

## Controllers auto-tuning for multirotors and fixed-wing vehicles

Mathieu Bresciani

September 2021

## Outline

#### 1. (Basic) Control theory

- a. Block diagrams
- b. Controller tuning techniques
- 2. Why do we need auto-tuning?

#### 3. Auto-tuning and adaptive control

- a. Direct and indirect adaptive control
- b. Adaptive control  $\rightarrow$  auto-tuning
- 4. The strategy selected for PX4
- 5. Python prototyping
- 6. Onboard implementation (in PX4)
- 7. Flight test results
- 8. Conclusion

## **1.a. Control theory - Block diagrams**



## **1.b. Control theory - Controller tuning**

#### No model required:

Ρ D manual PID tuning Widely used in Ziegler-Nichols  $\rightarrow$  too dangerous for aircrafts industrial projects Auto-tuning (~adaptive control) **Model required:** Loop-shaping 6(L)  $\omega_0 \sqrt{1-\zeta^2}$ Mainly used in G<sub>d</sub> | DESIRED LOOPSHA H-infinity academia or in 6(T) Pole placement -PERFORMANCE research projects BOUND 0 db Internal model control Re ROBUSTNES ζwo Minimum variance control <u>d</u>(S) 6(L) Model reference control  $2\zeta p + 1$ s = pDESIRED CROSSOVER 0. Left: pole placement, Right: loop shaping (Mathworks.com)

## 2. Why do we need auto-tuning?

#### **Manual tuning**

- Need good pilot (and a 2nd operator)
- Understand the control parameters
- Tuning experience
- A lot of flight time (iterations)
- Everyone has a different standard
- Limited to simple controllers (e.g.: PID)

#### **Auto-tuning**

- Can be used by everyone
- High-level understandable criteria
- No tuning experience required
- Fast
- Generates a good base tuning on all drones
- Can be used to tune simple and advanced controllers

Total: expensive for every bringup

Total: expensive to develop but then almost free

#### Auterion

...

## 3. Auto-tuning and adaptive control

#### **Direct adaptive control**

Adjust the controller to track the desired reference dynamics (e.g.: MRAC)

#### Indirect adaptive control

- 1. Estimate the vehicle dynamic model
- Adjust the controller using model-based tuning techniques (e.g.: loop shaping, pole placement, ...)



### 3. Auto-tuning and adaptive control

**Adaptive control:** Continuously adjust the controller as the parameters change **Auto-tuning:** Temporarily enable the control adaptation algorithm to tune the controller



## 4. The strategy selected for PX4

#### Indirect adaptive control

System identification:

- Efficient Recursive
  Least-Squares (RLS)
  algorithm (no matrix inversion)
- Linear optimization
- Fixed structure

Attitude and rate control tuning:

- Closed-form solution



## 5. Python prototyping

Input: high-rate *.ulg* flight logs

Discrete-time model identification

Closed-loop (controller + identified model) step response



Simulates model output based on identified model and logged inputs

Closed-loop bode plot (frequency response)

#### Auterion

Sliders for auto-tuning meta-parameters and PID gains

## 6. Onboard implementation (in PX4)

Same algorithms used in python prototype script (same results are confirmed by unit tests)

Additional supervisor state machine and error handling logic



# Uncertainty

# State machine

## 7. Flight test results

#### Example: X500 Quadrotor



## 8. Conclusion

#### **Benefits**

Speeds-up initial bringup

- Complicated trial and error tuning  $\rightarrow$  single click
- No control theory knowledge required
- Provides a dynamic model (can be used in sim of offline controller design)

#### Limitations

Cannot tune all drones with same meta-parameters The drone needs to fly decently before starting the auto-tune algorithm Struggles to tune UAVs with flexible body or large actuator delays (unmodeled dynamics) Does not fix the hardware problems



## **Questions?**

Thank you!