXEC is to maintain
information about the non-local files a user is most likely
to reference and to acquire information about others from
remote server programs as necessary. It implements this
strategy by distinguishing internally four file types:

1. files in the Composite Directory;
2. files resident at the local Host which are not in the

Composite Directory;
3. files accessible via a bound device, and;
4. all other files.

Information about files of type 1 and 3 is maintained lo
cally by the RSEXEC. It can acquire information about
type 2 files directly from the local TENEX monitor, as
necessary. No information about type <± files is main
tained locally; whenever such information is needed it is
acquired from the appropriate remote server. File name
recognition and completion and the use of partial path
names is restricted to file types 1, 2 and 3.

The composite directory contains an entry for each
file in each of the component directories specified in the
user's profile. At the start of each session the RSEXEC
constructs the user's composite directory by gathering
information from the server programs at the Hosts speci
fied in the user profile. Throughout the session the
RSEXEC modifies the composite directory, adding
and deleting entries, as necessary. The composite direc
tory contains frequently accessed information (e.g., Host
location, size, date of last access, etc.) about the user's
files. It represents a source of information that can be
accessed without incurring the overhead of going to the
remote Host each time it is needed.

* File name recognition and completion is a T E N E X feature which
allows a user to abbreviate fields of a file pathname. Appearance of ESC
in the name causes the portion of the field before the ESC to be looked
up, and, if the portion is unambiguous, the system will recognize it and
supply the omitted characters and/or fields to complete the file name. If
the portion is ambiguous, the system will prompt the user for more
characters by ringing the terminal bell. Because of its popularity we felt
it important that the RSEXEC support this feature.

A Resource Sharing Executive for the ARPANET 161

The RSEXEC regards the composite directory as an
approximation (which is usually accurate) to the state of
the user's files. The state of a given file is understood to
be maintained by the TENEX monitor at the site where
the file resides. The RSEXEC is aware that the outcome
of any action it initiates involving a remote file depends
upon the file's state as determined by the appropriate
remote TENEX monitor, and that the state information
in the composite directory may be "out of phase" with the
actual state. It is prepared to handle the occasional fail
ure of actions it initiates based on inaccurate information
in the composite directory by giving the user an appropri
ate error message and updating the composite directory.
Depending upon the severity of the situation it may
choose to change a single entry in the composite directory,
reacquire all the information for a component directory,
or rebuild the entire composite directory.

The service program for the RSEXEC

Each RSEXEC service program has two primary re
sponsibilities:

1. to act on behalf of non-local users (typically
RSEXEC programs), and;

2. to maintain information on the status of the other
server programs.

The status information it maintains has an entry for each
Host indicating whether the server program at the Host is
up and running, the current system load at the Host, etc.
Whenever an RSEXEC program needs service from some
remote server program it checks the status information
maintained by the local server. If the remote server is
indicated as up it goes ahead and requests the service;
otherwise it does not bother.

A major requirement of the server program implemen
tation is that it be resilient to failure. The server should
be able to recover gracefully from common error situa
tions and, more important, it should be able to "localize"
the effects of those from which it can't. At any given time,
the server may simultaneously be acting on behalf of a
number of user programs at different Hosts. A malfunc
tioning or malicious user program should not be able to
force termination of the entire service program. Further,
it should not be able to adversely effect the quality of
service received by the other users.

To achieve such resiliency the RSEXEC server pro
gram is implemented as a hierarchy of loosely connected,
cooperating processes (see Figure 5):

1. The RSSER process is at the root of the hierarchy.
Its primary duty is to create and maintain the other
processes;

2. REQSER processes are created in response to
requests for service. There is one for each non-local
user being served.

RSSER

STASER REQSER • • • REQSER

/ / \ CONNECTIONS v

/ / TO REMOTE USER j]
/ / PROGRAMS I I
/ / I I

Figure 5—Hierarchical structure of the RSEXEC service program

3. A STASER process maintains status information
about the server programs at other sites.

Partitioning the server in this way makes it easy to local
ize the effect of error situations. For example, occurrence
of an unrecoverable error in a REQSER process results in
service interruption only to the user being serviced by
that process: all other REQSER processes can continue
to provide service uninterrupted.

When service is requested by a non-local program, the
RSSER process creates a REQSER process to provide it.
The REQSER process responds to requests by the non
local program as governed by the protocol. When the non
local program signals that it needs no further service,
the REQSER process halts and is terminated by RSSER.

