Fetching contributors…
Cannot retrieve contributors at this time
1024 lines (841 sloc) 41.5 KB
import atexit
import itertools
import logging
import os
import pathlib
import pickle
import random
import threading
import inspect
import sys
import multiprocessing
import time
from getpass import getuser
from uuid import uuid4
from socket import gethostname
from concurrent.futures import Future
from functools import partial
import parsl
from import RemoteException
from parsl.config import Config
from parsl.data_provider.data_manager import DataManager
from parsl.data_provider.files import File
from parsl.dataflow.error import *
from parsl.dataflow.flow_control import FlowControl, FlowNoControl, Timer
from parsl.dataflow.futures import AppFuture
from parsl.dataflow.memoization import Memoizer
from parsl.dataflow.rundirs import make_rundir
from parsl.dataflow.states import States, FINAL_STATES, FINAL_FAILURE_STATES
from parsl.dataflow.usage_tracking.usage import UsageTracker
from parsl.utils import get_version
from parsl.monitoring.db_logger import get_db_logger
from parsl.monitoring import app_monitor
from parsl.monitoring import logging_server
logger = logging.getLogger(__name__)
class DataFlowKernel(object):
"""The DataFlowKernel adds dependency awareness to an existing executor.
It is responsible for managing futures, such that when dependencies are resolved,
pending tasks move to the runnable state.
Here is a simplified diagram of what happens internally::
User | DFK | Executor
| |
Task-------+> +Submit |
App_Fu<------+--| |
| Dependencies met |
| task-------+--> +Submit
| Ex_Fu<------+----|
def __init__(self, config=Config()):
"""Initialize the DataFlowKernel.
config : Config
A specification of all configuration options. For more details see the
:class:~`parsl.config.Config` documentation.
# this will be used to check cleanup only happens once
self.cleanup_called = False
if isinstance(config, dict):
raise ConfigurationError(
'Expected `Config` class, received dictionary. For help, '
self._config = config
self.run_dir = make_rundir(config.run_dir)
logger.debug("Starting DataFlowKernel with config\n{}".format(config))"Parsl version: {}".format(get_version()))
self.checkpoint_lock = threading.Lock()
self.usage_tracker = UsageTracker(self)
# ES logging
self.tasks_completed_count = 0
self.tasks_failed_count = 0
self.monitoring_config = config.monitoring_config
if self.monitoring_config is not None and self.monitoring_config.database_type == 'local_database'\
and self.monitoring_config.eng_link is None:
# uses the rundir as the default location.'Local monitoring database can be found inside the run_dir at: {}'.format(self.run_dir))
self.monitoring_config.eng_link = "sqlite:///{}".format(os.path.join(os.path.abspath(self.run_dir), 'monitoring.db'))
if self.monitoring_config is None:
self.db_logger = get_db_logger()
self.db_logger = get_db_logger(monitoring_config=self.monitoring_config)
self.workflow_name = None
if self.monitoring_config is not None and self.monitoring_config.workflow_name is not None:
self.workflow_name = self.monitoring_config.workflow_name
for frame in inspect.stack():
fname = os.path.basename(str(frame.filename))
parsl_file_names = ['']
# Find first file name not considered a parsl file
if fname not in parsl_file_names:
self.workflow_name = fname
self.workflow_version = None
if self.monitoring_config is not None and self.monitoring_config.version is not None:
self.workflow_version = self.monitoring_config.version
self.time_began = time.time()
self.time_completed = None
self.run_id = str(uuid4())
self.dashboard = self.monitoring_config.dashboard_link if self.monitoring_config is not None else None
# TODO: make configurable"Run id is: " + self.run_id)
if self.dashboard is not None:"Dashboard is found at " + self.dashboard)
# start tornado logging server
if self.monitoring_config is not None and self.monitoring_config.database_type == 'local_database':
