Approximate Energies for the 2-electron Atom

This is a set of notes on determining the energy of a 2-electron atom in various
approximations. In atomic units, the molecular Hamiltonian is:
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and if we ignore the electron-electron repulsion term, this is a sum of two hydrogenic
Hamiltonians, with ground-state energy
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For the ground state, this is
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This energy must be below the true energy because one has neglected a positive term (the electron-
electron repulsion) in the Hamiltonian.
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1t-order perturbation theory correction:
Now, to estimate the effect of the electron-electron repulsion using perturbation theory, we

add a parameter to the Hamiltonian, writing
H(2)=-3Vi-£-3Ve i+ (1.3)

noting that H (2 =0) is the “easy” system we just solved and H (4 =1) is the true physical system
we want to solve. Then, at the level of first-order perturbation theory,
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and for the 4 =1 case of interest,
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and, from the Hellmann-Feynman theorem,
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The last integral 1 am giving to you. (I don’t expect you to be able to solve it, at least not in the
limited time allowed on an exam.)
So the energy of the 2-electron atom is
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| know this is greater than the true ground-state energy because
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based on the variational principle.

Variational Refinement:
Now we can imagine trying to refine the wavefunction using an effective nuclear charge.
The new wavefunction we consider is
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which we notice is the exact wavefunction for the Hamiltonian without any electron-electron
repulsion with nuclear charge ¢,
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Merely substituting Eq. (1.11) into (1.8) gives the expectation value for the electron-electron
repulsion as
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To determine the other contributions to the energy, note that from the Hellmann-Feynman theorem,
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Notice, now, that the electron-nuclear attraction integral is
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The kinetic-energy integral could also be determined from the Hellman-Feynman theorem (use
non-atomic-units and differentiate with respect to 7). However, for the exact Hamiltonian, we
know that
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So the energy expression we have is:
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We find the optimal effective nuclear charge by differentiation this expression,
0= =20-2Z+3
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Substituting this expression into Eq. (1.17) gives the best variational energy (which is still above
the true energy),
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