The STASER process maintains an up-to-date record
of the status of the server programs at other Hosts by
exchanging status information with the STASER proc
esses at the other Hosts. The most straightforward way to
keep up-to-date information would be to have each
STASER process periodically "broadcast" its own status
to the others. Unfortunately, the current, connection-
based Host-Host protocol of the ARPANET16 forces use of
a less elegant mechanism. Each STASER process per
forms its task by:

1. periodically requesting a status report from each of
the other processes, and;

2. sending status information to the other processes as
requested.

To request a status report from another STASER proc
ess, STASER attempts to establish a connection to a
"well-known" port maintained in a "listening" state by
the other process. If the other process is up and running,
+ V»£i p n n n o p f i r\rk o f r p m n f c n n p o o n c Q T I H c r q f n c I n f o r m o -

tion is sent to the requesting process. The reporting proc
ess then returns the well-known port to the listening
state so that it can respond to requests from other proc-

162 National Computer Conference, 1973

esses. The requesting process uses the status report to up
date an appropriate status table entry. If the connection
attempt does not succeed within a specified time period,
the requesting process records the event as a missed
report in an appropriate status table entry.

When the server program at a Host first comes up, the
status table is initialized by marking the server programs
at the other Hosts as down. After a particular server is
marked as down, STASER must collect a number of sta
tus reports from it before it can mark the program as up
and useful. If, on its way up, the program misses several
consecutive reports, its "report count" is zeroed. By
requiring a number of status reports from a remote server
before marking it as up, STASER is requiring that the
remote program has functioned "properly" for a while. As
a result, the likelihood that it is in a stable state capable
of servicing local RSEXEC programs is increased.
STASER is willing to attribute occasionally missed re
ports as being due to "random" fluctuations in network
or Host responses. However, consistent failure of a re
mote server to report is taken to mean that the program
is unusable and results in it being marked as down.

Because up-to-date status information is crucial to the
operation of the RSEXEC system it is important that
failure of the STASER process be infrequent, and that
when a failure does occur it is detected and corrected
quickly. STASER itself is programmed to cope with
common errors. However error situations can arise from
which STASER is incapable of recovering. These situa
tions are usually the result of infrequent and unexpected
"network" events such as Host-Host protocol violations
and lost or garbled messages. (Error detection and control
is performed on messages passed between IMPS to insure
that messages are not lost or garbled within the IMP
subnet; however, there is currently no error control for
messages passing over the Host to IMP interface.) For all
practical purposes such situations are irreproducible,
making their pathology difficult to understand let alone
program for. The approach we have taken is to acknowl
edge that we don't know how to prevent such situations
and to try to minimize their effect. When functioning
properly the STASER process "reports in" periodically.
If it fails to report as expected, RSSER assumes that it
has malfunctioned and restarts it.

Providing the RSEXEC to TIP users

The RSEXEC is available as a network executive pro
gram to users whose access to the network is by way of a
T IP (or other non-TENEX Host) through a standard
service program (TIPSER) that runs on TENEX Hosts.*
To use the RSEXEC from a TIP a user instructs the TIP
to initiate an initial connection protocol exchange with
one of the TIPSER programs. TIPSER responds to the

* At present TIPSER is run on a regular basis at only one of the
TENEX Hosts; we expect several other Hosts will start running it on a
regular basis shortly.

ICP by creating a new process which runs the RSEXEC
for the TIP user.

CONCLUDING REMARKS

Experience with the RSEXEC has shown that it is capa
ble of supporting significant resource sharing among the
TENEX Hosts in the ARPANET. It does so in a way that
provides users access to resources beyond the boundaries
of their local system with a convenience not previously
experienced within the ARPANET. As the RSEXEC
system evolves, the TENEX Hosts will become more
tightly coupled and will approach the goal of a multi-Host
TENEX. Part of the process of evolution will be to pro
vide direct support for many RSEXEC features at the
level of the TENEX monitor.

