

Page 1 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

POETS Orchestrator architecture

Design notes

Volume III(B) – On Softswitches, the Supervisor and
Composer: Bridging the gap to the Orchestrator

Ver 01 24 October 2019
Ver 02 20 October 2020
Ver 03 20 February 2021
Ver 04 21 April 2021

Graeme Bragg, Mark Vousden, Andrew Brown

Page 2 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

Revision history

Revision Date Description

Ver 02 20 October
2020

Added Supervisor and Composer initial documentation.

Ver 03 20 February
2021

Added build control features, made sure that docs and source
align, added some polish and beautification.

Ver 03 21 April
2021

Add documentation regarding the Supervisor’s binary blob.
Addressed comments from review.

This is an evolving set of documents, and the level of detail varies wildly throughout,
from syntax diagrams to "...and then a miracle occurred....".

Throughout the lifetime of the project, the intention is that more and more details will
be included, things will change, and the miracles will morph into hard quantitative
details.

New stuff will appear, almost as if it had been intended to be there all along.

This is an Orchestrator design document. It is not an overall POETS design, or a
hardware design, or a front-end design document. These require higher-order magic.

Page 3 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

Contents
1. Introduction .. 4

 Related Documentation ... 4 1.1.
 Document Structure .. 4 1.2.

2. The Softswitch ... 5
 Operation... 6 2.1.
 XML-derived Handlers ... 12 2.2.
 Device Identification ... 16 2.3.
 Log Packets ... 16 2.4.
 Instrumentation ... 17 2.5.
 Data Structure ... 17 2.6.
 Configuration Options .. 22 2.7.
 Alternative Backends .. 22 2.8.

3. The Supervisor .. 24
 Supervisor API .. 25 3.1.
 XML-derived Handlers ... 25 3.2.
 Supervisor Data Structure ... 28 3.3.

4. Compilation ... 29
 Source Files ... 29 4.1.
 Prerequisites .. 30 4.2.
 Paths and Environment Variables ... 31 4.3.
 Configuration options ... 31 4.4.
 Default flags .. 32 4.5.
 Linker Scripts .. 32 4.6.

5. Composer ... 33
 Commands .. 33 5.1.
 Default Values .. 34 5.2.
 Data Structure ... 34 5.3.
 Output Directory ... 36 5.4.
 Composer Internals ... 36 5.5.
 Error Handling .. 43 5.6.

6. Future Work ... 44
 Softswitch ... 44 6.1.
 Supervisor ... 45 6.2.
 Composer .. 45 6.3.

Page 4 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

1. Introduction
<Insert punchy intro here>

 Related Documentation 1.1.
This document discusses or refers to concepts that are more fully described in other documentation.
Where this happens, the text will point you in the right direction. Other documents that may need to
be consulted are:

• The Mothership documentation
• The Packet format documentation
• Orchestrator Documentation Volume III
• Tinsel documentation (https://github.com/POETSII/tinsel)

 Document Structure 1.2.
The remainder of this document is divided into five main sections: Section 2 details the inner-
workings of the Softswitch; Section 3 provides an overview of the Supervisor, though this should be
read in conjunction with the Mothership and Supervisor API documentation; Section 4 discusses the
stand-alone compilation process for the Softswitches and Supervisor shared object involved in an
application and details the required prerequisites; Section 5 describes the Composer, the Orchestrator
component responsible for generating source files and compiling them; finally Section 6 discusses
areas of future work and improvement.

https://github.com/POETSII/tinsel

Page 5 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

2. The Softswitch
The Softswitch is the code that executes when a POETS application is run. It is a combination of
general control code and code assembled from the device handler C-fragments and application
definition provided by the XML. The Softswitch can be thought of as a very simple operating system
that routes inbound packets to the correct device, sends any queued packets and executes device-
specific handlers at appropriate times as shown in Figure 1. On a Tinsel-based POETS system, this is
the code that executes on the RISC-V soft-cores with each hardware thread executing its own instance
of the Softswitch.

The original Softswitch design was intended to host up to 1024 devices per Softswitch, however the
data structure can support significantly more but actual real-world experience with Tinsel has shown
that we may want to run considerably fewer devices per thread. The data structure supports hosting
multiple device types on a single Softswitch; however the current implementation only supports
executing a single device type per Tinsel core-pair1 due to the limited instruction space available.

A note on terminology: In POETS Orchestrator parlance, the Softswitch deals in packets and not
messages. Tinsel uses the term “message” to refer to what we would call packets. This document, the
Softswitch source, Supervisor source and Composer uses the Orchestrator nomenclature where
possible, however there are some instances where “message” is used to refer to a POETS Packet
rather than a PMsg_p

1 On Tinsel, instruction space is shared between pairs of cores. e.g. core 0 and core 1 share instruction space.

Figure 1: Abstract softswitch loop. Activities marked with a * call user-
supplied handler code and execute the ReadyToSend handler.

Page 6 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

 Operation 2.1.
Once running, the Softswitch is fundamentally a large continuous control loop that that handles device
interaction with the underlying hardware. This subsection describes the intricacies of this behaviour.

2.1.1. Operating Modes
The Softswitch can be operated in one of two modes (set at compile time) that affect how sent packets
are handled:

In “Normal”, or non-buffering, mode, a pin may only appear once in the list of pins wishing to
send and the Softswitch assembles the packet to be sent (via a call to the pin’s OnSend handler)
immediately before it is emitted over the network. This means that the device’s latest state used
to assemble a packet and this may be different to the state that was used to determine that a pin
wished to send a packet – if an application requires one packet per state update, then the
application designer must account for this. A pin may only appear once in the list of pins
wishing to send – it is up to the application to handle any required repeat transmissions. On
Tinsel, the packet is assembled directly in the mailbox’s send slot.

In Buffering mode, the Softswitch assembles the packet immediately after the application has
determined that it wishes to send a packet. The assembled packet is added to a circular packet
buffer and sent at a later time. A pin may appear multiple times in the ready-to-send list and
packet buffer – unless the circular buffer is full, any call to the application’s ReadyToSend
handler that flags a pin as wanting to send will result in a packet being emitted at some point – a
congested network may result in stale packets being emitted and applications should be
designed to account for this.

2.1.2. Boot Sequence
Once the cores have been loaded by the Orchestrator (init /app), each thread begins to execute the
Softswitch code. softswitch_main() begins the initialisation process by obtaining a pointer to the
thread’s ThreadContext structure and creating the Ready-to-Send circular buffer (rtsBuf).
softswitch_init() is then called to continue initialisation.

softswitch_init() zeros all instrumentation and calls device_init() for each device hosted
by the Softswitch. device_init() walks the device’s data structure populating back pointers that
are cannot be provided during code generation and then calls the device’s OnInit handler.

Once initialisation is complete, the Softswitch enters softswitch_barrier(), which sends a
packet to the Mothership to indicate that the thread has successfully booted. The thread will then
block until it has received a packet with the P_CNC_BARRIER opcode set. This packet is sent by the
Mothership after a run /app command is issued. When the Softswitch has been released from the
barrier, the Softswitch enters softswitch_loop() after a short delay to allow other softswitches to
start. The Softswitch remains in this loop until a packet with the P_CNC_STOP opcode is received,
which causes the Softswitch to gracefully exit and stop execution.

2.1.3. Main Loop
Once entered, softswitch_loop() does not exit until ThreadContext->ctlEnd is non-zero. An
overview of the default control flow in the non-buffering mode is shown in Figure 2. Detailed flow
diagrams of the non-buffering and buffering modes are shown in Figure 3 and Figure 4 respectively.
The order of some operations can be controlled at build time as detailed in Section 2.1.6.2.

Page 7 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

2.1.4. Receive Handling
If there is a pending packet, the Softswitch retrieves it from the mailbox and calls
softswitch_onReceive(). softswitch_onReceive() decodes the headers, handling internal
control packets from the Mothership (e.g. stop or instrumentation request) directly without invoking
any device-specific code, and handles the packet appropriately by calling the correct device receive or
control handler.

The current version of the Softswitch supports unicast and broadcast packets. Unicast packets trigger
the OnReceive handler for a single pin, or the OnCtl handler, on a single device. A broadcast packet
triggers the OnReceive handler for a single pin, or the OnCtl handler, on all devices hosted on the
Softswitch.

For unicast packets, the value of the device address is checked to ensure that it is within the range of
devices hosted by the Softswitch. An out of range device address results in the packet being dropped
and the generation of a log packet.

Figure 2: Abstract softswitch loop control flow: default order

Page 8 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

softswitch_loop()

while (!ThreadContext->ctlEnd)

return

tinselCanRecv()?

recvBuffer=
tinselRecv()

rxCount++

Stop
Packet?

ThreadContext
->ctlEnd = 1

Broadcast
Packet?

Target in
Range?

Set Target Set Target
range

No
Yes

No

Yes

For each target

Yes

Pin Idx
In range?

Control
Packet?

OnCtl()* OnReceive()

Edge Idx
In range?

softswitch_onRts()

Yes

No

No

No

Yes Yes

softswitch_onReceive()

return

No

pendCycles &&
tinselCanSend()?

softswitch_instrumentation()

Build message
Header

Gather
Instrumentation

tinselSend
(tinselHostId(), instr)

Reset
Instrumentation

return

rtsStart != rtsEnd?

TinselWaitUntil
(CanRecv|CanSend)

softswitch_onSend()

txCount++

txHandlerCount++

numTgts > 0?

idxTgts == 0?

OnSend()

Set headers &
Calculate pkt size

superCount++

Supervisor
bit set?

idxTgts++

tinselSend
(tinselHostId(), buf)

tinselSend
(hwAddr, buf)

idxTgts >=
numTgts?

Reset pin & move
circular RTS buffer

softswitch_onRts()

return

No
Yes

Yes

Yes

Yes

No

No

tinselCanSend()?
YesNo

Yes Yes Yes

No No

No

softswitch_onIdle()

Loop through all devices & exec OnIdle.
Return 0 if all OnIdle handlers returned 0.

Break out of the loop (save position and return 1)
if a message is received.

idleCount++

tinselCanRecv()?

idleHandlerCount++

notIdle = true

OnIdle()?

notIdle = true

notIdle = false

Save loop
position

Return notIdle

Yes

Yes

No

No

No

Check cyclecount,
set pendCycles if

instrumentation due

tinselAlloc
(recvBuffer)

rxHandlerCount++

= softswitch

= device handlers
 (from XML)

= instrumentation

Legend

softswitch_onRts()

Instrumentation
Packet?

ThreadContext
->pendCycles = 1

Yes

No

softswitch_onIdle
returned 1?

TinselWaitUntil
(CanRecv)

No

Yes

blockCount++

Figure 3: Detailed Softswitch loop control flow: Default execution order. See Figure 5 for softswitch_onRts() expansion.

Page 9 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

softswitch_loop()

while (!ThreadContext->ctlEnd)

return

tinselCanRecv()?

recvBuffer=
tinselRecv()

rxCount++

Stop
Packet?

ThreadContext
->ctlEnd = 1

Broadcast
Packet?

Target in
Range?

Set Target Set Target
range

No
Yes

No

Yes

For each target

Yes

Pin Idx
In range?

Control
Packet?

OnCtl()* OnReceive()

Edge Idx
In range?

softswitch_onRts()

Yes

No

No

No

Yes Yes

softswitch_onReceive()

return

No

pendCycles &&
tinselCanSend()?

softswitch_instrumentation()

Build packet
 Header

Gather
Instrumentation

tinselSend
(tinselMyBridgeId(), instr) *

Reset
Instrumentation

return

rtsStart != rtsEnd?

TinselWaitUntil
(CanRecv|CanSend)

softswitch_onSend()

txCount++

numTgts > 0?

idxTgts == 0?

Copy packet from
start of pktBuf into

send slot

Set headers &
Calculate pkt size

superCount++

Supervisor
bit set?

idxTgts++

tinselSend
(tinselHostId(), buf)

tinselSend
(hwAddr, buf)

idxTgts >=
numTgts?