self.logging_server = multiprocessing.Process(, kwargs={'monitoring_config': self.monitoring_config})
self.logging_server = None
workflow_info = {
'python_version': sys.version_info,
'parsl_version': get_version(),
"time_began": str(self.time_began),
'time_completed': str(None),
'run_id': self.run_id,
'workflow_name': self.workflow_name,
'workflow_version': self.workflow_version,
'rundir': self.run_dir,
'tasks_completed_count': self.tasks_completed_count,
'tasks_failed_count': self.tasks_failed_count,
'user': getuser(),
'host': gethostname(),
}"DFK start", extra=workflow_info)
# ES logging end
checkpoints = self.load_checkpoints(config.checkpoint_files)
self.memoizer = Memoizer(self, memoize=config.app_cache, checkpoint=checkpoints)
self.checkpointed_tasks = 0
self._checkpoint_timer = None
self.checkpoint_mode = config.checkpoint_mode
data_manager = DataManager(max_threads=config.data_management_max_threads, executors=config.executors)
self.executors = {e.label: e for e in config.executors + [data_manager]}
for executor in self.executors.values():
executor.run_dir = self.run_dir
if hasattr(executor, 'provider'):
if hasattr(executor.provider, 'script_dir'):
executor.provider.script_dir = os.path.join(self.run_dir, 'submit_scripts')
if is None: = os.path.join(self.run_dir, 'submit_scripts')
if not
parent, child = pathlib.Path(self.run_dir).parts[-2:]
remote_run_dir = os.path.join(parent, child) = os.path.join(remote_run_dir, 'remote_submit_scripts')
executor.provider.script_dir = os.path.join(self.run_dir, 'local_submit_scripts'), exist_ok=True)
os.makedirs(executor.provider.script_dir, exist_ok=True)
if self.checkpoint_mode == "periodic":
h, m, s = map(int, config.checkpoint_period.split(':'))
checkpoint_period = (h * 3600) + (m * 60) + s
self._checkpoint_timer = Timer(self.checkpoint, interval=checkpoint_period)
except Exception:
logger.error("invalid checkpoint_period provided:{0} expected HH:MM:SS".format(config.checkpoint_period))
self._checkpoint_timer = Timer(self.checkpoint, interval=(30 * 60))
if any([x.managed for x in config.executors]):
self.flowcontrol = FlowControl(self)
self.flowcontrol = FlowNoControl(self)
self.task_count = 0
self.fut_task_lookup = {}
self.tasks = {}
self.submitter_lock = threading.Lock()
def _create_task_log_info(self, task_id, fail_mode=None):
Create the dictionary that will be included in the log.
task_log_info = {"task_" + k: v for k, v in self.tasks[task_id].items()}
task_log_info['run_id'] = self.run_id
task_log_info['task_status_name'] = self.tasks[task_id]['status'].name
task_log_info['tasks_failed_count'] = self.tasks_failed_count
task_log_info['tasks_completed_count'] = self.tasks_completed_count
task_log_info['time_began'] = str(self.time_began)
task_log_info['task_inputs'] = str(self.tasks[task_id]['kwargs'].get('inputs', None))
task_log_info['task_outputs'] = str(self.tasks[task_id]['kwargs'].get('outputs', None))
task_log_info['task_stdin'] = self.tasks[task_id]['kwargs'].get('stdin', None)
task_log_info['task_stdout'] = self.tasks[task_id]['kwargs'].get('stdout', None)
if fail_mode is not None:
task_log_info['task_fail_mode'] = fail_mode
return task_log_info
def _count_deps(self, depends):
Count the number of unresolved futures in the list depends.
count = 0
for dep in depends:
if isinstance(dep, Future):
if not dep.done():
count += 1
return count
def config(self):
"""Returns the fully initialized config that the DFK is actively using.
DO *NOT* update.
- config (dict)
return self._config
def handle_exec_update(self, task_id, future):
"""This function is called only as a callback from an execution
attempt reaching a final state (either successfully or failing).
It will launch retries if necessary, and update the task
task_id (string) : Task id which is a uuid string
future (Future) : The future object corresponding to the task which
makes this callback
memo_cbk(Bool) : Indicates that the call is coming from a memo update,
that does not require additional memo updates.