At present the RSEXEC system is markedly deficient
in supporting significant resource sharing among dissimi
lar Hosts. True, it provides mini-Hosts, such as TIPs,
with a mechanism for accessing a small portion of the
resources of the TENEX (and some non-TENEX) Hosts,
enabling them to provide their users with an executive
program that is well beyond their own limited capacity.
Beyond that, however, the system does little more than to
support inter-Host user-user interaction between Hosts
that choose to implement the appropriate subset of the
RSEXEC protocol. There are, of course, limitations to
how tightly Hosts with fundamentally different operating
systems can be coupled. However, it is clear that the
RSEXEC has not yet approached those limitations and
that there is room for improvement in this area.

The RSEXEC is designed to provide access to the
resources within a computer network in a manner that
makes the network itself transparent by removing the
logical distinction between local and remote. As a result,
the user can deal with the network as a single entity
rather than a collection of autonomous Hosts. We feel
that it will be through systems such as the RSEXEC that
users will be able to most effectively exploit the resources
of computer networks.

ACKNOWLEDGMENTS

Appreciation is due to W. R. Sutherland whose leadership
and enthusiasm made the RSEXEC project possible. P.
R. Johnson actively contributed in the implementation of
the RSEXEC. The TENEX Group at BBN deserves rec
ognition for constructing an operating system that made
the task of implementing the RSEXEC a pleasant one.

REFERENCES

1. Roberts, L. G., Wessler, B. D., "Computer Network Development
to Achieve Resource Sharing," Proc. of AFIPS SJCC, 1970, Vol.
36, pp. 543-549.

2. Heart, F. E., Kahn, R. E., Ornstein, S. M„ Crowther, W. R., Wal-
den, D. C , "The Interface Message Processor for the ARPA
Computer Network," Proc. of AFIPS SJCC, 1970, Vol. 36.

A Resource Sharing Executive for the ARPANET 163

3. McQuillan, J. M., Crowther, W. R., Cosell, B. P., Walden, D. C,
Heart, F. E., "Improvements in the Design and Performance of
the ARPA Network," Proc. of AFIPS FJCC, 1972, Vol. 41, pp.
741-754.

4. Roberts, L. G., "A Forward Look," Signal, Vol. XXV, No. 12, pp.
77-81, August, 1971.

5. Bobrow, D. G., Burchfiel, J. D., Murphy, D. L., Tomlinson, R. S.,
"TENEX, a Paged Time Sharing System for the PDP-10,"
Communications of the ACM, Vol. 15, No. 3, pp. 135-143, March,
1972.

6. TENEX JSYS Manual—A Manual of TENEX Monitor Calls,
BBN Computer Science Division, BBN, Cambridge, Mass., No
vember 1971.

7. Murphy, D. L., "Storage Organization and Management in
TENEX," Proc. of AFIPS FJCC, 1972, Vol. 41, pp. 23-32.

8. Ornstein, S. M., Heart, F. E., Crowther, W. R., Rising, H. K.,
Russell, S. B., Michel, A., "The Terminal IMP for the ARPA
Computer Network," Proc. of AFIPS SJCC, 1972, Vol. 40, pp. 243-
254.

9. Kahn, R. E., "Terminal Access to the ARPA Computer Network,"
Courant Computer Symposium 3—Computer Networks, Courant
Institute, New York, Nov. 1970.

10. Mimno, N. W., Cosell, B. P., Walden, D. C, Butterfield, S. C,
Levin, J. B., "Terminal Access to the ARPA Network—Experience
and Improvement," Proc. COMPCON '73, Seventh Annual IEEE
Computer Society International Conference.

11. Walden, D.C., TIP User's Guide, BBN Report No. 2183, Sept.
1972. Also available from the Network Information Center at Stan
ford Research Institute, Menlo Park, California, as Document NIC
#10916.

12. Postel, J. B., Official Initial Connection Protocol, Available from
Network Information Center as Document NIC #7101.

13. Postel, J. B., TELNET Protocol, ARPA Network Working Group
Request for Comments #358. Available from Network Information
Center as Document NIC #9348.

14. Bhushan, A. K., File Transfer Protocol, ARPA Network Working
Group Request for Comments #358. Available from Network Infor
mation Center as Document NIC #10596.

15. Crocker, S. D., Heafner, J. F., Metcalfe, R. M., Postel, J. B.,
"Function Oriented Protocols for the ARPA Computer Network,"
Proc. of AFIPS SJCC, 1972, Vol. 40, pp. 271-279.

16. McKenzie, A., Host/Host Protocol for the ARPA Network. Availa
ble from the Network Information Center As Document NIC
#8246.