Reset pin & move
circular RTS buffer

softswitch_onRts()

return

No
Yes

Yes

Yes

Yes

No

No

tinselCanSend()?
YesNo

Yes Yes Yes

No No

No

softswitch_onIdle()

Loop through all devices & exec OnIdle.
Return 0 if all OnIdle handlers returned 0.

Break out of the loop (save position and return 1)
if a message is received.

idleCount++

tinselCanRecv()?

idleHandlerCount++

notIdle = true

OnDeIdle()?

notIdle = true

notIdle = false

Save loop
position

Return notIdle

Yes

Yes

No

No

No

Check cyclecount,
set pendCycles if

instrumentation due

tinselFree
(recvBuffer)

rxHandlerCount++

= softswitch

= device handlers
 (from XML)

= instrumentation

Legend

softswitch_onRts()

Instrumentation
Packet?

ThreadContext
->pendCycles = 1

Yes

No

softswitch_onIdle
returned 1?

TinselWaitUntil
(CanRecv)

No

Yes

blockCount++

* Sent using the “extra” Tinsel send slot.

Figure 4: Detailed Softswitch loop control flow: Buffering mode. See Figure 5 for softswitch_onRts() expansion. OnSend occurs during softswitch_onRts().

Page 10 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

2.1.5. Ready to Send handling
softswitch_onRTS() is intended to be executed any time there may have been a change in a
device’s state (e.g. any time a packet is received, a pin has finished sending or
OnInit/OnIdle/OnCompute returns a non-zero value). This uses the device’s ReadyToSend()
handler to generate a 32-bit-wide bit field that indicates which, if any, pins wish to send given the
current device state. In non-buffering mode, the Softswitch adds any flagged pins, which do not
already have a pending send, to the RTS list. In buffering mode, the Softswitch calls the OnSend()
handler for any flagged pins, adding the generated packet payload(s) to the packet buffer if there is
space. A detailed flow diagram of softswitch_onRTS() for both modes is shown in Figure 5.

The Softswitch uses an array of pointers-to-output-pins to keep track of which pins wish to send. The
size of the array is set using ThreadContext->rtsBufSize2. The array is used as a circular buffer
with ThreadContext->rtsStart holding the index of the first pending pin and ThreadContext-
>rtsEnd holding the index of the last pending pin. In buffering mode, a second array of 56-byte
packets the same size as the RTS buffer exists and is used in parallel with the RTS buffer to track
queued packets.

The following key points should be noted about the Ready to Send handling:

• A device can have no more than 32 output pins, including the implicit supervisor output pin if
it has one.

• In non-buffering mode, an individual pin may only appear once in the RTS list and they
appear in the order in which they were added to the list. The Softswitch has no concept of
priority.

• In non-buffering mode, subsequent calls to ReadyToSend()that return a flag for a pin that
already has a pending send (indicated by the pin’s sendPending field) are ignored.

• In buffering mode, subsequent calls to ReadyToSend() when the circular buffer is full are
ignored.

• It is not possible to remove a pin from the RTS list or a packet from the packet buffer once it
has been added and a packet will, at some point, be sent.

• As per the GraphSchema specification, device state must not be updated within
ReadyToSend(): the Softswitch prevents this by const-qualifying the state in the assembled
ready to send handler.

• A pin that does not have any targets will not be added to the RTS list.

2.1.6. Send Handling
When the Softswitch determines that there is something to send (i.e. the RTS buffer start and end
indices are not equal), the Softswitch checks to see if it is possible to send a packet. If it is not
possible to send a packet, the Softswitch blocks on a call to TinselWaitUntil() until it is possible
to either send or receive before returning to the start of the control loop. It should be noted that this
has the potential to cause the Softswitch to deadlock during network congestion as
TinselWaitUntil() does not (currently) support a timeout. However, if the Softswitch cannot send
and cannot receive, it can do no useful work. In contrast, yielding to other threads may enable other
threads to drain the network and clear the congestion. If it is possible to send a packet,
softswitch_onSend() is called.

2 See Section 5.5.2.7 for details as to how this is set. By default, for non-buffering mode this is calculated by
Composer as the number of connected output pins hosted on the Softswitch, allowing all output pins to have a
send pending, up to MAX_RTSBUFFSIZE. This buffer must have a size greater than one – by default,
Composer will not create a buffer with fewer than MIN_RTSBUFFSIZE (10) slots. In buffering mode, the size
of the buffer is set to MAX_RTSBUFFSIZE.

Page 11 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

Each time softswitch_onSend() is called, a single POETS packet is sent3. If a pin sends multiple
packets (e.g. a pin has multiple targets), multiple calls to softswitch_onSend() are required. This
prioritises receiving a packet over sending so that the network is drained as quickly as possible. The
pin is only removed from the RTS list when the packet to the final target has been sent.

The first time softswitch_onSend() is called for a pending send for a pin, the payload for a
packet is loaded into the last 56 bytes of the Tinsel send slot. The contents of a slot are persistent until
re-written so this avoids a memcpy for each packet but nothing else can use the same slot –
instrumentation and log packets make use of the “extra” send slot provided by Tinsel. In non-
buffering mode, the slot is loaded by a call to the pin’s OnSend() handler. In buffering mode, the slot

3 Unless the target pin has no targets specified, in which case no packets are sent and the pin is removed from
the RTS list.

(a) (b)

Figure 5: softswitch_onRTS execution flow for the normal mode of
operation (a) and the buffering mode of operation (b)

Page 12 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

is loaded by memcpying the payload from the packet buffer. Each call to softswitch_onSend()
writes the header section of the packet to the slot.

 Idle handling 2.1.6.1.
When there is nothing to receive and nothing to send, the Softswitch will execute the OnDeviceIdle
handler for each device hosted on the Softswitch. The Softswitch will step through each device it has
executed the handler for all devices in one sitting or it is interrupted by a received packet.

A non-zero return from an OnDeviceIdle handler indicates that something interesting happened and
softswitch_onRTS() is called for the device. The boilerplate code for OnDeviceIdle defaults to
returning a non-zero value.

If the Softswitch completes an uninterrupted iteration over all devices and all of the OnDeviceIdle
handlers returned zero, the Softswitch will block on a call to TinselWaitUntil() until it is
possible to receive a packet. This stops the Softswitch from emitting instrumentation packets but
yields processing time to other threads that may be active.

 Loop Order 2.1.6.2.
The ordering of the receive and instrumentation processing steps in the main loop can be controlled.
By default, the Softswitch prioritises receive to constantly drain the network; however, this can result
in no instrumentation being sent by devices that are inundated with inbound packets. By defining
SOFTSWITCH_PRIORITISE_INSTRUMENTATION at build time, the Softswitch instead prioritises
sending instrumentation packets if it is possible to do so over receiving packets.

2.1.7. Shutdown
When the Softswitch receives a packet with the P_CNC_STOP opcode, it exits the main loop at the
earliest opportunity and gracefully shuts down with softswitch_finalise().
softswitch_finalise() clears the RTS list and returns control of all of the tinsel slots to the
hardware. No confirmation packet is sent.

 XML-derived Handlers 2.2.
The Softswitch is an assembly of boilerplate code around user-supplied handler code from the XML.
This section details how user-supplied handlers are used and which variables they have access to.

2.2.1. Reserved Variable Names
In addition to the variables listed in Section 2.2.2 the Softswitch makes use of several additional
global variables and pre-processor macros. To avoid conflicts with the inner workings of the
Softswitch, user-supplied handlers and code must not define or use any variable names or defines that
begin with:

• P_
• p_
• __
• softswitch_

Additionally, user-supplied handlers and code must not define or set:

• LOG_BOARDS_PER_BOX
• LOG_CORES_PER_BOARD
• LOG_THREADS_PER_CORE

Page 13 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

2.2.2. Available variables
Each handler has access to a set of pre-defined variables that can be referenced within the body of the
handler.

Table I: Variables accessible within XML-derived handlers.
Variable Name XML Handler(s) Description
graphProperties All A pointer to the const-protected graphProperties

structure. The layout is derived from the GraphType’s
<Properties> section.
Only available if defined in the XML.

deviceProperties All A pointer to the const-protected deviceProperties
structure. The layout is derived from the
DeviceType’s <Properties> section.
Only available if defined in the XML.

deviceState All A pointer to the deviceState structure. The layout is
derived from the DeviceType’s <State> section.
This is const-protected in ReadyToSend.
Only available if defined in the XML.

edgeProperties OnReceive A pointer to the const-protected edgeProperties
structure. The layout is derived from the InputPin’s
<Properties> section.
Only available if defined in the XML.

edgeState OnReceive A pointer to the edgeState structure. The layout is
derived from the InputPin’s <State> section.
Only available if defined in the XML.

message OnReceive
OnSend

A pointer to the payload section of a packet, cast to the
relevant format for the handler as defined in the XML.

readyToSend ReadyToSend A pointer to a 32-bit bit field that is used to determine
which pins wish to send.

ThreadContext All A pointer to the ThreadContext structure. This has

the layout detailed in Section 2.6.
While available in handlers, it is not intended that
XML-derived code will access this directly.

deviceInstance All A pointer to the deviceInstance structure for the
current device. This has the layout detailed in Section
2.6.
While available in handlers, it is not intended that
XML-derived code will access this directly.

pkt OnReceive
OnSend

A void* pointer to the payload section of a P_Pkt_t
stored in a Tinsel slot.
While available in handlers, it is not intended that
XML-derived code will access this directly.

2.2.3. Macros of Convenience
The Softswitch header provides several “Macros of convenience” to make writing handlers slightly
easier. These macros are detailed in Table II.

Page 14 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

Table II: Convenience macros that may be used within user-supplied handler code.
Macro Evaluated to Intended

handler
Usage

GRAPHPROPERTIES(x) graphProperties->x All Access to the
GraphProperties struct.

DEVICEPROPERTIES(x) deviceProperties->x All
Access to the
DeviceProperties struct for
the current device.

DEVICESTATE(x) deviceState->x All Access to the DeviceState
struct for the current device.

EDGEPROPERTIES(x) edgeProperties->x OnReceive Access to the EdgeProperties
struct for the current edge.

EDGESTATE(x) edgeState->x OnReceive Access to the EdgeState
struct for the current pin.

MSG(x) message->x OnReceive
OnSend

Access to the formatted
packet payload for the input
or output packet.

PKT(x) message->x OnReceive
OnSend Alternative to MSG()

RTS(x) *readyToSend |=
RTS_FLAG_##x OnSend

Sets the RTS flag for the
specified pin name. The name
passed to this macro must
match the name of the pin
specified in the XML.

RTSSUP()
*readyToSend |=
RTS_SUPER_
IMPLICIT_SEND_FLAG

OnSend Sets the RTS flag for the
implicit supervisor pin.

2.2.4. SharedCode
The Softswitch has access to the Graph Type’s SharedCode section from the XML. If it exists in the
XML, it is placed at the top of the generated source file immediately below the properties and state
declarations. Shared code is intended to contain free functions, constant variables and defines that are
shared across multiple handlers. This is an ideal place to place #includes and #defines that are
common throughout the entire application.

The user-supplied shared code exists at the top of the generated per-core source – it is not instanced
per device. Shared code does not have access to the properties and state structures – any non-constant
values that the functions require must be passed in as arguments.

2.2.5. ReadyToSend
A device’s ReadyToSend handler is called any time something of interest occurs as a result of an
XML-derived handler. This includes:

• OnInit returning “1”.
• OnIdle/OnDeIdle returning “1”.
• When an output pin has sent to its last target.
• After processing a received packet.

ReadyToSend has const-protected (i.e. read-only) access to the device’s properties and state along
with the graph’s properties. While ReadyToSend has access to any variables or methods declared in
the application’s <SharedCode> section, it must not change any state. ReadyToSend should only
update the bit field pointed to by readyToSend and any variables declared within ReadyToSend.

Page 15 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

The bit field is defined as a uint32_t with each bit corresponding to an output pin. This means that
there can be a total of 32 possible output pins (including the implicit supervisor output pin, if defined)
per device type.