res = future.result()
if isinstance(res, RemoteException):
except Exception:
logger.exception("Task {} failed".format(task_id))
# We keep the history separately, since the future itself could be
# tossed.
self.tasks[task_id]['fail_count'] += 1
if not self._config.lazy_errors:
logger.debug("Eager fail, skipping retry logic")
self.tasks[task_id]['status'] = States.failed
if self.monitoring_config is not None:
task_log_info = self._create_task_log_info(task_id, 'eager')"Task Fail", extra=task_log_info)
if self.tasks[task_id]['fail_count'] <= self._config.retries:
self.tasks[task_id]['status'] = States.pending
logger.debug("Task {} marked for retry".format(task_id))
if self.monitoring_config is not None:
task_log_info = self._create_task_log_info(task_id, 'lazy')"Task Retry", extra=task_log_info)
else:"Task {} failed after {} retry attempts".format(task_id,
self.tasks[task_id]['status'] = States.failed
self.tasks_failed_count += 1
self.tasks[task_id]['time_returned'] = time.time()
if self.monitoring_config is not None:
task_log_info = self._create_task_log_info(task_id, 'lazy')"Task Retry Failed", extra=task_log_info)
self.tasks[task_id]['status'] = States.done
self.tasks_completed_count += 1"Task {} completed".format(task_id))
self.tasks[task_id]['time_returned'] = time.time()
if self.monitoring_config is not None:
task_log_info = self._create_task_log_info(task_id)"Task Done", extra=task_log_info)
# it might be that in the course of the update, we've gone back to being
# pending - in which case, we should consider ourself for relaunch
if self.tasks[task_id]['status'] == States.pending:
def handle_app_update(self, task_id, future, memo_cbk=False):
"""This function is called as a callback when an AppFuture
is in its final state.
It will trigger post-app processing such as checkpointing
and stageout.
task_id (string) : Task id
future (Future) : The relevant app future (which should be
consistent with the task structure 'app_fu' entry
memo_cbk(Bool) : Indicates that the call is coming from a memo update,
that does not require additional memo updates.
if not self.tasks[task_id]['app_fu'].done():
logger.error("Internal consistency error: app_fu is not done for task {}".format(task_id))
if not self.tasks[task_id]['app_fu'] == future:
logger.error("Internal consistency error: callback future is not the app_fu in task structure, for task {}".format(task_id))
if not memo_cbk:
# Update the memoizer with the new result if this is not a
# result from a memo lookup and the task has reached a terminal state.
self.memoizer.update_memo(task_id, self.tasks[task_id], future)
if self.checkpoint_mode is 'task_exit':
# Submit _*_stage_out tasks for output data futures that correspond with remote files
if (self.tasks[task_id]['app_fu'] and
self.tasks[task_id]['app_fu'].done() and
self.tasks[task_id]['app_fu'].exception() is None and
self.tasks[task_id]['executor'] != 'data_manager' and
self.tasks[task_id]['func_name'] != '_file_stage_in' and
self.tasks[task_id]['func_name'] != '_ftp_stage_in' and
self.tasks[task_id]['func_name'] != '_http_stage_in'):
for dfu in self.tasks[task_id]['app_fu'].outputs:
f = dfu.file_obj
if isinstance(f, File) and f.is_remote():
def launch_if_ready(self, task_id):
launch_if_ready will launch the specified task, if it is ready
to run (for example, without dependencies, and in pending state).
This should be called by any piece of the DataFlowKernel that
thinks a task may have become ready to run.
It is not an error to call launch_if_ready on a task that is not
ready to run - launch_if_ready will not incorrectly launch that
launch_if_ready is thread safe, so may be called from any thread
or callback.
if self._count_deps(self.tasks[task_id]['depends']) == 0:
# We can now launch *task*
new_args, kwargs, exceptions = self.sanitize_and_wrap(task_id,
self.tasks[task_id]['args'] = new_args
self.tasks[task_id]['kwargs'] = kwargs
if not exceptions:
# There are no dependency errors
exec_fu = None
# Acquire a lock, retest the state, launch
with self.tasks[task_id]['task_launch_lock']:
if self.tasks[task_id]['status'] == States.pending:
exec_fu = self.launch_task(
task_id, self.tasks[task_id]['func'], *new_args, **kwargs)
if exec_fu:
self.tasks[task_id]['exec_fu'] = exec_fu
self.tasks[task_id]['exec_fu'] = exec_fu
except AttributeError as e:
"Task {}: Caught AttributeError at update_parent".format(task_id))
raise e
"Task {} deferred due to dependency failure".format(task_id))
# Raise a dependency exception
self.tasks[task_id]['status'] = States.dep_fail
if self.monitoring_config is not None:
task_log_info = self._create_task_log_info(task_id, 'lazy')"Task Dep Fail", extra=task_log_info)
fu = Future()
fu.retries_left = 0
self.tasks[task_id]['exec_fu'] = fu
except AttributeError as e:
"Task {} AttributeError at update_parent".format(task_id))
raise e
def launch_task(self, task_id, executable, *args, **kwargs):
"""Handle the actual submission of the task to the executor layer.
