Skip to content
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.
C++ Python JavaScript Cuda C CMake Other
Branch: master
Clone or download
throneclay Merge pull request #535 from xyoungli/license
remove useless header, fix build error
Latest commit 5fd68a6 Jul 22, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
benchmark update benchmark Jun 12, 2019
cmake Fix SGX build failure Jul 11, 2019
docker Milestone: all updated to new version Nov 16, 2018
docs update doc and examples Jun 12, 2019
examples update doc and examples Jun 12, 2019
framework Fix SGX build failure Jul 11, 2019
saber
sgx Fix SGX build failure Jul 11, 2019
test remove useless header, fix build error Jul 19, 2019
third-party Fix SGX build failure Jul 11, 2019
tools update doc and examples Jun 12, 2019
utils update from 857f26 May 30, 2019
.coveralls.yml add coveralls.yml Jun 6, 2018
.gitignore Milestone: all updated to new version Nov 16, 2018
.travis.yml improve docker bash scripts Jun 12, 2018
AUTHORS.md add authors Jul 3, 2018
CMakeLists.txt push github from f4e1320 Apr 15, 2019
LICENSE First push May 26, 2018
README.md add Acknowledgement to README Jul 19, 2019
build.sh Milestone: all updated to new version Nov 16, 2018

README.md

Anakin2.0

Build Status License Coverage Status

Welcome to the Anakin GitHub.

Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineers and is a large-scale application of industrial products.

Please refer to our release announcement to track the latest feature of Anakin.

Features

  • Flexibility

    Anakin is a cross-platform, high-performance inference engine, supports a wide range of neural network architectures and different hardware platforms. It is easy to run Anakin on GPU / x86 / ARM platform.

    Anakin has integrated with NVIDIA TensorRT and open source this part of integrated API to provide services, developers can call the API directly or modify it as needed, which will be more flexible for development requirements.

  • High performance

    In order to give full play to the performance of hardware, we optimized the forward prediction at different levels.

    • Automatic graph fusion. The goal of all performance optimizations under a given algorithm is to make the ALU as busy as possible. Operator fusion can effectively reduce memory access and keep the ALU busy.

    • Memory reuse. Forward prediction is a one-way calculation. We reuse the memory between the input and output of different operators, thus reducing the overall memory overhead.

    • Assembly level optimization. Saber is a underlying DNN library for Anakin, which is deeply optimized at assembly level.

NV GPU Benchmark

Machine And Enviornment

CPU: Intel(R) Xeon(R) CPU 5117 @ 2.0GHz
GPU: Tesla P4
cuda: CUDA8
cuDNN: v7

  • Time:warmup 10,running 1000 times to get average time
  • Latency (ms) and Memory(MB) of different batch

The counterpart of Anakin is the acknowledged high performance inference engine NVIDIA TensorRT 5 , The models which TensorRT 5 doesn't support we use the custom plugins to support.

VGG16

Batch_Size RT latency FP32(ms) Anakin2 Latency FP32 (ms) RT Memory (MB) Anakin2 Memory (MB)
1 8.52532 8.2387 1090.89 702
2 14.1209 13.8772 1056.02 768.76
4 24.4529 24.3391 1002.17 840.54
8 46.7956 46.3309 1098.98 935.61

Resnet50

Batch_Size RT latency FP32(ms) Anakin2 Latency FP32 (ms) RT Latency INT8 (ms) Anakin2 Latency INT8 (ms) RT Memory FP32(MB) Anakin2 Memory FP32(MB)
1 4.6447 3.0863 1.78892 1.61537 1134.88 311.25
2 6.69187 5.13995 2.71136 2.70022 1108.86 382
4 11.1943 9.20513 4.16771 4.77145 885.96 406.86
8 19.8769 17.1976 6.2798 8.68197 813.84 532.61

Resnet101

Batch_Size RT latency (ms) Anakin2 Latency (ms) RT Latency INT8 (ms) Anakin2 Latency INT8 (ms) RT Memory (MB) Anakin2 Memory (MB)
1 9.98695 5.44947 2.81031 2.74399 1159.16 500.5
2 17.3489 8.85699 4.8641 4.69473 1158.73 492
4 20.6198 16.8214 7.11608 8.45324 1021.68 541.08
8 31.9653 33.5015 11.2403 15.4336 914.49 611.54

X86 CPU Benchmark

Machine And Enviornment

CPU: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz with HT, for FP32 test
CPU: Intel(R) Xeon(R) Gold 6271 CPU @ 2.60GHz with HT, for INT8 test
System: CentOS 6.3 with GCC 4.8.2, for benchmark between Anakin and Intel Caffe

  • All test enable 8 thread parallel
  • Time:warmup 10,running 200 times to get average time

The counterpart of Anakin is Intel Cafe(1.1.6) with mklml.