 ReadyToSend Flags 2.2.5.1.
A ReadyToSend bit flag variable (of the format RTS_FLAG_<PINNAME>) is automatically generated
for each output pin defined in the XML. Additionally the RTS_SUPER_IMPLICIT_SEND_FLAG
variable is available if the device has an implicit Supervisor output pin.

The generated ReadyToSend flags should be ORed with the bit field pointed to by readyToSend to
indicate that a pin wishes to send. E.g. *readyToSend |= RTS_SUPER_IMPLICIT_SEND_FLAG

2.2.6. OnInit
A device’s OnInit handler is called during initialisation before the Softswitch reaches the barrier.
OnInit can be used to carry out any initialisation that cannot be handled with the generated properties
and state initialisers.

Returning 1 triggers a call to ReadyToSend. By default, the handler returns 1 after the XML-derived
C fragment has been executed.

2.2.7. OnReceive
Each pin type has an associated OnReceive handler that is called when a packet is received for that
pin. In addition to the device properties, device state and graph properties, the handler has access to
the specific edge state and edge properties for the specific edge that triggered the handler. The
payload of the packet is accessed through the message variable (or by using the MSG() or PKT()
macros).

2.2.8. OnSend
OnSend prepares a packet to be sent with user-supplied code populating the payload of the packet. In
the non-buffering more, OnSend is called immediately before the first packet for a pin is sent and
forms the packet directly in the Tinsel send slot. In buffering mode, the packet is formed in a packet
buffer immediately after the ReadyToSend handler completes. The payload of the packet is accessed
through the message variable (or by using the MSG() or PKT() macros).

2.2.9. OnDeviceIdle
A device’s OnIdle handler may be called any time the Softswitch has no packets to send or receive.
There is no guarantee on when OnIdle is called or how many times it will be called, only that it will
be called eventually.

2.2.10. OnHWIdle
Called when the hardware idle detection triggers. Not currently implemented.

2.2.11. OnCtl
Called when a packet with a user-defined opcode is received. Not currently implemented.

Page 16 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

 Device Identification 2.3.
Devices have two indices that uniquely identify them in different contexts. The first of these is the
thread-unique Device ID. This is the value used in the Device Address section of the swAddr header
and uniquely identifies the device in the application when combined with the hardware address.

The second of these is the Supervisor-unique Device Index. The deviceIdx uniquely identifies the
device within the scope of a Supervisor (i.e. within a box). The deviceIdx is used to populate the
pinAddr header for control packets where the destination needs to know which device sent a packet.
This includes log packets and packets sent to the Supervisor’s implicit receive pin.

 Log Packets 2.4.
handler_log() is a method provided by the Softswitch to allow user-supplied handler code to send
log messages to the Logserver via the Mothership. These packets have the P_CNC_LOG Opcode set.
Log messages may be up to four packets long, with the length of message that can be encapsulated
dependent on the specific log handler that the Softswitch has been compiled with.

handler_log() is declared as a variadic macro in softswitch.h with the following expected call
pattern:

void handler_log(int level, const char * pkt, F... args)

handler_log() calls __handler_log(), a variadic template method with the following signature:

inline void handler_log(uint32_t src, int level, const char * pkt, F... args)

where:

level indicates the priority of the message with higher values indicating higher priority
messages. The Softswitch can be configured at compile time to ignore messages with
priorities below a given threshold by defining P_LOG_LEVEL. By default, packets with
priority 2 or greater are sent by the Softswitch.

pkt is a pointer to the c-string representation of the log message. In printf parlance, this is
the format string.

args are the values that the log message is meant to encode.

src is taken from the device’s devInst_t->deviceIdx field and uniquely identifies the
device on the supervisor

The first byte of the payload of the emitted packet is used to send a decrementing sequence number to
facilitate fragmented log packets. E.g. the first log packet has the greatest sequence number and the
last packet always has a sequence number of zero. A struct for the format of the log packet payload is
provided in poets_pkt.h.

The Softswitch currently includes one log handler (the trivial log handler), which can be enabled at
compile time by defining TRIVIAL_LOG_HANDLER at compile time.

2.4.1. Trivial log Handler
The trivial log handler only sends the format string portion of the provided log packet – all additional
arguments and values are ignored. This gives a per-packet payload of 55 characters and a total
maximum packet length of 220 characters, including the trailing null character. Log messages longer
than 219 characters are truncated to 219 characters and sent.

Page 17 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

 Instrumentation 2.5.
The Softswitch includes basic thread-level instrumentation that can be enabled by defining
SOFTSWITCH_INSTRUMENTATION at build-time. Additional per-core instrumentation counters (e.g.
cache hit/miss/writeback counts and CPU Idle count) are enabled if TinselEnablePerfCount ==
true. Each instrumentation packet includes the sending thread’s cache of the per-core counters.

The current set of instrumentation is designed to fit in a single packet that is sent roughly every
P_INSTR_INTERVAL cycles (by default this is defined as 240000000 cycles, giving an
instrumentation packet roughly every second on Tinsel 0.6.3).

A struct for the format of an instrumentation packet payload is provided in poets_pkt.h and is
summarised in Table III.

Table III: Instrumentation packet layout, including header field specification.
32-bits of payload remain unused for future use.

Field Type Description

swAddr uint32_t Software address. Mothership and CNC bits set. Opcode set to
P_CNC_INSTR.

pinAddr uint32_t Set to the Hardware address of the sending Softswitch.
cIDX uint32_t Index (sequence) of the instrumentation packet.
cycles uint32_t Cycle count since last instrumentation packet.
rxCnt uint32_t Number of POETS packets received.
rxHanCnt uint32_t Number of times a device OnReceive handler has been called.
txCnt uint32_t Number of POETS packets sent to other devices.
supCnt uint32_t Number of POETS packets sent to motherships.
txHanCnt uint32_t Number of times a device OnSend handler has been called.
idleCnt uint32_t Number of times Softswitch_onIdle called.
idleHanCnt uint32_t Number of times a device OnCompute handler has been called.

blockCnt uint32_t Number of times the mailbox has indicated that it is not
possible to send a packet.

missCount uint32_t Cache miss count4.
hitCount uint32_t Cache hit count4.
writebackCount uint32_t Cache writeback count4.
CPUIdleCount uint32_t CPU Idle count4.

 Data Structure 2.6.
The Softswitch’s data structure is split between the top and bottom of the thread’s memory partition.
The ThreadContext is stored at the base of what Tinsel refers to as the heap and the rest of the data
structure is stored on the stack. Figure 6 shows the data structure and its linkage.

The ThreadContext (Table IV) anchors the rest of the data structure and is stored at the base of the
DRAM “heap”. A pointer to the ThreadContext is obtained during Softswitch initialisation with
tinselHeapBase(), which is then static_casted to a PThreadContext*.

Pointers to all instances of properties and state throughout the data structure are stored as void
pointers as the data structure has no knowledge of (and need to know) the underlying structure of the
application-specific properties and state. The generated code static_casts the void pointers to the
correct application-specific typing as required, e.g. within the boilerplate code that is pre-pended to
device handlers.

4 Since the last instrumentation packet was sent.

Page 18 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

Table IV: Thread Context. Defined in softswitch_common.h as PThreadContext/ThreadCtxt_t.

Field Type Description
numDevTyps uint32_t Number of device types on this Softswitch5.
devTyps devTyp_t* Pointer to an array of device types.
numDevInsts uint32_t Number of devices hosted by this Softswitch.
devInsts devInst_t* Pointer to an array of device instances.
properties const void* Graph global properties.
rtsBufSize uint32_t The size of the RTS circular buffer.
rtsBuf outPin_t** Pointer to the RTS circular buffer.

pktBuf P_Pkt_pyld_t* Pointer to the send packet buffer. Only exists in
buffering mode.

rtsStart uint32_t
 Index of the first entry in the RTS buffer.

rtsEnd uint32_t Index of the last entry in the RTS buffer.
idleStart uint32_t Index of which device to start softswitch_OnIdle from.
ctlEnd uint32_t Loop control value: 0 = stop, 1 = run.
lastCycles uint32_t Cycle count last time instrumentation was sent.
pendCycles uint32_t Indicates whether it is time to send instrumentation.
txCount uint32_t Number of packets sent6.
superCount uint32_t Number of Supervisor packets sent6.
rxCount uint32_t Number of packets received over the network6.
txHandlerCount uint32_t Number of OnSend handlers called6.
rxHandlerCount uint32_t Number of OnReceive handlers called6.
idleCount uint32_t Number of times softswitch_OnIdle called6.
idleHandlerCount uint32_t Number of times OnIdle/OnCompute called6.
blockCount uint32_t Number of times network has been blocked6.
cycleIdx uint32_t Index of the instrumentation packet.
lastmissCount uint32_t Cache miss count7.
lasthitCount uint32_t Cache hit count7.
lastwritebackCount uint32_t Cache writeback count7
lastCPUIdleCount uint32_t CPU Idle count7.

Initialisers for all thread-specific structures are placed in the generated per-thread code
(vars_<core>_<thread>.cpp). The initialiser for the GraphProperties is placed in vars_<core>.cpp,
which is common for all threads on a core.

The initialiser for the ThreadContext relies on an attribute to place it in the correct section of the
compiled binary:

__attribute__((section (".thr<THREADNUMBER>_base")))

where THREADNUMBER is the number of the thread on the core, e.g. Thread 0 is ".thr0_base". This
is a GCC-specific option, #pragma section() and __declspec(allocate)) may provide
equivalent functionality under MSVC.

Data that is common across all devices of the same type (e.g. handler pointers, size of properties/state,
pin types, etc.) are stored in structures shown in the definitions section and detailed in Section 2.6.1.
Data that is device-specific (e.g. pointers to device/edge properties/state, pin targets, etc.) are stored in
the structures shown in the instance section and detailed in Section 0

5 This will always be 1. A softswitch can only host a single device type.
6 Reset each time an instrumentation packet is sent.
7 Since the last time instrumentation was sent.

Page 19 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

Figure 6: Softswitch Data structure. The pktBuf array only exists if the Softswitch has been compiled in buffering mode.

Page 20 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

2.6.1. Definitions Section
The definitions section of the Softswitch data structure contains structures that define the behaviour of
devices hosted on the Softswitch.

The definitions section of the data structure is anchored around an array of device type structs (Table
V). Each device type struct contains pointers to the device-level handlers; the size of the properties
and state structs; the number of input pins and output pins the device type has; and pointers to arrays
of input pin and output pin types.

The input pin type struct (Table VI) contains a function pointer to the pin type’s receive handler and
the sizes of the packet, edge properties and edge state. The output pin type struct (Table VII) contains
a pointer to the send handler and the size of the packet.

Table V: Device Type struct. Defined in softswitch_common.h as PDeviceType/devTyp_t
Field Type Description
RTS_Handler RTS_handler_t Function pointer to the device type’s RTS

handler.
OnInit_Handler OnInit_handler_t Function pointer to the device type’s

OnInit handler.
OnIdle_Handler OnIdle_handler_t Function pointer to the device type’s

OnIdle handler.
OnHWIdle_Handler OnHWIdle_handler_t Function pointer to the device type’s

OnHWIdle handler.8
OnCtl_Handler OnCtl_handler_t Function pointer to the device type’s OnCtl

handler.8
sz_props uint32_t Size in bytes of the device type’s

properties.
sz_state uint32_t Size in bytes of the device type’s state.
numInputTypes uint32_t Number of input pin types the device type

has.
inputTypes in_pintyp_t* Array of input pin types. Devices pins

point to this.
numOutputTypes uint32_t Number of output pin types the device type

has.
outputTypes out_pintyp_t* Array of output pin types. Devices pins

point to this.

Table VI: Input PinType struct. Defined in softswitch_common.h as PInputType/in_pintyp_t
Field Type Description
Recv_handler Recv_handler_t Function pointer to the input’s receive handler.
sz_pkt uint32_t Size in bytes of the packet.
sz_props uint32_t Size of the edge's properties.
sz_state uint32_t Size of the edge's state.