If the app task has the executors attributes not set (default=='all')
the task is launched on a randomly selected executor from the
list of executors. This behavior could later be updated to support
binding to executors based on user specified criteria.
If the app task specifies a particular set of executors, it will be
targeted at those specific executors.
task_id (uuid string) : A uuid string that uniquely identifies the task
executable (callable) : A callable object
args (list of positional args)
kwargs (arbitrary keyword arguments)
Future that tracks the execution of the submitted executable
self.tasks[task_id]['time_submitted'] = time.time()
hit, memo_fu = self.memoizer.check_memo(task_id, self.tasks[task_id])
if hit:"Reusing cached result for task {}".format(task_id))
self.handle_exec_update(task_id, memo_fu)
except Exception as e:
logger.error("handle_exec_update raised an exception {} which will be ignored".format(e))
self.handle_app_update(task_id, memo_fu, memo_cbk=True)
except Exception as e:
logger.error("handle_app_update raised an exception {} which will be ignored".format(e))
return memo_fu
executor_label = self.tasks[task_id]["executor"]
executor = self.executors[executor_label]
except Exception:
logger.exception("Task {} requested invalid executor {}: config is\n{}".format(task_id, executor_label, self._config))
if self.monitoring_config is not None:
executable = app_monitor.monitor_wrapper(executable, task_id, self.monitoring_config, self.run_id)
with self.submitter_lock:
exec_fu = executor.submit(executable, *args, **kwargs)
self.tasks[task_id]['status'] = States.running
if self.monitoring_config is not None:
task_log_info = self._create_task_log_info(task_id)"Task Launch", extra=task_log_info)
exec_fu.retries_left = self._config.retries - \
self.tasks[task_id]['fail_count']"Task {} launched on executor {}".format(task_id, executor.label))
exec_fu.add_done_callback(partial(self.handle_exec_update, task_id))
except Exception as e:
logger.error("add_done_callback got an exception {} which will be ignored".format(e))
return exec_fu
def _add_input_deps(self, executor, args, kwargs):
"""Look for inputs of the app that are remote files. Submit stage_in
apps for such files and replace the file objects in the inputs list with
corresponding DataFuture objects.
- executor (str) : executor where the app is going to be launched
- args (List) : Positional args to app function
- kwargs (Dict) : Kwargs to app function
# Return if the task is _*_stage_in
if executor == 'data_manager':
inputs = kwargs.get('inputs', [])
for idx, f in enumerate(inputs):
if isinstance(f, File) and f.is_remote():
inputs[idx] = f.stage_in(executor)
def _gather_all_deps(self, args, kwargs):
"""Count the number of unresolved futures on which a task depends.
- args (List[args]) : The list of args list to the fn
- kwargs (Dict{kwargs}) : The dict of all kwargs passed to the fn
- count, [list of dependencies]
# Check the positional args
depends = []
count = 0
for dep in args:
if isinstance(dep, Future):
if self.tasks[dep.tid]['status'] not in FINAL_STATES:
count += 1
# Check for explicit kwargs ex, fu_1=<fut>
for key in kwargs:
dep = kwargs[key]
if isinstance(dep, Future):
if self.tasks[dep.tid]['status'] not in FINAL_STATES:
count += 1
# Check for futures in inputs=[<fut>...]
for dep in kwargs.get('inputs', []):
if isinstance(dep, Future):
if self.tasks[dep.tid]['status'] not in FINAL_STATES:
count += 1
return count, depends
def sanitize_and_wrap(self, task_id, args, kwargs):
"""This function should be called **ONLY** when all the futures we track have been resolved.
