Skip to content

Paddle Distributed Training Examples. 飞桨分布式训练示例 Resnet Bert GPT MOE DataParallel ModelParallel PipelineParallel HybridParallel AutoParallel Zero Sharding Recompute GradientMerge Offload AMP DGC LocalSGD Wide&Deep

License

PaddlePaddle/PaddleFleetX

develop
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code


简介

PaddleFleetX旨在打造一套简单易用、性能领先、且功能强大的端到端大模型工具库,覆盖大模型环境部署、数据处理、预训练、微调、模型压缩、推理部署全流程,并支持语言、视觉、多模态等多个领域的前沿大模型算法。

最新消息 🔥

更新 (2022-09-21): PaddleFleetX 发布 v0.1 版本.

教程

安装

首先,您需要准备 PaddleFleetX 所需的运行环境。我们强烈推荐您使用 Docker 的方式来安装环境 ,具体安装方式请参考Docker环境部署。其他安装方式如裸机安装,请参考裸机部署

环境安装完成后,您可以使用以下命令将 PaddleFleetX 下载到本地,然后根据实际需要、参考教程运行相应的模型代码。

git clone https://github.com/PaddlePaddle/PaddleFleetX.git

模型库

模型 参数量 预训练文件
GPT 345M GPT_345M

性能

相对于业界主流套件Megatron-LM1与Megatron-DeepSpeed2,PaddleFleetX可以达到更高的训练吞吐。下表列出了在同等模型规模下,在多台拥有八张A100-SXM4-40GB GPU的服务器上(CUDA Version为11.6),PaddleFleetX与两者的性能对比。其中,0.35B、1.3B以及175B模型使用Megatron-LM套件。6.7B模型使用Megatron-DeepSpeed套件。

1. Megatron-LM commit id: 0bb597b42c53355a567aba2a1357cc34b9d99ddd (Commit on Jul 21, 2022)

2. Megatron-DeepSpeed commit id: 54f1cb7c300b05bf4e232c3efb862e5becd9fb53 (Commit On Sep 27, 2022)

工业级应用

许可

PaddleFleetX 基于 Apache 2.0 license 许可发布。

引用

@misc{paddlefleetx,
    title={PaddleFleetX: An Easy-to-use and High-Performance One-stop Tool for Deep Learning},
    author={PaddleFleetX Contributors},
    howpublished = {\url{https://github.com/PaddlePaddle/PaddleFleetX}},
    year={2022}
}