Table VII: Output PinType struct. Defined in softswitch_common.h as POutputType/out_pintyp_t

Field Type Description
Send_Handler Send_handler_t Function pointer to the input type’s send handler.
sz_pkt uint32_t Size in bytes of the packet.

8 Currently not fully implemented

Page 21 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

2.6.2. Instance Section
The instance section contains all of the device-specific data for each device hosted on the Softswitch.

The instance section is anchored around an array of device instance structs (Table VIII). Each device
instance includes a back pointer to the thread context, a pointer to the device type, the device’s ID on
this thread and the device’s Supervisor-unique index. The struct also contains pointers to an array of
output pin structs (Table IX), an array of input pin structs (Table XI), properties and state along with
the sizes of the two arrays.

Table VIII: Device Instance struct. Defined in softswitch_common.h as PDeviceInstance/devInst_t
Field Type Description
thread PThreadContext* Back pointer to the ThreadContext.
devType const devTyp_t* Pointer to the Device Type.
deviceID uint32_t Thread-unique ID (index) of the device.
deviceIdx uint32_t Supervisor-specific device index.
numInputs uint32_t Number of inputs the device has.
inputPins inPin_t* Pointer to the inputPin array.
numOutputs uint32_t Number of outputs the device has.
outputPins outPin_t* Pointer to the outputPin array.
properties const void* Pointer to the device's properties.
state void* Pointer to the device's state.

Table IX: Input pin instance struct. Defined in softswitch_common.h as PInputPin/inPin_t
Field Type Description
device const PDeviceInstance* Back pointer to the device instance.
pinType in_pintyp_t* Pointer to the pin type.
numEdges uint32_t Number of sources.

inEdges inEdge_t* Pointer to array of input edge structs
(Table X)

Table X: Input edge instance struct. Defined in softswitch_common.h as PInputEdge/inEdge_t

Field Type Description
pin const PInputPin* Back pointer to pin the pin instance.
properties const void* Pointer to the edge properties.
state void* Pointer to the edge state.

Table XI: Output pin instance struct. Defined in softswitch_common.h as POutputPin/outPin_t

Field Type Description
device PDeviceInstance* Back pointer to the device instance.
pinType out_pintyp_t* Pointer to the pin type.
numEdges uint32_t Number of targets the pin has.

outEdges outEdge_t* Pointer to the array of output edge
structs (Table XII).

idxEdges uint32_t Index of the next edge to send on
sendPending uint32_t Flag indicating the pin wants to send.

Table XII: Output edge instance struct. Defined in softswitch_common.h as POutputEdge/outEdge_t

Field Type Description
pin POutputPin* Back pointer to pin the pin instance.
hwAddr uint32_t Target Hardware Address.
swAddr uint32_t Target Software Address.
pinAddr uint32_t Target Pin Address.

Page 22 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

 Configuration Options 2.7.
The compilation of the Softswitch sources can be influenced by several pre-processor defines. For
convenience, Table XIII summarises these options, their location, their default and where their use is
discussed in this document.

Table XIII: Softswitch configuration parameters

Definition Location Default Section
Reference

Generation

MAX_RTSBUFFSIZE Composer.cpp 4096 Footnote 2

MIN_RTSBUFFSIZE Composer.cpp 10 Footnote 2

Build

DISABLE_SOFTSWITCH_INSTRUMENTATION <environment/
Makefile> undefined 2.5

SOFTSWITCH_PRIORITISE_INSTRUMENTATION <environment/
Makefile> - 2.1.6.2

TRIVIAL_LOG_HANDLER <environment/
Makefile> defined 2.4

P_LOG_LEVEL softswitch.h 2 2.4

TinselEnablePerfCount (tinsel)
config.h true 2.5

 Alternative Backends 2.8.
While designed to be used with Tinsel, it is possible to use the Softswitch with alternative backends.
This requires minimal changes to the underlying code. This has proved to be very useful for
debugging and application development with an MPI-based backend.

Any alternative backend must provide a tinsel.h that abstracts the tinsel methods listed in Table
XIV and provides the defines/consts listed in Table XV for the Softswitch to operate without
modification. Alternative backends that require initialisation and/or de-initialisation must also define
the implementation-specific macros listed in Table XVI.

The backend must also provide the following enum and method:

typedef enum {TINSEL_CAN_SEND = 1, TINSEL_CAN_RECV = 2} TinselWakeupCond;

#ifdef __cplusplus
INLINE TinselWakeupCond operator|(TinselWakeupCond a, TinselWakeupCond b)
{
 return (TinselWakeupCond) (((uint32_t) a) | ((uint32_t) b));
}
#endif

Page 23 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

Table XIV: Backend methods required by the Softswitch. Different methods are required for Tinsel 0.6 and 0.8.

Method Tinsel
Version Description

uint32_t tinselId() Return the Hardware Address of the current
thread.

uint32_t tinselHostId() Return the Hardware Address of the
Mothership.

uint32_t tinselMyBridgeId() 0.8 Return the Hardware Address of the
Mothership for this core.

void* tinselHeapBase() Return pointer to base of thread's "heap"
section.

volatile void* tinselSlot(int n) 0.6 Get pointer to message-aligned slot in
"mailbox" scratchpad.

volatile void* tinselSendSlot() 0.8 Get pointer to the send slot.
volatile void* tinselSendSlotExtra() 0.8 Get pointer to the extra send slot.
void tinselAlloc(volatile void* addr) 0.6 Give the mailbox permission to use given

address to store a message.
void tinselFree(volatile void* addr) 0.8 return a receive slot to the hardware.
int tinselCanRecv() Determine if calling thread can receive a

message.
volatile void* tinselRecv() Receive message.
int tinselCanSend() Determine if calling thread can send a

message.
void tinselSetLen(int n) Set the length (in flits) to be sent.
void tinselSend(int dest, volatile
void* packet)

 Send message at packet to dest. packet must
be a pointer to a slot.

uint32_t tinselUartTryPut(uint8_t x) Send byte to host (over DebugLink UART)
(Returns non-zero on success).

void tinselWaitUntil(TinselWakeupCond
cond)

 Suspend thread until wakeup condition
satisfied.

uint32_t tinselCycleCount() Get the Cycle count performance counter.
uint32_t tinselMissCount() Get the Cache miss performance counter.
uint32_t tinselHitCount() Get the Cache hit performance counter.
uint32_t tinselWritebackCount() Get the Cache writeback counter.
uint32_t tinselCPUIdleCount() Get the CPU Idle performance counter.

Table XV: Defines/consts required by the Softswitch

Define Type Description
TinselMaxFlitsPerMsg integer The number of flits each packet is divided into.
TinselLogMsgsPerThread integer Base 2 log of the number of packet slots per thread.
TinselLogBytesPerMsg integer Base 2 log of the size of the packet’s payload.
TinselLogBytesPerFlit integer Base 2 log of the size of each flit.
TinselMeshXBitsWithinBox integer Number of bit used for each box X address
TinselMeshYBitsWithinBox integer Number of bit used for each box Y address
TinselMeshXLenWithinBox integer Width of the board grid within a box.
TinselMeshYLenWithinBox integer Height of the board grid within a box.
TinselLogCoresPerBoard integer Base 2 log of the number of cores per box.
TinselLogThreadsPerCore integer Base 2 log of the number of hardware threads per core.
TinselEnablePerfCount boolean Indicates whether the Tinsel perf counters are enabled
TinselClockFreq integer Core clock frequency in MHz.

Table XVI: Initialisation and de-initialisation macros.

Macro Description
BACKEND_INIT(a) Backend initialisation. Called before entry into softswitch_main().
BACKEND_DEINIT() Backend teardown. Called after return from softswitch_main().

Page 24 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

3. The Supervisor
The Supervisor is a shared object that is loaded by the Mothership at application initialisation. It
provides application-specific behaviour for a set of pre-defined methods that are called at specific
points in the Mothership’s execution. The Supervisor executes in x86-land with access to the
underlying filesystem and network – this means that user-supplied code can read/write files, access
network shares, etc.

The callable methods contained within the Supervisor shared object are summarised in Table XVII.
All of the methods, with the exception of SupervisorIdx2Addr(),
GetSupervisorAddresses() and GetSupervisorApi(), return non-zero if an error occurs.

Table XVII: Supervisor shared object methods

Method Description

int SupervisorInit()
Called to initialise the Supervisor. Allocates the
properties and state. Calls the Supervisor’s
OnInit handler.

int SupervisorCall(std::vector<P_Pkt_t>&,
std::vector<P_Addr_Pkt_t>&)

Method for processing received packets. This
will call the correct receive handler to process
the inbound packet, either the implicit receive
handler or a pin-specific handler (when
implemented). SupervisorCall takes a reference
to a vector of input packets and a reference to a
vector of output addressed packets. The vector
of addressed packets will contain entries if there
are packets to be sent.

int SupervisorIdle()
A method that may be called periodically when
the Mothership has no other work to do. Calls
the Supervisor’s OnIdle handler.

int SupervisorCtl()
A method to handle received messages.
This encapsulates the Supervisor’s OnCTL
handler. 9

int SupervisorRTCL()
A method to handle events emitted by the
RTCL.
Calls the Supervisor’s OnRTCL handler. 9

int SupervisorExit()
A method to gracefully tear down the
Supervisor during Orchestrator exit. Calls the
Supervisor’s OnStop handler.

uint64_t SupervisorIdx2Addr(uint32_t) A method to convert a device index to a full-
symbolic address.

void GetSupervisorAddresses
(std::vector<SupervisorDeviceInstance_t>&)

A method to provide a copy of the
DeviceVector to the Mothership.

SupervisorApi* GetSupervisorApi() A method to return a pointer to the Supervisor
API contained within the Supervisor.

The front-end methods interact with a class (Supervisor, Figure 7) that encapsulates all of the
application-specific behaviour. All of the class members are static and the definitions of all of the
methods along with the SupervisorProperties_t and SupervisorState_t structs are
contained within the generated source code. All of the methods must be present in the generated
source file, even if they only contain a “return 0;” stub.

9 Not currently implemented.

Page 25 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

Figure 7: Supervisor class diagram.

 Supervisor API 3.1.
Application writers have access to a Supervisor API (encapsulated within the Super namespace) that
provides several utility methods. The API is provisioned by the Mothership during initialisation. For
further details, see the Supervisor API section of the Mothership documentation.

 XML-derived Handlers 3.2.
Like the Softswitch, the Supervisor is a combination of boilerplate code wrapped around user-
supplied handlers derived from the application’s XML definition. This subsection details the variables
available within user-supplied code, reserved variable names and how the XML-derived code
fragments are used.

3.2.1. Available variables
Each handler has access to a set of pre-defined variables (Table XVIII) that can be referenced within
the body of the handler.

Table XVIII: Variables accessible within XML-derived handlers.
Variable Name XML

Handler(s)
Description

graphProperties All A pointer to the const-protected graphProperties structure.
The layout is derived from the GraphType’s
<Properties> section.10

supervisorProperties All A pointer to the const-protected supervisorProperties
structure. The layout is derived from the Supervisor’s
<Properties> section.10

supervisorState All A pointer to the supervisorState structure. The layout is
derived from the Supervisor’s <State> section. 10

3.2.2. Reserved Variable Names
In addition to the variables listed in Table XVIII, the Supervisor makes use of several additional
variables. To avoid conflicts with the inner workings of the Supervisor, user-supplied handlers and
code must not define or use any variable names or defines that begin with:

• P_
• p_
• __

Additionally, user-supplied handlers and code must not define or set:

• DeviceVector
• CoreVector

10 Only available if defined in the XML

Page 26 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

3.2.3. Macros of Convenience
The Supervisor provides several pre-processor macros to provide more convenient access to the
underlying Supervisor data structures for application developers. The macros exist in
supervisor_generated.h and are created as part of the Composer’s code generation process. The
available macros are described in Table XIX.

3.2.4. SharedCode
The Supervisor has access to the Graph Type’s SharedCode section from the XML. If it exists in the
XML, it is placed at the top of the generated source file immediately below the properties and state
declarations. SharedCode is not contained within a method and variables/functions declared in it may
be used by other handlers. This is an ideal place to place #includes and #defines that are
common throughout the entire application.

