{ Python }

Learning Path with Pankaj Chouhan

LISTS

{ Collection Data Type }

Learning Path with Pankaj Chouhan

Python Lists

List is one of the most frequently used and

versatile data type in Python.

A list Is created by placing items
(elements) inside square brackets [],

separated by commas. For example,

numbers = [1, 23, 43]

Here, we created a list named numbers. It

contains 3 items.

We will learn more about creating lists

next.

Create a List

A list can have any number of items. And,

these items may be of different types (int,

float, [str|etc.).
empty list
list1 = []

list of integers
Tigt2 <=0, 3]

list with mixed data types
list3 = [1, "Hello", 3.4]

Also, a list can even have another list as

an item. This is called a nested list.

nested list
my_list = ["mouse", [8, 4, 6], ['a']]

Learning Path with Pankaj Chouhan

Access Elements from a List

We can use the index operator [] to

access an item in a list.

Suppose, a list has 5 items like this:

numbers = [1, 44, 10, 100, 3.33]

We access the first element using
numbers[0], the second element using

numbers[1] and so on.

Index starts from 0 (not 1). So, a list having

5 1tems will have an index from 0 to 4.

numbers = [1, 44, 10, 100, 3.33]

print(numbers[0]) #
print(numbers[3]) # 100
print(numbers[4]) # 3.33

If you try to access the item outside of the
Index, you will get an IndexError. For
example, If you try to access the sixth
element in the above example with

numbers[5], you will get an error.

The index must be an integer. We cannot
use float or other types. This results In

TypeError.

Learning Path with Pankaj Chouhan

Negative Indexing
This list contains 6 items. In this case,

Python allows negative indexing for Its

sequences. The index of -1 refers to the e Bothmy_list[0] andmy_list[-6] gives

last item, -2 to the second lastitem and so ~ Y° the first element P’

e Bothmy list[1] andmy_list[-5] gives

on.
us the second element 'y
NySTTST =ALIREE TR N Pt] e Bothmy_list[5] andmy_list[-1] gives
Drint(my_liSt[-1:) # Output: n us the Idst element 'n'
print(my_list[-5]) # Output: y
print(my_list[-6]) # Output: P

Learning Path with Pankaj Chouhan

Slicing of a List

In the previous few examples, we learn to
access an item from a list. Now, we will
learn to access a range of items. This Is

done by using the slicing operator :.

my—list — [IPI' lyl, ltl' lhl' IOI' lni]
elements 3rd to 5th
print(my_list[2:5]) A A S

elements 4th to end
print(my_list[3:]) # ['h', '0o', 'n']

elements beginning to 4th
print(my_list[:-5]) # ['P']

elements beginning to end
print(my_list[:]) # 'R, 'y, "t
lhl' lol’ lnl]

Slicing can be best visualized by
considering the index to be between the

elements as shown below.
0 1 2 3 4 5
-6 -5 -4 -3 =2 -1

So If we want to access a range, we need

two indexes that will slice that portion

from the list.

Learning Path with Pankaj Chouhan

Change Items of a List Add Elements to a List

. . . To add a single item to a list, we can use
Lists are mutable. Meaning, their items 0

the append() method. For example,
can be changed.

odd = [1, 3, 5]

We can use the = operator to change an
odd.append(7) # adding 7 to the list

Item or a range of items. Here's an |
print(odd) 2 I1; 3. 5, 7]

example:

mistake values

odd = [2, 4, 6, 8] If you need to add individual items from a

ﬁdg?gggi fhe Ist 1tem list to another list, we use the extend()

orint(odd) # Output: [1, 4, 6, 8] method. For example,

change 2nd to 4th items i
odd[1:4] = [3, 5, 7] odd = [1, 3, 5]

print(odd) # Output: [1, 3, 5, 7] odd.extend([7, 9, 11])

print(odd) ® 11, 3, 9. 7. 9, 11]

Learning Path with Pankaj Chouhan

Using + and * Operators

We can also use the + operator to combine Furthermore, we can insert one item at a

two lists. This is called concatenation. desired location by using the method
insert() or insert multiple items by
If you need to repeat items of a list, you squeezing it into an empty slice of a list.
can use the * operator.
odd = [1, 9]

odd = [1, 3, 5] odd.insert(1, 3) # inserting 3 at 1st index

praint(oad + [9, 7, 3]) print(odd) # Output: [1, 3, 9]