If the user hid futures a level below, we will not catch
it, and will (most likely) result in a type error.
task_id (uuid str) : Task id
func (Function) : App function
args (List) : Positional args to app function
kwargs (Dict) : Kwargs to app function
partial Function evaluated with all dependencies in args, kwargs and kwargs['inputs'] evaluated.
dep_failures = []
# Replace item in args
new_args = []
for dep in args:
if isinstance(dep, Future):
except Exception as e:
if self.tasks[dep.tid]['status'] in FINAL_FAILURE_STATES:
# Check for explicit kwargs ex, fu_1=<fut>
for key in kwargs:
dep = kwargs[key]
if isinstance(dep, Future):
kwargs[key] = dep.result()
except Exception as e:
if self.tasks[dep.tid]['status'] in FINAL_FAILURE_STATES:
# Check for futures in inputs=[<fut>...]
if 'inputs' in kwargs:
new_inputs = []
for dep in kwargs['inputs']:
if isinstance(dep, Future):
except Exception as e:
if self.tasks[dep.tid]['status'] in FINAL_FAILURE_STATES:
kwargs['inputs'] = new_inputs
return new_args, kwargs, dep_failures
def submit(self, func, *args, executors='all', fn_hash=None, cache=False, **kwargs):
"""Add task to the dataflow system.
If the app task has the executors attributes not set (default=='all')
the task will be launched on a randomly selected executor from the
list of executors. If the app task specifies a particular set of
executors, it will be targeted at the specified executors.
>>> IF all deps are met:
>>> send to the runnable queue and launch the task
>>> ELSE:
>>> post the task in the pending queue
- func : A function object
- *args : Args to the function
KWargs :
- executors (list or string) : List of executors this call could go to.
- fn_hash (Str) : Hash of the function and inputs
- cache (Bool) : To enable memoization or not
- kwargs (dict) : Rest of the kwargs to the fn passed as dict.
(AppFuture) [DataFutures,]
task_id = self.task_count
self.task_count += 1
if isinstance(executors, str) and executors.lower() == 'all':
choices = list(e for e in self.executors if e != 'data_manager')
elif isinstance(executors, list):
choices = executors
executor = random.choice(choices)
task_def = {'depends': None,
'executor': executor,
'func': func,
'func_name': func.__name__,
'args': args,
'kwargs': kwargs,
'fn_hash': fn_hash,
'memoize': cache,
'callback': None,
'exec_fu': None,
'checkpoint': None,
'fail_count': 0,
'fail_history': [],
'env': None,
'status': States.unsched,
'id': task_id,
'time_submitted': None,
'time_returned': None,
'app_fu': None}
if task_id in self.tasks:
raise DuplicateTaskError(
"Task {0} in pending list".format(task_id))
self.tasks[task_id] = task_def
# Transform remote input files to data futures
self._add_input_deps(executor, args, kwargs)
# Get the dep count and a list of dependencies for the task
dep_cnt, depends = self._gather_all_deps(args, kwargs)
self.tasks[task_id]['depends'] = depends
# Extract stdout and stderr to pass to AppFuture:
task_stdout = kwargs.get('stdout')
task_stderr = kwargs.get('stderr')"Task {} submitted for App {}, waiting on tasks {}".format(task_id,
[fu.tid for fu in depends]))
self.tasks[task_id]['task_launch_lock'] = threading.Lock()
app_fu = AppFuture(None, tid=task_id,
self.tasks[task_id]['app_fu'] = app_fu
app_fu.add_done_callback(partial(self.handle_app_update, task_id))
self.tasks[task_id]['status'] = States.pending
logger.debug("Task {} set to pending state with AppFuture: {}".format(task_id, task_def['app_fu']))
# at this point add callbacks to all dependencies to do a launch_if_ready
# call whenever a dependency completes.
# we need to be careful about the order of setting the state to pending,
# adding the callbacks, and caling launch_if_ready explicitly once always below.
# I think as long as we call launch_if_ready once after setting pending, then
# we can add the callback dependencies at any point: if the callbacks all fire
# before then, they won't cause a launch, but the one below will. if they fire
# after we set it pending, then the last one will cause a launch, and the
# explicit one won't.
for d in depends:
def callback_adapter(dep_fut):
except Exception as e:
logger.error("add_done_callback got an exception {} which will be ignored".format(e))
return task_def['app_fu']