3.2.5. Code
The Supervisor’s Code section from the XML is placed below the Graph Type’s SharedCode. Code is
not contained within a method and variables/functions declared in it may be used by other handlers.
The Supervisor Code fragment may reference supervisorProperties and supervisorState.
This is an ideal place to place #includes and #defines that are common throughout the
Supervisor.

Table XIX: Supervisor convenience macros.

Macro Evaluates to XML
handler Usage

GRAPHPROPERTIES(x) Graph
Properties->x all

Access to the Graph Properties struct.
Usage is GRAPHPROPERTIES
(<MEMBER>) = <VAL>

SUPPROPERTIES(x) Supervisor
properties->x all

Access to the Supervisor Properties
struct. Usage is SUPPROPERTIES
(<MEMBER>) = <VAL>

SUPSTATE(x) Supervisor
State->x all

Access to the Supervisor State struct.
Usage is SUPSTATE (<MEMBER>) =
<VAL>

MSG(x) message->x OnReceive
Access to member of the formatted
payload struct for an inbound packet.
Usage is MSG(<MEMBER>) = <VAL>

PKT(x) message->x OnReceive
Access to member of the formatted
payload struct for an inbound packet.
Usage is PKT(<MEMBER>) = <VAL>

REPLY(x) reply->x OnReceive
Access to member of the formatted
payload struct for a reply packet. Usage
is MSG(<MEMBER>) = <VAL>

BCAST(x) bcast->x OnReceive
Access to member of the formatted
payload struct for a broadcast packet.
Usage is BCAST(<MEMBER>) = <VAL>

RTSREPLY() __rtsReply=
true OnReceive Indicates that the handler has requested

that the reply packet is sent.

RTSBCAST() __rtsBcast=
true OnReceive Indicates that the handler has requested

that the broadcast packet is sent.

3.2.6. OnInit
A Supervisor’s OnInit handler is called during initialisation. OnInit can be used to carry out any
initialisation that cannot be handled with the generated properties and state initialisers.

Page 27 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

OnInit is used to allocate __SupervisorProperties and __SupervisorState so it must always
be called by the Mothership, even if no application-specific initialisation behaviour is defined. Calling
OnInit multiple times has no effect as the first execution sets __SupervisorInit = true and all
subsequent calls will return -1.

3.2.7. OnSupervisorIdle
OnSupervisorIdle may be called any time the Mothership has no other work to do. There is no
guarantee when, or even if, this will be called.

3.2.8. OnImplicit
OnImplicit is called when the SupervisorCall() method is called and the packet has the P_CNC_IMPL
opcode set. OnImplicit implements the SupervisorInPin’s OnReceive handler from the XML.
In addition to the variables listed in Table XVIII, OnImplicit also has access to the variables listed in
Table XX.

Table XX: Implicit receive handler local variables
Variable Type Description
__inPkt P_Pkt_t* A pointer to the input packet.

__outPkt std::vector<P_Addr_Pkt_t>& A reference to a vector of output packets
and their destination hardware addresses.

__reply P_Pkt_t Packet used to contain a unicast reply.
__bcast P_Pkt_t Packet used to contain a broadcast.

__rtsReply bool Flag to indicate whether the reply packet
should be sent.

__rtsBcast bool Flag to indicate whether the broadcast
packet should be sent.

message const
pkt_<MESSAGENAME>_pyld_t*

Pointer to the payload of the input packet
that triggered the handler. Exact type is
application dependant.

reply pkt_<MESSAGENAME>_pyld_t* Pointer to the payload of the reply packet.
Exact type is application dependant.

broadcast pkt_<MESSAGENAME>_pyld_t* Pointer to the payload of the broadcast
packet. Exact type is application dependant.

The payload of the packet that triggered the handler is available through the message pointer (and the
MSG() and PKT() macros). This is cast to the format specified for the Supervisor’s implicit input pin
in the XML. The source address of the packet can be determined from DeviceVector[__inPkt-
>header.pinAddr] if so desired.

 Replies 3.2.8.1.
A unicast reply may be sent to the device where the inbound packet originated from. The payload of
this reply is available through the reply pointer (and the REPLY() macro). This is cast to the format
specified for the Supervisor’s implicit output pin in the XML. If the Supervisor does not have an
implicit output pin, the format specified for the implicit input pin is used. A reply will only be sent if
the handler sets __rtsReply to true (or calls RTSREPLY()).

After the user-supplied handler code has executed, the __rtsReply flag is checked. If it is true, a
unicast packet with the P_CNC_IMPL opcode set is added to the __outPkt vector. The destination of
this packet is determined by using the contents of the pinAddr header as an index into the
DeviceVector.

Page 28 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

 Broadcasts 3.2.8.2.
A broadcast may be sent to all devices hosted by the Supervisor. The payload of this reply is available
through the broadcast pointer (and the BCAST() macro). This is cast to the format specified for the
Supervisor’s implicit output pin in the XML. If the Supervisor does not have an implicit output pin,
the format specified for the implicit input pin is used. A broadcast will only be sent if the handler sets
__rtsBcast to true (or calls RTSBCAST()).

After the user-supplied handler code has executed, the __rtsBcast flag is checked. If it is true, a
packet with the P_CNC_IMPL opcode set is added to the __outPkt vector for each thread assigned to
this supervisor, determined by iterating over the ThreadVector.

3.2.9. OnPkt
OnPkt is called when the SupervisorCall() method is called and the packet does not have the
P_CNC_IMPL opcode set. Handler code has access to the same variables and packet sending
mechanisms as the OnImplicit handler. This is currently a stub and is never populated.

3.2.10. OnRTCL
OnRTCL should be called in response to RTCL kicking the Supervisor. Currently unimplemented.

3.2.11. OnStop
OnStop is called to shut down the Supervisor and execute any application-specific shutdown code.

OnStop is used to free __SupervisorProperties and __SupervisorState so it must always be
called when terminating execution, even if no application-specific shutdown behaviour is defined.
Calling OnStop multiple times has no effect as the first execution sets __SupervisorInit =
false and all subsequent calls will return -1.

N.B. __SupervisorProperties and __SupervisorState are not freed until after the user-
supplied code has been executed - the user-supplied code MUST NOT include a return statement.

 Supervisor Data Structure 3.3.
The Supervisor’s data structure consists of a bool to track initialisation state, a pointer to the
Supervisor’s state, a pointer to the Supervisor’s properties, two vectors containing addresses and
(temporarily) a std::map of device names and addresses.

The DeviceVector contains a SupervisorDeviceInstance_t for every device that the
Supervisor is responsible for. A SupervisorDeviceInstance_t encapsulates the hardware and
software addresses of a device. Temporarily (until the Nameserver is implemented)
SupervisorDeviceInstance_t also includes the name of the device instance. The position
(index) of a device in this vector corresponds to the index that a device includes in the pinAddr
header when it sends to the Supervisor’s implicit receive pin.

The ThreadVector contains the hardware address of every thread that hosts devices for the
application. This may, but does not have to, contain the hardware address of every thread within the
box. The ThreadVector exists so that the Supervisor can send packets to the implicit receive handler
of every device that it is responsible for.

Page 29 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

4. Compilation
The binaries for each of the cores involved in an application and the supervisor(s) can be compiled
using make and the Makefile included with the Softswitch (at Source/Softswitch/Makefile).
Currently, the build process will only work on Linux-based systems (including Windows Subsystem
for Linux) that meet the pre-requisites listed in Section 4.2. The Softswitches and Supervisor shared
object are compiled under the C++14 standard as the user-supplied C fragments may use features that
are not supported under C++11 or C++98. In Orchestrator land, the user does not need to invoke this
manually – the Composer handles the compilation.

 Source Files 4.1.
This section details the source and header files required for the Softswitch binaries and Supervisor
shared object.

4.1.1. Softswitch
Each Softswitch binary (softswitch_<CORE_ADDR>.elf, and the derived instruction-space
[softswitch_code_<CORE_ADDR>.v] and data-space [softswitch_data_<CORE_ADDR>.v]
binaries) requires the source and header files listed in Table XXI. Each core will have up to 16
different vars_<CORE_ADDR>_<THREAD_ADDR>.cpp source files, one for each utilised thread.

Table XXI: Core source files. Filenames in italics are application and placement-specific.
Source Header
softswitch_main.cpp
softswitch_common.cpp softswitch_common.h
softswitch.cpp softswitch.h
entry.S

 poets_hardware.h
handlers_<CORE_ADDR>.cpp handlers_<CORE_ADDR>.h
vars_<CORE_ADDR>.cpp vars_<CORE_ADDR>.h
vars_<CORE_ADDR>_<THREAD_ADDR>.cpp

 GlobalProperties.h
 MessageFormats.h

 Static sources 4.1.1.1.
softswitch_main.cpp/.h: Contains the main entry point for the Softswitch.
softswitch_common.cpp/.h: Contains all of the common Softswitch routines.
softswitch.cpp/.h: Contains the trivial log handler.
entry.S: ASM routine to jump to main.
poets_hardware.h: Definitions of convenience.

 Generated Sources 4.1.1.2.
handlers_<CORE_ADDR>.cpp/.h: Contains the assembled user-supplied device handlers for

the specified core. All devices on a core share handlers.
vars_<CORE_ADDR>.cpp: Contains the per-core variable definitions.
vars_<CORE_ADDR>.h: Contains declarations for the per-core properties and state

and the per-thread variables.
vars_<CORE_ADDR>_<THREAD_ADDR>.cpp: Contains the per-thread variable definitions.
GlobalProperties.h: Contains the Global Properties declaration.
MessageFormats.h: Contains struct declarations for all of the message (packet)

formats.

Page 30 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

4.1.2. Supervisor
The Supervisor shared object requires the source and header files listed in Table XXII.
GlobalProperties.h and MessageFormats.h are the same as used by the Softswitch.

Table XXII: Supervisor source files. Filenames in italics are application and placement-specific.
Source Header Other
Supervisor.cpp Supervisor.h
 SupervisorApi.h
 SupervisorApiEntrypoints.h
supervisor_generated.cpp supervisor_generated.h supervisor.bin
 GlobalProperties.h
 MessageFormats.h

 Static Sources 4.1.2.1.
Supervisor.cpp: Contains the shared object entry points that the Mothership uses

to interact with the Supervisor.
Supervisor.h: Contains the declaration of the Supervisor class.
SupervisorApi.h: Contains the declaration of the SupervisorApi class.
SupervisorApiEntrypoints.h: Contains the entry point methods that an application may use to

access the Supervisor API.

 Generated Sources 4.1.2.2.
supervisor_generated.cpp/.h: Contains definitions for the members of the Supervisor class.

The definitions are assembled from parameters and handlers
sourced from the XML.

supervisor.bin Contains the binary blob that holds the generated contents of the
DeviceVector.

GlobalProperties.h: Contains the Global Properties declaration.
MessageFormats.h: Contains struct declarations for all of the message (packet)

formats.

 Prerequisites 4.2.
In addition to the source files detailed in Section 4.1, several additional prerequisites are required to
compile the Softswitch binaries and Supervisor shared object(s) with the provided Makefile:

Softswitch:
 poets_pkt.h (Source/Common/)
 OSFixes.hpp (Generics)
 SoftwareAddressDefs.h (Source/Common/)
 Tinsel 0.8
 RISC-V GNU toolchain configured for the rv32imf target architecture11 12.

Supervisor:

macros.h (Generics)
 poets_pkt.h (Source/Common/)
 OSFixes.hpp (Generics)

Tinsel 0.8
mpich11

11 Included in the Orchestrator dependencies tarball.
12 The Makefile requires the toolchain to have the “riscv32-unknown-elf” prefix. Compilation may be possible
with the 64-bit version of the toolchain.

Page 31 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

MPICH is used as the C++ compiler for the Supervisor shared object as it will be present on any
system running the Orchestrator. The Supervisor itself does not depend on MPI and may be compiled
with an alternative C++ compiler.