Net_Name Batch_Size Anakin2 Latency(2650v4) fp32 (ms) caffe Latency(2650v4) fp32 (ms) Anakin2 Latency int8(6271) (ms)
resnet50 1 20.6201 24.1369 3.20866
resnet50 2 39.2286 43.1096 5.44311
resnet50 4 77.1392 81.8814 9.93424
resnet50 8 152.941 158.321 19.5618
vgg16 1 55.6132 70.532 15.3181
vgg16 2 96.5034 131.451 22.5082
vgg16 4 180.479 247.926 37.2974
vgg16 8 346.619 485.44 67.6682
mobilenetv1 1 3.98104 5.42775 0.926546
mobilenetv1 2 7.27079 9.16058 1.35007
mobilenetv1 4 14.4029 16.2505 2.37271
mobilenetv1 8 29.1651 29.8381 3.75992
vgg16_ssd 1 125.948 143.412
vgg16_ssd 2 247.242 266.22
vgg16_ssd 4 488.377 510.978
vgg16_ssd 8 972.762 995.407
mobilenetv2 1 3.78504 23.0066
mobilenetv2 2 7.24622 65.9301
mobilenetv2 4 13.7638 85.3893
mobilenetv2 8 28.4093 131.669

ARM CPU Benchmark

Machine And Enviornment

CPU: Kirin 980
CPU: Snapdragon 652
CPU: Snapdragon 855
CPU: RK3399

  • Compile circumstance: Android ndk cross compile,gcc 4.9,enable neon
  • Time:warmup 10,running 10 times to get average time
  • Note: 1、shufflenetv2 int8 model add swish operator

The counterpart of Anakin is ncnn(20190320). This benchmark we test ARMv7 ARMv8 splitly

ARMv8 TEST

  • ABI: arm64-v8a
  • Latency (ms) of one batch
Kirin 980 Anakin fp32 Anakin int8 NCNN fp32 NCNN int8
1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread
mobilenet_v1 34.172 19.369 12.723 37.588 20.692 13.280 45.420 24.220 16.730 50.560 27.820 20.010
mobilenet_v2 30.489 17.784 12.327 29.581 17.208 15.307 30.390 17.310 12.900
mobilenet_ssd 71.609 37.477 28.952 88.220 70.070 66.430 103.700 85.160 85.320
resnet50 255.748 137.842 104.628 1299.480 695.830 498.010 243.360 131.100 89.800
shufflenetv1 11.544 8.931 7.027 12.810 9.390 8.030
shufflenetv2 11.687 7.899 5.321 20.402 11.529 9.061
squeezenet 28.580 16.638 14.435
googlenet 93.917 52.742 40.301 130.875 72.522 54.204


Snapdragon 855 Anakin fp32 Anakin int8 NCNN fp32 NCNN int8
1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread
mobilenet_v1 32.019 19.024 10.491 34.363 20.292 10.382 37.110 22.310 13.520 47.430 28.350 15.830
mobilenet_v2 28.533 17.455 10.433 24.487 15.182 9.133 25.060 15.970 11.250
mobilenet_ssd 66.454 41.397 23.639 101.560 69.380 43.930 136.420 91.010 47.490
resnet50 201.362 132.133 78.300 1141.290 724.090 385.990 229.020 138.450 82.060
shufflenetv1 10.153 7.101 5.327 11.610 8.020 5.870
shufflenetv2 10.868 6.713 4.526 17.306 10.987 6.788
squeezenet 25.880 16.134 9.697
googlenet 85.774 54.518 34.025 118.120 73.686 41.865


Snapdragon 652 Anakin fp32 Anakin int8 NCNN fp32 NCNN int8
1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread
mobilenet_v1 109.994 54.937 33.174 83.887 43.639 24.665 123.320 122.670 65.100 128.800 154.370 125.570
mobilenet_v2 80.712 46.314 30.874 69.340 43.590 31.864 89.920 90.900 55.320
mobilenet_ssd 246.459 121.684 134.019 248.190 138.170 142.350 247.020 145.080 211.000
resnet50 673.285 346.287 378.065 880.940 514.190 533.760 313.630
shufflenetv1 34.948 26.635 21.571 39.950 25.520 20.180
shufflenetv2 35.530 21.440 16.434 49.498 29.116 19.346
squeezenet 87.037 47.192 28.663
googlenet 268.023 148.533 95.624 236.492 131.510 81.561