# it might also be interesting to assert that all DFK
# tasks are in a "final" state (3,4,5) when the DFK
# is closed down, and report some kind of warning.
# although really I'd like this to drain properly...
# and a drain function might look like this.
# If tasks have their states changed, this won't work properly
# but we can validate that...
def log_task_states(self):"Summary of tasks in DFK:")
total_summarised = 0
keytasks = []
for tid in self.tasks:
keytasks.append((self.tasks[tid]['status'], tid))
def first(t):
return t[0]
sorted_keytasks = sorted(keytasks, key=first)
grouped_sorted_keytasks = itertools.groupby(sorted_keytasks, key=first)
# caution: g is an iterator that also advances the
# grouped_sorted_tasks iterator, so looping over
# both grouped_sorted_keytasks and g can only be done
# in certain patterns
for k, g in grouped_sorted_keytasks:
ts = []
for t in g:
tid = t[1]
total_summarised = total_summarised + 1
tids_string = ", ".join(ts)"Tasks in state {}: {}".format(str(k), tids_string))
total_in_tasks = len(self.tasks)
if total_summarised != total_in_tasks:
logger.error("Task count summarisation was inconsistent: summarised {} tasks, but tasks list contains {} tasks".format(
total_summarised, total_in_tasks))"End of summary")
def atexit_cleanup(self):
if not self.cleanup_called:
def wait_for_current_tasks(self):
"""Waits for all tasks in the task list to be completed, by waiting for their
AppFuture to be completed. This method will not necessarily wait for any tasks
added after cleanup has started (such as data stageout?)
""""Waiting for all remaining tasks to complete")
for task_id in self.tasks:
# .exception() is a less exception throwing way of
# waiting for completion than .result()
fut = self.tasks[task_id]['app_fu']
if not fut.done():
logger.debug("Waiting for task {} to complete".format(task_id))
fut.exception()"All remaining tasks completed")
def cleanup(self):
"""DataFlowKernel cleanup.
This involves killing resources explicitly and sending die messages to IPP workers.
If the executors are managed (created by the DFK), then we call scale_in on each of
the executors and call executor.shutdown. Otherwise, we do nothing, and executor
cleanup is left to the user.
""""DFK cleanup initiated")
# this check won't detect two DFK cleanups happening from
# different threads extremely close in time because of
# non-atomic read/modify of self.cleanup_called
if self.cleanup_called:
raise Exception("attempt to clean up DFK when it has already been cleaned-up")
self.cleanup_called = True
# Checkpointing takes priority over the rest of the tasks
# checkpoint if any valid checkpoint method is specified
if self.checkpoint_mode is not None:
if self._checkpoint_timer:"Stopping checkpoint timer")
# Send final stats
self.usage_tracker.close()"Terminating flow_control and strategy threads")
for executor in self.executors.values():
if executor.managed:
if executor.scaling_enabled:
job_ids = executor.provider.resources.keys()
self.time_completed = time.time()"DFK end", extra={'tasks_failed_count': self.tasks_failed_count, 'tasks_completed_count': self.tasks_completed_count,
"time_began": str(self.time_began),
'time_completed': str(self.time_completed),
'run_id': self.run_id, 'rundir': self.run_dir})
if self.logging_server is not None:
self.logging_server.join()"DFK cleanup complete")
def checkpoint(self, tasks=None):
"""Checkpoint the dfk incrementally to a checkpoint file.
When called, every task that has been completed yet not
checkpointed is checkpointed to a file.
- tasks (List of task ids) : List of task ids to checkpoint. Default=None
if set to None, we iterate over all tasks held by the DFK.
.. note::
Checkpointing only works if memoization is enabled
Checkpoint dir if checkpoints were written successfully.