 Paths and Environment Variables 4.3.
The Makefile uses the environment variables listed in Table XXIII to set paths that are involved in the
compilation of the Softswitch and Supervisor binaries.

Table XXIII: Makefile environment variables and default paths.
Environment
Variable Default Path Overloadable? Description

TINSEL_ROOT ../../Tinsel no Location of the local Tinsel install or a
symlink to it.

SOFTSW_ROOT ../../Softswitch no Location of the Softswitch common
source or a symlink to it.

ORCH_ROOT ../../Orchestrator no Location of the Orchestrator or a symlink
to it.

RISCV_PATH /usr/local/riscv yes Location of the RISC-V GNU Toolchain
or a symlink to it.

MPICH_PATH /usr yes Location of the local MPICH install or a
symlink to it.

GENDIR ../Generated yes Location of the generated Softswitch and
Supervisor source.

BINDIR ../bin yes Location where output binaries are
placed.

 Configuration options 4.4.
The build can be controlled by several command line arguments as detailed in Table XXIV. These are
passed as arguments to make, e.g. to enable the buffering Softswitch and pass custom optimisation
flags you would execute:

make SOFTSWITCH_BUFFERING=1 CM_FLAGS=“-O3 -fno-inline”

Table XXIV: Makefile command line arguments to control Softswitch compilation.
Command line argument Description

SOFTSWITCH_BUFFERING=1 Compiles the Softswitch with the
BUFFERING_SOFTSWITCH definition set.

SOFTSWITCH_DISABLE_INSTRUMENTATION=1
Compiles the Softswitch with the
DISABLE_SOFTSWITCH_INSTRUMENTATION
definition set.

SOFTSWITCH_TRIVIAL_LOG_HANDLER=1 Compiles the Softswitch with the
TRIVIAL_LOG_HANDLER definition set.

SOFTSWITCH_PRIORITISE_INSTRUMENTATION=1
Compiles the Softswitch with the
SOFTSWITCH_PRIORITISE_INSTRUMENTATION
definition set.

SOFTSWITCH_LOGLEVEL=<LEVEL> Sets the logging level of the Softswitch to
LEVEL by setting the P_LOG_LEVEL definition.

CM_CFLAGS=“<FLAGS>”

Compiles the Softswitch and Supervisor with
the additional compilation FLAGS. These are
place after (and thus override) the default flags
detailed in Section 4.5.

Page 32 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

 Default flags 4.5.
Excluding library includes, the default flags passed to the RISCV compiler to build the Softswitch
objects is:

-mabi=ilp32 -march=rv32imf -static -mcmodel=medany -fvisibility=hidden
-nostartfiles –pipe -fsingle-precision-constant -fno-builtin-printf
-ffp-contract=off -std=c++14 –Wall –O2

Excluding library includes, the default flags passed to the RISCV linker to create the Softswitch
binaries is:

-melf32lriscv -G 0 -lgcc -lc

Excluding library includes, the default flags passed to mpicxx to compile the Supervisor shared
object are:

-std=c++14 -fPIC -pipe –Wall -shared -O3 -Wl,-soname,libSupervisor.so

 Linker Scripts 4.6.
When compiling under GCC, each core requires a linker script to map the correct areas of the shared
memory to the regions created in the binaries. A shell script for generating per-core linker scripts for
the Tinsel cores is included with the Softswitch (Source/Softswitch/genld.sh). genld.sh is called
automatically for each core as part of the make. genld.sh is called with the core number as the first
argument and the output may be piped to the destination linker file. i.e. as: ./genld.sh 1 >
link_1.ld.

Alternative backends that make use of an unmodified Softswitch must provide a linker script that
creates a section for the ThreadContext and variable that references the start of the section. An
example that augments the default GCC linker script with a section for the Thread 0 ThreadContext is
shown in Insert 1. This can be used during a link with GCC by adding -Wl,-T<FILENAME>.ld to
the arguments of the link command.

Insert 1: Example Linker script to add a section for the Thread 0 ThreadContext.

SECTIONS
{
 .thr0_base_outer : {
 thr0_base_start = .;
 *(.thr0_base)
 thr0_base_end = .;
 }
}
INSERT AFTER .rodata

Page 33 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

5. Composer
The Composer is responsible for assembling the Softswitch and Supervisor source files for an
application. It is also responsible for initiating application compilation and for managing the output
directory for source files and compiled binaries. OrchBase holds a Composer member at
OrchBase::pComposer. The lifetime of OrchBase::pComposer is tied to the lifetime of
OrchBase::pPlacer: anytime OrchBase replaces its OrchBase::pPlacer member,
OrchBase::pComposer is also replaced.

This chapter provides details on the internal workings of the Composer and how it interacts with the
rest of the Orchestrator and the operator.

 Commands 5.1.
Operator interaction with the Composer is facilitated through the commands detailed in Table XXV.

Table XXV: Composer commands for Operator interaction.
Command Clause Parameter(s) Description

compose

/generate

= APPNAME

Generates source code13.

/compile Compiles the binaries and Supervisor shared
object(s)13.

/app Equivalent to a /generate followed by a /compile.

/bypass
Bypasses the generation and compilation steps
and allows previously compiled binaries to be
reused13.

/clean Cleans the compiled binaries13. Effectively a
“make clean”.

/degenerate Cleans up the generated source code13. Removes
all traces of the application from Composer.

/decompose Equivalent to a /clean followed by a /degenerate.
/buff Sets the Buffering Softswitch flag13. 14
/nobuff Clears the Buffering Softswitch flag13. 14
/inst Sets the Softswitch Instrumentation flag13. 14
/noinst Clears the Softswitch Instrumentation flag13. 14

/args
= APPNAME,
 ARGS

Pass additional arguments to the compilers. See
Sections 4.4 & 5.5.1.7 for more information.

/logh
= APPNAME,
 LOGHANDLER

Sets the Softswitch Log Handler for the13. See

Table XXVI for valid log handlers. 14
/logl = APPNAME,

 LEVEL
Sets the Softswitch log level13. 14

/rtsb
= APPNAME,
 RTSBUFFSIZE

Sets the maximum Softswitch RTS/packet buffer
size13. 15

/reset - Deletes existing Composer & creates a new one.
/dump - Dumps diagnostic data to the microlog.

13 for the specified application(s).
14 Calls clean if the application has already been compiled.
15 Calls clean if the application has already been compiled and degenerates the source.

Page 34 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

Table XXVI: Valid parameters for the logh command
Log Handler Description
none No log handler is present. Useful for reducing

binary size.
trivial Enables the Softswitch’s trivial log handler.

For these commands, APPNAME can have three forms:

• “*” (as in, just an asterisk), which performs the operation on all application graph instances in
the Orchestrator.

• APP (as in, the name associated with an Apps_t instance), which performs the operation on
all application graph instances associated with that application object.

• APP::GRAPH, which performs the operation on exactly one application graph instance.

These commands are implemented in CmComp.cpp.

 Default Values 5.2.
Unless changed by an Operator command, the Composer uses the default values shown in Table
XXVII when generating and compiling the Softswitch and Supervisor.

Table XXVII: Default composer values
Softswitch build variable Default value Equivalent command
Log Handler trivial /logh = *,”trivial”
Log Level 2 /logl = *,”2”
RTSBuf max size 4096 /rtsb = *,”4096”
Mode Non-buffering /nobuff = *
Instrumentation Enabled /inst = *

 Data Structure 5.3.
The Composer’s data structure is anchored around a private map of GraphI_t pointers to
ComposerGraphI_t struct pointers:

std::map<GraphI_t*, ComposerGraphI_t*> Composer::graphIMap

Each ComposerGraphI_t tracks the code generation and compilation status of a single Graph
Instance. A ComposerGraphI_t contains configuration information that affects the code generation
and compilation along with cached data (such as common strings used by a large number of devices)
that is used to improve code generation efficiency. The members of a ComposerGraphI_t are
described in Table XXVIII.The Composer operates directly on the members of each instance of the
ComposerGraphI_t struct: aside from a method to clear the devTStrsMap; a Dump() method and
constructors/deconstructor, a ComposerGraphI_t does not offer any methods to interact with it.

The Composer’s generate(), compose() and setX/addX methods create a new
ComposerGraphI_t on the heap and add it to the add an entry for it to graphIMap if the
GraphI_t being operated on has not been seen before. A ComposerGraphI_t is deleted when a
decompose() (or a degenerate() with the second argument set to true) is called for the
application. The Composer’s deconstructor deletes any remaining ComposerGraphI_ts.

The setX/addX methods change options regarding the compilation of the binaries and/or generation
of the source code. These methods clean() and degenerate() (without removing the application
from the Composer’s data structure) the application as appropriate. To avoid pointless compute, any
required setX/addX methods should be called before the application is generated.

Page 35 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

The Composer does not store the complete generated source or the compiled binaries within its data
structure. These are stored in the specified output directory for the application. Any changes to code
generation parameters require that all of the code is regenerated from scratch.

Table XXVIII: ComposerGraphI_t member list
Member Description
GraphI_t* graphI A pointer to the graph instance of interest.

std::set<P_core*>* cores A pointer to the set of cores used by the
application. This is sourced from the Placer.

devTStrsMap_t devTStrsMap

A map of device type pointers to a collection of
strings. This map is populated during Generation
and is used to cache strings that are common
across multiple generated source files. As a
typical application will generally have a small
number of device types, this map will be
relatively small.

std::vector<DevI_t*> supevisorDevIVect

A vector of device instance pointers for all
devices serviced by the Supervisor. This is used
to generate to generate the Supervisor’s
DeviceVector.

devISuperIdxMap_t devISuperIdxMap

A map of device instance pointers to a uint32_t
representing the index of the device in the
supevisorDevIVect. This is used to generate
the pinAddr header for implicit output pins.

std::string outputDir

The full output directory where the generated
source code and binaries will be placed. This is a
concatenation of the Graph Instance’s compound
name and the Composer’s output directory at the
time the Graph Instance was first seen.

std::string provenanceCache A cache of the information that is written at the
start of every generated source file.

std::string compilationFlags Additional (operator-supplied) flags that are
passed to the Makefile verbatim.

bool generated Flag that indicates the generated source files for
the application have been compiled.

bool compiled Flag that indicates the source files have been
generated for the application.

bool bufferingSoftswitch
Flag to indicate whether the Softswitch for the
application should be compiled in buffering or
non-buffering mode.

unsigned long rtsBuffSizeMax User-supplied override for the maximum size of
the RTS list/Packet buffer.

bool softswitchInstrumentation
Flag to indicate whether the Softswitches for the
application should be compiled with
instrumentation enabled or not.

ssLogHandler_t softswitchLogHandler Indicates the log handler that the application’s
Softswitch should use.

unsigned long softswitchLogLevel Indicates the maximum level of message that the
application’s Softswitch will ignore.

ssLoopMode_t softswitchLoopMode
Indicates the loop mode that the application’s
Softswitch will operate in. Currently not settable
by operator command.

Page 36 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

 Output Directory 5.4.
The Composer is responsible for managing the directories where generated source code and compiled
binaries for applications are placed. The Composer must be provided with an output directory that
contains the symlinks/copies listed in Insert 2.

The output directory path must be provided by the Orchestrator after Composer has been initialised
and may be changed at any time. the output directory does not change the storage location for
application that have already been seen by the Composer, the only way to change this is to
degenerate or decompose the application and then re-compose it.

Insert 2: Output directory structure

 Composer Internals 5.5.
The Composer is realised as a single class (Figure 8) in Source/OrchBase/Composer.cpp/.h.
The class provides 19 public methods, two constructors and a destructor to interact with the rest of the
Orchestrator. The public methods are listed and described in Table XXIX.

The command set detailed in Table XXV, with the exception of the reset command, is mapped
directly onto a subset of the public methods: with the exception of setting the buffering and
instrumentation modes, there is a 1-1 mapping of command to public method.

Private methods prefixed with “write” write boiler plate code and code fragments to the generated
source files. Private methods prefixed with “form” generate strings that are cached within
ComposerGraphI_t for use by multiple write methods.