Output: [1, 3, 5, 9, 7, 5] oaal2:2] =[5, 7]

print(odd) # Output: [1, 3, 5, 7, 9]
print(['a', 'b'] * 3)

Output: ['a', 'b', 'a', 'b', "a', 'b']

Learning Path with Pankaj Chouhan

Delete Items from a List

We can delete one or more items from a
list using the keyword del. It can even

delete the list entirely.

my—list= ['p"'r','O','b','l"'el"m']

del my_list[2] # delete one 1item (3rd
item)

print(my_list)
OUtpUt: [lpl' |r|’ lbl, |l|, |e|, lml]

del my_list[1:5] # delete multiple 1tems
print(my_list) # Output: ['p', 'm']

del my_list # delete entire list
print(my_list) # Error: List not defined

Learning Path with Pankaj Chouhan

Delete Items from a List (Part Il) . 1ist - 11, 2, 3, 4, 5, 6, 71

remove item 1 (not i1tem at 1st 1ndex)

my_list.remove(1)
We can use the remove() method to

) . print(my_list) # Output: [2, 3, 4, 5, 6,
remove the given item or pop() method to 7]

I " ‘ # pop 1tem at index 1
remove an item at the given index. et (g 1ist. manti}) ¥ Oumnub: 3
my_list after the item 1s popped
The pop() method removes and returns print(my_list) # Output: [2, 4, 5, 6, 7]
" " " i " # pop last item
the last item If the iIndex is not provided. o b TistoneCH) W Outouts 3
This helps us implement lists as stacks (first | 4 ny 1ist after the last item is popped
) print(my_list) # Output: [2, 4, 5,
in, last out data structure). 6]

my_list.clear() # clear list

LNt s # Output:
We can also use the clear () method to e HENE S

empty a list.

Learning Path with Pankaj Chouhan

List Copy list1

=l 2, 3]
last2 = list]
) # changing the first item of list1 to 'one’
You can use the = operator to copy one list 1ist1[0] = 'one’
to Qnother. FOr exqmple’ print(list1) # Output: ['one', 2, 3]

print(list2) # Output: ['one', 2, 3]

Listl = [, 2, 31
list2 = list1
print(list2) # Output: [1, 2, 3]
The actual way of copying a list Is by using

the copy() method.

list1 = [1, 2, 3]
Here, 1ist1 and 1list2 are two different ﬁzg = list1.copy() # copying list1 to
variables that point to the same list. When ¥ changitg the TiFst ftem of Listl 16 "one’

. : . , . list1[0] = 'one'
you change items of the 1ist1 list, list2 s
print(listi) # Output: ['one', 2, 3]

dlso changed as they are pointing to the print(list2) # Output: [1, 2, 3]

same list. | | |
Learning Path with Pankaj Chouhan

Python List Method

Here's a list of list methods we have

learned In this lesson.

e append() - to add an item to a list

® extend() - to add all elements of a list to
another list

® insert() - toinsert an item at a given
Index

® remove() - to remove an item from a list

® pop() - to remove an item at a given

Index

@ clear() - to remove all items from a list

e copy() - returns a shallow copy of the list

To learn about all the list methods, you

can go to Google and search "Python list

methods'.

We recommend you to continue with the
course and learn about more list methods

later, once you complete this course.

Learning Path with Pankaj Chouhan

Loop through a List

The easiest way to iterate through each

item In a list Is by using the for loop.

for fruit in ['apale’, hansns’ ,“msngo’i: Sometimes, we need to check whether an

int("I like",fruit : - : .
print(1ke", fruit) item is In a list or not. Here's how we can

do It.

m liSt - !Pl' I l' ltl’ lhl' lOl' lnl
Output = : d]

print('P' 1in my_list) # True
print('o' in my_list) # True
I like apple print('p' in my_list) # False

I like banana
I 1like mango

Learning Path with Pankaj Chouhan

Nested Lists ltems of nested lists are accessed using

. , L nested indexing. Here's how:
A list can have another list within it, called

a nested list. my_list = [1, 2, [3, 4, 5]]

third element's second element
my. Lisens" 11,02, A3, 4, 5] result = my_list[2][1]
print(result) # Output: 4

third element
o i@ . : - result = my_list[2]
Here, the third item of my_listisalist [3, srintiresulty # dutputs [3. 4. S

4, 5].

Learning Path with Pankaj Chouhan

