Notation

November 28, 2017

Vectors and matrices are denoted as boldface symbols such as \boldsymbol{x} and non-boldface symbols like x will be used for scalars. Left subscripts indicate the coordinate system, for example ${ }_{I} \boldsymbol{x}$ expresses the vector \boldsymbol{x} in the inertial frame. In general, if no left subscript is used, then the vector is expressed in the body frame B. Square brackets is reserved for discrete variables, where the letter k represents the discrete time index. Deviation variables are denoted with a small tilde such as \tilde{x}, nominal variables with a bar (\bar{x}), state estimates with a hat (\hat{x}) and time derivatives with a dot (\dot{x}). A vector element index is expressed as a right lower subscript. For instance, the first element of a vector \boldsymbol{q} is expressed as a scalar variable q_{0}. If a specific element of a vector is meant, such as the x-component of $\boldsymbol{\omega}$, the variable is written as a scalar variable ω_{x}. If a subscript contains a comma, then the expression after the comma describes the scalar variable in more detail. For instance, the desired angular velocity in the x -direction is denoted as $\omega_{x, \text { des }}$.

Exception of the previous mentioned notation applies to optimization variables, state matrices and weighting matrices, where the matrices are denoted as non-bold symbols to simplify notation. The optimization variables are also expressed as non-bold symbols with a lower subscript k that denotes the discrete prediction time. In order to express a specific element of an optimization variable, parentheses are used. For instance, the first element of an optimization variable at the discrete prediction time 0 is expressed as $x_{0}(1)$, where indexing starts at 1 .