The current implementation of the Composer uses string/file streams with static strings defined in the
Composer source code to generate the code for the Softswitches and Supervisors. While not
extensible in itself, the Composer is implemented as a set of well segmented methods so that
transition to alternative methods (e.g. some form of templating) will be relatively simple.

├── Makefile -> $(Orchestrator)/Source/Softswitch/Makefile
├── Orchestrator
│ ├── Generics -> $(Orchestrator)/Generics
│ └── Source
│ └── Common -> $(Orchestrator)/Source/Common
├── Softswitch -> $(Orchestrator)/Source/Softswitch
├── Supervisor.cpp -> $(Orchestrator)/Source/Supervisor/Supervisor.cpp
├── Supervisor.h -> $(Orchestrator)/Source/Supervisor/Supervisor.h
├── SupervisorApi.h -> $(Orchestrator)/Source/Supervisor/SupervisorApi.h
├── SupervisorApiEntrypoints.h -> $(Orchestrator)/Source/Supervisor/SupervisorApiEntrypoints.h
└── Tinsel -> $(TINSEL_ROOT)

Page 37 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

Figure 8: Composer class diagram.

Page 38 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

Table XXIX: Summary of Composer public methods.
Method Description

int compose(GraphI_t*) Composes the specified graph instance. Equivalent to a call
to generate() followed by a call to compile().

int generate(GraphI_t*)
Generates the Softswitch and Supervisor source code for the
specified graph instance if the graph instance has not already
been generated.

int compile(GraphI_t*)

Compiles the Softswitch binaries and the Supervisor shared
object for the specified graph instance if the graph instance
has not already been generated. Will not execute unless the
graph instance has been generated.

Int bypass(GraphI_t*)
Skips code generation and compilation for the specified
graph instance, allowing previously compiled binaries to be
reused. Checks that all required binaries exist.

int decompose(GraphI_t*)
The opposite to a compose() for the specified graph
instance. Equivalent to a call to clean() followed by a call
to degenerate(…, true).

int degenerate(
GraphI_t*, bool)

Removes any generated files and clears internal caches. If
the second parameter is true, degenerate() removes all
traces of the specified graph instance from the Composer’s
data structure. Will not execute if the graph instance has
been compiled.

int clean(GraphI_t*)
Cleans any compiled binaries and compilation by-products
for the specified graph instance by calling a make clean in
the output directory.

void setOutputPath(
std::string)

Sets the common output path that will be used for all
generation and compilation artefacts.

void setPlacer(Placer*)
Sets the underlying placer used for sourcing placement
information. This invalidates all graph instances seen by the
Composer so results in the graphIMap being cleared.

int setBuffMode(
GraphI_t*, bool)

Sets the buffering mode of the Softswitch for the specified
graph instance. Calls clean() if it has already been
compiled.

int setRTSSize(GraphI_t*,
unsigned long)

Sets the maximum size of the Softswitch’s RTS Buffer for
the specified graph instance. Calls clean() if it has already
been compiled and degenerate(…,false) if it has
already been generated.

int enableInstr(GraphI_t*,
bool)

Sets the Softswitch instrumentation state for the specified
graph instance. Calls clean() if compiled.

int setLogHandler(GraphI_t*,
ssLogHandler_t)

Sets the Softswitch Log Handler for the specified graph
instance. Calls clean() if compiled.

int setLogLevel(GraphI_t*,
unsigned long)

Sets the Softswitch log level for the specified graph instance.
Calls clean() if compiled.

int setLoopMode(GraphI_t*,
ssLoopMode_t)

Sets the Softswitch loop mode for the specified graph
instance. Calls clean() if compiled.

int addFlags(GraphI_t*,
std::string)

Add additional compilation flags to the Softswitch build.
Calls clean() if compiled.

bool isGenerated(GraphI_t*) Returns the generation state for the specified graph instance.

bool isCompiled(GraphI_t*) Returns the compilation state for the specified graph
instance.

void Show(FILE * = stdout) Outputs a summary of the Composer’s state to the specified
FILE.

void Dump(unsigned = 0,
FILE * = stdout)

Outputs a detailed account of the Composer’s state to the
specified FILE.

Page 39 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

5.5.1. Build Control
The methods that influence code generation (setRTSSize()) and compilation (setBuffMode(),
enableInstr(), setLogHandler(), setLogLevel(), setLoopMode() and addFlags()) may
be called at any time but will either clean() and/or degenerate() as required. Where possible
these methods should be called before an application is generated or compiled. These methods may be
called before the Compose has seen the application, in which case they will add the application to the
Composer’s graphIMap.

 setRTSSize 5.5.1.1.
This method sets the maximum size of the Softswitch’s RTS buffer in normal mode, or the size of the
packet buffer in buffering mode, by setting the value of rtsBuffSizeMax in the application’s
ComposerGraphI_t. The method’s second parameter is the size of the buffer in number of entries,
not bytes.

 setBuffMode 5.5.1.2.
This method sets the bufferingSoftswitch flag in the application’s ComposerGraphI_t to
indicate whether the Softswitch should be built in buffering mode or non-buffering mode. Passing true
as the second parameter sets the flag and results in the Softswitch being compiled in buffering mode.

 enableInstr 5.5.1.3.
This method sets the softswitchInstrumentation flag in the application’s
ComposerGraphI_t to indicate whether the Softswitch should be built with instrumentation
enabled. Passing true as the second parameter sets the flag and results in the Softswitch being
compiled in with instrumentation enabled.

 setLogHandler 5.5.1.4.
This method sets the value of softswitchLogHandler in the application’s ComposerGraphI_t to
indicate which implemented log handler should be used. The second argument is an enum with the
possible values shown in Insert 3.

Insert 3: Valid values for the Log Handler enum.

 setLogLevel 5.5.1.5.
This method sets the minimum level at which a message will be send by handler_log() by setting
the value of softswitchLogLevel in the application’s ComposerGraphI_t.

 setLoopMode 5.5.1.6.
This method sets the value of softswitchLoopMode in the application’s ComposerGraphI_t to
indicate which implemented loop mode should be used. The second argument is an enum with the
possible values shown in Insert 4.

typedef enum softswitchLogHandler_t
{
 disabled = 0,
 trivial
} ssLogHandler_t;

Page 40 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

Insert 4: Valid values for the Softswitch Loop Mode enum.

 addFlags 5.5.1.7.
This method appends the provided string to the compilationFlags field in the application’s
ComposerGraphI_t. This method may be called multiple times to add additional flags. During a
compilation, the contents of compilationFlags are passed in with the CM_FLAGS variable with no
modification.

The Composer does not introspect the provided flags: this means that they are not validated at all. It is
also not possible to remove a flag once it has been set, short of decmonposing/degenerating the
application with the del flag set.

5.5.2. Code Generation
For current single-supervisor behaviour, the high-level operation of the Composer during a Generate
operation is:

• Prepare application output directory and subdirectories
• Interrogate Placer for a set of Cores that are involved in the application.
• Iterate through Device Types to form a cache of common strings for each type.
• Generate the file provenance information
• Generate the global graph properties header (GlobalProperties.h)
• Generate the message formats header (MessageFormats.h)
• Generate the binary blob, source and header for the Supervisor (supervisor.bin,

supervisor_generated.{cpp|h})
• Iterate over the set of cores and generate the per-core source and headers for each core

(vars_<CORE_ADDR>.{cpp|h}, handlers_<CORE_ADDR>.{cpp|h})
o Iterate over each thread contained by the core and generate the per-thread source

(vars_<CORE_ADDR>_<THREAD_ADDR>.cpp) and appends to the per-core variables
header (vars_<CORE_ADDR>.h)

 Application output directory preparation 5.5.2.1.
The composer stores all generation, build and compilation artefacts for an application in an
application-specific sub directory under the currently configured output directory. The name of the
application output directory is derived from the Graph Instance’s compound name
(<APP_NAME>::<GRAPH_NAME>) with the double-colon being replaced with a “__”. The application
output directory is transient (it is purged any time a generate is called) and no additional files
should be placed under it.

The composer prepares the output directory for the application by first removing the directory if it
already exists. The Composer then creates the subdirectory structure shown in Insert 5 and described
in Table XIX.

Finally, the static sources for the Supervisor are copied to the Generated subdirectory and a copy of
the Softswitch’s Makefile is placed in the Build subdirectory.

typedef enum softswitchLoopMode_t
{
 standard = 0,
 priInstr
} ssLoopMode_t;

Page 41 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

Insert 5: Application output directory structure.

Table XXX: Application output directory layout
Directory Description
Build Build is initiated from here. Object files are placed here as part

of the compilation process. A copy of the Makefile is placed
here.

Generated Contains copies of Supervisor source. Generated Supervisor
source code, Supervisor binary blob, GlobalProperties.h
and MessageFormats.h are placed here.

Generated/inc Softswitch-specific headers (handlers_%,h and vars_%.h)
are placed here.

Generated/src Softswitch-specific source files (handlers_%.cpp,
vars_%.cpp and vars_%_%.cpp) are placed here.

 Device type strings formation 5.5.2.2.
All devices of the same type share a large number of common strings throughout their generated
source code. These strings include common preamble used at the start of every handler and the
contents of the handler source and header files. To improve generation speed, each instance of a
ComposerGraphI_t stores a cache of common strings (in the form of a map with the signature
std::map<DevT_t*, devTypStrings_t*> devTStrsMap) for each device type involved in the
application.

 File provenance information 5.5.2.3.
The Composer places a multi-line comment at the top of each generated source file that contains
provenance information that provides details when the file was generated, the origin XML used to
generate the source and Orchestrator/Composer settings at the time the file was generated. The
provenance information is generated once and cached within the ComposerGraphI_t.

 Global Properties header 5.5.2.4.
The Global Properties header (GlobalProperties.h) includes the definition for the
global_props_t struct and the declaration of the const-protected GraphProperties variable.
This header is used by the Supervisor and all Softswitches. The file is created even if the application
does not have any global properties.

 Message Formats header 5.5.2.5.
The Message Formats header (MessageFormats.h) contains structure definitions for each packet
format used within the application. Packet formats structs are given generated names
pkt_<PACKETID>_pyld_t where PACKETID is the contents of the “id” attribute from the XML.
The file is created even if the application does not have any defined packet formats.

 Supervisor Generation 5.5.2.6.
When generating the Supervisor, the Composer walks every node in the Graph Instance’s application
digraph and populates the Supervisor’s DeviceVector with device addresses. To significantly
reduce the compilation time of the Supervisor for larger problems compared to writing a very large
braced initialiser or initialisation method, the DeviceVector generated by the Composer are written
to a binary file. This file is subsequently turned into a linkable object using ld’s --relocatable

├── Build
└── Generated
 ├── inc
 ├── src

Page 42 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

option to partially link the file. This produces an object that contains symbols for pointers to the start
and end of the binary blob, which can then be used to initialise the const-protected DeviceVector.

The digraph walk is also used to populate the ComposerGraphI_t’s supevisorDevIVect vector
and devISuperIdxMap map. The Composer also walks the set of cores involved in the application to
populate the Supervisor’s ThreadVector. Finally, the Composer writes the Macros of Convenience
and remainder of the Supervisor source code to supervisor_generated.cpp and
supervisor_generated.h.

 Softswitch Generation 5.5.2.7.
To generate the Softswitch, the Composer starts by iterating over the set of cores involved in the
application. For each core, the Composer first determines the device type hosted on the core by
making use of the fact that a core only hosts a single device type and that if a core appears in the set of
cores, at least one thread on the core (thread 0) hosts at least one device. The Composer then creates
and populates the source and header files for the per-core handlers and variables
(handlers_<CORE>.{cpp|h}, vars_<CORE>.{cpp|h}). The Composer then iterates over each
thread hosted by the core.

For each thread, the Composer first creates the per-thread source file
(vars_<CORE>_<THREAD>.cpp) and writes the initialisers for the thread-level constructs
(ThreadContext, the Device Type array and the input/output pin types) before iterating over each
device instance hosted on the thread.