RK3399 Anakin fp32 Anakin int8 NCNN fp32 NCNN int8
1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread
mobilenet_v1 111.317 60.008 87.201 45.693 149.270 91.200 142.790 86.140
mobilenet_v2 105.767 60.899 79.065 53.914 118.530 86.900
mobilenet_ssd 232.923 128.337 268.900 157.860 256.560 149.730
resnet50 671.800 369.386 1029.300 571.230 569.250 344.830
shufflenetv1 38.761 25.971
shufflenetv2 36.220 22.095 51.879 30.351
squeezenet 98.489 54.863
googlenet 274.166 159.429 235.085 133.044

ARMv7 TEST

  • ABI: armveabi-v7a with neon
  • Latency (ms) of one batch
Kirin 980 Anakin fp32 Anakin int8 NCNN fp32 NCNN int8
1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread
mobilenet_v1 39.051 19.813 14.184 39.026 22.048 14.250 50.240 26.850 20.010 92.900 49.420 37.160
mobilenet_v2 36.052 19.550 14.507 32.656 19.641 15.735 35.890 20.730 18.550
mobilenet_ssd 83.474 44.530 33.116 99.960 53.160 84.360 180.000 91.380 68.140
resnet50 291.478 158.954 129.484 1412.37 766.62 560.760 355.010 189.18 133.410
shufflenetv1 11.909 9.761 7.441 16.030 10.660 8.120
shufflenetv2 11.755 7.983 6.289 21.968 14.111 9.888
squeezenet 30.148 20.908 17.084
googlenet 108.210 65.798 58.630 140.886 79.910 60.693


Snapdragon 855 Anakin fp32 Anakin int8 NCNN fp32 NCNN int8
1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread
mobilenet_v1 34.015 20.064 11.410 42.222 21.532 11.746 41.150 24.870 18.420 79.180 48.470 24.530
mobilenet_v2 30.742 18.507 11.354 24.628 15.133 9.079 30.060 19.220 15.520
mobilenet_ssd 69.749 44.010 26.000 85.030 62.770 48.940 154.600 138.700 82.140
resnet50 218.581 146.509 92.899 1380.340 996.410 540.660 324.720 261.920 126.270
shufflenetv1 11.032 7.430 5.369 13.390 9.270 6.360
shufflenetv2 11.372 7.120 4.728 19.393 12.278 7.719
squeezenet 27.860 17.538 10.729
googlenet 100.719 69.509 49.021 127.982 83.369 50.275


Snapdragon 652 Anakin fp32 Anakin int8 NCNN fp32 NCNN int8
1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread
mobilenet_v1 121.982 63.004 37.325 86.672 45.728 26.354 130.740 140.850 81.810 184.630 192.730 144.740
mobilenet_v2 89.113 50.609 35.291 72.679 45.888 33.887 94.520 101.380 65.570
mobilenet_ssd 236.466 132.293 86.335 270.630 295.520 174.280 350.640 286.420 243.850
resnet50 751.528 405.433 255.699 2762.890 1447.070 883.730 664.180 369.020
shufflenetv1 36.883 23.718 15.144 53.660 33.450 23.330
shufflenetv2 36.933 26.353 20.507 53.243 31.083 21.550
squeezenet 92.748 51.936 33.027
googlenet 296.092 179.542 125.509 242.505 140.083 89.646


RK3399 Anakin fp32 Anakin int8 NCNN fp32 NCNN int8
1 thread 2 thread 1 thread 2 thread 1 thread 2 thread 1 thread 2 thread
mobilenet_v1 116.981 65.033 87.768 47.617 155.830 98.520 201.800 116.440
mobilenet_v2 118.229 70.567 83.790 55.413 126.530 90.930
mobilenet_ssd 237.196 134.508 292.130 183.650 361.570 200.370
resnet50 725.582 413.995 2883.120 1632.800 702.660 404.970
shufflenetv1 41.094 27.353
shufflenetv2 37.660 23.489 53.558 32.122
squeezenet 104.519 59.402
googlenet 305.304 190.897 244.855 142.493

Documentation

All you need is in Doc Index

We also provide English and Chinese tutorial documentation.

Ask Questions

You are welcome to submit questions and bug reports as Github Issues.

Copyright and License

Anakin is provided under the Apache-2.0 license.

Acknowledgement

Anakin refers to the following projects:

You can’t perform that action at this time.