By default the checkpoints are written to the RUNDIR of the current
run under RUNDIR/checkpoints/{tasks.pkl, dfk.pkl}
with self.checkpoint_lock:
checkpoint_queue = None
if tasks:
checkpoint_queue = tasks
checkpoint_queue = self.tasks
checkpoint_dir = '{0}/checkpoint'.format(self.run_dir)
checkpoint_dfk = checkpoint_dir + '/dfk.pkl'
checkpoint_tasks = checkpoint_dir + '/tasks.pkl'
if not os.path.exists(checkpoint_dir):
except FileExistsError:
with open(checkpoint_dfk, 'wb') as f:
state = {'rundir': self.run_dir,
'task_count': self.task_count
pickle.dump(state, f)
count = 0
with open(checkpoint_tasks, 'ab') as f:
for task_id in checkpoint_queue:
if not self.tasks[task_id]['checkpoint'] and \
self.tasks[task_id]['app_fu'].done() and \
self.tasks[task_id]['app_fu'].exception() is None:
hashsum = self.tasks[task_id]['hashsum']
if not hashsum:
t = {'hash': hashsum,
'exception': None,
'result': None}
# Asking for the result will raise an exception if
# the app had failed. Should we even checkpoint these?
# TODO : Resolve this question ?
r = self.memoizer.hash_lookup(hashsum).result()
except Exception as e:
t['exception'] = e
t['result'] = r
# We are using pickle here since pickle dumps to a file in 'ab'
# mode behave like a incremental log.
pickle.dump(t, f)
count += 1
self.tasks[task_id]['checkpoint'] = True
logger.debug("Task {} checkpointed".format(task_id))
self.checkpointed_tasks += count
if count == 0:
if self.checkpointed_tasks == 0:
logger.warn("No tasks checkpointed so far in this run. Please ensure caching is enabled")
logger.debug("No tasks checkpointed in this pass.")
else:"Done checkpointing {} tasks".format(count))
return checkpoint_dir
def _load_checkpoints(self, checkpointDirs):
"""Load a checkpoint file into a lookup table.
The data being loaded from the pickle file mostly contains input
attributes of the task: func, args, kwargs, env...
To simplify the check of whether the exact task has been completed
in the checkpoint, we hash these input params and use it as the key
for the memoized lookup table.
- checkpointDirs (list) : List of filepaths to checkpoints
Eg. ['runinfo/001', 'runinfo/002']
- memoized_lookup_table (dict)
memo_lookup_table = {}
for checkpoint_dir in checkpointDirs:"Loading checkpoints from {}".format(checkpoint_dir))
checkpoint_file = os.path.join(checkpoint_dir, 'tasks.pkl')
with open(checkpoint_file, 'rb') as f:
while True:
data = pickle.load(f)
# Copy and hash only the input attributes
memo_fu = Future()
if data['exception']:
memo_lookup_table[data['hash']] = memo_fu
except EOFError:
# Done with the checkpoint file
except FileNotFoundError:
reason = "Checkpoint file was not found: {}".format(
raise BadCheckpoint(reason)
except Exception:
reason = "Failed to load checkpoint: {}".format(
raise BadCheckpoint(reason)"Completed loading checkpoint:{0} with {1} tasks".format(checkpoint_file,
return memo_lookup_table
def load_checkpoints(self, checkpointDirs):
"""Load checkpoints from the checkpoint files into a dictionary.
The results are used to pre-populate the memoizer's lookup_table
- checkpointDirs (list) : List of run folder to use as checkpoints
Eg. ['runinfo/001', 'runinfo/002']
- dict containing, hashed -> future mappings
self.memo_lookup_table = None
if not checkpointDirs:
return {}
if type(checkpointDirs) is not list:
raise BadCheckpoint("checkpointDirs expects a list of checkpoints")
return self._load_checkpoints(checkpointDirs)
class DataFlowKernelLoader(object):
"""Manage which DataFlowKernel is active.
This is a singleton class containing only class methods. You should not
need to instantiate this class.
_dfk = None
def clear(cls):
"""Clear the active DataFlowKernel so that a new one can be loaded."""
cls._dfk = None
def load(cls, config=None):
"""Load a DataFlowKernel.
- config (Config) : Configuration to load. This config will be passed to a
new DataFlowKernel instantiation which will be set as the active DataFlowKernel.
- DataFlowKernel : The loaded DataFlowKernel object.
if cls._dfk is not None:
raise RuntimeError('Config has already been loaded')
if config is None:
cls._dfk = DataFlowKernel(Config())
cls._dfk = DataFlowKernel(config)
return cls._dfk
def dfk(cls):
"""Return the currently-loaded DataFlowKernel."""
if cls._dfk is None:
raise RuntimeError('Must first load config')
return cls._dfk