As part of the ThreadContext generation, the Composer determines the size of the RTS/packet
buffer. In buffering mode, this is simply the value of rtsBuffSizeMax stored in the application’s
ComposerGraphI_t. In non-buffering mode, and assuming that the device type has an implicit
Supervisor send pin, the size is set to:

1 + <number of connected pin types> + <number of devices on thread>

as long as this is less than the value of rtsBuffSizeMax stored in the application’s
ComposerGraphI_t and greater than MIN_RTSBUFFSIZE (default 10). Where the device type
does not have an implicit Supervisor pin, the <number of devices on thread> term is omitted.

For each device instance, the Composer forms and writes initialisers for the device instance, device
state and device properties arrays. As part of this process, the Composer finds all of the edges that
involve the device and writes the declarations for the input pin and output pin arrays by iterating over
the edges. If the device type has an implicit Supervisor output pin, the Composer adds this pin to the
end of the output pin array.

5.5.3. Compilation
The compile command is only effective for applications that have already been generated. If
compile is called for an application that has not been generated, the Composer returns with a non-
zero method and writes to the microlog. Calling compile on an application that has already been
compiled has no effect beyond a microlog message.

During compilation, intermediate build objects are placed in the Build subdirectory and compiled
binaries are placed in bin subdirectory, which is created as part of the compilation process. The
Composer then forms the command used to invoke the Softswitch’s Makefile by interrogating the
contents of the application’s ComposerGraphI_t. The format of the make invocation is shown in
Insert 6. The output of the command, including anything written to stderr, is written to
Build/make_errs.txt.

Page 43 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

Insert 6: Layout of the make command executed by the Composer. Optional parameters that are only passed
if the relevant value is set in the application’s ComposerGraphI_t are enclosed in square braces.

Once the command has been formed, the Composer invokes make from the application’s Build
directory. A parallel make is invoked to speed up the compilation – it will use all virtual cores save
for four to allow other processes to continue.

If the compilation fails, the contents of Build/make_errs.txt are copied to the Microlog and the
composer returns a non-zero value.

If the compilation was successful, the Composer walks the set of cores involved in the application and
ensures that the binaries for each core were generated successfully. The Composer also stores the path
to the generated instruction and data binaries for each core within the relevant pCore. The Composer
also checks that the Supervisor’s shared object has been generated and stores the path to it in the
Graph Instance’s pSupI. If any of the binaries have not been generated, the Composer writes to the
microlog and returns with a non-zero value.

5.5.4. Clean
clean()undoes a compilation by invoking make clean in the application’s Build directory. The
Composer then removed the bin directory before walking all of the cores involved in the application
and removing the paths for the previously generated binaries. Finally, the path stored in the Graph
Instance’s pSupI is cleared.

5.5.5. Degeneration
degenerate() undoes the generation step for applications that have been generated but not
compiled. If degenerate is called for an application that has been compiled, the Composer writes to
the microlog and returns with a non-zero value. Calling degenerate on an application that not been
generated has no effect beyond a microlog message.

To degenerate an application, the Composer deleted the application’s output directory and all of its
contents. The Composer then clears the generated flag; the Supervisor device vector and map; the
provenance string cache; and the Device Type strings cache in the application’s
ComposerGraphI_t. If the degenerate method has been called with the del(ete) flag set to true
(i.e. when called by the degenerate or decompose commands), the Composer deletes the
application’s ComposerGraphI_t.

5.5.6. Status Interrogation
The Orchestrator may query the build and generation state of an application with the isCompiled()
and isGenerated() methods. Both methods take a pointer to a GraphI_t as their only parameter
and both methods return a bool.

 Error Handling 5.6.
Methods within the Composer that may fail return an integer that is non-zero on failure. Any failure is
fatal and errors are written to the microlog for further inspection. Partially generated source is not
tidied up: it will be removed when generate is next called.

Errors encountered during compilation are written to Build/make_errs.txt and then copied into
the microlog. Errors during a clean operation are written to Build/clean_errs.txt.

make -j$(nproc --ignore=4) all [SOFTSWITCH_BUFFERING=1]
[SOFTSWITCH_DISABLE_INSTRUMENTATION=1] [SOFTSWITCH_TRIVIAL_LOG_HANDLER=1]
[SOFTSWITCH_PRIORITISE_INSTRUMENTATION=1]
SOFTSWITCH_LOGLEVEL=(softswitchLogLevel) [CM_CFLAGS=“(compilationFlags)”] >
make errs.txt 2>&1

Page 44 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

6. Future Work
This section contains a brain dump of future work and improvements that could be made to the
Softswitch, Supervisor and Composer.

 Softswitch 6.1.
6.1.1. Datastructure Location
Currently, the Softswitch does not make use of the available SRAM space (~16K) and stores
everything in DRAM. The ThreadContext is stored at the base of the DRAM heap and everything else
(including the RTS buffer and packet buffer) is stored on the stack.

The Softswitch could make better use of the available resources by storing the ThreadContext (~100
bytes) at the base of the SRAM heap and the RTS buffer at the base of the DRAM heap, or by using
the SRAM heap for the packet buffer (of 292 packets) when in buffering mode.

6.1.2. Softswitch Shutdown
The current shutdown procedure relies on the FPGA fabric is rebooted between subsequent runs to
clear stale packets, reload the softcores, etc. The shutdown process could be improved to include the
following procedure:

• Send packet to Mothership to confirm shutdown has started
• Enter a loop that continuously drains the network while waiting for a final “kill” packet from

the Mothership and discarding all other packets.
• Once the kill packet has been received, the Softswitch could then re-enter the bootloader.

6.1.3. Task field
The current version of the Softswitch does not check or use the task field in the header. For a multi-
task deployment, this is required. Checking the task field can also help mitigate a potential problem of
delayed/stale packets from a previous run from interfering with a current run.

One potential method of doing this would be to add a field to the ThreadContext for the task and
setting it during the barrier by sending the task in the payload of the INIT packet from the Mothership.

6.1.4. Log Handler Improvements
The current log handler calls a trivial log handler (that ignores any provided arguments) and does not
include the source device address. While the trivial log handler should be retained to provide a low-
overhead method of sending log packets, a more full-featured log handler (selectable at build time) is
required for proper application debugging.

6.1.5. Instrumentation Output
Instrumentation is currently written to individual files for each thread in the execution directory
(~/.orchestrator/instrumentation). This should ultimately end up at the LogServer or a
dedicated instrumentation handling process.

6.1.6. RTSbuf improvements
The RTS list is currently implemented as a circular buffer. The intention is that it is sized so that
every pin on every device could have a pending send simultaneously. As such, the available space in
the buffer is not checked when in non-buffering mode.

Page 45 of 45

P
O

E
T

S

O
rc

he
st

ra
to

r
In

te
rn

al
s

For larger problems (e.g. >1024 devices or lots of output pins per device), having buffer space for
every output pin will be an inefficient use of resources. A more efficient method would be to have a
fixed-size buffer that limits the number of pending pins. However, this means that some form of
available space checking will need to be carried out before adding output pins to the RTS list.

6.1.7. Additional Execution Order Configuration
The Softswitch currently supports reordering of the receive and instrumentation sending operations
within the loop. This could be extended to allow sending to be prioritised over receive (and
instrumentation to be prioritised over that)..

 Supervisor 6.2.
The current Supervisor makes limited use of the Supervisor API and does not support multiple-
supervisor execution.

 Composer 6.3.
6.3.1. Multi-supervisor support
For multi-supervisor operation, the generation sequence will (when implemented) become:

• Prepare application output directory and subdirectories
• Interrogate Placer for a set of Boxes that are involved in the application.
• Iterate through Device Types to form a cache of common strings for each type.
• Generate the file provenance information
• Generate the global graph properties header (GlobalProperties.h)
• Generate the message formats header (MessageFormats.h)
• Iterate over the set of boxes to:

o Generate the source and header for the box’s Supervisor (supervisor_generated.{cpp|h})
o Iterate over the cores contained by the box and generate the per-core source and headers

(vars_<CORE_ADDR>.{cpp|h}, handlers_<CORE_ADDR>.{cpp|h})
 Iterate over each thread contained by the core and generate the per-thread source

(vars_<CORE_ADDR>_<THREAD_ADDR>.cpp) and appends to the per-core
variables header (vars_<CORE_ADDR>.h)

6.3.2. Templating
The Composer could be made more flexible (for alternative platforms or Softswitch alternatives) by
moving to a template-inspired generation process. In other words, move away from having strings for
the boilerplate code baked into the Composer and have them stored in a (selectable) set of files.

	1. Introduction
	1.1. Related Documentation
	1.2. Document Structure

	2. The Softswitch
	2.1. Operation
	2.1.1. Operating Modes
	2.1.2. Boot Sequence
	2.1.3. Main Loop
	2.1.4. Receive Handling
	2.1.5. Ready to Send handling
	2.1.6. Send Handling
	2.1.6.1. Idle handling
	2.1.6.2. Loop Order

	2.1.7. Shutdown

	2.2. XML-derived Handlers
	2.2.1. Reserved Variable Names
	2.2.2. Available variables
	2.2.3. Macros of Convenience
	2.2.4. SharedCode
	2.2.5. ReadyToSend
	2.2.5.1. ReadyToSend Flags

	2.2.6. OnInit
	2.2.7. OnReceive
	2.2.8. OnSend
	2.2.9. OnDeviceIdle
	2.2.10. OnHWIdle
	2.2.11. OnCtl

	2.3. Device Identification
	2.4. Log Packets
	2.4.1. Trivial log Handler

	2.5. Instrumentation
	2.6. Data Structure
	2.6.1. Definitions Section
	2.6.2. Instance Section

	2.7. Configuration Options
	2.8. Alternative Backends

	3. The Supervisor
	3.1. Supervisor API
	3.2. XML-derived Handlers
	3.2.1. Available variables
	3.2.2. Reserved Variable Names
	3.2.3. Macros of Convenience
	3.2.4. SharedCode
	3.2.5. Code
	3.2.6. OnInit
	3.2.7. OnSupervisorIdle
	3.2.8. OnImplicit
	3.2.8.1. Replies
	3.2.8.2. Broadcasts

	3.2.9. OnPkt
	3.2.10. OnRTCL
	3.2.11. OnStop

	3.3. Supervisor Data Structure

	4. Compilation
	4.1. Source Files
	4.1.1. Softswitch
	4.1.1.1. Static sources
	4.1.1.2. Generated Sources

	4.1.2. Supervisor
	4.1.2.1. Static Sources
	4.1.2.2. Generated Sources

	4.2. Prerequisites
	4.3. Paths and Environment Variables
	4.4. Configuration options
	4.5. Default flags
	4.6. Linker Scripts

	5. Composer
	5.1. Commands
	5.2. Default Values
	5.3. Data Structure
	5.4. Output Directory
	5.5. Composer Internals
	5.5.1. Build Control
	5.5.1.1. setRTSSize
	5.5.1.2. setBuffMode
	5.5.1.3. enableInstr
	5.5.1.4. setLogHandler
	5.5.1.5. setLogLevel
	5.5.1.6. setLoopMode
	5.5.1.7. addFlags

	5.5.2. Code Generation
	5.5.2.1. Application output directory preparation
	5.5.2.2. Device type strings formation
	5.5.2.3. File provenance information
	5.5.2.4. Global Properties header
	5.5.2.5. Message Formats header
	5.5.2.6. Supervisor Generation
	5.5.2.7. Softswitch Generation

	5.5.3. Compilation
	5.5.4. Clean
	5.5.5. Degeneration
	5.5.6. Status Interrogation

	5.6. Error Handling

	6. Future Work
	6.1. Softswitch
	6.1.1. Datastructure Location
	6.1.2. Softswitch Shutdown
	6.1.3. Task field
	6.1.4. Log Handler Improvements
	6.1.5. Instrumentation Output
	6.1.6. RTSbuf improvements
	6.1.7. Additional Execution Order Configuration

	6.2. Supervisor
	6.3. Composer
	6.3.1. Multi-supervisor support
	6.3.2. Templating

